

1 **The recent evolutionary rescue of a staple crop depended on over half a century of global**
2 **germplasm exchange**

3

4

5

6 Kebede T. Muleta^{1*}, Terry Felderhoff^{1*}, Noah Winans¹, Rachel Walstead², Jean Rigaud Charles³,
7 J. Scott Armstrong⁴, Sujan Mamidi², Chris Plott², John P. Vogel⁵, Peggy G. Lemaux⁶, Todd C.
8 Mockler⁷, Jane Grimwood², Jeremy Schmutz^{2,5}, Gael Pressoir³, Geoffrey P. Morris^{1,8}

9

10

11 ¹ Department of Agronomy, Kansas State University, Manhattan, Kansas, USA 66502

12 ² Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806

13 ³ Chibas and Faculty of Agriculture and Environmental Sciences, Quisqueya University, Port-au-
14 Prince, Haiti

15 ⁴ U.S. Department of Agriculture, Agricultural Research Service, Wheat, Peanut and Other Field
16 Crops Research Unit, 1301 North Western Rd., Stillwater, OK 74075

17 ⁵ Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory,
18 Berkeley, CA 94720

19 ⁶ Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720

20 ⁷ Donald Danforth Plant Science Center, St. Louis, MO 63132

21 ⁸ Department of Soil & Crop Science, Colorado State University, Fort Collins, Colorado, 80526

22 ^{*} Equal contributions

23

24 Corresponding author:

25 Geoffrey P. Morris

26 Geoff.Morris@colostate.edu

27

28

29 **ABSTRACT**

30 Rapid environmental change can lead to extinction of populations or evolutionary rescue via
31 genetic adaptation. In the past several years, smallholder and commercial cultivation of sorghum
32 (*Sorghum bicolor*), a global cereal and forage crop, has been threatened by a global outbreak of
33 an aggressive new biotype of sugarcane aphid (SCA; *Melanaphis sacchari*). Here we
34 characterized genomic signatures of adaptation in a Haitian sorghum breeding population, which
35 had been recently founded from admixed global germplasm, extensively intercrossed, and
36 subjected to intense selection under SCA infestation. We conducted evolutionary population
37 genomics analyses of 296 post-selection Haitian lines compared to 767 global accessions at
38 159,683 single nucleotide polymorphisms. Despite intense selection, the Haitian population
39 retains high nucleotide diversity through much of the genome due to diverse founders and an
40 intercrossing strategy. A genome-wide fixation (F_{ST}) scan and geographic analyses suggests that
41 adaptation to SCA in Haiti is conferred by a globally-rare East African allele of *RMES1*, which
42 has also spread to other breeding programs in Africa, Asia, and the Americas. *De novo* genome
43 sequencing data for SCA resistant and susceptible lines revealed putative causative variants at
44 *RMES1*. Convenient low-cost markers were developed from the *RMES1* selective sweep and
45 successfully predicted resistance in independent U.S. \times African breeding lines and eight U.S.
46 commercial and public breeding programs, demonstrating the global relevance of the findings.
47 Together, the findings highlight the potential of evolutionary genomics to develop adaptive trait
48 breeding technology and the value of global germplasm exchange to facilitate evolutionary
49 rescue.
50

51 INTRODUCTION

52 Ongoing processes of global change, encompassing climate change, nutrient cycles, and pest
53 outbreaks, are shaping the evolution of natural and agricultural ecosystems (1, 2). Intense
54 selection pressure following environment changes may lead to the rapid decline or extinction of
55 populations (3, 4). If a population is to persist under such strong selection, adaptive standing
56 genetic variation must exist or adaptive *de novo* variation must arise on a sufficiently fast
57 timescale (5). This population genetic phenomenon, evolutionary rescue, has become a focus of
58 considerable empirical and theoretical study in ecology and conservation biology, since the
59 current rate of global change could exceed the capacities of many populations to adapt (6, 7).
60 Still, there is a lack of examples of evolutionary rescue occurring in the field and at large
61 geographic scales (4). In agricultural systems, the spread of pests or emergence of new
62 aggressive biotypes may lead to a reduction of crop diversity or a total loss of crop cultivation
63 (8). Therefore, understanding and facilitating evolutionary rescue in agricultural systems is
64 critical for global food security.

65 Populations of crops or wild species subjected to strong selection pressure may
66 experience a major population bottleneck, resulting in a loss of genetic diversity (9). The level of
67 diversity preserved in a population recovering from strong selection depends on the number of
68 backgrounds on which the adaptive alleles emerge (10), which can determine the potential for
69 future adaptation or genetic gain. Conversely, adaptation conferred by a beneficial variant
70 derived from a single progenitor causes the removal of genetic diversity from the surviving
71 population (10, 11). Evolutionary population genomics approaches using genome-wide
72 polymorphism data from diverse germplasm can identify candidate loci for adaptive traits (12).
73 While genome scans for selection have been widely used to identify putative adaptive alleles in
74 crops (9, 13), they have not yet been used to identify trait-predictive markers for molecular
75 breeding of stress-resilient varieties (14).

76 Sorghum (*Sorghum bicolor* L. [Moench]) is among the world's most important staple
77 crops for smallholder farmers in semiarid regions, as well as a commercial grain and forage crop
78 in industrialized nations (15). Since 2013 an aggressive biotype of the sugarcane aphid (SCA;
79 *Melanaphis sacchari*) has become a major threat to global sorghum production, with widespread
80 and substantial yield loss (16, 17). The *M. sacchari* superclone has been rapidly expanding (18),
81 putting >90% of the sorghum-producing areas of North America at risk and threatening to end
82 sorghum cultivation in some areas (16). In Haiti, a Caribbean nation with one of the world's
83 highest rates of food insecurity, sorghum is among the most important staple crops (19).
84 However, heavy infestations by *M. sacchari* since 2015 have caused the loss of over 70% of
85 sorghum production in the country and prevented production of most local landraces (20).
86 Shortly before the SCA outbreak, a new Haitian breeding population had been launched by
87 Chibas using global admixed germplasm, rapid-cycling intercrossing, and selection under
88 smallholder conditions (i.e. no insecticidal treatment) (21). Selecting from a small number of
89 breeding lines that survived SCA infestation, a new SCA resistant sorghum variety, Papèpichon,
90 was developed and distributed nationally (19), and intercrossing and advancement of resistant

91 breeding lines has continued.

92 Here we used a retrospective genomic analysis of the Haitian sorghum breeding
93 population that was subjected to strong selection under SCA infestation, to understand the
94 genetic basis of the evolutionary rescue following the SCA outbreak, as well as the origins of the
95 SCA resistance alleles. We find that the rapid adaptation of the Haitian breeding population to
96 the SCA outbreak was due to selection for a globally-rare Ethiopian allele at the *RMES1* SCA
97 resistance locus, which is shared across programs in Africa, Asia, and the Americas because of
98 >50 years of global germplasm exchange prior to the SCA outbreak. Further, we developed a
99 convenient low-cost molecular marker based on the evolutionary genome scan and validated it in
100 eight commercial and public sorghum breeding programs, demonstrating the value of leveraging
101 global germplasm exchange and evolutionary population genomics to improve crop resilience.

102 RESULTS

103 Genome-wide polymorphism and nucleotide diversity

104 To understand the evolutionary rescue of sorghum following the SCA outbreak, we conducted a
105 retrospective genomic analysis of the Haitian breeding population (HBP) in comparison to a
106 global diversity panel (GDP). Genotyping-by-sequencing of 296 HBP and 767 GDP (Supp. Fig.
107 S1; Supp. File S1) sorghum lines generated 159,683 polymorphic SNPs with an average SNP
108 density of 75 and 229 per Mb in the HBP and GDP, respectively (Supp. Fig. S2). The GDP had a
109 higher proportion of low-frequency minor alleles (<5% MAF) compared to the HBP (Supp. Fig.
110 S3). Average inbreeding coefficients (F_{IS}) in HBP and the GDP was estimated at 0.7 and 0.9,
111 respectively (Supp. Table S1). The effect of selection on genetic diversity in HBP was assessed
112 based on genome-wide nucleotide diversity (π) in the HBP in comparison to (i) the GDP and (ii)
113 a major public program in the US (Texas A&M pre-breeding lines, TAM-PBL, $N = 35$). Average
114 nucleotide diversity in the HBP was estimated at 2.3×10^{-5} . In the GDP and TAM-PBL, estimates
115 of average π were 5.8×10^{-5} and 4.8×10^{-5} , respectively (Fig. 1A-C, Supp. Table S2). In the HBP,
116 31% of 1 Mb windows have negative average Tajima's D values, while in the GDP
117 predominantly positive values of Tajima's D were observed (Supp. Fig. S4).

118 Contributions of global sorghum diversity to the Haitian breeding population

119 The genetic ancestry of the HBP from global germplasm was inferred based on population
120 structure analyses. In a neighbor joining analysis, the HBP clusters with caudatum accessions
121 (Fig. 2A), specifically caudatums from East Africa. Similarly, in principal coordinate analysis,
122 the HBP cluster with East African caudatum accessions (Fig. 2C). To estimate ancestry
123 coefficients for HBP lines, we used Bayesian model-based clustering in ADMIXTURE,
124 projecting HBP lines onto ancestral populations and allele frequencies defined using only GDP
125 (with HBP lines omitted). With the GDP, the lowest cross-validation error was observed at $K = 8$
126 (Supp. Fig. S5) and accessions clustered by ecogeographic region and botanical type, as
127 expected. ADMIXTURE projection analysis suggests that the HBP is admixed, largely
128 consisting of caudatum haplotypes (>80% of the genome) with a remaining small percentage
129 being contributed by durra and guinea sorghums (Fig. 2D).

