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ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans
could cause coronavirus disease 2019 (COVID-19). Since its first discovery in Dec 2019,
SARS-CoV-2 has become a global pandemic and caused 3.3 million direct/indirect deaths
(2021 May). Amongst the scientific community’s response to COVID-19, data sharing has
emerged as an essential aspect of the combat against SARS-CoV-2. Despite the ever-growing
studies about SARS-CoV-2 and COVID-19, to date, only a few databases were curated to
enable access to gene expression data. Furthermore, these databases curated only a small
set of data and do not provide easy access for investigators without computational skills to
perform analyses. To fill this gap and advance open-access to the growing gene expression
data on this deadly virus, we collected about 1,500 human bulk RNA-seq datasets from
publicly available resources, developed a database and visualization tool, named
CovidExpress (https://stjudecab.github.io/covidexpress). This open access database will
allow research investigators to examine the gene expression in various tissues, cell lines, and
their response to SARS-CoV-2 under different experimental conditions, accelerating the
understanding of the etiology of this disease to inform the drug and vaccine development. Our

integrative analysis of this big dataset highlights a set of commonly regulated genes in
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SARS-CoV-2 infected lung and Rhinovirus infected nasal tissues, including OASL that were
under-studied in COVID-19 related reports. Our results also suggested a potential FURIN

positive feedback loop that might explain the evolutional advantage of SARS-CoV-2.
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INTRODUCTION

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in
humans could cause Coronavirus disease 2019 (COVID-19). Since it was first discovered in
Dec 2019, SARS-CoV-2 has become a global pandemic that spread into 192 countries,
infected approximately 163 million people and caused 3.3 million of deaths to date (2021 May)
(Dong et al). The scientific community quickly responded to COVID-19 and public data sharing
in health crises (Littler et al) played a critical role across all aspects of combatting against
SARS-CoV-2. For instance, Nextstrain and GISAID databases allow sharing and
comprehensive real-time analysis to monitor the virus evolution and adaptation (Hadfield et al;
Shu & McCauley) since the first sequencing data were available (Wu et al). MOBS LAB and
MIDAS enabled the epidemic spread modeling that facilitated policy makers to draft emergent
regulations (Chinazzi et al; Kenah; Kucharski et al; Sun et al). Platforms like Vivli shed a light
on sharing clinical trial data anonymization to accelerate scientific progress (Li et al). The
structure sharing on Protein Data Bank (Burley et al; Jin et al; Walls et al) and CoVvV3D
(Gowthaman et al) have been instrumental for investigators to understand SARS-CoV-2's
function and mechanism. Databases that document drug repurposes were developed either
based on 3D structure (Chen et al) or literature searching (Tworowski et al). Web portals such
as LitCovid (Chen et al, 2020, 2021a) and COVIDScholar (Trewartha et al) were developed to
reduce the time for acquiring information, while Cochrane were more focused on collecting
clinical trial studies (Hilton et al). The gene sets collected by PAGER-CoV (Yue et al) and
COVID-19 Drug and Gene Set Library (Kuleshov et al) could be used for cross-examining
different results and prioritization of potent drugs.

On the other hand, the fast growth of COVID-19 related publications (Palayew et al) led to
many cases of unreliable results, some of which were unfortunately retracted (Abritis et al;
Else, 2020). Thus, re-analysis and critical curation of the ever-growing available data in an
unbiased manner becomes a necessity to ensure the reproducibility of scientific conclusions
and further propel advances toward therapeutics. Of the many published studies depositing

raw data in public repositories including GEO (Barrett et al), bulk RNA-seq datasets have
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taken the largest share. However, few databases enable rapid and easy access to such as
quantitative details (Cantelli et al; Ziegler et al) in RNA-seq, and none provides analysis
functions for world-wide investigators without programming skills.

Thus, we sought to develop an open-access database so investigators could easily
examine the comprehensive, consistently re-processed data by performing basic analysis with
intuitive, customized, and instant visualization. Our main goals are to facilitate open-access to
publicly available COVID19 related bulk RNA-sequencing data, to provide standardized results
for investigators to use to generate hypotheses for subsequent genetic, biochemical, and
functional experimental analyses, and to present rich visualization tools so investigators can
make publication-ready figures to accelerate publication process. With this effort, we have
curated and analyzed up to date the largest set of 1,468 SARS-CoV-2 related bulk RNA-seq
samples from 43 independent studies. Those data, after quality control, were also used to run
a total of 315 contrasts of differentially expressed genes analyses, and utilizing several
alternative postprocessing approaches, ultimately allowed for identification of 20,036

differential SARS-CoV-2 related gene signatures.

RESULTS

Overview of Data Processing Workflow for CovidExpress

Figure 1A describes the general schema of the data curation and analysis. We collected
human RNA-seq data by using the query “((covid-19 OR SARS-CoV-2) AND gse[entry type])
AND "Homo sapiens"[porgn:__txid9606]” at NCBI Gene Expression Omnibus(GEO) website.
From 43 studies (9 published, Supplementary Table S1), we collected 1,468 samples (4.7TB
raw data) from total representing 227 experimental groups. We integrated quality control (QC)
code from RSeQC (Wang et al) so that optimal parameters for processing pipeline were
automatically chosen (see Material and Methods) based on the strand information of RNA-seq
protocol (Supplementary Figure S1A,S1B). Next, we reviewed the quality control metrics and
found that most data had good sequencing depth (Supplementary Figure S1C) and mapping

rate (Supplementary Figure S1D). Nevertheless, the genomic distribution of the sequencing
4
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reads revealed that about 21.2% of the samples were biased toward intronic reads
(Supplementary Figure S1E, Supplementary Table S1, Material and Methods), we
reasoned that these biases could be explained by protocol differences and experimental
variations. We still included those samples since our processing method was only counting
exonic reads as for gene level expression quantification. Also, these biases did not affect our
differential expression analysis since we would only compare samples within the same study
cohort.

