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Abstract

The recent emergence of divergent SARS-CoV-2 lineages has raised concerns about the role of
selection within individual hosts in propagating novel variants. Of particular concern are variants
associated with immune escape and/or enhanced transmissibility. Though growing evidence
suggests that novel variants can arise during prolonged infections, most infections are acute.
Understanding the extent to which variants emerge and transmit among acutely infected hosts
is therefore critical for predicting the pace at which variants resistant to vaccines or conferring
increased transmissibility might emerge in the majority of SARS-CoV-2 infections. To
characterize how within-host diversity is generated and propagated, we combine extensive
laboratory and bioinformatic controls with metrics of within- and between-host diversity to 133
SARS-CoV-2 genomes from acutely infected individuals. We find that within-host diversity
during acute infection is low and transmission bottlenecks are narrow, with very few viruses
founding most infections. Within-host variants are rarely transmitted, even among individuals

within the same household. Accordingly, we also find that within-host variants are rarely
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detected along phylogenetically linked infections in the broader community. Together, these
findings suggest that efficient selection and transmission of novel SARS-CoV-2 variants is

unlikely during typical, acute infection.

Introduction

The recent emergence of variants of concern has spurred uncertainty about how severe acute
respiratory coronavirus 2 (SARS-CaoV-2) will evolve in the longer term. SARS-CoV-2 acquires a
fixed consensus mutation approximately every 11 days as it replicates in a population (1).
Recently, however, lineages of SARS-CoV-2 have arisen harboring more variants than
expected based on this clock rate, with some variants conferring enhanced transmissibility
and/or antibody escape (2, 3). The emergence of these lineages has raised concern that SARS-
CoV-2 may rapidly evolve to evade vaccine-induced immunity, and that vaccines may need to
be frequently updated. A current leading hypothesis posits that these lineages may have
emerged during prolonged infections. Under this hypothesis, longer infection times, coupled with
antibody selection (4), may allow more time for novel mutations to be generated and selected
before transmission. Studies of SARS-CoV-2 (4-8) and other viruses (9, 10) support this
hypothesis. Longitudinal sequencing of SARS-CoV-2 from immunocompromised or persistently
infected individuals accordingly reveals an accumulation of single-nucleotide variants (iSNVs)
and short insertions and deletions (indels) during infection (4-6, 11). In influenza virus and
norovirus infections, variants that arose in immunocompromised patients were later detected
globally, suggesting that long-term infections may mirror global evolutionary dynamics (9, 12).
Mutations defining novel variant lineages resulting in enhanced transmissibility and/or immune
escape in SARS-CoV-2 Spike, like A69/70, N501Y and E484K, have already been documented

arising in persistently infected and immunocompromised individuals (4, 5).
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While prolonged infections occur, the vast majority of SARS-CoV-2 infections are acute (13).
Viral evolutionary capacity is limited by the duration of infection (14), and it is not yet clear
whether the evolutionary patterns observed during prolonged SARS-CoV-2 infections also occur
in acutely infected individuals. Replication-competent virus has rarely been recovered from
individuals with mild to moderate coronavirus disease 2019 (COVID-19) beyond ~10 days
following symptom onset (15, 16). Multiple studies of influenza viruses show that immune
escape variants are rarely detected during acute infection, even within vaccinated individuals
(17-19). Detailed modeling of influenza dynamics suggests that the likelihood of within-host
mutation emergence depends on the interplay of immune response timing, the de-novo
mutation rate, and the number of virus particles transmitted between hosts (14). Understanding
the speed with which SARS-CoV-2 viruses acquire novel mutations that may escape population
immunity will be critical for formulating future vaccine updates. If novel immune-escape variants
emerge primarily within long-term infections, then managing long-term infections in an effort to
reduce any onward transmission may be critically important. Conversely, if novel variants are
efficiently selected and transmitted during acute infections, then vaccine updates may need to

occur frequently.

While understanding the process of variant generation and transmission is critically important, a
clear consensus on how frequently variants are shared and transmitted between individuals has
been elusive. Estimates of SARS-CoV-2 diversity within hosts have been highly variable, and
comparing results among labs has been complicated by sensitivity to variant-calling thresholds
and inconsistent laboratory controls (20-23). Some data suggest that SARS-CoV-2 genetic
diversity within individual hosts during acute infections is limited (20, 24) and shaped by genetic
drift and purifying selection (21, 25-27). Estimates of the size of SARS-CoV-2 transmission
bottlenecks (21, 28, 29) have ranged considerably, and recent validation work has shown that

estimates of within-host diversity and transmission bottleneck sizes are highly sensitive to
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sequencing protocols and data analysis parameters, like the frequency cutoff used to
define/identify within-host variants (20, 30). Clarifying the extent to which within-host variants
arise and transmit among acutely infected individuals, while controlling for potential error, will be

critical for assessing the speed at which SARS-CoV-2 evolves and adapts.

To characterize how within-host variants are generated and propagated, we employ extensive
laboratory and bioinformatic controls to characterize 133 SARS-CoV-2 samples collected from
acutely-infected individuals in Wisconsin, United States. By comparing patterns of intrahost
single nucleotide variants (iISNVs) to densely-sampled consensus genomes from the same
geographic area, we paint a clear picture of how variants emerge and transmit within
communities and households. We find that overall within-host diversity is low during acute
infection, and that iISNVs detected within hosts almost never become dominant in later-sampled
sequences. We find that iISNVs are infrequently transmitted, even between members of the
same household, and we estimate that transmission bottlenecks between putative household
pairs are narrow. This suggests that most iSNVs are transient and very rarely transmit beyond
the individual in which they have originated. Our results imply that during typical, acute SARS-
CoV-2 infections, the combination of limited intrahost genetic diversity and narrow transmission
bottlenecks may slow the pace by which novel variants arise, are selected, and transmit
onward. Finally, most individual infections likely play a minor role in SARS-CoV-2 evolution,
consistent with the hypothesis that novel variants are more likely to arise in rare instances of

prolonged infection.
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Results

Within-host variation is limited and sensitive to iISNV-calling

parameters

Viral sequence data provide rich information about how variants emerge within, and transmit
beyond, individual hosts. Viral nucleotide variation generated during infection provides the raw
material upon which selection can act. However, viral sequence data are sensitive to multiple
sources of error (20, 22, 23), which has obscured easy comparison among existing studies of
SARS-CoV-2 within-host evolution. Here, we take several steps to minimize sources of error
and to assess the robustness of our results against variable within-host single nucleotide variant

(iISNV)-calling parameters.

First, we identified spurious iISNVs introduced by our library preparation pipeline by sequencing
in duplicate a clonal, synthetic RNA transcript identical to our reference genome (MN90847.3).
We considered only variants found in both technical replicates, which we refer to as
“intersection iISNVs”. We detected 7 intersection iSNVs at 21% frequency (Supplemental Table
1); 2 of these were previously identified by a similar experiment in Valesano et al. (20). We
excluded all 7 of these iISNVs from downstream analyses. To exclude laboratory contamination,
we sequenced a no-template control (water) with each large sequencing batch and confirmed
that these negative controls contained <10x coverage across the SARS-CoV-2 genome
(Supplemental Figure 1, Supplemental Figure 2). To ensure that spurious variants were not
introduced by our bioinformatic pipelines, we validated our iSNV calls using a second pipeline

which employs distinct trimming, mapping, and variant calling softwares. We found near-


https://doi.org/10.1101/2021.04.30.440988
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.30.440988; this version posted April 30, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

129  equivalence between the two pipelines’ iISNV calls (R?=0.998; Supplemental Figure 3a),

130 providing additional independent support for our bioinformatic pipeline to accurately call iISNVs.
131

132  Viral iSNV calls are also sensitive to the variant-calling threshold (i.e., a minimum frequency at
133  which iSNVs must occur to be considered non-artefactual) applied (22) and the number of viral
134  input copies. Work by Grubaugh et al. (31) showed highly accurate iSNV calls with tiled

135 amplicon sequencing using technical replicates and a 3% frequency threshold. Consistent with
136 this observation, we observed a near-linear correlation between iSNVs called in each replicate
137  at a 3% frequency threshold (R*=0.992) (Figure 1a). Unsurprisingly, we find the proportion of
138 intersection iISNVs compared to all iISNVs within a given sample increases as the frequency
139 threshold increases (Supplemental Figure 3b). Additionally, the majority of iISNVs detected in
140  our clonal RNA controls occur <3% frequency (Supplemental Figure 3c).