130 **Evidence of a selective sweep in the Haitian breeding population at *RMES1***
131 To identify genome regions implicated in the evolutionary rescue of the HBP, genome-wide
132 scans for outlier loci were performed based on an F_{ST} test. Overall, the HBP is moderately
133 differentiated from the global diversity panel, with an average genome-wide F_{ST} of 0.16 (Fig.
134 3A, Supp. File S2). Based on a Bonferroni-adjusted P -value < 0.01 , F_{ST} analysis identified 171
135 outlier genomic regions, which are candidate selective sweep regions. Several genomic regions
136 with F_{ST} outlier regions co-localized with candidate genes for traits under selection by the Chibas
137 breeding program, including photoperiodic flowering, inflorescence architecture, stay-green,
138 stem sugar content, and SCA resistance (Fig 1D; Supp. File S3). Interestingly, the most extreme
139 F_{ST} outliers were observed on chromosome 6, precisely colocalizing with *RMES1*, a locus
140 previously shown to underlie SCA resistance in a Chinese sorghum line of unknown pedigree
141 (22) (Fig. 3A-B). To characterize the prevalence of the putative selected haplotype and identify
142 its geographic origin, we mapped the allelic distribution of the highest F_{ST} SNP S6_2995581 in
143 global georeferenced sorghum landraces (Fig. 3C) and compared these distributions to the allele
144 frequency in US and Haitian breeding germplasm (Fig. 3C, inset left). Globally, the allele is rare
145 (<2%), found only in Ethiopian caudatum landraces and a few breeding lines from West Africa
146 and the US. However, the sweep-associated allele is common (~40%) in Ethiopian caudatum
147 accessions (Fig. 3C; Supp. Table S3). The high local frequency of the sweep-associated allele in
148 Ethiopia suggests a likely origin of the SCA resistance allele in the Ethiopian highlands (Fig. 3C,
149 inset right).

150 **Comparative genomic analysis to identify candidate causative variants**

151 To identify candidate causative variants for the *RMES1* locus, we used whole-genome
152 resequencing and *de novo* genome sequencing of sorghum accessions with known SCA
153 reactions. The *RMES1* interval previously defined based on biparental linkage mapping (22)
154 includes seven gene models (Sobic.006G017000, Sobic.006G017100, Sobic.006G017200,
155 Sobic.006G017332, Sobic.006G017266, Sobic.006G017400, and Sobic.006G017500) that were
156 candidates for the causative gene. Comparative genomic analyses based on local multiple
157 sequence alignment (MSA) of *de novo* genome sequence of the resistant accession (PI 276837,
158 the Ethiopian progenitor of SCA resistant line SC170) and three sorghum reference genomes of
159 SCA susceptible lines (BTx623, Tx430, and BTx642) were used to identify potential causative
160 variants. No sequence variants were identified in the exons of three of the seven genes
161 (Sobic.006G017000, Sobic.006G017100, and Sobic.006G017266). A total of 35, 32, and 29
162 nonsynonymous SNPs were detected in the exons of Sobic.006G017200, Sobic.006G017400,
163 and Sobic.006G017500, when comparing the sequences of the resistant PI 276837 and the three
164 susceptible accessions. In addition, three insertion-deletion variations resulting in frame-shift
165 were detected in Sobic.006G017500. (Supp. File S4). To further refine the set of candidate
166 causative variants, we performed a localized association analysis for SCA resistance ("resistant"
167 or "susceptible", based on literature classification) around *RMES1* with resequencing data for
168 diverse sorghum accessions (Fig. 4, Supp. File S5) that detected 101 highly significant
169 associations (P -value > 0.0001). Annotations of the variants within the *RMES1* locus indicate

170 that only ten of 101 associated variants are nonsynonymous (5 of 10 in Sobic.006G017200 and
171 the remaining 5 of 10 in Sobic.006G017500.

172 **Development and validation of a molecular marker based on the selective sweep**

173 Next, we sought to test the hypothesis that the genome region identified by the F_{ST} scan
174 underlies variation for SCA resistance in other global sorghum germplasm. Therefore we
175 developed a kompetitive allele specific PCR (KASP) marker based on the SNPs at the *RMES1*
176 locus identified in the F_{ST} scan. Of the candidate SNPs (Supp. File S2, Supp. Table S3, Supp.
177 File S6), SNP 06_02892438 was determined to have the best combination of linkage, LD, and
178 technical KASP functionality of the SNPs. Alternative SNPs were also developed into markers
179 (Supp. File S6), and while the markers are often used as technical checks, testing has confirmed
180 the priority of the marker based on SNP 06_02892438 (Sbv3.1_06_02892438R). Initial
181 validation of the Sbv3.1_06_02892438R KASP marker using DNA samples from known
182 resistant lines (SC110, Tx2783, and IRAT204), susceptible lines (BTx623 and BTx642) (23),
183 and multiple F_2 families segregating for SCA resistance demonstrated that the KASP marker
184 Sbv3.1_06_02892438R was in complete agreement with historical phenotypes of inbred lines
185 and segregated within F_2 populations (Supp. File S7).

186 An F_4 population derived from a cross between IRAT204 (resistant African variety) and
187 Tx430 (susceptible US breeding line) was used to further validate the broader utility and
188 predictiveness of the KASP marker for marker-assisted selection (Fig. 5A-B). A total of 50 F_4
189 lines together with resistant (IRAT204 and SC110) and susceptible controls (RTx430) were
190 genotyped with the KASP marker Sbv3.1_06_02892438R. Both resistant controls and 23 F_4 lines
191 were homozygous for the resistant allele. The susceptible control and 9 F_4 lines were
192 homozygous for the susceptible allele, and the remaining 18 F_4 lines were heterozygous at the
193 SNP. Twenty-three selected F_4 lines with three resistant and three susceptible control lines were
194 tested for SCA reaction in a free-choice flat screen assay in the greenhouse, scoring aphid
195 damage rating, leaf greenness (SPAD), and seedling height. The SCA reaction phenotypes match
196 the KASP marker genotypes, demonstrating the reliability and predictability of using KASP
197 markers in marker-assisted selection for SCA resistance breeding (Fig. 5A-B; Supp. File S7).

198 **Multi-program validation and deployment in commercial and public breeding programs**

199 To further validate the utility of the SCA resistance KASP markers, we tested them with five US
200 commercial seed company breeding programs and three US public sector breeding programs,
201 representing a large fraction of the US sorghum breeding community (Fig. 5C). (The programs
202 are anonymized to avoid disclosing proprietary information.) Under the hypothesis that (i)
203 *RMES1* underlies SCA resistance in US breeding programs and (ii) the KASP marker
204 (Sbv3.1_06_02892438R) tags the relevant resistant vs. susceptible haplotypes, the breeders'
205 phenotype-based classification of SCA resistance should largely match the KASP marker
206 genotype-based prediction. As expected, the match between the phenotype-based breeder
207 classification and KASP marker genotypes is high, ranging from ~60-100%, with most
208 germplasm sets (9/12) have >80% matching (Fig. 5C; Fig. S6). Less than 0.5% of mismatches
209 (5/1100) were observed among technical replicates (independent tissue samples from the same

210 plant), so mismatches are unlikely to be due to KASP genotyping errors. Mismatches may be due
211 to differences among programs of SCA resistant or susceptible haplotypes, or errors in the
212 phenotype-based resistance classifications (some of which are based on visual ratings under
213 natural field infestations, which are prone to false positives (24)). There were also some
214 genotype-phenotype mismatches in public germplasm checks used by commercial and public
215 programs (Fig. 5C). In nearly all cases, further investigation revealed that mismatches were due
216 to unexpected heterogeneity in public germplasm within or among breeding programs (Supp.
217 Table S4).

218 DISCUSSION

219 ***RMES1* is a major resistance gene underlying evolutionary rescue of sorghum worldwide**
220 Understanding the genetics of evolutionary rescue, including the genetic architecture and
221 molecular basis, could contribute to more resilient conservation and breeding strategies (25).
222 Here we hypothesized, parsimoniously, that a single Mendelian SCA resistance locus *RMES1*
223 could underlie the global evolutionary rescue of sorghum to the new *M. sacchari* superclone.
224 Previous studies had suggested that a single dominant locus is responsible for SCA resistance in
225 families derived from resistant Chinese grain sorghum variety Henong 16 (H16) and susceptible
226 BTx623, or families derived from US breeding lines, resistant RTx2738 and susceptible CK60
227 (22, 26). The H16 resistance was mapped to a ~130 kb region at 2.7 Mb on chromosome 6
228 (*RMES1*) (22). Consistent with the *RMES1* evolutionary rescue hypothesis, the genome region
229 with the highest F_{ST} in the HBP colocalized precisely with *RMES1* (Fig. 3). Together, the
230 evolutionary genome scan (Fig. 3) and multi-program marker validation (Fig. 5) provides strong
231 evidence that *RMES1* is the major SCA resistance locus globally, shared across the Americas,
232 Asia, and Africa. However, our findings do not preclude the hypothesis that other SCA
233 resistance loci were selected in Haiti and were required for the evolutionary rescue. In particular,
234 other F_{ST} scan peaks on chromosome 2, 7, 8, and 9 (Fig. 3) could correspond to other SCA
235 resistance loci. Given that SCA resistance is fixed in the Haitian program, further population
236 development and quantitative trait locus mapping for SCA resistance will be necessary to test
237 this hypothesis.

238 Identifying the causal variant underlying SCA resistance would advance our
239 understanding of aphid resistance mechanisms in plants (27) and facilitate development of
240 perfectly-predictive molecular markers for SCA resistance breeding (28). Our comparative
241 genomic analysis between the resistant PI 276837 and the three susceptible reference genomes
242 identified four candidate genes with putative functional variants within the *RMES1* locus
243 (Sobic.006G017200, Sobic.006G017332, Sobic.006G017400 and Sobic.006G017500; Supp. File
244 S4). Three of the four genes in the candidate region encode leucine-rich repeat (LRR) proteins, a
245 gene family involved in immune responses to invading pathogens and insects (29). Given that
246 some LRR genes mediate plant resistance to aphids and other phloem-feeding insects (27) these
247 genes represent promising candidates for the *RMES1* causative gene. Functional annotation and
248 sequence comparison between the resistant and susceptible accession identified non-synonymous
249 variants only in Sobic.006G017200 and Sobic.006G017500 (Fig. 4), suggesting these NLR are

250 promising candidates for the *RMES1* gene. Fine-mapping and positional cloning will be needed
251 to test these hypotheses and positively identify the causative variant.