We noticed that several studies were strongly enriched with sequences from 3'UTRs that
would affect our analyses. We found that this 3'UTR bias could be explained by experimental
protocols. For instance, a study from GSE154936 employed QuantSeq (Moll et al) protocols
known by its 3UTR bias in order to utilize the low input or low quality RNA materials. To
systematically identify similar samples, we aggregated the normalized gene-wise binned
coverage for each sample and used hierarchical clustering to separate datasets into 9 clusters
by gene-coverage similarity (Supplementary Figure S1F). Principal component analysis
(PCA) (Lever et al) of the gene-body coverage profiles showed that clusters 1, 2 and 3 were
distinct from the other clusters (Supplementary Figure S1G). A summarized plot confirmed
that clusters 1, 2 and 3 were strongly biased toward the 3'UTR (Supplementary Figure S1H).
Clusters 4, 5 and 6 also shown a slight 3'UTR bias, but we decided to keep them since they
achieved good coverage for gene body (Supplementary Figure S1H). Together, we included
data from clusters 4-9 as the finalized sample list for our database and all downstream
analyses. All our QC metrics are listed in Supplementary Table S1. Our finalized sample list
includes 1093 samples, where 557 (50.96%) were of samples infected with SARS-CoV-2.
Most samples were from Respiratory, Circulatory, and Immune systems (Figure 1B,1C). An
overview of the overlap between different analytical criteria were summarized in
Supplementary Figure S1l and S1J.

To help investigators begin their own analyses using CovidExpress portal (Figure 1D), we
took two approaches to highlight the currently known important genes in COVID-19 research.

We first used machine learning-based tool for retrieving bioconcept annotations from literature
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research. We extracted gene annotations from 108,627 COVID-19 related literature sources,
and weighed genes by their appearance frequency in Pubtator annotation (Wei et al, 2019)
(Figure 1E). Per our expectation, ACE2 and TMPRSS2 emerged as the top studied genes
(Clausen et al; Hoffmann et al, 2020; Liu et al, 2020; Ziegler et al., 2020). Many other top
genes were also very interesting, such as C-reactive protein (CRP), which may be an early
marker of COVID-19 (Luo et al, 2020). Several other top genes require further genetic,
biochemical, and functional characterization using follow-up experiments.

Next, we extracted metadata using GEOmetadb and manually reviewed data for accuracy
(Zhu et al). We performed a total of 315 differential expression (DE) genes analyses between
groups for each study, and we asked which genes frequently showed up as top differentially
expressed shared among all our comparisons (Figure 1C and 1F). We found that many
COVID-19 context studies reported that these top differentially expressed genes were
important (Supplementary Table S2). Some of the top genes that frequently appeared in
literature research approach such as IL6, IL1A and TNF, were also found among the top
differentially expressed genes. Interestingly, top genes in literature-based search, such as
ACE2, TMPRSS2, and CRP, were not among the top differentially expressed genes. This
suggests that although it have been repeatedly reported that SARS-CoV-2 need
ACE2/TMPRSS?2 to infect cells (Clausen et al.; Hoffmann et al., 2020; Liu et al., 2020; Ziegler
et al., 2020), ACE2/TMPRSS2 expression level was not elevated following infection. Thus, the
most dramatic differential expression observed in RNA-seq was more related to the innate
immune defense mechanism. In support of this notion, many interferon genes and
inflammatory cytokine and chemokine genes were frequently found as top differentially
expressed genes (Figure 1F). The results of such meta-analysis itself has a power to guide
future molecular studies to determine the functional impact of these genes and the resulting
proteins in the disease pathogenesis. Overall, our RNA-seq analyses pointed to the innate
immune defense mechanism as the most differentially regulated following SARS-CoV-2

infection.
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CovidExpress Web Portal Overview and Key Functional Components

Large datasets could be challenging to explore especially for investigators without
programming skills. Thus, we built our server blueprinted from cellxgene interface, which is a
tool that was originally designed for exploring single-cell RNA-seq data and comes with a
rich set of features (Cakir et al). Furthermore, we added designed features and extended the
functional set of cellxgene components to allow investigators to visualize and customize their
results as well as to run more in-depth analyses (Figure 2A). Beside all the functionalities
cellxgene supports, our server further allows investigators to visualize the expression of their
genes of interest and exports publication-ready figures such as violin plots, dot plots, track
plots and heatmaps (Figure 1D, 2B, Supplementary Figure S2A, S2B). Importantly, we
developed additional analytical components so that investigators could explore their own gene
sets (i.e. lists of genes of interest). Our server enables investigators to calculate enrichment
scores against all our pre-computed regulated gene ranks by using Gene Set Enrichment
Analysis (GSEA) (Fang; Subramanian et al). The results will be presented to investigators in
an interactive manner so they can select the top comparisons of interest (Figure 2C). To
ensure the reliability of the results, the codes for calculation scores for GSEA have been
carefully reviewed. We implemented a procedure for multiple hypothesis testing: p-values
were controlled by False Discovery Rate (FDR) from all pre-computed p-values for each
comparison. This would allow investigators to assess the specificity of their gene set
comparison to gene sets from other databases including MSigDB (Liberzon et al) and
COVID-19 related gene set databases we or the investigators curated (Kuleshov et al.). Finally,
the investigators can review the strength and confidence of their gene set enrichment by
examining the output volcano (Figure 2D) and GSEA plots (Figure 2E). The investigators
could also choose to explore our pre-computed GSEA results from different gene set
databases (Figure 2F), using different gene-ranking strategies (Supplementary Figure S2C),

or based on different comparisons (Supplementary Figure S2D).

Examples Demonstrating How to Use CovidExpress


https://doi.org/10.1101/2021.05.14.444026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444026; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CovidExpress is a rich resource for investigators at various stages of their research
projects. For investigators who do not know exactly where to start the analysis in our web
portal, we compiled a gene name cloud to highlight genes that have been frequently studied or
implicated in SARS-CoV-2 and COVID-19 studies based on RNA-seq analysis (Figure 1C,1D,
Supplementary Table S2), and the functional significance of many of these transcripts
remains to be determined. To showcase the utility of CovidExpress in exploratory analysis, we
present below two case studies.