141

142  Consistent with previous studies, we observed a negative correlation between Ct and the

143  overlap in variants between replicates such that high-Ct (i.e., low vRNA copy number) samples
144  had fewer intersection iISNVs called in each replicate (Figure 1b) (22, 31). Although we do not
145  have access to absolute quantification for viral input copies for our sampleset, we can use

146  results of semi-quantitative clinical assays on the sequenced specimens as a proxy for viral
147  RNA (VRNA) concentration. Using input data from two different clinical assay platforms, we find
148 no correlation between viral input copies and the number of intersection iISNVs detected

149  (Supplemental Figure 3d and Supplemental Figure 3e).

150

151 Based on these observations, we chose to use a 3% iISNV frequency cutoff for all downstream
152  analyses, and report only iSNVs that were detected in both technical replicates, at a frequency
153  23%. Using these criteria, we found limited SARS-CoV-2 genetic diversity in most infected

154  individuals: 22 out of 133 samples did not harbor even a single intersection iISNV at 23%
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155 frequency. Among the 111 samples that did harbor within-host variation, the average number of
156  iSNVs per sample was 3.5 (median=3, range=1-11) (Figure 1c). Most iISNVs were detected at
157  <10% frequency (Figure 1d). Compared to expectations under a neutral model, every type of
158 mutation we evaluated (synonymous, honsynonymous, intergenic region, and stop) was present
159 in excess at low frequencies, consistent with purifying selection or population expansion within
160 the host (Figure 1d). Taken together, our results confirm that the number of iISNVs detected
161  within-host are dependent on variant-calling criteria. Once rigorous laboratory and bioinformatic
162  controls are applied, we find that most infections are characterized by very few iSNVs, and

163  primarily low-frequency variants.

a.
1.0 : ﬂ " b. =
9 ol
c 7 =
3d 2 e
=2 05 5 g 2 '
> O .
L op2s{
& 005 01  0.15
g., iSNV freguency, rep #1 15
025 05 075 1.0 20 40 60 80 100
By frequency % variants shared between replicates
replicate #1
C. d. 100
o 3 8 N st
5 c sto
z g 075 0 inteegenic region
% 30 g B nonsynonymous
Synonymous
& 2 5 050 ynorymou
o 20 c
* =< 1 :
o EN_N_ 0.00 i = —
0 2 4 6 8 10 12 3-10% 10-20% 20-30% 30-40% 40-50%
number of iISNVs iSNV frequency

164

165  Figure 1: Within host variation is limited after data quality control

166  a.iSNV frequencies in replicate 1 are shown on the x-axis and frequencies in replicate 2 are shown on y-
167  axis. The yellow box highlights low-frequency iISNVs (3-15%), which is expanded out to the right. b. The
168 Ct value is compared to the percent of iISNVs shared between technical replicates. The blue line is a line
169  of best fit to highlight the observed negative trend. c. Distribution of the number of total iSNVs detected

170 per sample. Many samples harbor no iSNVs at all, and the maximum number of iSNVs in a single sample
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was 11. d. The proportion of iISNVs that were detected at various within-host frequency bins is shown.
Error bars represent the variance in the proportion of total within-host iISNVs within that frequency bin
across samples in the dataset as calculated by bootstrapping. There was a single stop variant in the
entire dataset, so no error bar is shown for the stop category. The solid grey line indicates the expected

proportion of variants in each frequency bin under a neutral model.

Recurrent iISNVs consist of Wuhan-1 reversions and common
polymorphic sites

Previous studies of SARS-CoV-2 evolution have noted the unusual observation that iISNVs are
sometimes shared across multiple samples. Understanding the source and frequency of shared
iISNVs is important for measuring the size of transmission bottlenecks and for identifying
potential sites of selection. In our dataset, most iISNVs were unique to a single sample (Figure
2a). However, 41 iISNVs were detected in at least 2 samples. These “shared iISNVs” were
detected across multiple sequencing runs (Supplemental Figure 5), and were absent in our
negative controls, suggesting they are unlikely to be artefacts of method error. Most of the
shared iISNVs we detect fall into two categories: iISNVs that occur within or adjacent to a
homopolymer region (8/41 iSNVs, Figure 2b, yellow and purple bars), or iSNVs that represent
“Wuhan-1 reversions” (31/41 iISNVs, Figure 2b, blue and purple bars). iSNVs in or near
homopolymer regions were defined as those that fall within or one nucleotide outside of a span
of at least 3 identical nucleotide bases. Shared iSNVs were more commonly detected in A/T
hompolymer regions than in G/C homopolymer regions. We classified iISNVs as “Wuhan-1
reversions” when a sample’s consensus sequence had a near-fixed variant (50-97% frequency)
relative to the Wuhan-1 reference, with the original Wuhan-1 nucleotide present as an iSNV.

Overall, this suggests that shared variants in our dataset may be at least partially explained by
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194  viral polymerase incorporation errors, potentially in A/T-rich regions, and at sites that are

195 frequently polymorphic.

196

197  The most commonly detected iISNVs in our dataset represent Wuhan-1 reviersion at nucleotide
198 sites 241 (detected 18 times; within/adjacent to a homopolymer region) and 3037 (detected 21
199 times; not in a homopolymer region). Both of these sites are polymorphic deep in the SARS-
200 CoV-2 phylogeny near the branch point for clade 20A (Nextstrain clade nomenclature). Within-
201  host polymorphisms at sites 241 and 3037 were also detected in recent studies in the United
202  Kingdom and Austria (21, 28). T241C and T3037C are both synonymous variants, and have
203  emerged frequently on the global SARS-CoV-2 phylogenetic tree, suggesting that these sites
204  may be frequently polymorphic within and between hosts across multiple geographic areas
205 (Figure 2c).

206
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Figure 2: Shared iSNVs represent homopolymers and common polymorphic sites

a. The number of iISNVs (y-axis) present within n individuals (x-axis) is shown. The vast majority of iSNVs
are found in only a single sample. 6 iISNVs are shared by at least 10 samples. b. Each iSNV detected in
at least 2 samples is shown. Variants that occur within, or 1 nucleotide outside of, a homopolymer region
(classified as a span of the same base that is at least 3 nucleotides long) are colored in yellow. Variants
that represent the minor allele for variants that were nearly fixed at consensus (annotated here as
“Wuhanl reversions”) are shown in blue, and variants that were both Wuhanl reversions and occurred in
homopolymer regions are colored in purple. c. For each unique iISNV detected within a host, the x-axis

represents the number of samples in which that iISNV was detected, and the y-axis represents the

11
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number of times it is present on the global SARS-CoV-2 phylogenetic tree. The counts on the
phylogenetic tree represent the number of times the mutation arose along internal and external branches.
The variants labeled with text are those that are detected at least 10 times within-host and at least 10
times on the phylogeny. Two of the most commonly detected iISNVs, T3037C and T241C (shown as the

furthest to the left in panel b), are also frequently detected on the phylogenetic tree.

