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Abstract 

 
Evaluating the impact of genetic variants on transcriptional regulation is a central goal in 
biological science that has been constrained by reliance on a single reference genome. To 
address this, we constructed phased, diploid genomes for four cadaveric donors (using long-
read sequencing) and systematically charted noncoding regulatory elements and transcriptional 
activity across more than 25 tissues from these donors. Integrative analysis revealed over a 
million variants with allele-specific activity, coordinated, locus-scale allelic imbalances, and 
structural variants impacting proximal chromatin structure. We relate the personal genome 
analysis to the ENCODE encyclopedia, annotating allele- and tissue-specific elements that are 
strongly enriched for variants impacting expression and disease phenotypes. These 
experimental and statistical approaches, and the corresponding EN-TEx resource, provide a 
framework for personalized functional genomics. 
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The Human Genome Project assembled one representative haploid genome sequence 20 years 

ago (1). Since then, millions of individual genomes have been sequenced (2). Compared to the 

reference, a personal genome typically contains ~4.5 million variants (3). Understanding their 

functional impact is a fundamental question in biology and medicine. To this end, researchers 

have conducted many genome-wide association studies (GWASes) and expression quantitative 

trait loci (eQTL) analyses, associating genetic variants with changes in gene expression and 

phenotypic traits. In part(4)icular, the Genotype-Tissue Expression (GTEx) project performed 

RNA-seq on >40 human tissues from nearly 1000 individuals, allowing for the identification of 

>175K eQTLs (5, 6). In complementary fashion, the Encyclopedia of DNA Elements (ENCODE) 

project was initiated in 2003 to identify and annotate genomic regions (7). During the ensuing 

decades, the project utilized functional genomic techniques to chart the transcriptional and 

epigenomic landscapes of numerous human tissues and cell lines, producing a catalog of 

candidate cis-regulatory elements (cCREs) on the reference genome (8-10). These are widely 

used for predicting the impact of genetic variants (10-13). However, there is a lack of one-to-one 

correspondence between this epigenetic annotation, based on the generic reference genome, 

and genetic variants, which fundamentally relate to an individual's personal genome.  

 

To overcome this limitation, we initiated the EN-TEx study (ENCODE assays applied to GTEx 

samples) to connect personal genomes and functional genomics. First, we built the diploid 

genomes for each of four individuals with long-read sequencing. Second, for each individual, we 

uniformly carried out a full range of functional genomic assays for 25 tissues, resulting in >1,500 

datasets for histone modifications, gene expression, protein abundance, and three-dimensional 

genome structure. These raw data were processed in relation to each individual's personal 

genome, making the interpretation of genetic variants more direct.  

In particular, by using an individual9s diploid genome, heterozygous loci can distinguish reads 

that arise from each haplotype, assigning distinct molecular signals (e.g., RNA expression or TF 

binding) to each. The imbalance between the haplotypes can be accurately measured by taking 

the wild-type allele as a baseline, avoiding biological and technical biases, and if the imbalance 

is statistically significant, the heterozygous variant is termed allele-specific (AS). AS variants 

have been determined in numerous previous studies(14-20). (Note that only some AS variants 

are causal for the observed changes, such as those directly affecting TF-binding sites on one 

haplotype.) 

Personal genomes & matched data matrix 

Phasing & SVs. We sequenced the genomes of four individuals from the GTEx cohort (identified 

as 1 through 4), with a variety of sequencing technologies (10x Genomics linked-read, Illumina, 

and PacBio). After calling single-nucleotide variants (SNVs) and small insertions and deletions, 

we integrated the haplotype information from linked-reads and proximal ligation sequencing (Hi-

C) to phase the variants (Fig. S1.1) (21). This step generated large blocks of phased variants 

across the genome, which were stitched together, forming phased personal genomes for the 

four individuals (Fig. 1A). We further determined the paternal/maternal origin of the phased 

segments by checking the AS expression levels of known imprinted loci (Fig. 1A and 
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Supplement). For individuals 2 and 3, we also identified 17,649 and 18,542 structural variants 

(SVs, greater than 50 bp; Supplement, Fig. 1B & S1.2), incorporating them into their personal 

genomes. We found that the SVs tended to be short (<1 Kb) and depleted in most functional 

regions (e.g., exons and cCREs), to be insertions, and to have typical allele-frequency spectra, 

all of which agree with previous findings (Fig. S1.2) (22, 23).  

