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Abstract

The topology of structural brain networks shapes brain dynamics, including the correlation structure of
brain activity (functional connectivity) as estimated from functional neuroimaging data. Empirical
studies have shown that functional connectivity fluctuates over time, exhibiting patterns that vary in the
spatial arrangement of correlations among segregated functional systems. Recently, an exact
decomposition of functional connectivity into frame-wise contributions has revealed fine-scale dynamics
that are punctuated by brief and intermittent episodes (events) of high-amplitude co-fluctuations
involving large sets of brain regions. Their origin is currently unclear. Here, we demonstrate that similar
episodes readily appear in silico using computational simulations of whole-brain dynamics. As in
empirical data, simulated events contribute disproportionately to long-time functional connectivity,
involve recurrence of patterned co-fluctuations, and can be clustered into distinct families. Importantly,
comparison of event-related patterns of co-fluctuations to underlying patterns of structural connectivity
reveals that modular organization present in the coupling matrix shape patterns of event-related co-
fluctuations. Our work suggests that brief, intermittent events in functional dynamics are partly shaped
by modular organization of structural connectivity.

Significance Statement

Brain regions engage in complex patterns of activation and co-activation over time. Relating these
patterns to rest or task-related neural processing is a central challenge in cognitive neuroscience. Recent
work has identified brief intermittent bursts of brain-wide signal co-fluctuations, called events, and
shown that events drive functional connectivity. The origins of events are still unclear. Here, we address
this gap in knowledge by implementing computational models of neural oscillators coupled by
anatomical connections derived from maps of the human cerebral cortex. Analysis of the emerging
large-scale brain dynamics reveals brief episodes with high system-wide signal amplitudes. Simulated
events closely correspond to those seen recently in empirical recordings. Notably, simulated events are
significantly aligned with underlying structural modules, thus suggesting an important role of modular
network organization.


https://doi.org/10.1101/2021.05.16.444357
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.16.444357; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

Structural and functional brain networks exhibit complex topology and temporal dynamics [1-3]. The
topological organization of structural connectivity (SC; the connectome) is characterized by broad
degree distributions, hubs linked into cores and rich clubs, and multi-scale modularity [4-6]. Functional
connectivity (FC), as measured with resting-state functional magnetic resonance imaging (fMRI), displays
consistent system-level architecture [7-9], as well as fluctuating dynamics [10-12] and complex
spatiotemporal state transitions [13,14]. Resting brain dynamics exhibit metastable behavior, with
noise-driven explorations of a large repertoire of network states and configurations [15].

Recent work has uncovered fine-scale dynamics of functional connectivity as measured with fMRI during
rest and passive movie-watching [16,17]. The approach leverages an exact decomposition of averaged
FC estimates into patterns of edge co-fluctuations resolved at the time scale of single image frames [18].
These studies reveal that ongoing activity is punctuated by brief, intermittent, high-amplitude bursts of
brain-wide co-fluctuations of the blood oxygenation level dependent (BOLD) signal. These episodes,
referred to as “events”, drive long-time estimates of FC and represent patterns with consistent
topography across time and across individuals [16,17,19]. The occurrence of events appears unrelated
to non-neuronal physiological processes, head motion, or acquisition artifacts. A better understanding
of how events originate may illuminate the basis for individual differences in FC and its variation across
cognitive state, development, and disorders. Here, we aim to provide a generative model for the origin
of events in neuronal time series and uncover potential structural bases for their emergence in fine-
scale dynamics.

The relationship of structure to function has been a central objective of numerous empirical and
computational studies, leveraging cellular population recordings [20,21], electrophysiological [22] and
neuroimaging techniques [23-25]. While there is broad consensus that ‘structure shapes function’ on
long time scales [26,27] relating specific dynamic features to the topology of the underlying structural
network is an open problem. Computational models have made important contributions to
understanding how structural connectivity [28,29], time delays and noisy fluctuations [30] contribute to
patterns of functional connectivity as estimated over long- and short-time scales. Model
implementations range from biophysically based neural mass models to much simpler phase oscillators
such as the Kuramoto model [31]. Despite their overt simplicity, phase oscillator models can generate a
wide range of complex synchronization and coordination states, and they reproduce patterns of
empirical FC [32], including temporal dynamics at intermediate time scales [33]. These modeled
dynamics reproduce ongoing fluctuations between integrated (less modular) and segregated (more
modular) network states [34,35], a key characteristic of empirical fMRI resting-state dynamics [36].

Here, we pursue a computational modeling approach that seeks to relate high amplitude co-fluctuations
to whole-brain network structure. We simulate spontaneous BOLD signal dynamics on an empirical
structural connectivity matrix of the human cerebral cortex using an implementation of a coupled phase
oscillator model incorporating phase-delays, the Kuramoto-Sakaguchi (KS) model [37]. The KS model is
well-suited for this purpose because its parsimonious parametrization allows for drawing specific links
between network structure and synchronization patterns. We find that over broad parameter ranges
BOLD signals exhibits significant high-amplitude network-wide fluctuations strongly resembling
intermittent events observed in empirical data. Model dynamics reproduce several key characteristics of
empirical events, including their strong contribution to long-time averages of FC as well as recurrent
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patterns across time. Simulated events are significantly related to network structure. They fall into
distinct clusters aligned with different combinations of modules in underlying structural connectivity.
Disruption of structural modules largely abolishes the occurrence of events in BOLD dynamics. These
findings suggest a modular origin of high-amplitude co-fluctuations in fine-scale functional connectivity
dynamics.

Results

Empirical data were derived from 95 subjects included as part of the Human Connectome Project (HCP),
with SC reconstructed from diffusion imaging and tractography and FC derived from 4 resting-state
scans (792 seconds, 1100 frames, TR = 720 ms). The brain was parcellated into 200 functionally defined
regions of approximately equal size [38], covering both cerebral hemispheres but excluding subcortical
or cerebellar structures. SC data comprised estimates of connection weights as well as tract lengths used
to compute time delays based on a uniform conduction velocity. Most simulations employed a
consensus average of SC across all 95 subjects that preserved mean density as well as the distance-
distribution of tracts [39]. Ten structural modules (labeled M1, M2, ... M10; Sl Fig 1) were derived from
an implementation of multi-resolution community clustering (see Methods).