Most within-host variation does not contribute to consensus
diversity

The emergence of divergent SARS-CoV-2 lineages has raised concerns that new variants may
be selected during infection and efficiently transmitted onward. We next sought to characterize
whether iISNVs arising within hosts contribute to consensus diversity sampled later in time.
Using the Wisconsin-specific phylogenetic tree (Supplemental Figure 6), we queried whether
iISNVs detected within hosts are ever found at consensus in tips sampled downstream. For each
Wisconsin tip that lay on an internal node and for which we had within-host data, we traversed
the tree from that tip to each subtending tip. We then enumerated each mutation that occurred
along that path, and compared whether any mutations that arose on downstream branches
matched iISNVs detected within-host (see Figure 3a for a schematic). Of the 110 Wisconsin tips
harboring within-host variation, 93 occurred on internal nodes. Of those, we detect only a single
instance in which an iSNV detected within a host was later detected at consensus. C1912T (a
synonymous variant) was present in USA/WI-UW-214/2020 at ~4% frequency, and arose on the
branch leading to USA/WI-WSLH-200068/2020 (Figure 3b). USA/WI-UW-214/2020 is part of a
large polytomy, so this does not necessarily suggest that USA/WI-UW-214/2020 and USA/WI-
WSLH-200068/2020 fall along the same transmission chain. These results indicate that despite
relatively densely sampling consensus genomes from related viruses from Wisconsin, we do not

find evidence that iISNVs frequently rise to consensus along phylogenetically linked infections.

12
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If iISNVs arising during infection are adaptive and efficiently transmitted, then they should be
found frequently in consensus genomes, and may be enriched on internal nodes of the
phylogenetic tree. For each within-host variant detected in our dataset, we queried the number
of times it occurred on the global SARS-CoV-2 phylogeny on tips and internal hodes. We then
compared the ratio of detections on tips vs. internal nodes to the overall ratio of mutations on
tips vs. internal nodes on the phylogeny. 42% (77/185) of iISNVs are present at least once at
consensus level on the global phylogeny (Supplemental Figure 7). When present, iSNVs from
our dataset that also occur in consensus genomes on the global tree tend to be rare, and
predominantly occur on terminal nodes (Figure 3c, Supplemental Figure 7). Overall, iISNVs
that are also found at consensus are present on internal nodes and tips at a ratio similar to that
of consensus mutations overall (ratio of mutations on phylogeny nodes:tips = 4,637:17,200;
ratio of iISNVs on nodes:tips = 128:411, p=0.16, Fisher’s exact test). Although this is the
predominant pattern, we detect one exception. C28887T is present in one sample in our dataset
at a frequency of ~6%, but is found on 10 internal nodes and 15 tips (p = 0.028, Fisher’s exact
test) (Figure 3c). C28887T encodes a threonine-to-isoleucine change at position 205 in the N
protein, and is a clade-defining mutation for the B.1.351 lineage. Although the functional impact
of this mutation is not completely understood, N T2051 may increase stability of the N protein
(32, 33). Despite the detection within-host and subsequent emergence of N205I globally, this
iISNV was only detected in our dataset in one sample at low frequency. In general, across our
dataset, the frequency with which iISNVs were detected within-host vs. on the phylogenetic tree
is not correlated (Figure 2c). This suggests that although putative functional mutations may
arise within a host, these events are rare. ISNV detection within a host, at least in typical acute
infections, may therefore have limited utility for predicting future variant emergence. Together,
these data suggest that with rare exception, most within-host variants are purged over time, and

typically do not contribute to consensus-level diversity sampled later in time. As such, these

13
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268 findings suggest that most iISNVs are not selectively beneficial and are not efficiently

269  transmitted.

a. b.

Wisconsin sample harboring

iISNVsAand B _' USA/WI-WBLH-200068/2020

0

o
8
@ A = A
” 0
L R—— -
2 a
B . i g ]
]
o _ =
® i '
]
0
ﬂ °
]
——
C. H .
a
go! Where SNV arose
@ . USA/WI-UW-214/2020
0] internal node 3
= 504 tip
=
O 40/
2
o 301
S 20
@
o 10
¢ HlnsiEREn ll - —r————
ST OLED e a = 0 2 4 6 8 10
;&'gggmgfzggmg%gﬁ Divergence (nucleotide mutations)
NS O MW O N M < P~
FOES8TI2aal8l8RR
FOOGOOOOOO0OOO
iSNV

270

271  Figure 3: Variants are not common in consensus sequences or in downstream branches

272 a. We traversed the Wisconsin-focused full-genome SARS-CoV-2 phylogeny from root to tip. For each
273  Wisconsin tip for which we had within-host data, we queried whether any of the iISNVs detected in that
274  sample were ever detected in downstream branches at consensus. In this example, the purple tip

275 represents a Wisconsin sample for which we have within-host data. This sample harbors 2 iISNVs, A and
276 B. iISNV A arises on a tip that falls downstream from the starting, purple tip. iISNV B is present on a

277 downstream branch leading to an internal node. Both A and B would be counted as instances in which an
278 iISNV was detected at consensus in a downstream branch. b. In the Wisconsin-specific phylogenetic tree,

279  we applied the metric described in a. Among 110 Wisconsin samples that harbored within-host variation,
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280 93 occurred on internal nodes. Of those, we detect one instance in which a mutation detected as an iISNV
281 in one sequence was detected in a downstream consensus sequence. (C1912T, an iISNV in USA/WI-UW-
282  214/2020, was detected downstream in USA/WI-WSLH-200068/2020.) c. For each iSNV identified in the
283  study (in at least 1 sample), we enumerated the number of times that variant occurred on the global

284  SARS-CoV-2 phylogeny on an internal node (yellow) or on a tip (blue). The results for every variant are
285  shown in Supplemental Figure 6. Here, we show only the variants that were detected at least 10 times
286  on the global phylogeny. Each such iSNV is found at internal nodes and tips at a ratio comparable to

287 overall mutations on the tree, except for C28887T, which is enriched on internal nodes (p=0.028, Fishers’

288  exact test). *indicates p-value < 0.05.

289 Variation is shared among some household samples, but is likely

200 Insufficient for transmission resolution

291 Household studies provide the opportunity to investigate transmission dynamics in a setting of
292  known epidemiologic linkage. We analyzed 44 samples collected from 19 households from

293  which multiple individuals were infected with SARS-CoV-2. To define putative transmission pairs
294  from our household dataset, we modeled the expected number of mutations that should differ
295 between consensus genomes given one serial interval as previously described (34)(see

296  Methods for details and rationale). We estimate that members of a transmission pair should

297  generally differ by 0 to 2 consensus mutations (Figure 4a), and classify all such pairs within a
298 household as putative transmission pairs. While most samples derived from a single household
299 had near-identical consensus genomes, we observed a few instances in which consensus

300 genomes differed substantially. In particular, USA/WI-UW-476/2020 differed from both other
301 genomes from the same household by 11 mutations, strongly suggesting that this individual was
302 independently infected.