Diploid Mappings from >1500 Experiments. Next, we carried out a comprehensive set of 1635 

experiments on the four individuals (i.e., ChIP-seq, ATAC-seq, Hi-C, DNase-seq, whole-genome 

bisulfite sequencing [WGBS], short and long-read RNA-seq, eCLIP, and labeled proteomic 

mass-spectrometry; Fig. 1D & S1.3a). All our datasets were processed according to both the 

personal diploid and reference genomes, giving rise to three mappings and signal tracks for 

each assay (maternal and paternal haplotypes and the reference; Fig. S1.4). When we applied 

strict mapping criteria (in terms of allowed mismatches) we found ~2.5% more reads mapped to 

the personal genomes than to the reference (Supplement). The increase was smaller in 

annotated regions (genes and cCREs) than in the genome overall. Still, mapping to the personal 

versus reference genome has an effect on gene expression quantification (e.g. resolving better 

the expression levels of immune-related genes; Fig. S1.4). 
 

Measuring AS activity in diverse assays  

(RNA/ChIP/ATAC/DNase)-seq. For the assays making up the bulk of the dataset, AS 

measurement involves the direct comparison of the number of mapped reads at a locus 

containing heterozygous SNVs (hetSNVs), and we report the number of significantly imbalanced 

hetSNVs relative to accessible hetSNVs (i.e., hetSNVs with enough sequencing depth to be 

able to detect statistically significant imbalances; Fig. 2A and Supplement). We performed these 

calculations uniformly on a large scale with a standard pipeline, making possible consistent call-

set comparison, and with reads mapped to personal genomes, avoiding reference and 

ambiguous-mapping biases (Fig. 2 & Supplement) (7, 8, 17, 24-27). We also developed 

alternate call sets, including "high-power" ones based on joint calling across tissues (Fig. 

S2.1e). As shown in Fig. 2D, we consistently detected ~800 AS hetSNVs per sample, about 3% 

of the potential 27.5K accessible hetSNVs.  

WGBS, Hi-C & Proteomics. For three assays we have had to assess AS activity in a specialized 

fashion. In particular, for WGBS, we accounted for base changes at potentially methylated CpG 

sites (Supplement and Fig. S2.2). We identified ~130K AS methylation events per sample. For 

Hi-C, we mapped the reads onto the personal genomes and generated haplotype-resolved 

contact matrices, partitioning the Hi-C contacts, where at least one of the contacting regions 

were AS, into AS interactions (Supplement & Fig. S2.3a). Of the average ~6.5M interactions per 

sample, ~500K showed significant AS behavior (Fig. S2.3). Finally, for proteomics we mapped 

peptides directly to the personal genomes, calling AS peptides in consistent fashion to the 

processing for AS RNA-seq (contrasting to other approaches (28-30)); in total, we found 2,028 

potential AS peptides (Fig. S4.4c and Supplement). 
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Aggregating AS events, forming a catalog 

  

AS Elements. In addition to determining AS activity at the SNV level, it is possible to pool the 

reads from multiple phased SNVs into a single genomic element, allowing the determination of 

AS elements (cCREs and genes, Fig. 2A and Fig. S3.1). In particular, for each individual and 

tissue, 182 cCREs and 351 genes showed a significant AS imbalance per assay; further 

aggregating across individuals resulted in ~400 AS elements per tissue (Fig. 2D). When 

comparing the resulting list with genes associated with specific diseases, we found sensible 

correlations; for example, TSHR, TG, and PAX8, which are associated with hyperthyroidism, 

showed AS behavior in thyroid (more examples in Supplement).  

  

Tissue & Assay Merging. Next, we merged the 25 tissues, using a simple union of the tissue-

specific AS call sets, detecting ~5.5K unique AS hetSNVs (for either binding or expression) and 

~1K AS genomic elements for each individual per assay (Fig. 2C). Pooling the reads from each 

assay across all tissues dramatically increased (by >5X) the detection power, making it possible 

to identify ~27K AS hetSNVs per assay for each individual (Fig. 2D). Finally, merging across all 

assays provided a catalog of all loci where AS activity could be assessed in any of the tissues of 

the four individuals (Fig. 2D). For (RNA/ChIP/ATAC)-seq, the catalog contains 232K unique AS 

hetSNVs and 37K AS elements (28K cCREs and 9K genes, occurring in at least one donor and 

assay). The number of AS hetSNVs increases by ~2-fold (to 0.5M hetSNVs) when aggregating 

across tissues by pooling all the available reads. When AS sites from DNase-seq and 

methylation are added, the total number of hetSNVs increases to 1.3M (many in relation to 

previous efforts, Supplement).  