The computational model implemented the Kuramoto-Sakaguchi phase-delay oscillator ([37]; Fig 1A,B),
simulated at 1 ms time resolution. A frustration matrix derived from empirical connection lengths
carried phase delays computed from connection lengths and a biophysically realistic conduction
velocity. Oscillator signal amplitudes (Fig. 1C) were convolved with a standard haemodynamic response
function (HRF; Fig. 1D) to yield simulated BOLD signals, which were then lowpass filtered (cutoff at 0.25
Hz) and down-sampled to match the fMRI sampling rate at the empirical TR used in the HCP data. For a
single simulation run, the resulting time series extended over 792 seconds, composed of 1100 time
steps (720 ms). An initial transient of 20 seconds was discarded. Simulated BOLD time courses were
processed into edge time series, computed as the element-wise product of the edge’s BOLD time series
standard scores (Fig. 1E,F). The mean across all time steps of a single edge in the edge time series
corresponded exactly to that edge’s functional connectivity [16-19]. The ‘root sum square’ (RSS) of
edgewise co-fluctuations, computed across all edges on each time step, recorded system-wide
instantaneous co-fluctuations (Fig. 1G). Events were detected by applying a non-parametric
permutation-based null model that randomly offset time series relative to each other (Fig 1G), thus
preserving (approximately) each time series’ autocorrelation while randomizing their temporal
alignment (cross-correlation).

Most simulations were carried out using a group-averaged SC coupling matrix (Fig 2A) while varying the
global coupling parameter k, yielding simulated BOLD time series and average FC patterns. Comparison
of empirical (Fig 2A) to simulated FC (Fig 2B) exhibited modest levels of similarity (Fig 2B,C), in line with
previous studies. A single value of the coupling parameter (k = 280), which provided a near-optimal
match with empirical FC, was selected for further detailed analysis. Empirical FC was significantly
correlated with the strengths of the SC weights (Pearson correlation, all node pairs: r, = 0.214,p = 0;
Pearson correlation, intra-hemispheric node pairs: r; = 0.343,p = 0; Fig 2C), as well as the co-
classification matrix summarizing multi-scale modular organization of SC (Fig 2B). The latter finding
agrees with prior observations in modeling studies that have linked structural to functional modules
[28,32] and expands on these observations by demonstrating that SC multi-scale co-classification alone
can significantly predict the long-time covariance structure of FC derived from empirical (1, =
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0.257,p = 0; r; = 0.359,p = 0) and modeled time series (r, = 0.756,p = 0; r; = 0.732,p = 0; k =
280). Model fit remained significant when simulations were carried out on SC matrices of individual
participants (r, = 0.200,p = 0; r; = 0.341,p = 0; 10 randomly selected subjects, 4 simulations each;
correlations computed against the mean of the same subject’s empirical FC). Realistic FC patterns
emerged with only partial synchronization of phase oscillators, as documented by relatively low means
of the order parameter (mean(R(t)) = 0.0825 + 0.0002; SD; 12 runs, k = 280), accompanied by
consistently high standard deviations (std(R(t)) = 0.0414 + 0.0001; SD; 12 runs, k = 280), indicative
of persistent variability in synchronization patterns and metastability.

Examining the RSS of simulated edge time series reveals brief, intermittent, high-amplitude peaks, or
events, over a wide range of the coupling parameter k (Fig 3). In empirical data, events exhibit several
characteristic features, including their disproportionate contributions to long-time estimates of FC and
somewhat stereotypic topography [16]. Simulations reproduced these features (Fig 4). We tested
whether the simulated edge time series exhibited some of the same features attributed to empirical
edge time series. First, we constructed FC separately using either high- or low-RSS frames. We found
that FC components constructed from high-RSS frames exhibited much greater similarity to the full FC
estimate than those obtained from low-RSS frames, and high-RSS FC components were significantly
more modular (Fig 4A,B). Additionally, the co-fluctuation patterns expressed during high-RSS frames
were more similar to each other than low-RSS patterns, and e frames exhibited significant stereotypy
across distant time points (Fig 4C,D).

We performed a principal components analysis (PCA) of edge time series, which yielded a distribution of
principal components that differed in spatial pattern and temporal expression. The score (level of
expression across time) of the largest principal component (PC1) was significantly correlated with global
RSS amplitude (Fig 4E), suggesting that the PC1 captured a consistent component associated with high-
RSS time steps. Consistent with the emergence of a significant PC1 component, the structure of the FC
covariance matrix indicated the presence of low-dimensional dynamics (low participation ratio, PR) over
most of the parameter range, coinciding with the occurrence of high numbers of events.