303
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304  To determine whether putative household transmission pairs shared more within-host variation
305 than randomly sampled pairs of individuals, we performed a permutation test. We randomly
306 sampled individuals with replacement and computed the proportion of iISNVs shared among
307 random pairs to generate a null distribution (Figure 4b, grey bars). We then computed the

308 proportion of variants shared among each putative household transmission pair. Finally, we

309 compared the distribution of shared variants among household pairs and random pairs (Figure
310  4b). 90% of random pairs do not share any iSNVs. Although household pairs share more iSNVs
311 than random pairs on average, half (14/28) of all household pairs share no iISNVs at all. Only 7

312  out of 28 of household pairs share more iISNVs than expected by chance (p < 0.05).
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Figure 4: Household pairs share a modest degree of within-host variation

a. We modeled the probability that 2 consensus genomes will share x mutations as Poisson-distributed
with lambda equal to the number of mutations expected to accumulate in the SARS-CoV-2 genome over
5.8 days (35) given a substitution rate of 1.10 x 10™ substitutions per site per year (1). Exploration of how
these probabilities change using a range of plausible serial intervals and substitution rates is shown in
Supplemental Figure 8. The vast majority of genomes that are separated by one serial interval are
expected to differ by <2 consensus mutations. b. The proportion of random pairs (grey) and putative
household transmission pairs (purple) is shown on the y-axis vs. the proportion of iSNVs shared. The
dotted line indicates the 95th percentile among the random pairs. Household pairs that share a greater
proportion of iISNVs than 95% of random pairs (i.e., are plotted to the right of the dotted line) are
considered statistically significant at p=0.05. iISNVs had to be present at a frequency of 23% to be
considered in this analysis. c. We assessed the impact of household membership, clade membership,
phylogenetic divergence, and geographic distance on the proportion of iSNVs shared between each pair
of samples in our dataset. The mean of each estimated coefficient in the combined linear regression
model including all predictors is shown on the x-axis, with lines of spread indicating the range of the

estimated 95% highest posterior density interval (HPDI).

While we hypothesized that putative transmission linkage would be the best predictor of sharing
iISNVs, other processes could also result in shared iSNVs. For example, if transmission
bottlenecks are wide and iISNVs are efficiently transmitted along transmission chains, then
iISNVs may be propagated during community transmission. If so, then iISNVs should be shared
among samples that are phylogenetically close together. If transmission chains circulate within
local geographic areas, then iISNVs may be commonly shared by samples from the same
geographic location. Finally, if iISNVs are strongly constrained by genetic backbone, then

variants may be more likely to be shared across samples from the same clade.

17


https://doi.org/10.1101/2021.04.30.440988
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.30.440988; this version posted April 30, 2021. The copyright holder for this preprint (which

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

To measure the contribution of these factors, we computed the proportion of iISNVs shared by
each pair of samples in our dataset (including household and non-household samples), and
model the proportion of shared iISNVs as the combined effect of phylogenetic divergence
between the tips (i.e., the branch length in mutations between tips), clade membership,
geographic distance between sampling locations, and household membership. Phylogenetic
divergence and geographic distance between sampling locations have minimal predicted impact
on iSNV sharing (Figure 4c and Supplemental Figure 9). The strongest predictor of sharing
iISNVs is being sampled from the same household, which increased the predicted proportion of
shared iSNVs by 0.22 (0.16 - 0.27, 95% HPDI). Belonging to the same clade increases the
predicted proportion of shared iSNVs by 0.043 (0.033 - 0.053, 95% HPDI), likely because
sharing a within-host variant is contingent on sharing the same consensus base. Taken
together, being sampled from the same household is the strongest predictor of sharing iSNVs,
and some household pairs share more variation than expected by chance. However, these
effects are modest. Given the low overall diversity within hosts and presence of shared iSNVSs,
the degree of sharing we observe is unlikely sufficient for inferring transmission linkage

independent of epidemiologic investigation.

Transmission bottlenecks are likely narrow, and sensitive to

variant calling threshold

The number of viral particles that found infection is a crucial determinant of the pace at which
novel, beneficial variants can emerge. Narrow transmission bottlenecks can induce a founder
effect that purges low-frequency iISNVs, regardless of their fithess. Conversely, wide
transmission bottlenecks result in many viral particles founding infection, reducing the chance
that beneficial variants are lost. Understanding the size of the transmission bottleneck is

therefore important for evaluating the probability that novel SARS-CoV-2 variants arising during
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acute infection will be transmitted onward. To infer transmission bottleneck sizes, we applied the
beta-binomial inference method (36). We inferred transmission directionality using the date of
symptom onset or date of sample collection (see methods for details). If this information was not
informative, we calculated a bottleneck size bi-directionally evaluating each individual as the
possible donor. In total, we performed 40 transmission bottleneck size estimates in 28 putative

household pairs.

iISNV frequencies in donor and recipient pairs are plotted in Figure 5a. Most iSNVs detected in
the donor are either lost or fixed following transmission in the recipient. However, there are a
few low-frequency and near-fixed iISNVs which are shared in donor-recipient pairs. The
combined maximum likelihood estimate for mean transmission bottleneck size at our defined
3% frequency threshold is 15 (95% CI: 11-21), although results vary across pairs (Figure 5b).
Prior transmission bottleneck estimates have changed based on the variant-calling threshold
employed (28, 30). To determine whether our estimates were sensitive to our choice of a 3%
variant threshold, we evaluated bottleneck sizes using variant thresholds ranging from 1% to
20%. We estimate the highest mean transmission bottleneck size when we employ a 1%
frequency threshold (38, 95% CI: 33-43), and lowest when we use a =7% frequency threshold
(2, 95% CI: 1-4) (Figure 5c; Supplemental Figure 10). The finding of larger bottleneck sizes at
a 1% threshold may be due to increased false-positive iISNVs at lower thresholds, in agreement
with our findings that a majority of iISNVs detected in the clonal RNA control occurred at
frequencies <3%. Importantly though, while variant threshold clearly impacts estimated
bottleneck size, our estimates are quite consistent. Even across a wide range of thresholds, our

transmission bottleneck size estimates range from 2-43, and never exceed 50.

The beta-binomial inference method assumes that shared variation in donor-recipient pairs is

due to transmission. However, it is possible that shared low-frequency iISNVs are recurring
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mutations (i.e. homoplasies) that should be excluded from the beta-binomial analysis. One site
in particular, a synonymous change at nucleotide 15,168 in ORFlab, was commonly found at
low frequencies in donor-recipient pairs. To account for the possibility that this variant is a
homoplasy rather than shared via transmission, we dropped this site from our dataset and re-
calculated bottleneck sizes. While bottleneck size estimates decrease in individual pairs where
this variant is found (Supplemental Figure 10c), the average bottleneck size across all

transmission pairs remains low (mean = 9, 95% CI: 6-14).

It is possible that some of the pairs evaluated were not direct transmission pairs. Instead
individuals may be part of the same transmission chain or share a common source of infection.
We reasoned if two individuals were infected from a common source, then they may have
developed symptoms around the same time. In contrast, if one individual infected the other,
then their symptom onset dates should be staggered. To assess this, we compared bottleneck
sizes to the time between symptom onset in donor-recipient pairs for which symptom onset
dates were available (n=17) (Supplemental Figure 11). We observed no clear trend between
bottleneck size and symptom onset intervals. Finally, all bottleneck estimates are inherently
limited by access to a single time point from each donor and recipient. Because it is impossible
to know the exact date of infection and transmission, the donor iISNV frequencies may not
reflect the true diversity present at the time of transmission. Taken together, we find that even
among household pairs, the number of transmitted viruses is likely small. Although bottleneck
size estimates vary by variant calling threshold, we find consistent support for fewer than 50
viruses founding infection and suspect that the majority of transmission events are founded by
very few viruses (<10). Our data suggest that iSNVs generated within-host are generally lost
during the transmission event, and are not efficiently propagated among epidemiologically

linked individuals.
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Figure 5: SARS-CoV-2 transmission bottlenecks in household transmission pairs

21

0.2


https://doi.org/10.1101/2021.04.30.440988
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.30.440988; this version posted April 30, 2021. The copyright holder for this preprint (which

418
419
420
421
422
423
424
425
426
427
428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a. “TV plots” showing intersection iSNV frequencies in all 44 donor-recipient pairs using a 3% frequency
threshold. The yellow box highlights low-frequency iISNVs (3-10%) and the mauve box highlights high-
frequency iISNVs (90-100%). b. Maximum likelihood estimates for mean transmission bottleneck size in
individual donor-recipient pairs. Bottleneck sizes could not be estimated for a few pairs (e.g. pairs 5, 10a,
11a, etc) because there were no polymorphic sites detected in the donor. c. Bidirectional comparisons
are denoted with an “a” and “b” following the pair number. Combined maximum likelihood estimates
across all 44 donor-recipient pairs plotted against variant calling thresholds ranging from 1-20%. The
purple line shows combined estimates at each variant calling threshold shown and the mauve band
displays the 95% confidence interval for this estimate. The dashed grey line indicates a bottleneck size
equal to 1. The vertical yellow band highlights the combined transmission bottleneck size using a 3%

variant calling threshold.