As the first case study, we wish to illustrate how CovidExpress portal might be used to
investigate the expression patterns of pre-selected genes of interest and identify new ones.
Here as the example, we examine the expression of a COVID-19 severity related gene set,
identified by Overmyer et al (Overmyer et al, 2021), using an elastic net machine learning
approach to find molecular features with high significance to COVID-19 status and severity
based on multi-omics data. We restricted our analysis to 20 genes with the highest predictive
power from the original paper. Then, using CovidExpress, we checked the expression of these
genes in our compiled gene expression data of all the studies that reported the patient’s
COVID-19 disease severity (510 samples from 14 different studies). The violin plot in Figure
3A indicates that, indeed, many of these genes show some relatively higher expression
especially in the samples from Intensive Care Unit patients (ICU), Non-ICU, Remission and
Severe patients. To closely check the enrichment pattern of these genes and avoid batch
effect, we selected the ICU and Non-ICU samples from Overmyer et al. data (GSE157103)
and plotted their expression in all of the 126 samples (66 ICU and 60 Non-ICU) (Figure
3B,3C). The expression pattern of these genes indicates that GRB10, ARF1, PGS1,
RASGEF1A and SESN2 genes are highly expressed in ICU samples, while the rest of the
genes are highly expressed in Non-ICU samples. These results can be very useful to get a
sense about the role of these genes in COVID-19 severity.

To investigate further the difference between ICU and Non-ICU patients, we performed
differential gene expression analysis using CovidExpress for the same study (GSE157103).

We identified the significantly up- and down-regulated genes between these two conditions
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and found some gene from the starting list also were among top differential expressed genes
such as GRB10 (Figure 3D). The results of GSEA analysis run for the ICU up-regulated genes
indicates that the ICU enriched genes are a good discriminator between healthy controls and
patients in the remission state from another study (GSE16778) further supporting the
importance of these genes (Figure 3E). Consistently, the expression for top COVID-19
severity predictor genes GRB10 and RASGEF1A were correlated and were overall higher in
both ICU vs. non ICU and remission vs. healthy patients (Figure 3F).

As the second case study, we wish to illustrate how investigators can utilize CovidExpress
to explore dozens of datasets starting from biological hypothesis and ending on an in-depth
analysis of selected studies. An increasing body of literature is showing that altered
coagulation is one of the strong phenotypic markers associated with severe COVID-19 cases
(Al-Samkari et al, 2020; Osuchowski et al, 2021; Ramlall et al, 2020). Thus, we wanted to
check how genes related with blood coagulation (GO:0030193) are regulated in different
samples in our cohort. Using the GSEA enrichment feature, we can first identify the top 15
samples that show a significant up- or down-regulation of the coagulation markers (Figure 3G).
Among the contrasts that show an up-regulation of the coagulation genes are the Buffy coat
cells from COVID-19 positive ICU patients compared with control (GSE154998); while on the
other hand, the SARS-CoV-2 treated H1299 cells (GSE148729) showed decreased
expression of coagulation genes after treatment. Interestingly, in Wyler et al. study (Wyler et al,
2021) H1299 cell lines showed a low susceptibility to SARS-CoV-2 infection due to their low
expression of ACE2 and low virus replication. This in turn might explain the altered activation
of the coagulation genes.

To examine the degree of up/down-regulation of our coagulation gene set, we can further
explore the GSEA enrichment profile. Indeed, most of the genes are up- and down-regulated
in GSE154998 and GSE148729 experiments, respectively (Figure 3H). We can also compare
how the GSEA score calculated for our coagulation gene set are ranked in respect with the
precalculated contrasts from our database. For example, Figure 3l illustrates volcano plot, for

the relation between Normalized Enrich Score (NES) and p-value, for the Buffy coat cells (left)
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and H1299 cells (right). Using the available custom annotation feature, investigators can plot
the gene expression of the different coagulation genes (Figure 3J) and perform differential
gene expression analysis to study in more details the expression patterns of these
experiments (Figure 3K). As expected, and as reported by the previous studies, Buffy coat
cells shows a large change in its genome-wide expression, while the H1299 cell line showed a
transcriptional profile similar to uninfected cells as reported by Wyler et al. (Wyler et al., 2021).
We summarized suggested analysis steps for various investigation interests in
Supplementary Figure S3A. Overall, CovidExpress provided functionalities can become a
very handy and powerful exploratory tool for investigators, especially those without advanced

programming background or without easy access to high-performance computing facilities.

CovidExpress Reveals Insights and Potential Discoveries

With all re-processed datasets and web portal in CovidExpress, we sought to explore
user friendliness of the web portal. The first challenge that we encountered was the
heterogeneity of experimental protocols and data variations. As expected, samples clustered
strongly by study cohorts in conventional PCA (Figure 4A). PCA reduction using the top 1000
differentially expressed genes leads to some improvements, but the batch effect was not
totally removed (Supplementary Figure S4A). Different dimension reduction methods such
as t-distributed stochastic neighbor embedding (tSNE) or Uniform Manifold Approximation and
Projection (UMAP) (Mclnnes et al) did not solve this problem, either (Supplementary Figure
S4B,C). Different scaling options such as batch correction using Combat (Leek et al, 2012)
could not entirely solve this problem (Supplementary Figure S4D). We hypothesized that the
inherent experimental variability might be partially mitigated or equalized by correcting against
a set pathways or regulated genes using the approach of Single-sample GSEA (ssGSEA)
enrichment scores (Barbie et al) for PCA, tSNE and UMAP analysis instead of correcting at the
gene level. ssGSEA is an extension of GSEA to calculate separate enrichment scores for each

pairing of a sample and gene set. Each ssGSEA enrichment score represents the degree to
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which the genes in a particular gene set are coordinately highly or lowly expressed within a
sample. By calculating ssGSEA in each sample, we were able to get an enrichment score for
each gene set in MSigDB (Liberzon et al.), including well known pathways like KEGG
(Kanehisa et al), REACTOME (Jassal et al), BIOCARTA (Nishimura), Wikipathways (Slenter
et al), and Gene Ontology processes (The Gene Ontology). Next, we used ssGSEA scores to
cluster samples by similarity between gene sets, with the rationale that ssGSEA scores are
sufficient to represent gene variability between samples.