Next, we assessed the relationship of simulated events with the underlying structural connectivity. Data
from 12 simulation runs (k = 280) were aggregated to explore the topography of events and their
temporal recurrence in greater detail (Fig 5). A total of 161 events, each represented by a vector of
19,900 edge co-fluctuation values, were extracted, and their mutual similarity (Pearson correlation)
matrix was clustered to detect distinct sets of event patterns (Fig 5A). We tested whether patterns for
the four largest event clusters were significantly aligned with SC consensus module boundaries (Fig 5B).
The test employed a null model that rotates the structural modules on the cortical surface, thus
approximately preserving their spatial contiguity (spin test, 50,000 rotations, ref [40]). Total co-
fluctuation magnitude within all SC modules exceeded that obtained for all 50,000 null model rotations
and for all four event clusters (p < 0.00002). Testing for contributions of individual SC modules
confirmed significant co-alighment of specific modules with co-fluctuation patterns (event cluster 1: SC
modules M2, M4, M6; event cluster 2: M2, M6, M9; event cluster 3: M1, M2, M4, M6, M7; event cluster
4: M1, M4, M7; all p < 0.0013, Bonferroni corrected). Different classes of events aligned with different
subsets of structural modules and exhibited different time courses of co-fluctuations (Fig 5C). Our
findings suggest that events belonging to different clusters are shaped by different combinations of
modules present in the underlying structural connectivity.
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Several additional analyses were carried out to establish the robustness of these findings. Simulations
employing different settings of the conduction velocity were analyzed to examine the frequency of
events as well as the match between empirical and simulated FC (Sl Fig 2). Findings indicated that events
occurred over a wide range of velocities (6 m/s to 21 m/s), covering a range of plausible conduction
velocities for inter-regional projections in primate cortex [41]. Events did not occur when simulations
were carried out using a randomized SC matrix with near-absent modular organization (Sl Fig 3). In
contrast, events were readily observed in simulations that employed a synthetic (manually configured)
SC matrix with strongly modular organization spanning specific node sets, and these events were aligned
to the provided SC modular architecture (Sl Fig 4). Finally, simulated BOLD time courses were generated
by implementing a neural mass model (NMM, as employed in [28]) using the same SC consensus matrix
and processed identically as for the KS model described above (Sl Fig 5). The model matched empirical
FC, exhibited robust structure-function correlations and showed events over a range of coupling
parameters. NMM model events exhibited characteristics very similar to those found in empirical as well
as KS model data. Importantly, as for the KS model, NMM event clusters were significantly aligned with
structural consensus modules (S| Fig 5) (event cluster 1: M1, M4, M7; event cluster 2: M2, M4, M6;
event cluster 3: M1, M2, M4, M6, M7, M9; event cluster 4: M1, M2, M3, M6, M7; all p < 0.0013,
Bonferroni corrected).

Discussion

Here, we show that computational models of large-scale brain dynamics exhibit brief, intermittent, high-
amplitude bursts of edge co-fluctuations (events) across broad ranges of coupling and conduction
velocity parameters. Simulated events exhibit several characteristics that match those observed in
empirical data, including strong similarity to full-length FC and recurrence across time. We find that
simulated events display brain-wide patterns of co-fluctuation that are significantly aligned with
network communities (consensus modules) present in the underlying structural connectivity. This
relationship is reproduced in simulations that employ synthetic SC with defined modular architecture, is
absent in randomized SC where modular structure has been degraded and is replicated in an
independent model implementation. Overall, our study suggests a significant role for SC network
modaules in driving and shaping brief burst-like events that occur in fine-scale FC dynamics.

Recent studies have demonstrated that co-fluctuations of spontaneous brain activity as measured with
fMRI exhibit brief, intermittent, and high-amplitude events [16-19]. These patterns contribute
disproportionately to time-averaged FC, contain participant-specific information, and amplify brain-
behavior correlations. However, their origins are poorly understood. We address this question using
computational models, which have a long-established history as generative models of resting-state FC
and FC dynamics [31]. Prior work has shown that their ability to match empirical data depends on the
topology and weights of the underlying coupling matrix [28], noisy or chaotic dynamics and time delays
[30], giving rise to variable, metastable dynamics, forming a rich repertoire of functional patterns. Here,
we build on this body of work by extending model performance and analysis to fine temporal scales in
BOLD time series. We show that model dynamic matches several recently described characteristics of
empirically observed BOLD dynamics, including the recurrence of high-amplitude events in edge time
series that drive full FC. Importantly, analyzing simulated functional connectivity with respect to the
structural connectivity shows that specific patterns recurring in high-amplitude events are aligned with
modular boundaries in the underlying SC matrix, suggesting a mechanistic basis of events in the
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topology of structural modules. This finding, in conjunction with the fact that events drive average long-
time FC may account for the observation that modules form a consistent ‘core structure’ in functional
connectivity [42]. Previous work has implicated ‘cluster synchronization’ in patterning of FC [32] and in
temporal fluctuations related to near-critical and metastable dynamics [43]. A recent model [44]
adopted the FC decomposition approach to track fine-scale co-fluctuation patterns linking them to
neuronal cascades and nodal network structure. The model demonstrated that node centrality highly
influences the node’s likelihood to participate in coordinated activations that may, in turn, spread within
structurally densely connected clusters or communities. These findings are compatible with the role,
proposed in the present study, of structural modules in shaping spatially organized co-activity and burst-
like events.

The relationship between modular network topology and synchrony has been extensively investigated in
the complex systems and networks literature [45-50]. In agreement with previous simulation studies,
our model produced metastable dynamics and partial synchronization, which has been shown to
manifest within clusters contained in the connectivity matrix. Applied to brain models, previous work
demonstrated that slow fluctuations in modular FC topology on slower time scales (tens of seconds)
depended on the integrity of structural modules [28] and that modular metastable states were driven by
“cluster synchronization” [33]. Our findings suggest that these structural factors can act on fast time
scales yielding burst-like events that carry signatures of structural connectivity. At intermediate
coupling, networks with a strong community structure are conducive to fast, local synchronization, but
not global synchronization [48]. Additionally, when moving toward full synchronization, smaller, more
highly connected communities synchronize before larger communities, creating a mechanism by which
network structure may impose different time scales on the system [51,52]. More generally, the finding
that events are related to synchronization along the underlying modular structure resonates with this
larger body of literature and supports the notion that the brain’s modular network architecture
facilitates communication within modules while preventing global synchronization.

What causes events to occur? In simulations, we can confidently exclude scanner artifacts, spurious
physiological signals, head movement, or variations in internal state as drivers of events. Indeed,
analysis of empirical data has not found any significant correlation of timings or frequencies of events
with nuisance variables related to acquisition, motion, or physiology [16]. Notably, in both KS and NMM
models, the origin of events does not require a specific ‘built-in’ driving mechanism that triggers events
at specific times. This observation is reminiscent of the emergence of complex dynamics on multiple
time scales in high-dimensional neuronal systems [53]. While no forcing mechanisms are needed for
events to occur, they are shown to depend critically on the topology of the SC matrix. We demonstrate
that events are enabled by the presence of modular structural connectivity, and that the modular
topology is imprinted in the specific dynamic patterns that manifest as events. We also emphasize that
the model as presented here is implemented as a fully deterministic high-dimensional system of coupled
differential equations that capture how elementary (microscale) processes give rise to emergent and
collective (macroscale) system behavior. While many stochastic processes necessarily contain extremal
events, our model is generative in a mechanistic, rather than purely stochastic, sense: observed
fluctuations are localized in space and time, and their origin is rooted in the structure of the underlying
anatomical network.