252 **Evolutionary rescue of sorghum depended on a half century of global germplasm exchange**

253 In the twentieth century, sorghum genebanks and breeding programs exchanged germplasm
254 widely (30, 31). Based on pedigree records and morphology we hypothesized that the Haitian
255 breeding population originated from global admixed germplasm with a primary contribution of
256 Ethiopian caudatum of the zerazer working group. Consistent with this hypothesis, HBP
257 genotypes clustered with caudatum sorghum of East Africa (Fig. 2), but admixture analysis
258 identified a contribution from durra and guinea sorghum from West Africa (Fig. 2D). Combining
259 population genomics findings (Fig. 2, 3) with genebank and pedigree records (32, 33), we can
260 map the history of global germplasm exchange that led to the evolutionary rescue of sorghum in
261 Haiti following the SCA outbreak (Fig. 6A), as well as the spread of the SCA resistance allele
262 from Ethiopia to breeding programs around the world (Fig. 6B). Notably, the evolutionary rescue
263 of sorghum in the Americas (Haiti and US) involved germplasm and knowledge exchange over a
264 period of >50 years, involving nine countries on three continents.

265 In the case of the SCA outbreak, the global sorghum improvement community was
266 fortunate that the rare SCA resistance allele originated in East African caudatum, since this
267 germplasm is preferred by many sorghum breeders worldwide and widely used by breeding
268 programs in Africa, Asia, and the Americas (30, 34). The SCA resistance allele appears to have
269 been inadvertently spread across sorghum breeding programs across the three continents long
270 before the recent SCA outbreak (Fig. 6). For example, SC110, a converted version of an Ethiopia
271 caudatum landrace (PI 257599/IS 12610) identified as SCA resistant in several world regions
272 (23, 35), is a major contributor to the pedigrees of most SCA-resistant breeding lines in the US
273 (Fig. 6B) (36). The same progenitor line (IS 12610) was used by breeding programs in West
274 Africa (Fig. 6B) as a parent of IRAT204 (CE151-262; PI 656031), a widely-adopted variety (37)
275 and key progenitor of current West African breeding programs (34).

276 Another potential benefit of germplasm exchange is the maintenance of diversity in
277 breeding programs following strong selection, including evolutionary rescue. Given the strong
278 selection on the HBP during the SCA outbreak, it might be expected that the post-selection HBP
279 no longer retains sufficient diversity for future adaptation and genetic gain (7). However, the
280 HBP was founded with diverse admixed global germplasm (Fig. 2) and extensively intercrossed,
281 so it appears to have retained sufficient genetic diversity for future adaptation and crop
282 improvement. We observe only a modest reduction in nucleotide diversity observed throughout
283 the genome of the HBP relative to global accessions, East African caudatum, or a major public
284 pre-breeding program (Fig. 1E; Supp. Fig. S7). Recombination during intercrossing cycles (prior
285 to the SCA outbreak) presumably reshuffled the SCA resistance allele onto many backgrounds,
286 suggesting that the intercrossing approach was critical to allow the Haitian program to retain
287 diversity for future genetic gain and adaptation.

288 **Rapid discovery and deployment of a global trait-predictive molecular marker using**
289 **evolutionary population genomics**

290 Molecular marker development based on phenotype-to-genotype mapping of trait loci (e.g.
291 linkage or association mapping) is limited by availability of suitable mapping populations,
292 phenotyping capacity, and genotyping resources, which can take years to develop (13, 38). For
293 instance, spatial and temporal variability of SCA pressure in field trials limits the effectiveness
294 of field phenotyping (24), while greenhouse assays can be complicated and time-consuming for
295 lower-resourced programs. Thus, an evolutionary genomics approach, which leverages a history
296 of selection by smallholder farmers or plant breeders, could have advantages for marker
297 discovery. Despite wide use of evolutionary genome scans in crops, the hypotheses generated on
298 adaptive loci are rarely, if ever, tested by independent experimental approaches (e.g. with near
299 isogenic lines) (39). To our knowledge, this is the first example where an evolutionary or
300 population genomic scan led directly to molecular breeding technology in use in commercial and
301 public varietal development (Fig. 3, 5).

302 Here we demonstrated the effectiveness of the evolutionary population genomic
303 approach, showing that a marker discovered in a single developing-country breeding program
304 (Chibas-Haiti) can link crop improvement efforts across three continents (North America, Africa,
305 Asia; Fig. 5A, 6) and across the commercial and public sector (Fig. 5A, C). Thus, our findings
306 establish the value of evolutionary population genomics to facilitate and guide global crop
307 improvement. The KASP marker developed and validated in this study can facilitate the rapid
308 conversion of existing farmer-preferred varieties for SCA resistance (e.g. by marker-assisted
309 introgression) (40). While the *RMES1* resistance allele is currently conferring effective
310 resistance, a further biotype shift in the aphid could overcome this gene. Several biotype shifts
311 occurred in the 1960-1980s for the greenbug aphid *Schizaphis graminum* (41) and slowed
312 genetic gain in sorghum for many years (42). The markers developed here could facilitate
313 identification of new SCA resistance genes, via by counterselection of *RMES1* allele to reveal
314 novel SCA resistance. These outsourced KASP markers are convenient for breeding programs,
315 since they require no laboratory labor or facilities, and are low cost relative to dedicated field or
316 greenhouse phenotyping capacity, at ~\$2 per sample for DNA extraction and marker genotyping
317 (43).

318 **Synergy of long-standing germplasm exchange practices with new genomics technologies**

319 In this study, we integrated evolutionary population genomic analyses and historical records on
320 global germplasm exchange to show that the recent evolutionary rescue of sorghum depended on
321 >50 years of germplasm exchange. Germplasm exchange led to global diffusion of a rare SCA
322 resistance allele, sometimes purposely and sometimes inadvertently, from smallholder farmers in
323 Ethiopian highlands across breeding programs in Africa, the Americas, and Asia. Over the past
324 several decades, movement of crop genetic resources through international cooperation of
325 germplasm exchange has provided access to adaptive genetic variation for crop improvement
326 (31). However, germplasm exchange is increasingly restricted due to commercial or institutional
327 interests asserting intellectual property (IP) rights and governments asserting national or local

328 sovereignty over genetic resources (44). While IP rights and sovereignty are important
329 considerations, the question remains how to balance these aims with the benefits of free
330 exchange of global public goods (45, 46). While we are not in a position to resolve these societal
331 tradeoffs, our study does highlight the global food security benefits of germplasm exchange and
332 the opportunities that could be lost due to restrictions on exchange.

333 Taken together, our findings suggest that new genomic technologies will be most
334 powerful when leveraged with global exchange of germplasm and knowledge. No matter how
335 powerful new genomic technologies are in terms of accuracy or throughput, their utility will
336 depend on the germplasm assayed, since all genetic mapping approaches require effective
337 recombination and allelic diversity (47, 48). Global germplasm exchange vastly increases both
338 these parameters, providing a "bank" of historical recombinations and allelic variants that can be
339 rapidly leveraged with new genomic tools (Fig. 3, 4). Therefore, our best opportunity to address
340 challenges of global change may be to leverage new genomic technologies with long-standing
341 practices of global germplasm exchange.

342 MATERIALS AND METHODS

343 **Sorghum breeding and production in Haiti**

344 The Chibas sorghum breeding program was launched in 2013 using admixed global germplasm,
345 including heterogeneous breeding material from West Africa carrying *ms3* nuclear male sterility,
346 and inbred global accessions. During 2015–2018, the material was selected in breeding nurseries
347 under low-input conditions (approximating local smallholder practices) and extensively
348 intercrossed using the *ms3* sterility system. No insecticides were used to limit SCA infestations
349 in breeding nurseries in this period and natural SCA infestations were intense during this period
350 (e.g. Fig. 1C). Note, selection pressure on sorghum by SCA in Haiti is expected to be greater
351 than in temperate zone (e.g. U.S.) because the SCA infestation occurs year-round in this tropical
352 environment. Annual sorghum production estimates for Haiti are based on FAOSTAT (2009–
353 2014 and 2018) (49) and the USDA forecast for 2019–2020 (19). FAOSTAT data for 2015–2017
354 and 2019 was not used because it was based on imputation ("FAO data based on imputation
355 methodology") that did not account for the known effects of SCA (e.g. "this aphid spread
356 throughout the country and decimated Haiti sorghum production") (19). Production for the
357 missing years of SCA outbreak was inferred based on 2009 agriculture survey acreage prior to
358 infestation in each region and assessment of sorghum production levels compared to pre-
359 infestation levels, adjusted to FAOSTAT (1990–2014) production averages for each region.

360 **Plant genetic resources**

361 The HBP (N = 296) are inbred lines derived from a recurrent selection breeding population
362 developed by intercrossing germplasm that survived natural SCA infestation. For genomic DNA
363 extraction, fresh leaf tissue of each accession was collected from two weeks old seedlings raised
364 in a greenhouse. Tissue was lyophilized for two days and then grounded up using a 96-well plate
365 plant tissue grinder (Retsch Mixer Mill). Genomic DNA was extracted using the BioSprint 96
366 DNA Plant Kit (QIAGEN), quantified using Quant-iT™ PicoGreen® dsDNA Assay Kit, and

367 normalized to 10 ng/uL. An additional set of global accessions (GDP, $N = 767$) was assembled
368 based on a published data set (50, 51) including sorghum accessions from 52 countries on five
369 continents and all major botanical types (Supp. Fig. S1, Supp. File S1). The GDP accessions
370 included 164 caudatum, 96 guinea, 81 durra, 57 bicolor, and 47 kafir accessions, along with 288
371 of other botanical types and 34 accessions of unknown botanical type.

372 **Genotyping-by-sequencing**

373 Genotypes for the 296 Haitian breeding lines were generated with genotyping-by-sequencing.
374 Genomic DNA digestion, ligation and PCR amplification processes were performed according to
375 the methods previously described (50). The libraries were sequenced using the single-end 100-
376 cycle sequencing by Illumina HiSeq2500 (Illumina, San Diego CA, USA) at the University of
377 Kansas Medical Center, Kansas City, MO, USA. A total of 220 million reads for the HBP were
378 combined with published data for the GDP (50) for SNP calling. TASSEL 5 GBS v2 pipeline
379 (52) was used to perform the SNP calling of the sequence data obtained from Illumina
380 sequencing. Reads were aligned to the BTx623 sorghum reference genome v.3.1 (53) with the
381 Burrows-Wheeler Alignment (54). The SNPs were filtered for 20% missingness, then missing
382 data were imputed using BEAGLE 4.0 (55). Genotyping data are available at Dryad [*accession*
383 *to be added following acceptance*].