Discussion

The emergence of divergent SARS-CoV-2 lineages has called into question the role of within-
host selection in propagating novel variants. Our results suggest that very limited variation is
generated and transmitted during acute SARS-CoV-2 infection. Most infections in our dataset
are characterized by fewer than 5 total intersection iISNVs, the majority of which are low-
frequency. Most iISNVs are not detected in global consensus genomes, and are rarely detected
in downstream branches on the phylogenetic tree. We show that even among putative
household transmission pairs, iISNVs are shared infrequently, and we estimate that a small
number of viruses found infection after most transmission events. The combination of low
overall within-host diversity, tight transmission bottlenecks, and infrequent propagation along
transmission chains may slow the rate of novel variant emergence among acutely infected
individuals. Importantly, our results imply that the accumulation of multiple iSNVs is unlikely
during typical, acute infection. Together, our findings are consistent with a regime in which

typical acute infections play a limited role in the generation and spread of new SARS-CoV-2
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variants, and argue for the need to better understand the role of prolonged infections as a
source of consequential new variants. Targeted interventions to prevent the number of long-
term infections and to prevent transmission from persistently infected individuals may be

particularly fruitful for slowing the rate of emergence of novel variants of concern.

Relatively few studies have reported on SARS-CoV-2 within-host diversity, and their results
have varied. SARS-CoV-2 within-host sequence data appear to be particularly vulnerable to
method error, including sensitivity to cycle threshold (20, 21), putative false positive iISNV calls
in control runs (20), an uncertain degree of recurrent mutations shared across unrelated
samples (21, 28, 29, 37), and variation between technical replicates. Complicating matters,
each lab employs its own sample preparation and variant calling pipelines, making comparison
across datasets challenging, and concern has been raised regarding recurrent errors that are
platform- and lab-specific (38). iSNVs that recur in nature pose a challenge because they result
in the same data pattern that would be expected from recurrent pipeline errors. We have
attempted to employ multiple, overlapping controls to mitigate errors that could arise from
sample preparation, bioinformatic processing, and improper variant thresholds. In particular, our
results emphasize the importance of duplicate sequencing for any studies relying on low-
frequency iISNVs to infer biological processes. Like Valesano et al. (20), we observe that SARS-
CoV-2 variant calls are sensitive to Ct and variant-calling criteria. We echo their expressed

caution in interpreting SARS-CoV-2 within-host data in the absence of pipeline-specific controls.

Similar to work reported by others (20, 21, 37), we find that most samples harbor very few
iISNVs, and that most variants are low-frequency. Although we employ distinct methods, we
corroborate findings by Lythgoe & Hall et al. (21) that iISNVs do not cluster geographically or
phylogenetically, suggesting that they are not transmitted efficiently within communities. One

difference is that we detect a higher number of shared/recurrent iISNVs in our dataset than
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469  reported by Lythgoe & Hall et al. (21), Valesano et al. (20), and Shen et al. (37), but fewer than
470 Popa & Genger et al. (28) and James et al. (29). While some degree of shared iSNVs is

471  reported across most SARS-CoV-2 datasets (20, 21, 28, 29, 37) the exact frequency of shared
472  sites is highly variable. The higher number of shared iISNVs in our results may be partially

473  accounted for by our method of variant reporting. While most studies mapped reads to the

474  Wuhan-1 reference and report variants present at <50% frequency (20, 21, 28, 37), we

475  converted consensus-level variants to their low-frequency counterparts, and counted the minor
476  allele for near-fixed variants. The higher level of shared iISNVs we observe could also be

477  explained by sampling many closely related, cohabiting individuals. Though relatively few, some
478  household transmission pairs do share iISNVs, likely accounting for some of the shared variation
479  we observe. Future work will be necessary to determine the precise degree to which iSNVs

480  recur across unrelated individuals and the extent to which factors like viral copy number, time of
481 infection, host factors including pre-existing immunity, and sequencing pipeline influence these
482  estimates.

483

484  Four other groups have previously estimated the size of the SARS-CoV-2 transmission

485  bottleneck, although the total number of transmission events evaluated to date across studies
486 remains small (~66). Lythgoe & Hall et al. (h=14 pairs) (39), James & Ngcapu et al. (n=11 pairs)
487  (29), and Wang et al. (n=2 pairs) (40) report narrow bottlenecks, in which infection is founded by
488  fewer than 10 viruses. Popa & Genger et al. (n=39 pairs) (28) report bottleneck sizes ranging
489  from 10 to 5000, and an average size of 1000. Reanalysis of the Popa & Genger data using a
490 more conservative variant dataset resulted in an average bottleneck size of 1-3 (30). Similarly,
491  we find a combined average bottleneck size of 15 using a 3% frequency threshold, and 2 using
492  a 7% frequency threshold. Thus, current evidence is converging to support narrow transmission
493 bottlenecks for SARS-CoV-2, similar to influenza virus (18, 41, 42). Still, these estimates rely on

494  a small number of putative transmission events, including the pairs analyzed here. Genuine
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differences in the SARS-CoV-2 transmission bottleneck size, depending on route of

transmission (43) and host factors may exist.

When transmission bottlenecks are narrow, even beneficial variants present at low frequencies
in the transmitting host are likely to be lost. However, the recent emergence of multiple
divergent lineages, some of which increase infectiousness, underscore that transmission of
such variants clearly can occur (44). This raises the question: how did these variants make their
way out of individual hosts? Narrow transmission bottlenecks generally purge within-host
diversity through a founder effect. Although rare, a low-frequency variant that successfully
passes through a transmission bottleneck could quickly become the dominant variant in the next
host. Such events would become increasingly common as the total number of infected
individuals and transmission events occurring in the population climbs, making it possible to

observe these rare events.

The model outlined above aligns with the hypothesis that prolonged SARS-CoV-2 infection
leads to accumulation of intrahost mutations (4-8). Prolonged infections may permit additional
cycles of viral replication, allowing for more variants to be generated and more time for selection
to increase the frequency of beneficial variants. Even a modest increase in frequency within a
donor enhances the likelihood of a beneficial variant becoming fixed following transmission in
the setting of a narrow transmission bottleneck. Alternatively, it is possible for selection to act
during transmission such that some viruses harboring a particular mutation or group of
mutations are preferentially transmitted (45). In a previous study evaluating SARS-CoV-2
genetic diversity within and between domestic cats, we documented modest evidence
supporting preferential transmission of a particular nonsynonymous variant in Spike (25).

However, we saw no evidence for selective bottlenecks in this study. Additional studies
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evaluating the SARS-CoV-2 transmission bottleneck are needed, in particular in the setting of

long-term infections and immunocompromised hosts.