Our focus has been on extremal events, sharp excursions of global co-fluctuation amplitudes that drive
FC. The cognitive relevance of such events is a current subject of investigation, with studies suggesting
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that fMRI event profiles carry subject-specific information [19]. Intriguing links may emerge between
fMRI events and transient phase-locking of BOLD signals [54] and activity pulses [55], stereotypic
patterns of propagation of intrinsic activity [56], and brain-wide traveling waves [57]. If events do
support adaptive function, then we may speculate that specific network topological features have been
selected to facilitate events. More work is needed to determine whether events have adaptive roles in
promoting specific neuronal functions. For example, the brief and system-wide nature of events
suggests relations to episodic synchronous neuronal activity such as avalanches [58] or ripples [59,60]
that involve large multi-regional neuronal populations and may facilitate distribution of packets of
neural information. The generative model furnished in this article may prove useful for examining and
testing these and other hypotheses.

Limitations of the study should be discussed. Both model implementations documented in this article
represent major simplifications of real anatomy and physiology. The models do not include subcortical
regions and are carried out on connectivity data that is processed into a specific nodal parcellation at
intermediate spatial resolution (200 nodes). Finer spatial scales of connectivity, more realistic dynamics,
inclusion of region-specific model parameters [61], the addition of neuromodulatory systems [62],
individualized connectomes, and geometric embedding of the underlying neural time series may
improve model performance and match with empirical data. These limitations can be addressed in more
accurate and data-driven multi-scale implementations, e.g., linking microscale anatomy and physiology
to large-scale population responses.

Additional directions for future work, beyond increasing model realism, include application to task-
driven dynamics, extrinsic perturbations, and the analysis of individual differences. Further
understanding of the possible structural origins of events in empirical data may come from comparing
empirical event patterns to SC modules. Because models give access not only to observed BOLD patterns
but also to the underlying (phase-oscillator or neural population) time series sampled at millisecond
resolution, fine-scale BOLD dynamics could be traced to fast fluctuations in synchrony at the microscale.
These directions may provide additional valuable insights into the network basis of neuron-level
dynamics that drive and shape functional connectivity.
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Methods

Dataset and Acquisition

All empirical data used for this study were derived from the set of 100 unrelated subjects acquired by
the Human Connectome Project (HCP) [63]. Informed consent was obtained from all participants and all
study protocols and procedures were approved by the Washington University Institutional Review
Board. A detailed description of HCP data acquisition protocols can be found in [63,64]. All data were
collected on a Siemens 3T Connectom Skyra equipped with a 32-channel head coil. Structural
connectivity was derived from diffusion imaging and tractography. Briefly, subjects underwent two
diffusion MRI scans, which were acquired with a spin-echo planar imaging sequence (TR = 5520 ms, TE =
89.5 ms, flip angle = 78°, 1.25 mm isotropic voxel resolution, b-values = 1000, 2000, 3000 s/mm?, 90
diffusion weighed volumes for each shell, 18 b = 0 volumes). These two scans were taken with opposite
phase encoding directions and averaged. Functional connectivity was derived from resting-state
functional magnetic resonance imaging (rs-fMRI), acquired with a gradient-echo echo-planar imaging
(EPI) sequence over 4 scans on two separate days (scan duration 14:33 min; eyes open). Main
acquisition parameters were TR=720ms, TE=33.1ms, flip angle of 52°, 2mm isotropic voxel resolution
and a multiband factor of 8. Both SC and FC were mapped to regions (nodes) using a common
parcellation scheme (N = 200 nodes in cerebral cortex; [38]), mapped to canonical resting state
networks derived from [9].

For inclusion in the present study, we selected a subset of 95 (out of 100 total) subjects. Subjects were
considered for exclusion based on the mean and mean absolute deviation of the relative root-mean
square motion across either four resting state MRI scans or one diffusion MRI scan, resulting in four
summary motion measures. If a subject exceeded 1.5 times the interquartile range (in the adverse
direction) of the measurement distribution in 2 or more of these measures, the subject was excluded.
These exclusion criteria were established before the current study. Four subjects were excluded based
on these criteria. One subject was excluded for software error during diffusion MRI processing. The
remaining subset of 95 subjects had the following demographic characteristics: 56% female, mean age =
29.29 +/- 3.66, age range = 22-36.

Structural Preprocessing

Diffusion images were minimally preprocessed according to the description provided in [64]. Briefly,
these data were normalized to the mean b0 image, corrected for EPI, eddy current, and gradient
nonlinearity distortions, corrected for motion, and aligned to the subject anatomical space using a
boundary-based registration [65]. In addition to this minimal preprocessing, images were corrected for
intensity non-uniformity with N4BiasFieldCorrection [66]. FSL's dtifit was used to obtain scalar maps of
fractional anisotropy, mean diffusivity, and mean kurtosis. The Dipy toolbox (version 1.1) [67] was used
to fit a multi-shell multi-tissue constrained spherical deconvolution [68] to the diffusion data with a
spherical harmonics order of 8, using tissue maps estimated with FSL’s fast [69]. Tractography was
performed using Dipy’s Local Tracking module. Multiple instances of probabilistic tractography were run
per subject [70], varying the step size and maximum turning angle of the algorithm. Tractography was
run at step sizes of 0.25 mm, 0.4 mm, 0.5 mm, 0.6 mm, and 0.75 with the maximum turning angle set to
20°. Additionally, tractography was run at maximum turning angles of 10°, 16°, 24°, and 30° with the
step size set to 0.5 mm. For each instance of tractography, streamlines were randomly seeded three
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times within each voxel of a white matter mask, retained if longer than 10 mm and with valid endpoints,
following Dipy’s implementation of anatomically constrained tractography [71], and errant streamlines
were filtered based on the cluster confidence index [72].