384 **Population genomic analyses**

385 Genome-wide nucleotide diversity (π) and Tajima's D statistics for HBP and GDP were
386 estimated based on a non-overlapping sliding window of 1 Mbp across the genome using
387 VCFtools (56). The characterization of the population structure of the HBP was based on a
388 discriminant analysis of principal components (DAPC) in the Adegenet package in R (57). A
389 distance matrix calculated based on a modified Euclidean distance model was used to create a
390 cladogram based on a neighbor-joining algorithm in TASSEL (58). Neighbor-joining analysis
391 was visualized using the APE package in R (59). The population structure of the germplasm
392 panel was further assessed by the Bayesian model-based clustering method implemented in the
393 ADMIXTURE program (60). Pairwise SNP differentiation (F_{ST}) between the HBP and the GDP
394 were calculated and outlier loci were detected based on an inferred distribution of neutral F_{ST}
395 using the R Package OutFLANK (61).

396 **Whole genome resequencing**

397 Around the 130 kb mapped interval in BTx623, SNPs from 10 sorghum accessions with known
398 SCA resistance status were examined to search for functional mutations responsible for SCA
399 resistance. Six of the 10 resequenced accessions represent known susceptible lines, which
400 include RTx430 (PI 655996), BTx623 (PI 564163), Tx7000 (PI 655986), Tx2737 (PI 655978),
401 BTx642, and RTx436. The remaining four resequenced accessions represent known resistant
402 lines, which includes PI 257599 (SC110 original exotic parent), PI 276837 (SC170 original
403 exotic parent), PI 534157 (SC170), and IS 36563 (IRAT204). These samples were used pre-
404 publication for this interval analysis with permission from TERRA-REF (Mockler), JGI
405 Sorghum Pan-genome project (Mockler), BMFG Sorghum Genomic Toolbox (Mockler and

406 Morris), JGI Sorghum Diversity project (John Mullet), and the JGI EPICON project (Vogel).
407 The reads were mapped to *Sorghum bicolor* v3.1 using bwa-mem. The bam file was filtered for
408 duplicates using Picard (<http://broadinstitute.github.io/picard>) and realigned around indels using
409 GATK (62). Multi-sample SNP calling was done using SAMtools mpileup and Varscan V2.4.0
410 with a minimum coverage of 8 and a minimum alternate allele frequency of four. Repeat content
411 of the genome was masked using 24 bp kmers. Kmers that occur at a high frequency, up to 5%,
412 were masked. SNPs around 25 bp of the mask were removed for further analysis. A SNP was
413 included for further analysis only when it has coverage in 75% of the samples, and a MAF >
414 0.005. Functional annotation of the variants within the *RMES1* locus was performed using
415 SNPEff.

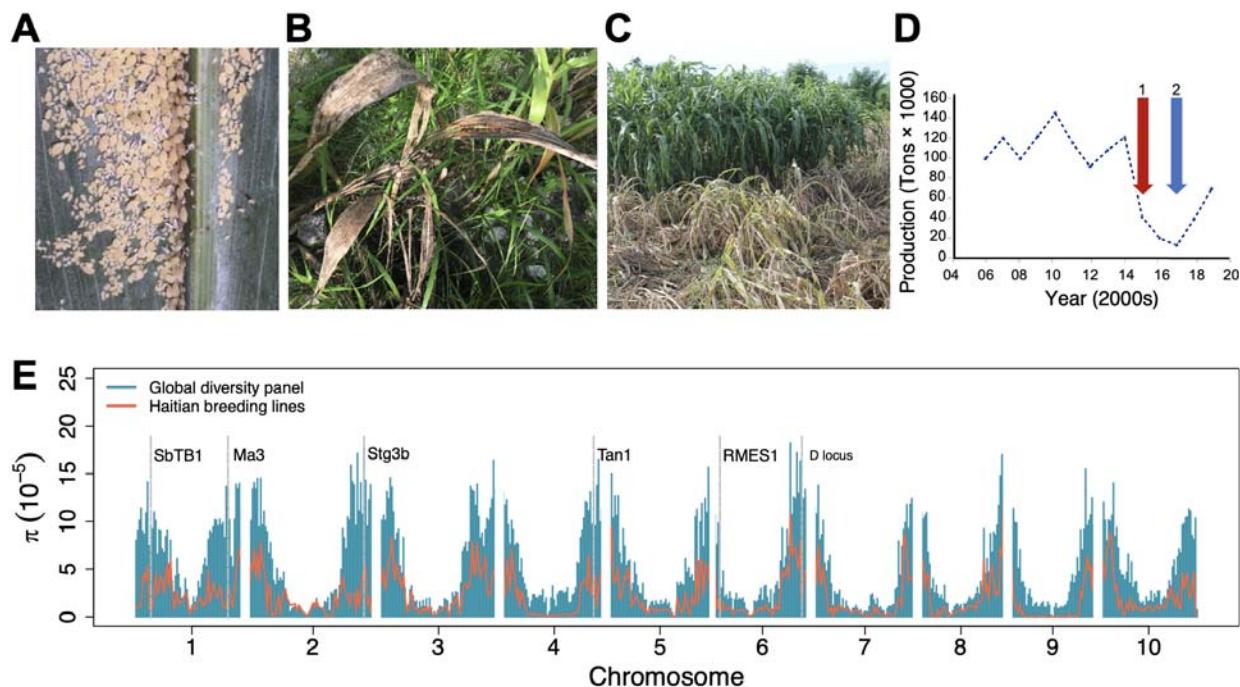
416 ***De novo* genome sequencing**

417 *De novo* genome assembly of the resistance sorghum line PI 276837 was used to perform
418 comparative genomic analysis to identify the causative variant for SCA resistance at the *RMES1*
419 locus. PI 276837 main assembly consisted of 101.47x of PACBIO coverage with an average read
420 size of 11,931 bp. The genome was assembled using Canu 1.8, a fork of the Celera Assembler
421 designed for high-noise single-molecule sequencing. The resulting sequence was polished using
422 ARROW. The assembled genome resulted in contig N50 sizes ranging from 14 to 19 kb and
423 scaffold N50 sizes ranging from 5 to 65 kb. Sequence variations at *RMES1* locus between the *de*
424 *novo* sequence of PI 276837 were compared to the reference genomes of BTx623, Tx430, and
425 BTx642.

426 **KASP marker development**

427 SNPs from the F_{ST} genomic selection scan were selected for development into markers based on
428 several factors: LOD score of the F_{ST} analysis, proximity to *RMES1* locus, and suitability of the
429 flanking sequence for KASP assay development. The KASP assays were developed utilizing a
430 third-party genotyping service provider, Intertek AgriTech (Alnarp, Sweden), who designed the
431 KASP assays via the Kraken software. All genomic DNA extraction and KASP genotyping were
432 performed by Intertek using two 6 mm leaf punches dried with silica beads. Initial technical
433 validation of the KASP marker was performed using known resistant (SC110, IRAT204 and
434 Tx2783) and susceptible (KS585 and Tx7000) sorghum lines. Further validation was performed
435 by genotyping a panel of 10 known resistant and 28 known susceptible lines, along with multiple
436 F1 crosses of each of the lines. The KASP markers developed for SCA resistance selection
437 (Supp. File S6) are publicly available through the third-party genotyping service provided by
438 Intertek. For further information on accessing markers contact the corresponding author.

439 **Marker validation in public and commercial breeding programs**


440 To test the predictiveness of the marker, a population segregating for SCA resistance was
441 developed by crossing the susceptible Tx430 and resistant IRAT204. F₃ and F₄ lines of the
442 Tx430 x IRAT204 population were genotyped with the KASP marker together with the
443 susceptible and resistant parents. The same population was evaluated for SCA reaction using a
444 free-choice flat-screen trial in the greenhouse. Tx2783 and SC110 were included as known

445 resistant genotypes, along with the known susceptible genotypes, KS 585 and Tx7000 (63, 64).
446 Free-choice flat-screen assay, data collection (damage rating, SPAD score, and plant height
447 difference), and analysis were conducted as previously described (24). Validation of the KASP
448 marker across different breeding programs was performed in eight breeding programs, five
449 commercial and three public in the US. Each program collected tissue samples from known
450 tolerant and susceptible parental breeding lines, F₁s of the parental lines, and later generation
451 lines from their SCA tolerance breeding populations; the SCA reaction phenotypes of the late
452 generation lines may or may not have been known. For the parental breeding lines, both
453 technical replicates (tissue samples from the same plant) and biological replicates (tissue samples
454 from separate plants) were collected in order to test both the technical function of the markers
455 and the reliability of the germplasm, respectively. Additionally, most programs included public
456 sources (e.g. Tx2783) of known SCA tolerance as checks. Tissue samples were sent to Intertek,
457 who extracted DNA and performed the KASP genotyping.