To test this hypothesis, we used GTEx data as a ground truth. We downloaded and
processed 9,525 GTEx samples from 30 tissues, then, we calculated the top 10 principal
components projection for each sample using its gene expression and MSigDB ssGSEA
enrichment scores respectively (Supplementary Figure S4E, S4F). Next, we used the
silhouette score to measure the separability between tissues (Rousseeuw, 1987) and found
that ssSGSEA scores-based projection indeed leads to a better separability between tissues
(Supplementary Figure S4G).

Encouraged by these results, we then applied the ssGSEA approach on our data
collection, we observed that the samples clustered less according to study cohorts (Figure 4B,
Supplementary Figure S4H). This clustering was further improved if we use the ssGSEA
score from COVID-19 signature gene sets (top differentially expressed genes from our
analysis) (Figure 4C, Supplementary Figure S4H). In contrast, although batch effect
correction method such as Combat achieved the best experiments-based silhouette score (i.e.
making samples less separated by study cohorts)(Supplementary Figure S4H), this strategy
did not improve the samples separation by phenotype (infected with SARS-CoV-2 or
not)(Supplementary Figure S4l). As expected, this clustering did not perfectly separate
infected samples from control samples (Figure 4D) due to tissue specificity and many infected
samples were also tested with drug treatments. In the portal, we show a projection obtained by
using the ssGSEA scores of the differentially expressed gene sets by default setting in the
CovidExpress portal, but investigators may select other types of projections (Supplementary

Figure S5A, S5B, S5C).

11


https://doi.org/10.1101/2021.05.14.444026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444026; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Next, we utilized the portal’s function to gain insights about SARS-CoV-2’s effect. We first
noticed there were two large clusters despite their SARS-CoV-2 infection status (Figure 4D).
Interestingly, the left top cluster were all from blood related samples such as white blood cells,
leukocytes, monocytes. While the right bottom cluster were from other tissues. This indicated
the COVID-19 signature was not able to overcome the tissue specificity and that immune cells
might respond to SARS-CoV-2 differently. Next, we reviewed the SARS-CoV-2 infection status
for studies with large number of samples. CovidExpress portal allowed us to select different
projection of samples (Supplementary Figure S5A), that we noticed Rhinovirus samples
separated from control samples but mixed with some SARS-CoV-2 samples in both UMAP
and tSNE projections (Supplementary Figure S5B, S5C). The clustering of Rhinovirus
samples is less visually impressive in PCA. However, we noticed PC1 generally reflected the
effect of virus infection and that smaller PC1 value correlated with virus infection. For example,
more SARS-CoV-2 infection samples clustered at left in lung (Figure 4E), similarly more
Rhinovirus (RV) infection samples clustered at left in nasal sample (Figure 4F). This is
consistent with the proposed role that RV infections are potential mechanisms of ACE2
overexpression in patients with asthma (Chang et al, 2020). We next selected one study from
each tissue that had a simple experimental design comparing SARS-CoV-2 or RV infected
cells versus control (GSE160435 and GSE149273) and identified their differentially expressed
genes respectively.

Interestingly, 345 genes (280 up-regulated and 65 down-regulated) showed consistent
expression change pattern in both lung and nasal cells (Figure 4G, Supplementary Table
S3). Among the 280 consistently up-regulated genes, 56 genes (20%) where among the top
1000 genes highly cited in COVID-related literature mined through the LitCovid database
(Chen et al., 2020, 2021a) (Figure 4G). Among the top hits we identified genes such as TNF,
IL1A and CXCL10 previously identified as a common factor between pulmonary and olfactory
dysfunctions in SARS-CoV-2 infections (Oliviero et al, 2020). Additionally, TNF has been
functionally shown, along with IFN-y, to be one of the key drivers of cytokine storm in

COVID-19 (Karki et al, 2020). Functional enrichment analysis against the COVID-19 gene-sets
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compiled by the EnrichR database (Figure 4H) (Kuleshov et al., 2020) shows
up/down-regulation patterns consistent with those from other independent studies. These
enrichment results also indicate that the identified up/down-regulated genes are also
consistently changing in the airway epithelium cells (Figure 4H). GSEA analysis of the
identified up-regulated genes against the gene contrasts compiled in our database also
indicate consistent upregulation in ex vivo cells such as in SARS-CoV-2 infected lung
organoids (Figure 4l).

Among the commonly differential genes in both lung and nasal tissues we also identified
an interferon response gene OASL, an under-studied protein from oligoadenylate synthase
(OAS) protein family. OASL'’s role in antiviral activity has been reported that it could enhance
RIG-1 (Zhu et al, 2014) but it was not extensively studied in the context of COVID-19 based on
LitCovid database. Interestingly, we observed that, OASL showed an inversely correlated
pattern to the common down-regulated gene such as PPARGC1A and can overall discriminate
the lung and nasal virus infected cells from the control group (Figure 4J). The expression of
OASL is also highly correlated with that of TNF in COVID samples (Figure 4K). Among all
tissues, OASL expression is highest in the lung tissue (Supplementary Figure S5D),
particularly in macrophage cells in lung tissue (Supplementary Figure S5E), suggesting its
important role in the innate immune response in lungs.