The number of streamlines between nodes of the volumetric parcellations was recorded for each
tractography instance. Fractional anisotropy, mean diffusivity, and mean kurtosis maps were sampled
from the middle 80% of each streamline’s path, which were averaged within streamline and then across
all streamlines between each pair of nodes. Streamline counts were normalized by dividing the count
between nodes by the geometric average volume of the nodes. Since tractography was run nine times
per subject, edge values had to be collapsed across runs. To do this, the weighted mean was taken, with
weights based on the proportion of total streamlines at that edge. This operation biases edge weights
towards larger values, which reflect tractography instances better parameterized to estimate the
geometry of each connection.

A single group-averaged structural connectivity matrix was constructed by forming a consensus average
preserving the length distribution of fiber tracts as well as matching the global connection density to the
mean over all individual subjects [39]. The resulting matrix (200 nodes, 6040 connections, 30.4 percent
density, 72.4 mm mean connection length) was used as a coupling matrix for the simulations. In addition
to these group-averages, some simulations used SC matrices estimated on data from single participants.

Functional Preprocessing

Minimal preprocessing of rs-fMRI data included the following steps [64]: i) distortion, susceptibility, and
motion correction; ii) registration to subjects’ respective T1-weighted data; iii) bias and intensity
normalization; iv) projection onto the 32k _fs_LR mesh; v) alignment to common space with a multi-
modal surface registration [73]. This preprocessing resulted in ICA+FIX time series in the CIFTI
grayordinate coordinate system. Additional preprocessing steps included: vi) global signal regression; vii)
detrending and band pass filtering (0.008-0.08 Hz) [74]. Following confound regression and filtering, the
first and last 50 frames of the time series were discarded, resulting in a final scan length of 13.2 min
(1200 frames).

For comparing simulated to empirical FC, a single group-averaged FC matrix was derived by computing
the mean FC over all 95 subjects and all 4 scans. When reporting correlations of full FC against other
metrics, raw FC values were first passed through the Fisher z-transform.

SC Consensus Clusters

Human connectome SC displays modular organization. To detect network communities in our SC
consensus matrix we employed multiresolution consensus clustering [75] which allowed us to capture
communities across multiple scales. The algorithm for modularity maximization was based on the
Louvain method, employed a spatial resolution parameter y, and operated in three stages. First, a
coarse sweep (1000 steps) of the resolution parameter established outer bounds that yielded between 2
and N communities. Second, a finer sweep (10,000 steps) over this range collected partitions across the
full range. These partitions were aggregated into a co-classification matrix, followed by subtracting a null
model (constant across all node pairs) corresponding to an expected level of co-classification based on
number and size of modules [75]. Finally, this null-adjusted co-classification matrix was re-clustered
under a variable consensus threshold T [76]. Resulting consensus partitions for different values of T


https://doi.org/10.1101/2021.05.16.444357
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.16.444357; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

were collected. The most frequently sampled consensus partition contained 10 modules and was
selected for subsequent analysis (Sl Fig 1).

Kuramoto-Sakaguchi Model Implementation

We implemented a version of the model that generates fast oscillatory dynamics and incorporates a
coupling structure consisting of weighted undirected connections and the corresponding time delays,
encoded in a phase delay (frustration) matrix. The fundamental equation of this Kuramoto-Sakaguchi
(KS) model (Fig 1) is given as

ae; C .
—t=2nf+ kz Ky; sin (8;(t — dij) — 6:;(£))
j=1
The global coupling parameter k was systematically varied. The mean natural frequency f was set to 40
Hz, with variability at each node (SD = 0.1 Hz). The coupling matrix K;; corresponded, in most
simulations, to the empirical SC consensus matrix (see above). A global scaling constant was applied to
normalize K;; for use in the simulations. The matrix of phase delays was derived from the physical
lengths of each SC connection, computed as the group-averaged mean of its constituent streamlines,
expressed in millimeters. Each SC connection length was converted to a time delay d;; computed from a
constant conduction velocity v. Most simulations in the paper use v = 12 m/s, resulting in a mean time
delay of 6.1 ms, averaged over all connections in K;;. The conduction velocity was varied between v =
3m/sand v = 24 m/s, a range that was systematically explored in prior work [33] and roughly
corresponds to the plausible physiological range for cortico-cortical projections in primates [41]. No
noise was added to the phase time series.

The system of N coupled equations was integrated (using Matlab’s ode45 solver) at 1 ms time
resolution, based on an implementation of the KS model in the Brain Dynamics Toolbox [77]. For each
simulation, the initial condition consisted of phases drawn randomly and uniformly between [0, 27].
Simulations proceeded for 812 s, which resulted, after removal of an initial 20 s transient, in 792 s of
simulated time. Synchronization behavior of the system was tracked by computing the global order
parameter

N

1 .
R(t =_§ 0 (t)
=3¢

n=1

R(t) quantifies the global phase synchronization, with R(t) = 0 indicting complete asynchrony and
R(t) = 1 indicating complete synchrony. After converting phases into signal amplitudes sin (8(t) (Fig
1C), the time series were convolved with a canonical haemodynamic response function (HRF; [77]; Fig
1D) resulting in synthetic BOLD time series (Fig 1E). These were lowpass filtered (0.25 Hz; [33]) and
down-sampled at intervals of 720 ms, corresponding to the empirical TR in resting-state fMRI
acquisitions, thus yielding a [N X T] simulated BOLD activity matrix, with T = 1100 time points
(“frames’). Finally, the global mean of these BOLD time series was regressed out, and the residuals were
retained for computing edge time series and functional connectivity (Pearson correlation).
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Neural Mass Model Implementation

To demonstrate the robustness of our principal findings we configured a second dynamic model, closely
based on earlier work [28]. Briefly, the neural mass model equations were adopted from a conductance-
based model of neuronal dynamics designed to capture local population activity. Local populations of
densely interconnected inhibitory and excitatory neurons whose behaviors are determined by voltage-
and ligand-gated membrane channels were placed at each node, and the SC matrix provided inter-node
couplings between excitatory neuronal populations. Parameter values were identical to those reported
in [28]. No time delays were implemented, nor was stochastic noise added to the voltage time series.
While other work has shown contributions made by time delays and noise to BOLD dynamics [30], here
we were interested in whether a minimal set of ingredients (the SC weights and their modular network
structure) could yield realistic event-like patterns. Only the global coupling parameter k was varied
across runs.