Mining the catalog   

 

Rare Variants. After constructing the catalog, we mined it for features associated with AS 

activity. First, consistent with previous studies (17, 18, 26, 31), we found that AS elements, 

particularly distal ones, were under less purifying selection (depleted in rare variants) than non-

AS ones (Fig. 3A & S4.2). That said, a substantial number of AS variants are rare (8294 and 

2961 for binding and expression, respectively; Supplement).  Moreover, 14 of these were 

deleterious and pathogenic, based on inter-relating with ClinGen/ClinVar (Supplement) (32).  

 

Model. We built a deep-learning model to predict whether a hetSNV position in an individual is 

AS in a particular assay based solely on the surrounding nucleotide sequence (33). In particular, 

the model was trained as a binary classifier in one individual and was then used to predict on 

non-shared hetSNVs in another (Supplement). As shown in Fig. 3B, the CTCF model has 

stronger performance than the ones for other assays (e.g. RNA-seq) and attaches higher 

importance to the central region surrounding the hetSNV, perhaps because of the well-defined 

CTCF binding motif.   
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Cross-assay Compatibility. We investigated the compatibility of AS activity across different 

assays, on a genomic scale, by assessing whether highly expressed alleles generally have 

more active promoters, indicated by a stronger active chromatin signal and weaker repressed 

one (Fig. 3C). As expected, there was substantial correlation in AS activity between H3K27ac 

and expression, with similar results for the other assays (e.g. expression with ATAC-seq or 

methylation), taking into account the opposing trend for repressive marks and methylation (Fig. 

3D & S4.4a). A similar compatibility relation can also be found between AS activity and GTEx 

eQTLs, giving rise to annotations on the eQTLs (Fig. 3D & S4.4a for expression and binding for 

a given hetSNV, respectively). Fig. 3E summarizes the overall great degree of compatibility, 

with an associated list of strongly compatible gene-promoter pairs (Supplement). Counter to the 

overall trend is the low compatibility between AS mRNA expression and peptide expression, 

possibly reflecting a role of post-transcriptional regulation (34, 35).  

 

Examples of coordinated AS activity across assays 

 

Next, we describe specific examples of the coordination of AS activity, using diploid signal 

tracks.   

 

Imprinted Locus. In most somatic cells, IGF2 and neighboring H19 are imprinted (36). In several 

EN-TEx tissues, we also observed that H19 is expressed only maternally, and IGF2, only 

paternally, due to AS CTCF binding at an imprinting control region (Fig. 4A) (37). Going beyond 

this, haplotype-resolved Hi-C showed that, on the maternal haplotype, a cCRE upstream of H19 

interacts with this gene but not with IGF2. In contrast, on the paternal haplotype, the same 

cCRE interacts with IGF2 only. 

 

Disease-associated Locus. A novel example of coordinated AS activity is found for DNAH11, a 

gene associated with Ciliary dyskinesia (OMIM #611884). We observed AS methylation in the 

promoter regions to be in the opposite direction of AS expression and activity of H3K4me3 and 

H3K27ac, consistent with transcriptional down-regulation. In fact, some of the AS hetSNVs, 

lying in the promoter, have been identified as eQTLs by GTEx (Fig. 4B). 

 

Coordination over X-chromosome. On chromosome X, we observed gene expression, active 

histone marks, POL2R and CTCF binding skewed toward one haplotype, with repressive marks 

skewed to the other one (Fig. 4C & S5.1a-b). There are notable exceptions: genes on 

pseudoautosomal regions (e.g DHRSX) and documented <escaper= genes (e.g. KDM6A (38)). 

In addition, haplotype-specific Hi-C also manifest strong differences in AS interactions on the X-

chromosome at some loci (illustration for XACT, Supplement & Fig. S5.1c). 

Relating SVs to chromatin & expression 

While most AS activity is assessed using hetSNVs, as in examples above, some is associated 

with indels and SVs (Fig. S6.1a). SVs are distributed over the diploid genome unevenly, and on 

a large scale, their association with chromatin can be different for different haplotypes (Fig. 5A). 
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At specific loci, SVs can potentially impact chromatin and gene expression in a (potentially) 

causal fashion.  