Our findings that within-host variation is limited and infrequently transmitted are important. Our
data, combined with findings from others, suggest that rapid accumulation of novel mutations
within-host is not the norm during acute infection. Like influenza viruses, a significant portion of
variation generated within one infected host is likely lost during transmission. The combination
of within-host limited diversity and tight transmission bottlenecks should slow the pace at which
novel, beneficial variants could emerge during transmission among acutely infected individuals.
Future studies that compare within-host diversity in individuals with and without SARS-CoV-2
antibodies will be necessary to evaluate whether immunity imposes signatures of within-host
selection. Finally, given the increasing appreciation for the potential role of long infections to
promote variant emergence, within-host data may provide its maximum benefit for dissecting the

process of variant evolution during prolonged infections.

Materials and Methods

Study design

The goal of this study was to characterize the underlying evolutionary processes acting on
SARS-CoV-2 within and between hosts during acute infection, and to understand the processes
that drive iSNVs to consensus level. For this purpose, isolated viral RNA from 3,351 samples
(March 2020 to March 2021) was processed for broad surveillance sequencing in Wisconsin,
USA. Additional analyses on a subset of samples (n=133) consisted of calling iISNVs across the
genome, enumerating iSNVs along the phylogeny, and estimating the transmission bottleneck

size in household transmission pairs. Samples were selected for geographic representation
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across two Wisconsin counties (Dane or Milwaukee county) and to ensure all dominant
phylogenetic clades in spring-summer of 2020 were represented (Nextstrain clades 19A, 19B,
and 20A). In addition, we prioritized samples if more than one sample was available per

household residence within a two week period.

Sample approvals and sample selection criteria

Sequences that were selected for deep sequencing and iSNV characterization were derived
from 150 nasopharyngeal (NP) swab samples collected from March 2020 though July 2020.
Samples originated from the University of Wisconsin Hospital and Clinics and the Milwaukee
Health Department Laboratories. Submitting institutions provided a cycle threshold (Ct) or
relative light unit (RLU) for all samples. Sample metadata, including GISAID and SRA accession

identifiers, are available in Supplemental Table 2.

We obtained a waiver of HIPAA Authorization and were approved to obtain the clinical samples
along with a Limited Data Set by the Western Institutional Review Board (WIRB #1-1290953-1)
and the FUE IRB 2016-0605. This limited dataset contains sample collection data and county of

collection. Additional sample metadata, e.g. race/ethnicity, were not shared.
Diagnostic assays for the samples included in this study were performed at the University of

Wisconsin Hospital and Clinical diagnostic laboratory using CDC'’s diagnostic RT-PCR (46), the

Hologic Panther SARS-CoV-2 assay (47), or the Aptima SARS-CoV-2 assay (48).
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Nucleic acid extraction

Viral RNA (VRNA) was extracted from 100 1yl of VTM using the Viral Total Nucleic Acid
Purification kit (Promega, Madison, WI, USA) on a Maxwell RSC 48 instrument and eluted in 50

WL of nuclease-free H20.

Complementary DNA (cDNA) generation

Complementary DNA (cDNA) was synthesized according to a modified ARTIC Network
approach (49, 50). RNA was reverse transcribed with SuperScript IV VILO (Invitrogen,
Carlsbad, CA, USA) according to manufacturer guidelines. Samples were incubated at room
temperature (25°C) for 10 minutes, heated to 55°C for 10 minutes, heated to 85°C for 5

minutes, and then cooled to 4°C for 1 minute (49, 50).

Multiplex PCR for SARS-CoV-2 genomes

A SARS-CoV-2-specific multiplex PCR for Nanopore sequencing was performed using the
ARTIC v3 primers. Primers used in this manuscript were designed by ARTIC Network and are
shown in Supplemental Table 3. Specifically, cDNA (2.5'yL) was amplified in two multiplexed
PCR reactions using Q5 Hot-Start DNA High-fidelity Polymerase (New England Biolabs,
Ipswich, MA, USA) using the following cycling conditions; 98°C for 30 seconds, followed by 25
cycles of 98°C for 15 seconds and 65°C for 5 minutes, followed by an indefinite hold at 4°C ((49,

50). Following amplification, samples were pooled prior to beginning library preparations.

TruSeq lllumina library prep and sequencing for minor variants

All Wisconsin surveillance samples were prepped and sequenced by Oxford Nanopore

Technologies (details below) and a subset described in this paper were additionally prepped for
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sequencing on an lllumina MiSeq. These SARS-CoV-2 samples (n=150) consisted of household
pairs as well as a random sampling of the surveillance cohort selective for enhanced iSNV
characterization. Amplified cDNA was purified using a 1:1 concentration of AMPure XP beads
(Beckman Coulter, Brea, CA, USA) and eluted in 30 pL of water. PCR products were quantified
using Qubit dsDNA high-sensitivity kit (Invitrogen, USA) and were diluted to a final concentration
of 2.5 ng/pl (150 ng in 50 pl volume). Each sample was then made compatible for deep
sequencing using the Nextera TruSeq sample preparation kit (Illumina, USA). Specifically, each
sample was enzymatically end repaired. Samples were then purified using two consecutive
AMPure bead cleanups (0.6x and 0.8x) and were quantified once more using Qubit dsDNA
high-sensitivity kit (Invitrogen, USA). A non-templated nucleotide was attached to the 3’ ends of
each sample, followed by adaptor ligation. Samples were again purified using an AMPure bead
cleanup (1x) and eluted in 25 pL of resuspension buffer. Lastly, samples were indexed using 8
PCR cycles, cleaned with a 1:1 bead clean-up, and eluted in 30 pL of resuspension buffer. The
average sample fragment length and purity was determined using the Agilent High Sensitivity
DNA kit and the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). After passing quality
control measures, samples were pooled into equimolar concentrations to a final concentration of
4 nM. 5 ul of each 4 nM pool was denatured in 5 pl of 0.2 N NaOH for 5 min. Sequencing pools
were denatured to a final concentration of 10 pM with a PhiX-derived control library accounting
for 1% of total DNA and were loaded onto a 500-cycle v2 flow cell. Average quality metrics were
recorded, reads were demultiplexed, and FASTQ files were generated on lllumina’s BaseSpace
platform. The samples included in this study were sequenced across seven distinct MiSeq runs.
Each sample was library prepped and sequenced in technical replicate. Replicates were true

replicates in that we started from two aliquots taken from the original samples.

Oxford nanopore library preparation and sequencing for

consensus sequences
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All consensus-level surveillance sequencing of SARS-CoV-2 was performed using Oxford
Nanopore sequencing (n=3,351). Amplified PCR product was purified using a 1:1 concentration
of AMPure XP beads (Beckman Coulter, Brea, CA, USA) and eluted in 30 pL of water. PCR
products were quantified using Qubit dsDNA high-sensitivity kit (Invitrogen, USA) and were
diluted to a final concentration of 1 ng/ul. A total of 5ng for each sample was then made
compatible for deep sequencing using the one-pot native ligation protocol with Oxford Nanopore
kit SQK-LSK109 and its Native Barcodes (EXP-NBD104 and EXP-NBD114) (50). Samples were
then tagged with ONT sequencing adaptors according to the modified one-pot ligation protocol
(50). Up to 24 samples were pooled prior to being run on the appropriate flow cell (FLO-

MIN106) using the 24hr run script.

Processing raw ONT data

Sequencing data was processed using the ARTIC bioinformatics pipeline scaled up using on

campus computing cores (https://github.com/artic-network/artic-ncov2019). The entire ONT

analysis pipeline is available at https://github.com/gagekmoreno/SARS-CoV-2-in-Southern-

Wisconsin.