Following numerical integration of the system of Nx3 coupled differential equations (using Matlab’s
ode45 solver) and removal of a 20 s initial transient, the remaining time series were downsampled and
converted to 792 s and 1100 frames of synthetic BOLD data, as described above for the KS model. All
analyses were carried out identically for BOLD time series derived from both KS and NMM models.

Edge Time Series and Co-Fluctuation Amplitude

Simulated BOLD time series were processed into edge time series as previously described for empirical
fMRI data [16-19]. Nodal BOLD signals were z-scored, and edge time series (one for each node pair)
were computed as the element-wise product of the respective node time series:

Eij(t) = z(t) - z; (D)

The mean of each edge time series is exactly equal to the corresponding Pearson correlation (functional

.. . 1
connectivity), i.e., FC;; = Pl

[K X T] matrix, with K = 19900 (for N = 200) and T = 1100. The system-wide amplitude of all co-
fluctuations was computed as the ‘root sum square’ (RSS) or, in cases where different-size node sets
were compared, as the ‘root mean square’ (RMS).

I E;;(t). Edge time series, representing edge co-fluctuations, formed a

Prior work in empirical fMRI data established that FC components derived from high RSS frames have
higher similarity to full FC and have higher modularity than those derived from low RSS frames [16]. We
computed FC components for subsets of frames corresponding to the top and bottom deciles of RSS
(‘high’ and ‘low’ RSS), by taking the means across the respective subsamples of the edge time series.
Modularity was computed on the resulting FC component matrix by applying modularity maximization
(Louvain algorithm) adapted for use with matrices that contain both positive and negative edges [78].
The modularity metric Q* summed contributions by positive and negative edges as

1 + + 1 - -
Q" == Xij(wij — i) 6c,e; = mm Zij(Wij — eij) Scyepn

where 6., ..= 1 if nodes i and j are within the same community and &, .= 0 otherwise. The positive and
vej ad )

negative superscripts to the edge weight w;; between nodes i and j are used for separating positive and

negative edge weights, where Wl+] =wj;and w; ; = 0if w;; >0, and W;'j =0and w; ; = -w;; otherwise. The
+ _ ottt +_ ¢ o+
terme;; = s;°s;-/v®, where s;- = X w;

i ;jand vE=Y,; wl-i'j, is the expected positive or negative edge
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weight between nodes i and j if edges were randomly distributed. All edges were retained, and the value
of the modularity metric was computed while setting the resolution parameter to the default of y = 1.
Very similar results were obtained for other (higher and lower) settings of y.

Another previous finding indicated that frames obtained when RSS is high were more similar
(stereotypic) across time than low RSS frames [16,18,19]. In the simulation data, two related tests were
performed to examine the similarity of high/low RSS frames as well as the similarity of event frames
versus a time-shifted null. High/low RSS frame sets were extracted as described above and the
distribution of all pairwise Pearson correlations among their constituent edge co-fluctuation patterns
was compared (Wilcoxon rank sum test for equal medians, one-tailed, p < 0.0001, uncorrected). Event
peaks were extracted as described below, and the set of all Pearson correlations among these events
was compared against 250 sets computed from an equal number of randomly shifted time points, with
offsets chosen uniformly from the interval [-1100 1100]. The mean correlation of the actual events
was compared against these 250 random values and considered significant if p < 0.01 (uncorrected,;
actual value exceeds null model at least 247/250 times).

Two additional analyses delivered insights on the relation of edge time series patterns and RSS, as well
as on the dimensionality of the edge dynamics. First, performing principal component analysis (PCA) on
edge time series yields a series of principal components (PCs). The correlation between the scores of the
largest PC (PC1; taken to represent its expression over time) and the RSS is computed as Spearman’s p.
Second, the eigen-decomposition of the covariance matrix of the neural activity (BOLD time series)
yields a series of eigenvalues {A;} from which the participation ratio (PR) can be computed as a measure
of the dimensionality of the system [79]:

_ Cir)?
Yl

The value of PR is highly correlated with the cumulative explained variance of the largest principal
components of a PCA decomposition of the BOLD covariance matrix.

PR

Event Detection and Statistics

Peaks in the RSS statistic that exceed a statistical criterion are termed events. To determine statistical
significance, we performed non-parametric permutation tests on each model run ([19]; Fig 1G). BOLD
time series were randomly shifted (using Matlab’s circshift operator), each separately with an offset
chosen uniformly from the interval [-1100 1100], thus approximately preserving each node’s
autocorrelation, while randomizing the cross-correlation between nodes. This null model was applied
1000 times to each model run, and edge time series and RSS were computed for each instance. Time
points in the original time series for which the empirically observed RSS amplitude exceeded all RSS
values for all null model instantiations (p < 0.001) were retained. The intersection between all peaks in
the original RSS and these time points constituted significant events in the model run. Event amplitudes
corresponded to the RSS value at the time each such peak occurred.