458 **ACKNOWLEDGMENTS**

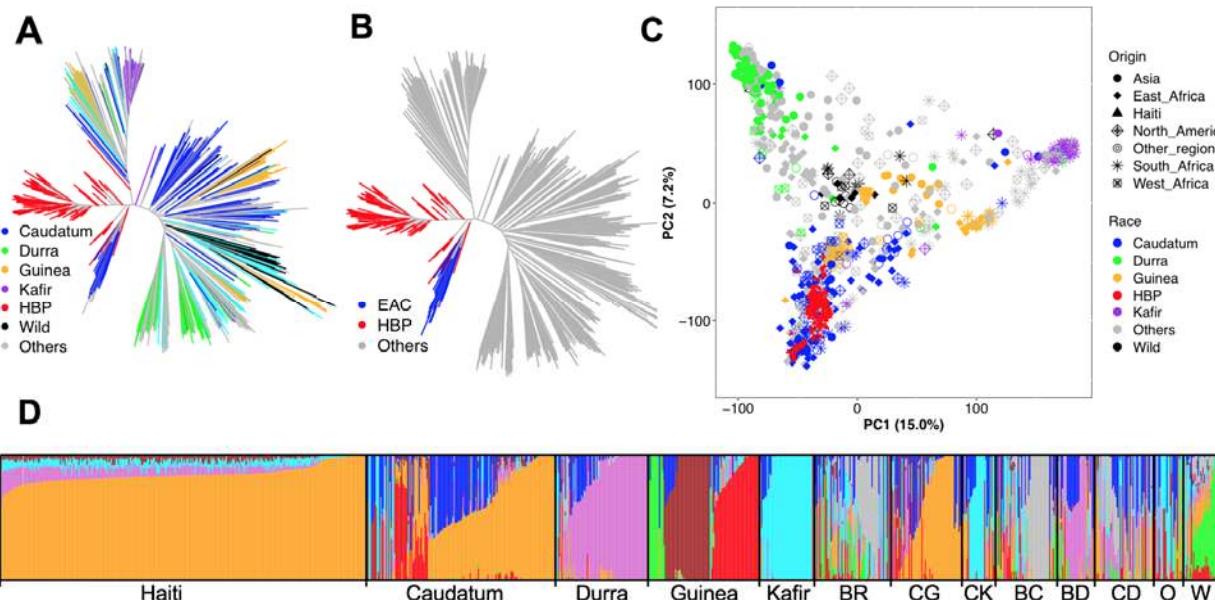
459 This study is made possible by the support of the American People provided to the Feed the
460 Future Innovation Lab for Collaborative Research on Sorghum and Millet through the United
461 States Agency for International Development (USAID) under Associate Award No. AID-OAA-
462 LA-16-00003, "Feed the Future Innovation Lab for Genomics-Assisted Sorghum Breeding". The
463 contents are the sole responsibility of the authors and do not necessarily reflect the views of
464 USAID or the United States Government. The work conducted by the US Department of Energy
465 Joint Genome Institute is supported by the Office of Science of the US Department of Energy
466 under Contract No DE-AC02-05CH11231. We thank the Joint Genome Institute and
467 collaborators for pre-publication access to the genomes of Tx430 and Tx642 for use in this study.
468 Additional support was provided by the Bill & Melinda Gates Foundation under the "Sorghum
469 Genomics Toolkit" project. We thank the breeding programs that participated in the marker
470 testing. We thank Matt Davis for technical support and Jesse Lasky for comments on the
471 manuscript. Such use does not constitute an official endorsement or approval by the United
472 States Department of Agriculture or the Agricultural Research Service of any product or service
473 to the exclusion of others that may be suitable. USDA is an equal opportunity provider and
474 employer. The authors declare that they have no competing interests. All data needed to evaluate
475 the conclusions in the paper are present in the Supplementary Materials or Dryad.

476

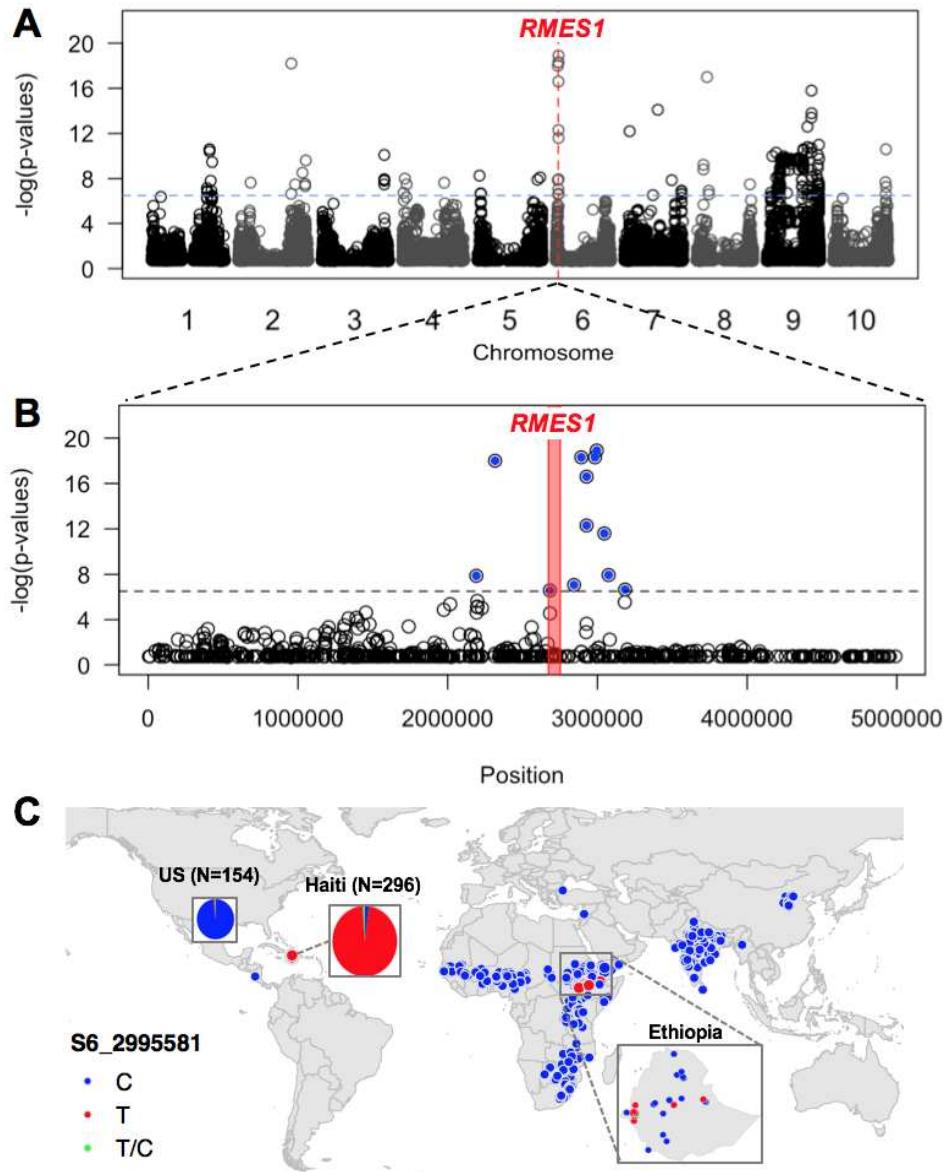
477

Figure 1: Evolutionary rescue following a continental outbreak of a sorghum pest

(A) Infestation of sugarcane aphid (SCA), *M. sacchari*, on a commercial hybrid in the US sorghum-growing production region (Kansas). (B) SCA infestation on a traditional sorghum variety on a smallholder farm in Haiti (brown plant in foreground; green leaves in background are maize and wild grasses). (C) Reaction of susceptible (brown plants; foreground) and resistant (green plants; background) sorghum breeding lines under natural SCA infestation during breeding trials in Haiti. (D) Estimates of annual sorghum production in Haiti (2006-2019), indicating the start of the SCA outbreak (1, red arrow) and the start of national distribution of SCA resistant variety, Papépichon (2, blue arrow). (E) Genome-wide nucleotide diversity (π) in the Haitian breeding population (red line) compared to a global diversity panel (blue bars). Nucleotide diversity was calculated for a non-overlapping sliding window of 1 Mbp across the genome. The grey vertical dashed lines indicate the position of *a priori* candidate genes for breeding targets of the Haiti program which colocalized with genomic regions of reduced π (see Supp. File S3 for details).


492

493


494

495

496

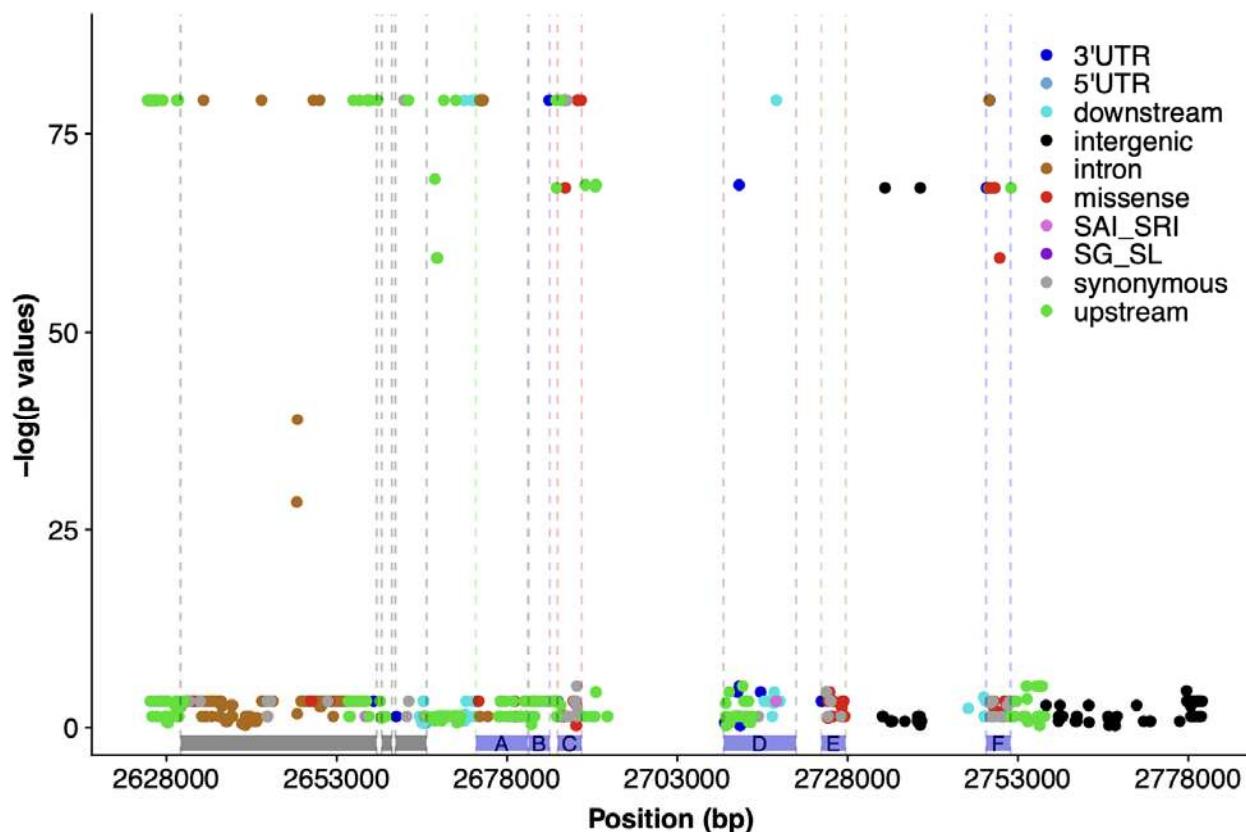


Figure 2: Population structure of the Haitian breeding population in relation to global sorghum diversity reflects its derivation from East African germplasm. Genetic relatedness of the Haitian breeding population (HBP) to the global diversity assessed by neighboring joining method, color-coded by botanical type (A) or highlighting the close relationship between the HBP and East African caudatum (EAC) germplasm (C) Scatterplot of the first two principal component (PC) of genome wide SNP variation, demonstrating the clustering of HBP within EAC germplasm. (D) Bayesian hierarchical clustering of the HBP and GDP with the probability of membership (Q) in each of $K = 8$ ancestral populations. The Q -value bar plots are arranged by botanical types to reflect the relationship of the HBP to the GDP. Note, color-coding of the bar plots in panel D is arbitrary and does not reflect the color-code in panels A-C. BR = Bicolor, CG = caudatum-guinea, CK = caudatum-kafir, BC = bicolor-caudatum, BD = bicolor-durra, CD = caudatum durra, O = others (includes botanical types containing less than 10 individuals), W = wild.