 

Between Haplotypes. Fig. 5B shows an example of a heterozygous deletion removing an 

activating region (H3K27ac peak on one haplotype) that potentially reduces the expression of 

the nearby gene (ZFAND2A). As this SV overlaps a known SV eQTL (39), the peak removal 

might represent a mechanism for the QTL. Fig. 5C shows a similar example: a heterozygous 

deletion removing an activating region near PSCA. Here the deletion is not a known eQTL but 

has a similar allele frequency to that of nearby eQTL SNVs and thus might represent the causal 

variant associated with them. (Fig. S6.1c lists additional examples of SV-eQTL connections.) 

 

Between Individuals. Figures 5D & 5E show the analogous situation for homozygous deletions 

between two individuals. The first one shows an SV removing an active region and the 

corresponding downregulation of a nearby lncRNA. The second shows an SV removing a likely 

repressive region (H3K9me3 peak) in an intron of PCCB. This SV is adjacent to a number of 

GTEx sQTL (splicing QTL) sites and potentially affects splicing (Fig. S6.1e).  Moreover, long-

read RNA-seq indicates that both individuals have novel splice isoforms near the SV location. It 

is notable that the EN-TEx dataset makes it possible to directly compare SVs, determined by 

long-read DNA sequencing, with their impact on transcript structure, determined by long-read 

RNA-seq. 

TEs & Chromatin. Having demonstrated the potential impact of specific SVs, we next evaluated 

the relationship between SVs and the neighboring chromatin, genome-wide. We assessed 

whether chromatin significantly changes around SVs (Fig. S6.2a). We grouped SVs based on 

their length, genotype, type (insertion or deletion), or TE involvement (whether they involve 

transposable elements). The first three factors showed little or no relationship to chromatin 

changes (Fig. S6.2b). However, in regions of generally open chromatin, the neighborhood of TE 

SVs showed reduced openness compared to that of non-TE SVs (Fig. 5F & S6.2b). This agrees 

with findings that cells repress active chromatin to suppress the activity of TEs (40-42). 

Alternatively, it could also indicate that TEs tend to insert in regions of closed chromatin. 

Decorating the ENCODE Encyclopedia  

Overview. The previous sections detail the functional genomic activity of diploid genomes. In 

this section, we relate this activity to the haploid genome, in the form of "decorations" on the 

cCRE Registry, a major component of the ENCODE Encyclopedia.  

  

In particular, we can decorate cCREs (on the reference genome) in a tissue- and allele-specific 

fashion (15). Moreover, the existing Registry provides only active annotations (10). Given the 

uniform nature of EN-TEx data across tissues and the comprehensive assays, which include 

repressive marks, we can add a fuller description of regulation to the encyclopedia (i.e., active, 

repressed, or bivalent); we can also consistently assess the activity variation of an element 

across tissues and individuals. Finally, our decorated elements can be used to interpret the 

functional variants, such as eQTL and GWAS SNVs. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.26.441442doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441442
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 
 

Approach. Starting with a tissue-independent list of regulatory elements (0.9M cCREs in the 

Registry) (10), we used active histone marks, such as H3K27ac, to determine elements active in 

particular EN-TEx tissues (Fig. 6A & S7.2). Moreover, we defined a stringent subset of these 

based on a strong double-peak H3K27ac pattern (Supplement) (43). In addition, using 

repressive histone marks and methylation we could define tissue-specific subsets of Registry 

elements as repressed or bivalent. Note that in order to be included in the encyclopedia 

Registry an element must have been identified as active in at least one ENCODE biosample. 

Thus, even if an element is repressed in all EN-TEx tissues, it is still capable of being active. 

Alternatively, we can identify genomic regions with no active marks in all of ENCODE and only 

repressive ones in EN-TEx (i.e. not in the Registry at all; Fig. S7.3).  

 

Finally, we validated our active and repressive decorations using tissue-matched Hi-C (Fig. 6B). 

Then, most importantly, we used our AS catalog to further decorate elements as AS.   

 

Variation over Individuals, Tissues & Assays. For the decorated cCREs, we quantified their 

differential activity in different tissues of the same individuals, enabling calibrated inter-tissue, 

inter-individual, and inter-assay cross-comparisons. Overall, the decorated cCREs exhibit much 

larger differences in functional genomic activity across tissues than between the same tissues of 

different individuals, using joint analysis of variance (44) (Fig. 6C).  

 

We also developed a regression-based approach to consistently quantify the difference 

(expressed as the fraction of unexplained variance) between any two types of functional 

activities (across cCREs or genes) between individuals, tissues and assays (Supplement & Fig. 