Processing raw Illumina data

Raw FASTQ files were analyzed using a workflow called “SARSquencer”. The complete

“SARSquencer” pipeline is available in the following GitHub repository —

https://github.com/gagekmoreno/SARS _CoV-2_Zequencer. Reads were paired and merged

using BBMerge (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmerge-guide/)

and mapped to the Wuhan-Hu-1/2019 reference (Genbank accession MN908947.3) using

BBMap (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-quide/bbmap-quide/). Mapped

reads were imported into Geneious (https://www.geneious.com/) for visual inspection. Variants
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were called using callvariants.sh (contained within BBMap) and annotated using SnpEff

(https://pcingola.github.io/SnpEff/). Variants were called at 20.01% in high-quality reads (phred

score >30) that were =100 base pairs in length and supported by a minimum of 10 reads. The
total minimum read support was set to 10 to generate initial VCF files with complete consensus
genomes for the few samples where coverage fell below 100 reads in a few areas. Substantial

downstream variant cleaning was performed as outlined below.

ISNV quality control

BBMap’s output VCF files were cleaned using custom Python scripts, which can be found in the

GitHub accompanying this manuscript (https://github.com/Imoncla/ncov-WI-within-host). First,

any samples without technical replicates were excluded. This occurred due to limited sample
volume, degraded RNA, or limited deep sequence reads in one or both replicates (n=>5;
tube/filename identifiers = 19, 188, 1049, 1064, and 1144). Next, we discarded all iISNVs which
occurred at primer-binding sites (Supplemental Table 3). These “recoded” VCFs can be found
in the GitHub repository in “data/vcfs-recode”. We then filtered these recoded VCF files and for
variants with (1) 100x coverage; (2) found at 23% frequency (more in “Within-host variation is
limited once sources of sequencing error are properly accounted for”); (3) and found between
nucleotides 54 and 29,837 (based on the first and last ARTIC v3 amplicon). We excluded all

indels from our analysis, including those that occur in intergenic regions.

We next inspected our filtered iISNV datasets across replicate pairs. We visually inspected each
replicate pair VCF and plotted replicate frequencies against each other (available in the GitHub
repository). This identified a few samples which were outliers for having very limited overlap in
their iISNV populations. This could be traced to low coverage or amplicon drop-out in each
sample. FASTQs for these samples are available in GenBank, but we have excluded them from

downstream analyses presented here (n=11; tube/filename identifier 65, 124, 125, 303, 316,
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1061, 1388, 1103, 1104, 1147, and 1282) (iSNVs in technical replicates are shown for sample

1104 in Supplemental Figure 4b).

We generated one cleaned VCF file by averaging the frequencies found for overlapping iISNVs
and discarding all iISNVs which were only found in one replicate. In addition to the SARS-CoV-2
diagnostic swabs, we sequenced a SARS-CoV-2 synthetic RNA control (Twist Bioscience, San
Francisco, CA) representing the Wuhan-Hu-1 sequence (Genbank: MN908947.3) in order to
identify variants which are likely to arise during library prep and sequencing. We amplified and
sequenced technical replicates of this VRNA synthetic control as described above, using 1x10°
template copies per reaction. We then excluded variants detected in the synthetic RNA control
(Supplemental Table 4) from all downstream analyses. Notably, this filter removed a single
variant at nucleotide position 6,669 from our analysis (20). Finally, within-host variants called at
250% and <97% frequency comprise consensus-level mutations relative to the Wuhan-Hu-
1/2019 reference sequence. To ensure that the corresponding minor variant was reported we
report the opposite minor allele at a frequency of 1 - the consensus variant frequency. For
example, a C to T variant detected at 75% frequency relative to the Wuhan-1 reference was

converted to a T to C variant at 25% frequency.

Processing of the raw sequence data, mapping, and variant
calling with the Washington pipeline

To assess the sensitivity of our iISNV calls to bioinformatic pipelines, we generated VCF files
using an independent bioinformatic pipeline. Raw reads were assembled against the SARS-
CoV-2 reference genome Wuhan-Hu-1/2019 (Genbank accession MN908947.3; the same
reference used for the alternative basecalling method) to generate pileup files using the

bioinformatics pipeline available at https://github.com/seattleflu/assembly. Briefly, reads were

trimmed with Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic) (51) in paired
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end mode, in sliding window of 5 base pairs, discarding all reads that were trimmed to <50 base
pairs. Trimmed reads were mapped using Bowtie 2 (http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml) (52), and pileups were generated using samtools

mpileup (http://www.htslib.org/doc/samtools-mpileup.html). Variants were then called from

pileups using varscan mpileup2cns v2.4.4 (http://varscan.sourceforge.net/using-

varscan.html#v2.3 _mpileup2cns). Variants were called at 21% frequency, with a minimum

coverage of 100, and were supported by a minimum of 2 reads.

Phylogenetic analysis

All available full-length sequences from Wisconsin through February 16, 2021 were used for
phylogenetic analysis using the tools implemented in Nextstrain custom builds

(https://github.com/nextstrain/ncov) (53, 54). Time-resolved and divergence phylogenetic trees

were built using the standard Nextstrain tools and scripts (53, 54). We used custom python
scripts to filter and clean metadata. A custom “Wisconsin” profile was made to create a
Wisconsin-centric subsampled build to include representative sequences. The scripts and

output are available at https://github.com/gagekmoreno/Wisconsin-SARS-CoV-2.

Household pairs permutation test

For household groups, we performed all pairwise comparisons between members of the
household, excluding pairs for which the consensus genomes differed by >2 nucleotide
changes. We determined this cutoff by modeling the probability that 2 consensus genomes
separated by one serial interval differ by n mutations. We model this process as Poisson-
distributed with lambda equal to the expected number of substitutions per serial interval, as
described previously (34). We chose to model this expectation using the serial interval rather

than the generation interval for the following reason. The sequence data we have represent
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cases that were sampled via passive surveillance, usually from individuals seeking testing after
developing symptoms. Differences in the genome sequences from two individuals therefore
represent the evolution that occurred between the sampling times of those two cases. Although
neither the serial interval nor the generation interval perfectly matches this sampling process,
we reasoned that the serial interval, or the time between the symptom onsets of successive
cases, may more accurately capture how the data were sampled. We evaluated probabilities
across a range of serial interval and clock rates. For serial interval, we use the values inferred
by He et al, of a mean of 5.8 days with a 95% confidence interval of 4.8-6.8 days (35). For
substitution rate, we employ estimates from Duchene et al, who estimate a mean substitution
rate of 1.10 x 10 substitutions per site per year, with a 95% credible interval of 7.03 x 10 and
1.15 x 10 (1). To model the expectation across this range of values, we evaluate the
probabilities for serial intervals at the mean (5.8), as well as for 4, 5, 6, 7, and 8 days, and
substitution rates at the mean (1.10 x 10°%) and at the bounds of the 95% credible interval. For
each combination of serial interval and substitution rate, we calculate the expected substitutions
in one serial interval as: (substitution rate per site per year * genome length/365 days) *serial
interval. The results using the mean serial interval (5.8 days) and substitution rate (1.10 x 10%)
are shown in the main text, while the full set of combinations is shown in the supplement. Under
this model, the vast majority of consensus genomes derived from cases separated by a single
serial interval are expected to differ by <2 mutations. The probability that two genomes that are
separated by one serial interval differ by 3 mutations ranges from 0.0016-0.059. Only in the
case of an 8 day serial interval with the highest bound of the substitution rate do we infer a
probability of 3 mutations that is greater than 0.05. We therefore classified all pairs of individuals
from each household that differed by <2 consensus mutations and who were tested within 14

days of each other as putative transmission pairs.
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To determine whether putative household transmission pairs shared more variants than
individuals without an epidemiologic link, we performed a permutation test. At each iteration, we
randomly selected a pair of samples (with replacement) and computed the proportion of variants
they share as: (2 x total number of shared variants) / (the total number of variants detected
among the two samples). For example, if sample A contained 5 iSNVs relative to the reference
(Wuhan-1, Genbank accession MN908947.3), sample B harbored 4 iSNVs, and 1 iSNV was
shared, then the proportion of sample A and B’s variants that are shared would be 2/9 = 0.22.
We performed 10,000 iterations in which pairs were sampled randomly to generate a null
distribution. We then compared the proportion of variants shared by each putative household
transmission pair to this null distribution. The proportion of variants shared by a household pair

was determined to be statistically significant if it was greater than 95% of random pairs.