512
513 **Figure 3: Genome scan for selection identifies the major aphid resistance allele at *RMES1***
514 **originating in Ethiopia.** (A) Genome-wide scan for selection in the Haitian breeding population
515 using fixation index (F_{ST}) with the $-\log(F_{ST}p\text{-value})$ (y-axis) plotted against position on the
516 chromosome (x-axis). (B) Detailed view (5 Mb) of top F_{ST} peak on chromosome 6 that
517 colocalizes with the *RMES1* locus. The ~130 kb region from 2,667,082 to 2,796,847 bp
518 corresponding to the published *RMES1* interval is denoted with the red bar. (C) Global allele
519 distribution of the SNP that showed the highest F_{ST} value (S6_2995581), which colocalized with
520 the *RMES1* locus. Allelic state for georeferenced global germplasm is denoted with points. Allele
521 frequencies in the United States (C=151, T=2, T/C=1) and Haiti (C=6, T=287, T/C=3) breeding
522 germplasm, denoted in pie charts with area proportional to number of accessions, show the allele
523 is almost fixed in Haitian breeding germplasm and rare in U.S. breeding germplasm.

526

527

528

529

530

531

532

533

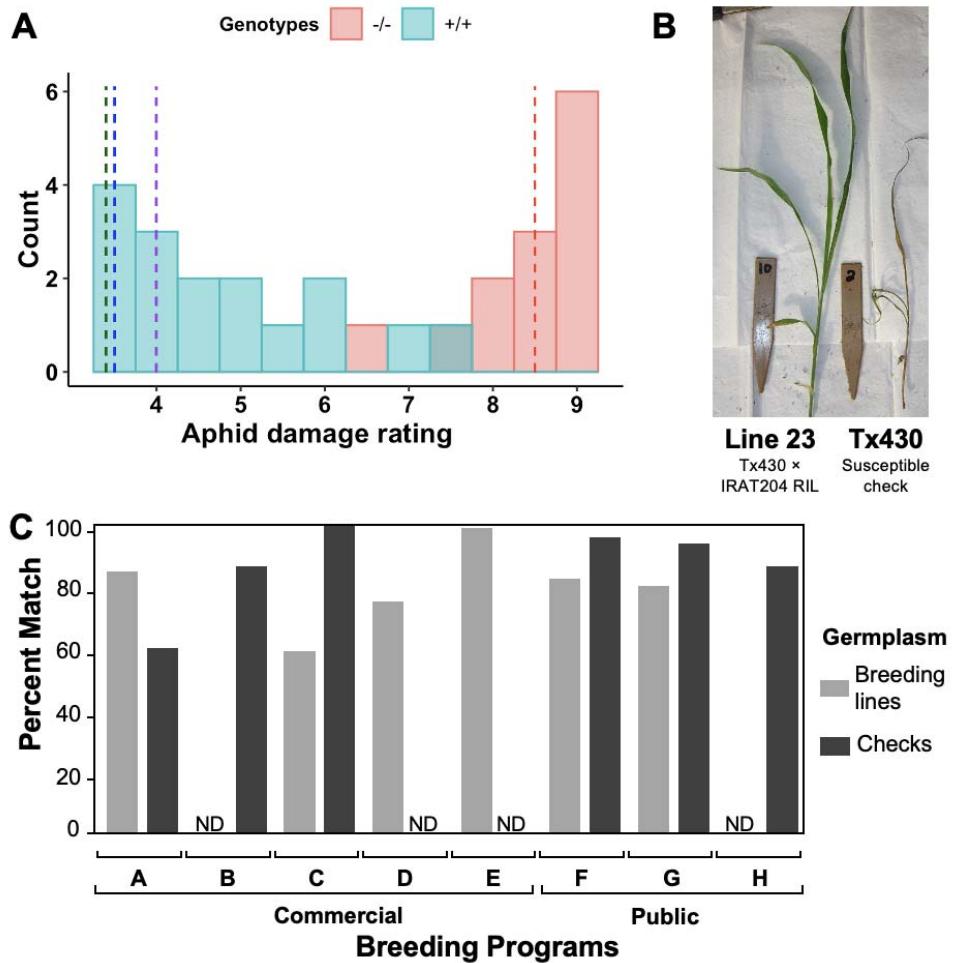
534

535

536

537

538


539

540

541

542

Figure 4: Whole-genome resequencing and local association mapping identifies potential causative variants at *RMES1*. Functional annotation and association mapping of nucleotide polymorphisms within the *RMES1* locus across a set of 13 diverse sorghum accessions with known SCA resistance or susceptibility. The -log of *p*-values of local marker-trait association scan plotted against the chromosomal positions at the *RMES1* locus on chromosome 6. Variants are color-coded by annotation generated by the SnpEff program. Blue bars represent the seven annotated genes within the *RMES1* interval (A = Sobic.006G017000, B = Sobic.006G017100, C = Sobic.006G017200, D = Sobic.006G017332 and Sobic.006G017266, E = Sobic.006G017400, F = Sobic.006G017500.v3.1). Grey bars indicate genes outside of the *RMES1* interval as originally defined (22). 3'UTR: 3 prime UTR variant, 5'UTR: 5 prime UTR variant, downstream: Downstream gene variant, intergenic: intergenic region, intron: Intron variant, missense: Missense variant, SAI_SRI: splice acceptor/intron or splice region intron variants, SG_SL: stop gained or stop loss variant, synonymous: Synonymous variant upstream: Upstream gene variant

543

544

Figure 5: Multi-program evaluation of a molecular marker developed based on the selective sweep validates its global utility.

545

546

547

548

549

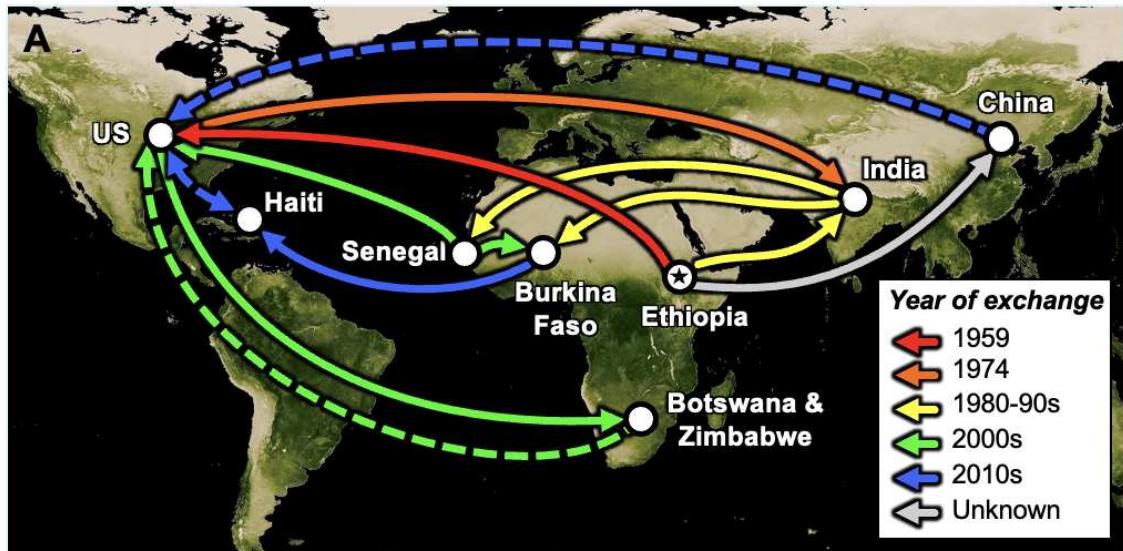
550

551

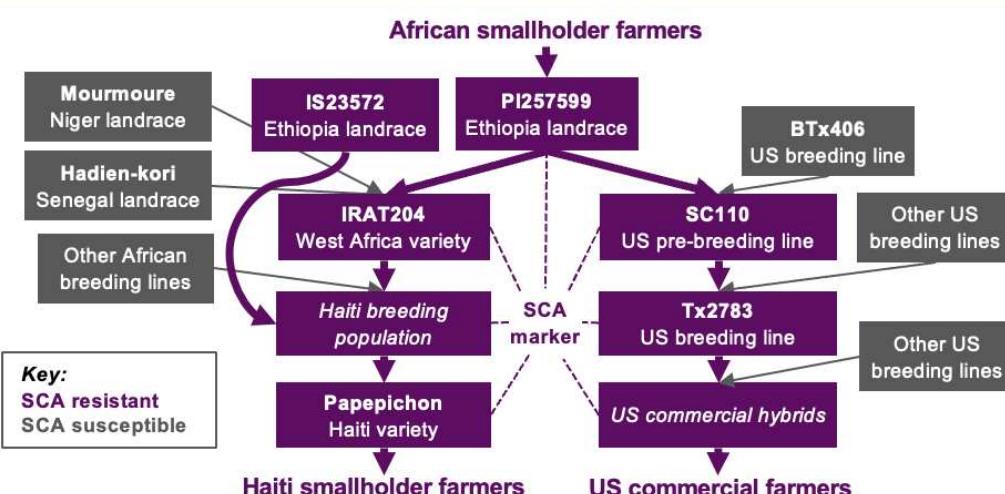
552

553

554


555

556


557

558

(A) The KASP marker predicts SCA resistance in independent US × Senegal breeding lines. The histogram represents the aphid damage ratings of F₄ lines from a Tx430 × IRAT204 ($N = 22$) family under infestation by *M. sacchari* at the seedling stage in a choice greenhouse assay. The cyan bars represent the aphid damage ratings for lines carrying the +/+ genotypes at the SNP 06_02892438, while the red bars represent aphid damage ratings of the lines carrying the -/- genotypes. The blue dashed lines represent the average aphid damage rating of the resistant checks Tx2783, IRAT204, and SC110 (green, blue, and purple dashed lines, respectively) while red dashed line represents the average damage rating of both susceptible checks, Tx7000 and Tx430. (B) Representative SCA reaction from the choice greenhouse assay for an F₄ line carrying the +/+ genotype (left) versus the susceptible parent Tx430 (right). (C) Evaluation of the same marker in eight US breeding programs. Percent match of KASP marker genotyping prediction with breeder-provided SCA resistance classification for five commercial breeding programs and three public breeding programs. ND = Not determined.