We also noticed ACE2 and several other top studied genes were significantly
up-regulated only in RV infected nasal but not in SARS-CoV-2 infected lung organoids (Figure
4G). This might also be due to the nature of SARS-CoV-2 needing ACE2 to infect cells
(Clausen et al.; Hoffmann et al., 2020; Liu et al., 2020; Ziegler et al., 2020) but not regulating
ACEZ2’s expression. Interestingly, despite “IL-6/JAK/STAT3 Signaling” were enriched for genes
up-regulated in both lung and nasal (Supplementary Table S3), IL6 is significantly
up-regulated only in RV infected nasal but not in SARS-CoV-2 infected lung organoids (Figure
4G). This indicated the activation of IL-6 signaling were different between RV infected nasal
and SARS-CoV-2 infected lung organoids. In lung, there are other pathways implicated such

as mMTOR (Supplementary Table S3) (Mullen et al, 2021). In addition, furin cleavage site in
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SARS-CoV-2 was reported to help its infectivity and transmissibility (Johnson et al, 2021; Xia
et al, 2020) while our results found FURIN gene was also up-regulated in SARS-CoV-2
infected lung organoid alveolar type 2 cell (Figure 4G, Supplementary Table S3) (Mulay et al,
2021), implicating a positive feedback, presumably via TGF-beta Signaling (Supplementary
Table S3) (Blanchette et al, 2001). Given that the furin cleavage site could naturally occur in
coronavirus family (Wu & Zhao, 2021), it is plausible SARS-CoV-2 might evolved to induce
FURIN expression to gain superior infectivity, although this hypothesis requires further
investigation. Together, the data analysis capacities offered by CovidExpress enable
scientists to identify key genes and pathways that would be catalysts of new scientific

investigations.
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DISCUSSION

We describe the data collection, data processing, and web portal development of a
comprehensive RNA-seq database from SARS-CoV-2 and COVID-19 related research,
named CovidExpress. CovidExpress database content and portal will be periodically updated.
We expect the updates will be based on the framework described here. We also plan to
improve our differential gene expression analysis component in the future to adjust for batch
effects between studies. For the current release, we strongly suggest investigators to
perform gene expression comparison within individual study. To make the database as
user friendly as possible, we have developed abundant visualization functions to help
investigators to quickly test their hypothesis and visualize results. We included GSEA
component to enable investigators to analyze gene sets on-the-fly and compare results with
thousands of pre-computed GSEA results. This framework could be easily applied to different
collections of data. Finally, our approach in using ssGSEA scores for unbiased clustering
sheds light on how to visualize large datasets with varying, strong, and most importantly
unknown batch effect.

We strongly believe the CovidExpress database has a power to become a key tool for
identifying new genes of interest to support the development of hypotheses and subsequent
biochemical analyses. While many genes have been found to be differentially regulated during
SARS-CoV-2 infection across studies, some are only found in specific cell types or
experimental conditions, and the functional relevance of many of these remains unclear. It will
be beneficial to use the CovidExpress tool as the first step in elucidating these functional
pathways across dozens of experiments. Follow up investigations aimed at elucidating where
genes of interest fit into biochemical pathways and characterizing which are upstream
regulators or sensors that can affect a variety of downstream processes will be essential to
improve our understanding of SARS-CoV-2 pathogenicity and identify new therapeutic
approaches. For example, while IL-6 has been identified in many datasets as being important
in COVID-19, biochemical characterization has lagged, and the functional relevance of IL-6

remains unclear, as clinical trials to block IL-6 or its receptor have had mixed results in patients
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(Gordon et al, 2021; Nasonov & Samsonov, 2020). Additionally, analyses should consider the
stage of disease, which can be selected using the sample selection feature in CovidExpress.
Innate immune responses, particularly IFN responses, are known to change throughout the
infection (Blanco-Melo et al, 2020; Hadjadj et al, 2020; Lee et al, 2020; Lee & Shin, 2020;
Lucas et al, 2020), making temporal considerations key.

Overall, the CovidExpress database fills a critical gap in the research field to
comprehensively compile the large amount of RNA-seq data available on COVID-19 and offer
it in a format that enables users to perform basic and visualizable analyses without the need
for programming skills. We think this work will not only benefit SARS-CoV-2 research field but
may also inspire other data-driven investigators on how to utilize rich data already published

for scientific discoveries.

DATA AVAILABILITY

RNA-seq data were collected from GEO as listed in Supplementary Table S1. Raw data with
annotation and gene signatures could be downloaded from

https://stjudecab.qgithub.io/covidexpress

MATERIALS AND METHODS

RNA-seq data analysis.

Sequencing reads were quality filtered using TrimGalore (available on-line at

https://www.bioinformatics.babraham.ac.uk/projects/trim galore/). Filtered reads were aligned

to the human reference genome GRCh38.p12 using STAR (Dobin et al, 2013), assuming that
the RNA-seq experiment is strand-specific. Next, MarkDuplicates from GATK (McKenna et al,
2010) and CollectRnaSeqMetrics from Picard (available on-line at

http://broadinstitute.github.io/picard/) were used to mark duplicated reads and compute

mapping statistics. Only samples with more than 2M reads mapped (1,460 samples) or more
than 1M deduplicated reads mapped (1,396 samples), were later retained for further analysis.

RSEM (Li & Dewey, 2011) was used to quantify read counts per gene based on Gencode v31
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reference gene annotation , and expression values were converted to Transcripts Per Kilobase
Million (TPM) unit. Next, infer_experiment.py tool from RSeQC (v4.0.0) (Wang et al., 2012)
was used to examine strand-specificity for each sample. Subsequently, the results from each
sample were manually examined to determine final strand-specificity. If majority of samples in
experiment (i.e. samples from the same GEO accession number) exhibited no bias toward
strand specificity, as emphasized by fraction of reads mapping to both strands at the level >
0.4 and < 0.6, the experiment strategy was changed to unstranded (non-strand specific), and
reads from all samples from that experiment were remapped in the unstranded mode. The
exception from the approach to assign the same strand specificity toward all samples from the
same experiment was made for GSE147507 experiment, in which case the manual
examination revealed that strand specificity status called by RSeQC was consistent within
subseries of the samples, as emphasized by the sample names. E.g. samples from “Series1”
were consistently considered strand-specific, while samples from “Series2” were non-strand
specific.