At very low coupling (k < 35 in the KS model), we observed occasional excursions in single-node time
series which resulted in sharply fluctuating BOLD signal amplitudes and extremal z-scores. Extreme z-
scores in single or very few nodes can result in sharp RSS spikes at the system level due to the transitive
and multiplicative nature of the edge time series calculation. This phenomenon did not match
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characteristics of events observed in empirical fMRI data. Hence, RSS peaks that coincided with
excursions of at least one BOLD time series above or below z = +4.5 (the 99.99" percentile of
empirically observed BOLD signal amplitudes) were excluded from the analysis. Such peaks occurred
infrequently (at most once per 1100 frames) at couplings k > 35.

Event Clustering

Once statistically valid events were detected, their corresponding edge co-fluctuation patterns were
extracted and aggregated across multiple runs (k = 280 for the KS model; k = 0.175 for the NMM
model; 12 runs each). The Pearson correlation matrix for these event patterns was clustered using a
version of modularity maximization (employing the Potts model) and multi-resolution consensus
clustering [75]. The resolution parameter was stepped through a range of 10,000 values covering
modaular partitions yielding between 2 and N modules. All partitions were aggregated into a single co-
classification matrix which was scaled between [0 1] followed by subtraction of the analytic null [75]
and subjected to consensus clustering with 7 = 0.

The four largest clusters were retained for subsequent analyses (labeled event clusters 1-4). A single
mean edge co-fluctuation pattern (cluster centroid) was computed for each cluster. Applying the SC
consensus module partition to the four centroids yields a representation of how event-related co-
fluctuations distribute relative to the structural connectivity. To test whether mean co-fluctuations
within each of the structural modules were significantly above or below chance, the modular
components of edge co-fluctuations were recomputed using the spin test [40] which rotates the
structural modular partition 50,000 times on the cortical surface. This procedure preserves not only the
number but also (approximately) the spatial proximity of nodes contained in the original SC consensus

modules. SC modules were considered aligned with event patterns if their internal co-fluctuations were

greater than those from the 50,000 rotations, at a Bonferroni-corrected p < 0.0013 (OT?).

SC Randomization and Synthetic SC

The SC consensus matrix was randomized using a rewiring algorithm [80] that preserved the degree
sequence exactly and the strength sequence approximately. Connection lengths (delays) were preserved
at each connection such that the connection weight/delay relationship was retained. The resulting
randomized matrix matched the SC consensus in all summary statistics pertaining to weight or delays,
while comprising a globally randomized architecture. The modular architecture, as revealed through SC
consensus clustering (Sl Fig 3), was significantly muted.

A synthetic SC matrix was constructed such that the modular arrangement of the connections was
predetermined (4 modules in the case of the matrix displayed in Sl Fig 4) while retaining some summary
statistics of the empirical SC consensus matrix (density). The matrix was used in KS model simulations
with a rescaled coupling parameter of k = 25. This rescaling ensured that the global coupling strength
provided by the synthetic SC matrix approximately matched that provided by the SC consensus at k =
280.
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Figure 1: Kuramoto-Sakaguchi (KS) model schematic, computational workflow, and event detection. (A)
SC weight and length matrix. (B) Node pair (i, j) linked by an edge ij and its corresponding phases 8(t).
(C) Oscillator time series sin (6(t)). (D) Haemodynamic response function (HRF) used for convolving
oscillator time series to yield BOLD time series (E). (F) Elementwise product of normalized BOLD time
series yields edge time series. (G) Root-sum-square (RSS) of all edge time series yields RSS amplitude
time series. The null model consists of a distribution of null RSS amplitudes computed from randomly
shifted node time series. Gray dots show amplitudes from 100 null models, stippled line indicates the

p < 0.001 cutoff derived from 1000 permutation nulls. Peaks exceeding the cut-off indicated by
inverted triangles correspond to events. Data shown here computed from a representative run (k =
280, 12 events detected).


https://doi.org/10.1101/2021.05.16.444357
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.16.444357; this version posted May 17, 2021. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

VIS
SOM

DAN

VAN
LIM
FP

DMN

_SC Weights

—-3

Nodes

B SC Co-Classification

M1
M2
M3~
M4
M5&

M6

M7
M8
M9~

mollL

0.75

-0.75

_ W§9*Lengths

150

100

| 50

Nodes

Simulated FC

-0.75

Nodes

0.75

-0.75

Nodes

Emp/Sim FC

2H

0.5

simulated FC

-0.5

0

0.5

empirical FC

Nodes
C

0.4

Qo
©

0.35

o

3}
o
bt

0.3

o

FS
Q
o

Loosf v | 3

o=
3

£ 3
c - = (=
o i < o
= O = |
5 203 T 04
2 B E .
8 So2 3
f : 0.2 4
005 af T 2H 0.1: 2+
1H - H F - 1H
of ‘ of : : 0* : :
0 200 400 600 0 200 400 600 0 200 400 600
k k k