Transmission bottleneck calculation

The beta-binomial method, explained in detail in (36), was used to infer the transmission
bottleneck size Ny. Ny quantifies the number of virions donated from the index individual to the
contact (recipient) individual that successfully establish lineages in the recipient that are present
at the sampling time point. The method statistically incorporates sampling noise arising from a
finite number of reads and accounts for the possibility of false-negative variants that are not
called in the recipient host due to conservative variant calling thresholds (3% in both technical
replicates). The beta-binomial method adopts several important assumptions. It assumes viral
genetic diversity is neutral and variant frequencies are not impacted by selection; it also
assumes variant sites are independent, which may not be true given that SARS-CoV-2 contains
a continuous genome thought to undergo limited recombination (55). In addition, the beta-
binomial method assumes that identical variants found in the index and contact are shared as a

result of transmission, though it is possible that identical variants occurring in a donor and a
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recipient individual occurred independently of one another and are not linked through
transmission. We consider this possibility at one site in particular which commonly appears at
low frequencies in donor-recipient pairs. Code for estimating transmission bottleneck sizes
using the beta-binomial approach has been adapted from the original scripts

(https://github.com/koellelab/betabinomial bottleneck) and is included in the GitHub

accompanying this manuscript (https://github.com/Imoncla/ncov-WI-within-host).

We calculated individual transmission bottleneck size estimates for each household
transmission pair as were identified in the household permutation test (n=28). We used the date
of symptom onset and/or date of sample collection to assign donor and recipient within each
pair. Within each pair, if the date of symptom onset differed by =3 days, we assigned the
individual with the earlier date as the donor. If this information was unavailable or uninformative
(<3 days) for both individuals in a pair, we looked at the date of sample collection and if these
dates differed by =3 days, we assigned the individual with the earlier date as the donor. If this
information was also not available or was not informative (<3 days), we calculated the
bottleneck size with each individual as a donor. These bidirectional comparisons are denoted
with an “a” or “b” appended to the filename (n=16 pairs were analyzed bidirectionally). In total,
we analyzed 44 pairs (including bidirectional comparisons). Metadata and GISAID accession

numbers for each pair are described in Supplemental Table 4.

Combined transmission bottleneck size estimates (as seen in Figure 6¢) were estimated as
described in the supplemental methods in Martin & Koelle (30). Briefly, overall transmission
bottleneck sizes were estimated based on the assumption that transmission bottleneck sizes
are distributed according to a zero-truncated Poisson-distribution and bidirectional bottleneck

estimates were each assigned 50% of the weight in this calculation compared to the
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unidirectional pairs. Matlab code to replicate the combined bottleneck estimates can be found in

the GitHub accompanying this paper (https://github.com/Imoncla/ncov-WI-within-host).

Enumerating mutations along the phylogeny

We used the global Nextstrain (53) phylogenetic tree (nextstrain.org/ncov/global) accessed on
February 24, 2021 to query whether mutations detected within-host are detected on the global
tree. We accessed the tree in JSON format and traverse the tree using baltic (56). To determine
the fraction of within-host variants detected on the phylogenetic tree, we traversed the tree from
root to tip, gathering each mutation that arose on the tree in the process. For each mutation, we
counted the number of times it arose on an internal and a terminal node. We then compared the
fraction of times each iSNV identified within-host was detected on an internal node vs. a
terminal node. To determine whether particular iISNVs were enriched at internal nodes, we
compared the frequency of that iISNV’s detection against the overall ratio of mutations arising on

internal vs. terminal nodes in the phylogeny with a Fisher's exact test.

To query whether iSNVs ever became dominant in tips sampled downstream, we used a
transmission metric developed previously (57). Using the tree JSON output from the Nextstrain
pipeline (53), we traversed the tree from root to tip. We collapsed very small branches (those
with branch lengths less than 1 x 10™°) to obtain polytomies. For each tip for which we had
within-host data that lay on an internal node, i.e., had a branch length of nearly 0 (< 1 x 10°),
we then determined whether any subsequent tips occurred in the downstream portion of the
tree, i.e., tips that fall along the same lineage but to the right of the parent tip. We then traversed
the tree and enumerated every mutation that arose from the parent tip to each downstream tip.
If any mutations along the path from the parent to downstream tip matched a mutation found
within-host in the parent, this was classified as a potential instance of variant transmission. A

diagram of how “downstream tips” and mutations were classified is shown in Figure 4a.
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Linear regression model

To determine the relative contributions of phylogenetic divergence, geographic distance, clade
membership, and household membership to the probability of sharing within-host variants, we fit
linear regression models to the data in R. As our outcome variable, we performed pairwise
comparisons for each pair of samples in the dataset (including household and non-household
pairs) and compute the proportion of variants shared for each pair. We then model the
proportion of shared variants as the combined function of 4 predictor variables as follows:
Proportion of variants shared ~ By + Bix1 + B2X2 + BsX3 + B4X4, Where Xx; represents a 0 or 1 value
for household, where a 1 indicates the same household and a O indicates no household
relationship. X, denotes the divergence, i.e., the branch length in mutations between tip A and
tip B as a continuous variable, x;indicates the great circle distance in kilometers between the
location of sample collection as a continuous variable, and x, denotes a 0 or 1 for whether the
two tips belong to the same clade (same clade coded as a 1, different clade coded as a 0). We
fit a univariate model for each variable independently, a model with an intercept alone, and a
combined model using the Rethinking package in R
(https://lwww.rdocumentation.org/packages/rethinking/versions/1.59). We perform model
comparison with the WAIC metric and select the combined model as the one with the best fit.
We compute mean coefficient estimates and 95% highest posterior density intervals (HPDI) by

sampling and summarizing 10,000 values from the posterior distribution.

Data and code availability

Consensus genomes have been deposited in GISAID with accession nhumbers available in
Supplemental Table 1. Raw lllumina reads are available in the Short Read Archive under

bioproject PRINA718341. All raw Nanopore reads are available in the Short Read Archive
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under bioproject PRINA614504. All code used to analyze the data and generate the figures

shown in this manuscript are available at https://github.com/Imoncla/ncov-WI-within-host.

Statistical analysis

Throughout the manuscript, we have opted to show individual data points rather than summary
statistics whenever possible, and to include measures of spread for estimated variables. For the
test comparing the frequency of iISNVs on internal nodes and tips on the phylogeny, we
evaluate these ratios with Fisher’'s exact tests. To test whether putative household transmission
pairs share more variants than expected by chance, we devise our own permutation test. We
construct a null distribution by computing the proportion of shared iSNVs between randomly
selected pairs of individuals 10,000 times, and report true pairs as sharing a statistically
significant proportion of variants at an alpha of 0.05 if they fall in the upper 5% of random pairs
in the null distribution. We present both the null distribution and distribution to true values, along
with a line indicating the 95th percentile for completeness. For the regression analysis, we use a
Bayesian implementation of multiple linear regression in R. Each predictor variable was
evaluated in a univariate model as well as in the combined, multivariate mode, and models were
compared using an information criterion (WAIC) that penalizes additional parameters. Estimated
coefficient values, along with the estimated variance and intercept, for the multivariate model
are shown as the computed mean with the 95% highest posterior density interval (HPDI) to

express the spread of the results.
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