After all samples were mapped, geneBody_coverage2.py from RSeQC was used to
examine the percentile-distribution of mapping reads along housekeeping genes. Distribution
in each sample was min-max normalized, hieratically clustered with Ward’s method and
manually examined in order to subjectively identify clusters representing samples with the
highest quality (clusters #4, #7, #8, and #9; 946 samples), medium quality (clusters #5 and #6;
163 samples) and low quality (clusters #1, #2 and #3; 359 samples; Supplementary Figure
1H). Normalized distributions were also used to calculate for each sample the cumulative sum
at 50" percentile, with the assumption that deviation of this cumulative value from 0.5 value
will increase with the increasing bias toward mapping of reads at 3' or 5’ end. The lower and
upper thresholds to consider a sample as being biased toward 3’ or 5’ end was set as 0.2716
and 0.7496 respectively; which values corresponds with the minimal and maximal values of
cumulative sum at 50" percentile (min=0.3282; max=0.693), minus/plus one standard
deviation (std=0.0566), computed among 946 samples which were considered as representing

the highest quality gene coverage among studied samples. Applying those thresholds for all
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samples allowed for identification of total of 1,274 samples with low 5-3 ends bias.
Independently, the mean coverage was calculated for each sample from normalized gene
body coverage distributions, with the assumption that the value will be lower for low quality
samples than for high quality samples. Indeed, for example the mean coverage for 359
samples from three lowest quality clusters #1, #2 and #3 (Supplementary Figure 1H) the
mean coverage is on average at the level of 0.2669, while in contrast for 946 samples from
high quality clusters #4, #7, #8, and #9, this value is at the level of 0.7392. Therefore, a value
0.3843 was set as a minimal average gene body coverage threshold, which value corresponds
with the minimal coverage value of 0.5138 (minimal among 946 highest quality samples)
minus three standard deviations from the mean (std=0.04317). This allowed for identification
of 1,160 samples meeting average gene body coverage threshold. Finally, carefully
considering all quality control criteria, a total of 1,093 samples were selected for further
analysis (Supplementary Figure 1J).

After removing low quality samples, batch correction using Combat (Leek et al., 2012)
was applied for FPKM values, which values were used only for the purpose of samples
clustering with PCA, if the user would like to choose this option. However, because of the
nature of the CovidExpress project, and very large technical and biological variability between
experiments, in order to minimize the influence of the batch effects correction, the differential
gene expression analysis was computed only for the samples originating from the same
experiment based on non-batch-corrected FPKM expression values. Differential expression
analysis was assessed using limma-voom (Law et al, 2014). Only GENCODE annotated level
1 and 2 protein-coding genes, with at least 10 reads per sample in the minimum group size,
were retained in the analysis. Based on each contrast, differential genes were extracted with
the following thresholds:

1. Up2: FC =z 2, FDR £0.05
2. Up2NoFDR: FC 2 2, p=0.05
3. Up: FDR = 0.05

4. UpNOFDR: p < 0.05
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5. DownNoFDR: p £0.05

6. Down: FDR < 0.05

7. Down2NoFDR: FC = 2, p £0.05
8. Down2: FC = 2, FDR < 0.05

Moreover, based on each DEG contrast, the genes were pre-ranked following four alternative
approaches:

1. FCRank metric = log, (FC)

2. PRank metric = direction x -log;o (p-value)

3. FCPRank metric = log, (FC) x -logy, (p-value)

4. FCPERank metric = log, (FC) x -logyo (p-value) x log;o (Mean Expr. +1)

Each pre-ranked gene list was sorted and used to extract 20, 50, 100, 200, 500, 1000 and
2000 Top (upregulated) and Bottom (downregulated) genes. All pre-ranked gene lists were
also used to calculate Gene Set Enrichment Analysis (Subramanian et al., 2005) using

GSEApy (v.0.10.2, available online at https://github.com/zgfang/GSEApy). GSEApyY was run

with 1000 permutations and gene set size thresholds were set to 5 and 5000 for minimal and
maximum size, respectively. The analysis was independently conducted for gene signatures
collections from four sources:

1. COVID-19 related gene signatures: 561 differential gene signatures from COVID-19
related research, downloaded from Enrichr portal (Kuleshov et al, 2016; Kuleshov et
al., 2020). This collection was enlarged by 20,036 differential gene signatures
collected at various thresholds and top up-/down-regulated genes from CovidExpress
project.

2. DSigDB: 23,950 gene signatures from DSigDB database (Yoo et al, 2015),
downloaded through Enrichr database.

3. DrugMatrix: 7876 gene signatures from DrugMatrix database (Ganter et al, 2006),

downloaded through Enrichr database.
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4. MSigDB: 25,724 gene signatures from MSigDB (v7.1) (Liberzon et al., 2015; Liberzon
et al, 2011). In addition to pre-ranked GSEA analysis, single-sample GSEA, also using
GSEApy program, was conducted. Normalized enrichment scores (NES) were
computed for all the COVID-19 related samples either for the full collection of gene
signatures from MSigDB, or collection of in-house differential gene signatures from
COVID-19 related research, narrowing down the full collection to 492 differential gene

signatures from Up2 and Down2 categories.

CovidExpress web portal development

We built CoivdExpress by leveraging the sophisticated visualization features of cellxgene
interface, which is a tool that was originally designed for exploring single-cell RNA-seq
analysis . Because cellxgene client side was built using the React library, the addition of new
user interface (Ul) components can be done in a straightforward modular way. We mainly
added the following components: GSEA analysis and visualization related components, gene
expression visualization plots and differential gene expression analysis and full results

downloading component. We used nivo library (https:/nivo.rocks/) for visualization of the

interactive plots. The GSEA enrichment plot was generated using the python module gseapy

(https://github.com/zgfang/GSEApy) , while the different gene expression plots were

generated using the python module scanpy (Wolf et al, 2018).