B

559

560 **Figure 6: Evolutionary rescue of sorghum through >50 years of global exchange of**
 561 **germplasm and knowledge.** (A) Germplasm and knowledge exchange inferred from pedigree
 562 records and genomic analyses. Germplasm exchange is denoted by solid lines. Knowledge
 563 exchange through scientific literature is denoted in dashed lines. The star indicates the inferred
 564 origin of the SCA resistance allele in the Ethiopian highlands, with at least two paths to the
 565 Americas, via IS 23572 (yellow line) or PI 257599 (red line). (B) Pedigree relationships among
 566 global accessions, breeding lines, breeding programs, or varieties, color-coded by inferred SCA
 567 resistance or susceptibility. Note, with respect to US commercial hybrids, the diagram is
 568 illustrative and is not meant to imply that all US commercial hybrids used Tx2783 as the SCA
 569 resistance donor. Some known pedigree information has been omitted from the diagram for
 570 clarity.

571 **REFERENCES**

- 572 1. S. R. Palumbi, Humans as the world's greatest evolutionary force. *Science*. **293**, 1786–1790
573 (2001).
- 574 2. T. Wheeler, J. von Braun, Climate change impacts on global food security. *Science*. **341**,
575 508–513 (2013).
- 576 3. Gonzalez, Ronce, Ophélie, Ferriere, Regis, Hochberg, Michael E., Evolutionary rescue: an
577 emerging focus at the intersection between ecology and evolution. *Philos. Trans. R. Soc. B
578 Biol. Sci.* **368**, 20120404 (2013).
- 579 4. G. Bell, Evolutionary Rescue. *Annu. Rev. Ecol. Evol. Syst.* **48**, 605–627 (2017).
- 580 5. B. M. Peter, E. Huerta-Sanchez, R. Nielsen, Distinguishing between Selective Sweeps from
581 Standing Variation and from a De Novo Mutation. *PLOS Genet.* **8**, e1003011 (2012).
- 582 6. H. K. Alexander, G. Martin, O. Y. Martin, S. Bonhoeffer, Evolutionary rescue: linking
583 theory for conservation and medicine. *Evol. Appl.* **7**, 1161–1179 (2014).
- 584 7. H. A. Orr, R. L. Unckless, The population genetics of evolutionary rescue. *PLOS Genet.* **10**,
585 e1004551 (2014).
- 586 8. R. S. Turner, After the famine: Plant pathology, Phytophthora infestans, and the late blight
587 of potatoes, 1845–1960. *Hist. Stud. Phys. Biol. Sci.* **35**, 341–370 (2005).
- 588 9. J. M. Burke, J. C. Burger, M. A. Chapman, Crop evolution: from genetics to genomics.
589 *Curr. Opin. Genet. Dev.* **17**, 525–532 (2007).
- 590 10. B. A. Wilson, P. S. Pennings, D. A. Petrov, Soft Selective Sweeps in Evolutionary Rescue.
591 *Genetics*. **205**, 1573–1586 (2017).
- 592 11. P. S. Pennings, J. Herisson, Soft Sweeps III: The Signature of Positive Selection from
593 Recurrent Mutation. *PLOS Genet.* **2**, e186 (2006).
- 594 12. J. J. Vitti, S. R. Grossman, P. C. Sabeti, Detecting natural selection in genomic data. *Annu.
595 Rev. Genet.* **47**, 97–120 (2013).
- 596 13. C. R. Cavanagh, S. Chao, S. Wang, B. E. Huang, S. Stephen, S. Kiani, K. Forrest, C.
597 Saintenac, G. L. Brown-Guedira, A. Akhunova, D. See, G. Bai, M. Pumphrey, L. Tomar,
598 D. Wong, S. Kong, M. Reynolds, M. L. da Silva, H. Bockelman, L. Talbert, J. A. Anderson,
599 S. Dreisigacker, S. Baenziger, A. Carter, V. Korzun, P. L. Morrell, J. Dubcovsky, M. K.
600 Morell, M. E. Sorrells, M. J. Hayden, E. Akhunov, Genome-wide comparative diversity
601 uncovers multiple targets of selection for improvement in hexaploid wheat landraces and
602 cultivars. *Proc. Natl. Acad. Sci.* (2013), doi:10.1073/pnas.1217133110.
- 603 14. M. B. Hufford, J. C. Berny Mier y Teran, P. Gepts, Crop Biodiversity: An Unfinished
604 Magnum Opus of Nature. *Annu. Rev. Plant Biol.* **70**, 727–751 (2019).
- 605 15. R. Monk, C. Franks, J. Dahlberg, in *Yield Gains in Major US Field Crops* (Crop Science
606 Society of America, 2014;
607 <https://dl.sciencesocieties.org/publications/books/abstracts/cssaspecialpubl/yieldgainsinmaj/>
608 293), pp. 293–310.
- 609 16. R. D. Bowling, M. J. Brewer, D. L. Kerns, J. Gordy, N. Seiter, N. E. Elliott, G. D. Buntin,
610 M. O. Way, T. A. Royer, S. Biles, E. Maxson, Sugarcane Aphid (Hemiptera: Aphididae): A
611 New Pest on Sorghum in North America. *J. Integr. Pest Manag.* **7** (2016),
612 doi:10.1093/jipm/pmw011.
- 613 17. J. W. Gordy, M. J. Brewer, R. D. Bowling, G. D. Buntin, N. J. Seiter, D. L. Kerns, F. P. F.
614 Reay-Jones, M. O. Way, Development of Economic Thresholds for Sugarcane Aphid
615 (Hemiptera: Aphididae) in Susceptible Grain Sorghum Hybrids. *J. Econ. Entomol.* **112**,
616 1251–1259 (2019).

617 18. S. Nibouche, L. Costet, J. R. Holt, A. Jacobson, A. Pekarcik, J. Sadeyen, J. S. Armstrong,
618 G. C. Peterson, N. McLaren, R. F. Medina, Invasion of sorghum in the Americas by a new
619 sugarcane aphid (*Melanaphis sacchari*) superclone. *PLOS ONE*. **13**, e0196124 (2018).

620 19. USDA-FAS, Grain and Feed Annual Report: Haiti (HA2020-0001) (2020), (available at
621 https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Grain%20and%20Feed%20Annual_Port-au-Prince_Haiti_04-15-2020).

623 20. W. Calvin, Effects of intercropping and biological insecticides on sugarcane aphid
624 (Hemiptera: aphididae) infestations on sorghum, and identification of natural enemies and
625 alternate hosts in Haiti, 77 (2019).

626 21. K. T. Muleta, G. Pressoir, G. P. Morris, Optimizing genomic selection for a sorghum
627 breeding program in Haiti: a simulation study. *G3 Genes Genomes Genet.* **9**, 391–401
628 (2019).

629 22. F. Wang, S. Zhao, Y. Han, Y. Shao, Z. Dong, Y. Gao, K. Zhang, X. Liu, D. Li, J. Chang, D.
630 Wang, Efficient and fine mapping of RMES1 conferring resistance to sorghum aphid
631 *Melanaphis sacchari*. *Mol. Breed.* **31**, 777–784 (2013).

632 23. J. S. Armstrong, W. L. Rooney, G. C. Peterson, R. T. Villanueva, M. J. Brewer, D. Sekula-
633 Ortiz, Sugarcane Aphid (Hemiptera: Aphididae): Host Range and Sorghum Resistance
634 Including Cross-Resistance From Greenbug Sources. *J. Econ. Entomol.* **108**, 576–582
635 (2015).

636 24. J. S. Armstrong, L. Mbulwe, D. Sekula-Ortiz, R. T. Villanueva, W. L. Rooney, Resistance
637 to *Melanaphis sacchari* (Hemiptera: Aphididae) in forage and grain sorghums. *J. Econ.*
638 *Entomol.* **110**, 259–265 (2017).

639 25. C. Burgarella, A. Barnaud, N. A. Kane, F. Jankowski, N. Scarcelli, C. Billot, Y. Vigouroux,
640 C. Berthouly-Salazar, Adaptive Introgression: An Untapped Evolutionary Mechanism for
641 Crop Adaptation. *Front. Plant Sci.* **10** (2019), doi:10.3389/fpls.2019.00004.

642 26. H. M. Tetreault, S. Grover, E. D. Scully, T. Gries, N. A. Palmer, G. Sarath, J. Louis, S. E.
643 Sattler, Global Responses of Resistant and Susceptible Sorghum (*Sorghum bicolor*) to
644 Sugarcane Aphid (*Melanaphis sacchari*). *Front. Plant Sci.* **10** (2019),
645 doi:10.3389/fpls.2019.00145.

646 27. Y. Jiang, C.-X. Zhang, R. Chen, S. Y. He, Challenging battles of plants with phloem-
647 feeding insects and prokaryotic pathogens. *Proc. Natl. Acad. Sci.* **116**, 23390–23397
648 (2019).