Figure 2: Structural and functional connectivity. (A) Empirical data. (left) SC consensus weight matrix;
(middle) SC connection lengths (conduction delays); (right) FC, average of 95 subjects, 4 runs each; all
panels shown in FC module node order (FC modules marked at left, cf. Sl Fig 1A). (B) SC consensus and
simulated FC. (left) Co-classification (agreement) matrix derived from the consensus SC matrix; (right)
Simulated FC, average of 12 runs, k = 280; both panels shown in SC consensus module node order (SC
consensus modules marked at left, cf. Sl Fig 1B). (right) Scatter plot showing comparison of empirical
and simulated FC (orange: all node pairs; blue: intra-hemispheric node pairs only). (C) (left) similarity
(Pearson correlation) between empirical and simulated FC, across all values of k; (middle) Spearman’s
rho between empirical SC weights (K;;) and simulated FC; (right) similarity (Pearson correlation)
between empirical SC co-classification matrix and simulated FC. All panels in (C) show data for the full
range of the coupling parameter k, with orange dots indicating full-brain coverage (both cerebral
hemispheres and their interconnections) and blue dots indicating intra-hemispheric connections only.
Large dots indicate data for k = 280 (stippled vertical lines), averaged over 12 runs.
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right), over the full range of k. Application of the null model for event detection suppresses low RSS-
amplitude peaks. (B) Example of simulated edge time series (k = 280) and RSS amplitudes, with event
peaks surviving null model comparison indicated by inverted triangles.
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Figure 4: Properties of simulated edge time series. (A) Comparison of FC components derived from the
top 10% (“high RSS”, blue dots) or bottom 10% (“low RSS”, orange dots) RSS frames. (left) Similarity
(Pearson correlation) with full FC; (right) modularity. Both panels show data across the full range of k.
(B) Example FC matrix (all frames, top; cf. Fig 2), and FC components (high RSS frames, middle; low RSS
frames, bottom). Data averaged over 12 simulation runs of KS model, at k = 280. (C) Similarity of frame
sets sampled during high/low RSS epochs and during events. (left) Mean similarity (Pearson correlation)
of frames within high/low RSS sets (110 frames each). Red dots indicate values of k for which significant
differences between distributions were detected (Wilcoxon rank test, one-sided, p < 0.0001,
uncorrected). (right) Mean similarity (Pearson correlation) of event frames compared to mean of 250
randomly offset frame sets. Red dots indicate values of k with p < 0.01 (uncorrected). (D) Example plot
of similarity of edge time series (Pearson correlation) across all frames within one simulation run (KS
model, k = 280; top: frames in original time sequence; bottom: frames sorted by RSS amplitude). (E)
(left) Correlation of the largest principal component (PC1) of the edge time series with the RSS
amplitude, across all values of k. (right) Participation ratio (dimensionality) computed from the FC
covariance matrix. Stippled vertical line marks k = 280 in panels A, C, and E.
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Figure 5: Event clusters and relation to SC consensus modules. (A) Clustered correlation matrix of event
patterns (k=280, 161 events). Matrix is reordered to show event clusters, from largest to smallest. The
top four clusters are delineated and contain 37, 30, 26, and 15 events, respectively. (B) Means of the
events clusters (cluster centroids) displayed in matrix form, with nodes arranged in SC consensus order
(cf. Fig 2). SC consensus modules for which the mean co-fluctuation significantly exceeded those
obtained in a null distribution (spin test, 50,000 spins): M2, M4, M6 (cluster 1); M2, M6, M9 (cluster 2);
M1, M2, M4, M6, M7 (cluster 3); M1, M4, M7 (cluster 4); all p<0.0013, Bonferroni corrected). (C) Mean
time courses of RMS, computed for each SC consensus module, with time courses aligned to the event
peak, for each of the four main event clusters (means of 37, 30, 26, 15 events, respectively). Time
courses show mean co-fluctuation amplitude for each SC consensus module.
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SlI Figure 1: Parcellation and modular partitions. (A) Canonical functional systems (FC modules, see refs.
[9,38]). (B) SC consensus modules: 10 modules derived from multi-resolution consensus clustering of the
SC consensus matrix. SC consensus partition and Yeo partition are significantly related (mutual
information between SC consensus and FC modules: MI = 0.277; mean/SD of 10000 randomly shuffled
SC consensus partitions vs. FC modules: M| = 0.075 + 0.013). (C) Comparison of FC modules and SC
consensus modules. Matrix plots mutual overlap, with rows summing to 1. (D) FC modules that most
closely match the SC consensus modules, based on the overlap matrix in panel (C). Font size indicates
relative magnitude of overlap.
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Sl Figure 2: FC and events at different settings of the conduction velocity. All other simulation
parameters are identical to the simulations reported in the main text. Data are shown for 4 simulation
runs at each setting of the velocity. Large dots show means over all 4 runs. (left) Similarity (Pearson
correlation) between empirical and simulated FC; (middle) Spearman’s p between empirical SC weights
(Kij) and simulated FC; (right) Number of events.
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k = 280). (C) Event counts for 12 runs using the empirical SC (‘emp’) and the randomized SC (‘rnd’).
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Sl Figure 4: Synthetic matrix. (A) SC weights and lengths, arranged into 4 structural modules. (B) SC co-
classification and simulated FC (mean of 12 runs, k = 280). (C) Correlation matrix of event frames
detected across 12 runs (k = 280), with the four largest clusters indicated (185, 168, 89, 55 events,
respectively; total: 533 events). (D) Edge co-fluctuation patterns for the four main event clusters (means
shown, corresponding to cluster centroids). SC consensus modules for which the mean co-fluctuation
significantly exceeded those obtained in a null distribution (spin test, 50,000 spins), numbered from the
top of the matrix: M1, M4 (cluster 1,2); M2, M4 (cluster 3); M1, M3 (cluster 4); all p < 0.0031,
Bonferroni corrected).
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Sl Figure 5: NMM simulations. (A) SC co-classification (right panel; cf. Fig 2) and simulated FC (middle
panel; mean of 12 runs, k = 0.175). Scatter plot (right panel) shows relation of empirical to simulated
FC (mean of 12 runs, k = 0.175), for all node pairs (orange dots; r, = 0.342,p = 0) and inter-
hemispheric node pairs (blue dots; r; = 0.417,p = 0). (B) Pearson correlation between simulated and
empirical FC (left panel; k=0.175 indicated by stippled line), Spearman correlation of simulated FC with
empirical K;; (middle panel), and Pearson correlation of simulated FC with SC co-classification (right
panel). (C) Event numbers and amplitudes (top panels) over a range of k. Sample edge time series and
RSS plot (k = 0.175; bottom). Events indicated by inverted triangles. (D) Correlations of 111 events,
with four main event clusters indicated, comprising 39, 24, 23 and 10 events, respectively. (E) Means of
the events clusters (cluster centroids) displayed in matrix form, with nodes arranged in SC consensus
order (cf. Fig 2, Fig 5). SC consensus modules for which the mean co-fluctuation significantly exceeded
those obtained in a null distribution (spin test, 50,000 spins): M1, M4, M7 (cluster 1); M2, M4, M6
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(cluster 2); M1, M2, M4, M6, M7, M9 (cluster 3); M1, M2, M3, M6, M7 (cluster 4); all p < 0.0013,
Bonferroni corrected).
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