Data preparation for visualization

To be able to pass the data to cellxgene, it needs to be converted into the .h5ad format
understood by scanpy (Wolf et al., 2018). Thus, we first used Seurat v3 R package (Stuart et al,
2019) to load the expression data, add the different projections slots and the metadata. The
Seurat object was then converted into the .h5ad format using the SeuratDisk R package

(https://github.com/mojaveazure/seurat-disk).

The GSEA ranks, NES scores and p values, on the other hand, were stored in a separated .h5

file for rapid access and parsing.
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Figure 1. Overview of RNA-seq processing Workflow
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A General schema of data collection and processing. See Material and Methods part for
details.

B Overview of samples distribution for finalized samples used.

C Summary of the number of samples, DEG contrasts, differential gene signatures
extraction approaches and final number of differential gene signatures.

D Overview of general approaches for CovidExpress exploration, and analytical and
visualization tools that may be utilized within the portal.

E Word cloud highlighted genes frequently reported in literatures related to
SARS-CoV-2.

F  Word cloud highlighted genes frequently shown in top 500 regulated genes from this

study(315 contrasts), genes also in Figure 1E were colored in red.

35


https://doi.org/10.1101/2021.05.14.444026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444026; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2

A

M callxgene
uz) Cenxgene

B gy v
B cona
B o
e

o MEFA D3R Hopb

& e B all 011 RN

ianks GSEI10739._OMS et =

MSIgDE nsigna nragaTz

Figure 2. CovidExpress web portal overview and key functional components

A Main Graphical User Interface of CovidExpess web portal. Left panel were organized

by meta data. Middle panel each dot represents a sample. Right panel allow user input

gene of interest for reviewing their expression level or perform GSEA analysis.

Our newly designed visualization tool allow user generating violin plot, dot plot, track

plot and heatmap for selected genes across all or selected samples.

Barplot of top GSEA results compared to pre-computed GSEA results. User mouse

hover each bar would show detailed information. User click on bar would update

Volcano plot and GSEA plot as panel D and E.

Volcano plot for the selected result. User mouse hover each dot would show detailed

information. Data and plot could be downloaded for user’s customization.

GSEA plot for the selected result. User click could find more functions such as zoom,

rotate, download.

Volcano plot for pre-computed data. Multiple choices of rank types and gene set

databases available.

36


https://doi.org/10.1101/2021.05.14.444026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444026; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 3

Study GSE157103
GRRLO.
10
ARF].
a8t
PG LA el o B — o ke
st =l —— 0.8
oty =G _b—_wad
o | W e ——tal
LTt 0.6
o
THIM 54
EMTZA.
7 0.4
il
Wit
PFTCHY
ALm1 0.2
MOA
MOMIE
THFIE 0.0
Study GEE157103
Study GSE157103 e CaRIT7E raniydorar
i RASGEFIA
t g.\. 104 @ Healthy (SEE181778) =B
i I ® Remission (GSE161778) . g
e | g 154 @ ICU (GSE1ST103) d T8
ﬁ ke wrs amsan Fof maw 39 @ NenIBU(GSEISTIOY ., + "
10 T panond ] Ton 500 g
w 25+ . B .
- [ bl > wly
tE -
- L
B s Boan| i o, ey o AT Bty .
E i g e B S
. Sern v 4710 104 .. \ -
o § 2 o ¥, i Ay
5, e e s iy
5 L & o e s r) t ? 3 1 H [
Logsl ICU f Non-ITU) Rank i1 Drdered Dataset
. GA 14008 Rt Copd
Top 15 enriched Terms by NES 5
Study: GsE128728 Study; est1as /29 =1 =
Treatment: 71299 _polya_cov_12h Treatment: Cacol_palyh_COvZ_12h
Control: 125y palya “;“_ - Confrol: Caco? pelys COVZ 4h E:: i
- e i
Ve 3 I
5 i Sy
= ESd L o

Study: GSE 18729
Treatment: Caco2_polya_Covz_ah
Control: Cacoz polya mock ah

BufCell (GSE154998)
COV Ve CTRL

ch«-—.mu«g

GILLABIIN MLIFS Doim COVE 1IN
i IR L4929 WIZPH peryh unte

Study: GSE154998
Treatment: Buffcell cov
Control: Buf feell Control

H1299 (051487 29)
COV 12k VS Unar

= Py Clars G oot

g 3 B o —
¥ F.: |
s
on.
% N S R S PR R
NS
J =10 -5 o 5 0
Logd COV | CTRL)
PUlionll 25512400 Fraction of cells H1299 {GSE148729)
w[enese-ee-sensensse-eneyy e
gEEzOCS R GCTEBESR SAEJED i
BT PEI IO il
8 p

Mean expression

I In group

%EggE o 05

Logul €OV 12h / Unir)

37


https://doi.org/10.1101/2021.05.14.444026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444026; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 3. Use cases demonstrating the common steps for using CovidExpress

A Use casel: CovidExpress violin plot showing the expression of the top 20 COVID-19
severity predictors as defined by Overmyer et al (Overmyer et al., 2021) in the
available severity classes available in CovidExpress.

B CovidExpress dot plot showing the expression pattern of the top 20 COVID-19
severity predictors in Overmyer et al dataset (GSE157103).

C CovidExpress heatmap showing the detailed expression of the top 20 COVID-19
severity predictors in Overmyer et al dataset (GSE157103).

D Volcano plot showing the transcriptome-wide differential expression results as
calculated by CovidExpress of ICU vs Non-ICU samples from Overmyer et al dataset
(GSE157103).

E CovidExpress GSEA plot showing the enrichment the upregulated genes from the ICU
samples of GSE157103 in the remission patients from GSE161778.