649 28. J. R. Andersen, T. Lübbertedt, Functional markers in plants. *Trends Plant Sci.* **8**, 554–560
650 (2003).

651 29. L. McHale, X. Tan, P. Koehl, R. W. Michelmore, Plant NBS-LRR proteins: adaptable
652 guards. *Genome Biol.* **7**, 212 (2006).

653 30. C. W. Smith, R. A. Frederiksen, in *Sorghum: Origin, History, Technology, and Production*,
654 C. W. Smith, R. A. Frederiksen, Eds. (Wiley, NY, 2000;
655 https://books.google.com/books?hl=en&lr=&id=b7vxU44v794C&oi=fnd&pg=PA191&dq=History+of+Cultivar+Development+in+the+United+States:+From+%22Memoirs+of+A.+B.+Maunder--Sorghum+Breeder%22&ots=UuB7XqgYWP&sig=cVMz_e6MAD5WTEKprcSdYOThAs0), vol. 2, p. 191.

660 31. R. R. Klein, F. R. Miller, D. V. Dugas, P. J. Brown, A. M. Burrell, P. E. Klein, Allelic
661 variants in the PRR37 gene and the human-mediated dispersal and diversification of
662 sorghum. *Theor. Appl. Genet.*, 1–15 (2015).

663 32. G. C. Peterson, J. W. Johnson, G. L. Teetes, D. T. Rosenow, Registration of Tx2783
664 Greenbug Resistant Sorghum Germplasm Line. *Crop Sci.* **24**, 390 (1984).

665 33. République du Sénégal, Catalogue officiel des espèces et des variétés cultivées au Sénégal
666 [Official catalog of cultivated species and varieties in Senegal] (2012), (available at
667 [http://www.fao.org/pgrfa-gpa-](http://www.fao.org/pgrfa-gpa-archive/sen/docs/senegal_varieties/Catalogue_%20varieties.htm)
668 archive/sen/docs/senegal_varieties/Catalogue_%20varieties.htm).

669 34. J. M. Faye, F. Maina, E. A. Akata, B. Sine, C. Diatta, A. Mamadou, S. Marla, S. Bouchet,
670 N. Teme, J.-F. Rami, D. Fonceka, N. Cisse, G. P. Morris, A genomics resource for genetics,
671 physiology, and breeding of West African sorghum. *Plant Genome.* **n/a**, e20075 (2021).

672 35. L. Mbulwe, G. C. Peterson, J. Scott-Armstrong, W. L. Rooney, Registration of sorghum
673 germplasm Tx3408 and Tx3409 with tolerance to sugarcane aphid [Melanaphis sacchari
674 (Zehntner)]. *J. Plant Regist.* **10**, 51–56 (2016).

675 36. G. C. Peterson, J. S. Armstrong, B. B. Pendleton, M. Stelter, M. J. Brewer, Registration of
676 RTx3410 through RTx3428 sorghum germplasm resistant to sugarcane aphid [Melanaphis
677 sacchari (Zehntner)]. *J. Plant Regist.* **12**, 391–398 (2018).

678 37. J. Ndjeunga, K. Mausch, F. Simtowe, in *Crop improvement, adoption, and impact of
679 improved varieties in food crops in sub-Saharan Africa*, T. S. Walker, J. Alwang, Eds.
680 (CABI, Wallingford, 2015; <http://www.cabi.org/cabebooks/ebook/20153367543>), pp. 123–
681 147.

682 38. S. V. Nuzhdin, T. L. Turner, Promises and limitations of hitchhiking mapping. *Curr. Opin.
683 Genet. Dev.* **23** (2013), doi:10.1016/j.gde.2013.10.002.

684 39. S. Hoban, J. L. Kelley, K. E. Lotterhos, M. F. Antolin, G. Bradburd, D. B. Lowry, M. L.
685 Poss, L. K. Reed, A. Storfer, M. C. Whitlock, Finding the genomic basis of local
686 adaptation: pitfalls, practical solutions, and future directions. *Am. Nat.* (2016),
687 doi:10.1086/688018.

688 40. T. Yohannes, T. Abraha, D. Kiambi, R. Folkertsma, C. T. Hash, K. Ngugi, E. Mutitu, N.
689 Abraha, M. Weldetsion, C. Mugoya, C. W. Masiga, S. de Villiers, Marker-assisted
690 introgression improves Striga resistance in an Eritrean farmer-preferred sorghum variety.
691 *Field Crops Res.* **173**, 22–29 (2015).

692 41. T. A. Royer, B. B. Pendleton, N. C. Elliott, K. L. Giles, Greenbug (hemiptera: aphididae)
693 biology, ecology, and management in wheat and sorghum. *J. Integr. Pest Manag.* **6** (2015),
694 doi:10.1093/jipm/pmv018.

695 42. F. R. Miller, Y. Kebede, in *Genetic Contributions to Yield Gains of Five Major Crop Plants*
696 (John Wiley & Sons, Ltd, 1984;
697 <https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cssaspecpub7.c1>), pp. 1–14.

698 43. M. J. Thomson, High-throughput SNP genotyping to accelerate crop improvement. *Plant
699 Breed. Biotechnol.* **2**, 195–212 (2014).

700 44. P. Heisey, K. Day-Rubenstein, “Using crop genetic resources to help agriculture adapt to
701 climate change: economics and policy” (SSRN Scholarly Paper ID 2709190, Social Science
702 Research Network, Rochester, NY, 2015), , doi:10.2139/ssrn.2709190.

703 45. J. Kloppenburg, D. L. Kleinman, The plant germplasm controversy. *BioScience.* **37**, 190–
704 198 (1987).

705 46. J. Kotschi, B. Horneburg, The Open Source Seed Licence: A novel approach to
706 safeguarding access to plant germplasm. *PLOS Biol.* **16**, e3000023 (2018).

707 47. R. Bernardo, *Molecular markers and selection for complex traits in plants: Learning from
708 the last 20 years*, *Crop Science* 48 (2008): 1649–1664. (2008), vol. 48.

709 48. B. Brachi, G. P. Morris, J. O. Borevitz, Genome-wide association studies in plants: the
710 missing heritability is in the field. *Genome Biol.* **12**, 232 (2011).

711 49. FAO, FAOSTAT (2021), (available at <http://www.fao.org/faostat/en/>).

712 50. G. P. Morris, P. Ramu, S. P. Deshpande, C. T. Hash, T. Shah, H. D. Upadhyaya, O. Riera-
713 Lizarazu, P. J. Brown, C. B. Acharya, S. E. Mitchell, J. Harriman, J. C. Glaubitz, E. S.
714 Buckler, S. Kresovich, Population genomic and genome-wide association studies of
715 agroclimatic traits in sorghum. *Proc. Natl. Acad. Sci.* **110**, 453–458 (2013).

716 51. J. R. Lasky, H. D. Upadhyaya, P. Ramu, S. Deshpande, C. T. Hash, J. Bonnette, T. E.
717 Juenger, K. Hyma, C. Acharya, S. E. Mitchell, E. S. Buckler, Z. Brenton, S. Kresovich, G.
718 P. Morris, Genome-environment associations in sorghum landraces predict adaptive traits.
719 *Sci. Adv.* **1**, e1400218 (2015).

720 52. J. C. Glaubitz, T. M. Casstevens, F. Lu, J. Harriman, R. J. Elshire, Q. Sun, E. S. Buckler,
721 TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. *PLoS ONE* **9**,
722 e90346 (2014).

723 53. R. F. McCormick, S. K. Truong, A. Sreedasyam, J. Jenkins, S. Shu, D. Sims, M. Kennedy,
724 M. Amirebrahimi, B. D. Weers, B. McKinley, A. Mattison, D. T. Morishige, J. Grimwood,
725 J. Schmutz, J. E. Mullet, The Sorghum bicolor reference genome: improved assembly, gene
726 annotations, a transcriptome atlas, and signatures of genome organization. *Plant J.* **93**, 338–
727 354 (2018).

728 54. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows–Wheeler transform.
729 *Bioinformatics* **25**, 1754–1760 (2009).

730 55. B. L. Browning, S. R. Browning, Genotype imputation with millions of reference samples.
731 *Am. J. Hum. Genet.* **98**, 116–126 (2016).

732 56. P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E.
733 Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, 1000 Genomes
734 Project Analysis Group, The variant call format and VCFtools. *Bioinformatics* **27**, 2156–
735 2158 (2011).

736 57. T. Jombart, S. Devillard, F. Balloux, Discriminant analysis of principal components: a new
737 method for the analysis of genetically structured populations. *BMC Genet.* **11**, 94 (2010).

738 58. P. J. Bradbury, Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss, E. S. Buckler,
739 TASSEL: software for association mapping of complex traits in diverse samples.
740 *Bioinformatics* **23**, 2633–2635 (2007).

741 59. E. Paradis, J. Claude, K. Strimmer, APE: analyses of phylogenetics and evolution in R
742 language. *Bioinformatics* **20**, 289–290 (2004).

743 60. D. H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in
744 unrelated individuals. *Genome Res.* **19**, 1655–1664 (2009).

745 61. M. C. Whitlock, K. E. Lotterhos, Reliable detection of loci responsible for local adaptation:
746 inference of a null model through trimming the distribution of FST. *Am. Nat.* **186**, S24–S36
747 (2015).

748 62. G. A. V. der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel, A.
749 Levy□Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks, K. V. Garimella,
750 D. Altshuler, S. Gabriel, M. A. DePristo, *Curr. Protoc. Bioinforma.*, in press,
751 doi:<https://doi.org/10.1002/0471250953.bi1110s43>.

752 63. J. S. Armstrong, W. L. Rooney, G. C. Peterson, R. T. Villanueva, M. J. Brewer, D. Sekula-
753 Ortiz, Sugarcane aphid (Hemiptera: Aphididae): host range and sorghum resistance
754 including cross-resistance from greenbug sources. *J. Econ. Entomol.* **108**, 576–582 (2015).

755 64. S. Paudyal, J. S. Armstrong, K. L. Giles, M. E. Payton, G. P. Opit, A. Limaje, Categories of
756 resistance to sugarcane aphid (hemiptera: aphididae) among sorghum genotypes. *J. Econ.*
757 *Entomol.* **112**, 1932–1940 (2019).

758