F CovidExpress scatter plot showing the gradual distribution of samples based on their
COVID-19 severity using two top COVID-19 severity predictors.

G Use case2: CovidExpress GSEA ranking plot of the list of experiment showing the
most enriched and depleted expression of the coagulation genes (GO:0030193).

H CovidExpress GSEA plot of the experiments showing the most enrichment and
depletion of the expression of the coagulation genes.

I  CovidExpress GSEA volcano plot comparing the NES and FDR scores of the
coagulation geneset relatively to the other contrasts in the samples identified in figure
H.

J CovidExpress dot plot showing the expression pattern of the coagulation genes in the
experiments identified in panel H.

K Volcalo plot showing the identification of additional differential genes between the

previous two experiments using CovidExpress differential gene expression feature.
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Figure 4. CovidExpress reveal insight led to potential discovery

A PCA analysis based on gene expression level (TPM), colored by studies

B PCA analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA), using

gene sets from MSigDB, colored by studies
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C PCA analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA), using
Covid signature gene sets from this study, colored by studies

D PCA analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA), using
Covid signature gene sets from this study, colored by SARS-CoV-2 infection status.

E Using combination of lasso selection and meta data selection, we selected lung tissue
SARS-CoV-2 (red dots) and control group (blue dots).

F Using combination of lasso selection and meta data selection, we selected nasal
tissue Rhinovirus (red dots) and control group (blue dots).

G Scatterplot showing the log, expression fold change between lung and nasal cells
after virus infection. Genes up-regulated in both tissues are shown in red, while the
down-regulated in both tissues are shown in blue. We labelled genes shown as top in
our literature-based word cloud that black ones were only significant up-regulated by
Rhinovirus in nasal, while purple were only significant up-regulated by SARS-CoV-2 in
lung.

H Heatmap showing the -logio(p-value) of the commonly up-/down-regulated genes in
COVID-19 genes sets compiled by the EnrichR database.

I  GSEA plot of one of top contrast differential expression comparison (GSE157057)
showing the enrichment of the commonly up-regulated genes in lung and nasal tissue.

J Scatterplot showing the anti-correlation between OASL (commonly up-regulated) and
PPARGC1A (commonly down-regulated) genes in nasal and lung samples. Samples
are colored based on their phenotype (red: SARS-CoV-2 or Rhinovirus, blue: Control).

K Scatterplot showing the correlation between OASL and TNF (both commonly
up-regulated) in nasal and lung samples. Samples are colored based on their

phenotype (red: SARS-CoV-2 or Rhinovirus, blue: Control).
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Figure S1.

A Heatmap of results from automatic detection of RNA-seq strandness.

B Pie chart shown percentage of stranded RNA-seq data versus unstranded.

C Boxplot of mapped reads number by studies.

D Heatmap of mapping rate, duplication rate.

E Heatmap of read genomic distribution.

F Hierarchical clustering of read aggregative gene-based coverage.

G PCA plot colored based on hierarchical clusters (in panel G), 5’ to 3’ bias score and
Average normalized coverage. Number in brackets indicated variance explained.

H Line plot of aggregative gene-based coverage for individual cluster (defined in
Supplementary Figure 1F).

I Pie chart shown the percentage of RNA-seq sample using single-end versus
paired-end sequencing.

J Upset plot summaries the overlap between different clusters, groups and quality
control criterions. The black dot in bottom right matrix indicated which group the
sample for that bar belong to. For example, the 166 samples for second bar were
overlapping only between group
1396_samples_with_at_least_1M_deduplicated_reads_mapped and

1460_samples_with_at_least_2M_reads_mapped.
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Figure S2.

A Detailed demonstration of plot function. These functions were made available for all
types of plots as violin plot, dot plot, track plot and heatmap plot. User could input their
gene list. User could also simple plot the top 10 differential expressed gene by
selected meta data (“Source” as example) here. Results here indicated very few
genes could be distinct one source from the others. For selected group 1 versus
group2, differentially expressed genes between group 1 and group 2 could also been
plot.

B Plot customization functions were provided so user could zoom, rotate, change text

size, download the figure on-the-fly.
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C We provide GSEA for different options of pre-computed ranks. User could choose
based on different questions to ask. For example, using fold change (FC) based rank if
they wondering what have been enriched by most changed genes. p.value based if
they more interesting in what have been enriched by most consistently changed genes.
See Material and Methods part for details.

D An example of how pre-computed results were organized and available for user’s

selection.
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Figure S3.

Suggested analysis steps for variously investigation interests.
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Figure S4.
A PCA analysis based on the top one thousand differential genes, colored by studies
B tSNE analysis based on gene expression level, colored by studies
C UMAP analysis based on gene expression level, colored by studies
D PCA analysis based on gene expression level after batch correction, colored by
studies
E PCA analysis of GTEx data based on gene expression, colored by tissue.
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F PCA analysis of GTEx data based on MsigDB signature, colored by tissue.

G Comparison of tissue-level Silhouette score distribution using expression and
MSigDB-based PCA projections.

H Experiment-level Silhouette scores distribution between our compiled samples using
different scoring methods to measure batch-effect. Lower score indicates less batch
effect.

I Phenotype-level Silhouette scores distribution between our compiled samples using
different scoring methods to measure the degree of phenotype separability. Higher
scores indicate better separability between SARS-CoV-2 infection and control

samples.
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Figure Sb.

A An example shown various choices of samples embedding layouts user could use.

48


https://doi.org/10.1101/2021.05.14.444026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444026; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

B UMAP analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA),
using COVID signature gene sets from this study, colored by SARS-CoV-2 infection
status.

C tSNE analysis based on single-sample Gene Set Enrichment Analysis(ssGSEA),
using COVID signature gene sets from this study, colored by SARS-CoV-2 infection
status.

D OASL expression in different tissues from GTEXx datasets.

E OASL expression in different cell types from Lung GTEXx single-cell RNA-seq datasets.
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