S7.5; all pairwise comparisons available in a matrix). For instance, our approach demonstrated 

that for spleen the H3K27ac variation across cCREs of one individual explained 86% of the 

variation in another. This similarity in explained variation is larger than the degree to which the 

variation across cCREs in spleen could explain the analogous variation in transverse colon in 

the same individual (65%). On average, histone marks between individuals differed by 17% in 

terms of unexplained variation, and between tissues, by 26% (Fig. S7.5b); these numbers were 

larger than the amount of RNA-seq variation unexplained (across genes). We can also compare 

cross-assay, finding, for instance, that H3K27ac in the spleen explains much more of the 

variation in H3K4me3 than H3K4me1. Finally, we can consistently expand these comparisons to 

correlating RNA with protein abundance, finding that it varies considerably between tissues, in 

line with previous studies (Fig. S7.5c) (45). 

Measuring tissue specificity 

The uniform nature of EN-TEx data is ideal for measuring tissue-specificity across the body. We 

used a simple approach, applicable across diverse annotations, coding and non-coding genes, 

cCREs, TSSs, and epigenomic profiles (Fig. 7A & S8.1, Supplement). As expected (46, 47), 

only a small percentage of protein-coding genes had activity in a single tissue (~8%; by RNA-

seq or mass spectrometry); in contrast, pseudogenes and lncRNAs were more tissue-specific. 

Active regulatory elements generally exhibited even higher tissue specificity, while repressive 
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elements tended to be more ubiquitous. As expected, active distal elements were more tissue-

specific than the proximal ones. 
 

AS Elements. AS genes and cCREs were more tissue-specific than corresponding non-AS 

ones, across a wide variety of assays (Fig. 7A & S8.1d). That said, we identified 43 elements 

that are AS across all available tissues (23 cCREs and 20 genes, 14 of which are associated 

with housekeeping genes; Fig. S8.2c,d (48)). For these 43, the direction of AS imbalance was 

consistent across tissues (Fig. 7C-D & S8.2). This fact, and that we did not observe many loci 

where the imbalance direction flipped across tissues, supports our aggregation strategy for 

calling AS events (Fig. 2 & Supplement). 

 

Conservation. Finally, we explored the relationship between tissue specificity and purifying 

selection (Fig. 7B & Supplement). As expected, ubiquitously active elements were under the 

strongest negative selection, and ubiquitously repressed elements were the least evolutionarily 

conserved. Elements that were active or repressed but tissue-specific demonstrated 

intermediate conservation (Fig. S8.3).  

Relating Encyclopedia decorations to QTLs & GWAS loci 

eQTLs/sQTLs. We analyzed the relationship of our decorated regulatory elements with eQTL 

and GWAS SNVs. First, we systematically estimated the enrichment of eQTL and sQTL variants 

in active cCREs from the matched tissue type (Fig. 8A & S9.1a). There was stronger proximal 

than distal enrichment, especially, as expected, for sQTLs (49). Also, the EN-TEx decorated 

cCREs exhibited somewhat stronger enrichments than matched ones from the Roadmap 

project, probably due to their compact size (Fig. S9.1c). Next, we compared eQTL/sQTL 

enrichment in AS elements to non-AS ones (Fig. 8A), finding higher enrichment in AS subsets. 

In particular, for distal active cCREs, the AS ones showed significantly higher enrichment across 

all tissue types. On average, the improvement was >2X for the subset with CTCF bound, with 

some tissues considerably larger. (Note, this subset has more TF-binding sites than other 

cCREs, suggesting greater regulatory importance [Fig. S9.3].) 

 

In addition, we found that the differential histone modifications across EN-TEx tissues can 

potentially be used to predict the tissue specificity of eQTLs; in particular, the presence of an 

H3K27ac signal at a GTEx eQTL SNV is strongly correlated with the tissues the eQTL is active 

in (Fig. 8B & S9.1d). 

  

GWAS. Similar to eQTLs, we demonstrated that AS decorations can produce significantly better 

GWAS enrichment for disease traits (Fig. 8C & S9.2). As a baseline, we estimated the GWAS 

enrichment in tissue-specific regulatory elements across diverse traits (using tag-SNP and 

LDSC approaches (50)). Several of our results recapitulated known biology (Supplement & Fig. 

S9.2b). We then compared the GWAS enrichment patterns in cCREs that were and were not 

AS, finding the AS subset had stronger enrichments. For example, in the coronary artery AS 

elements had higher enrichment for cardiovascular disease compared to non-AS ones (51-54). 

(We also compared this to Roadmap annotations.)  Finally, for specific immune-associated 
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traits, we show AS cCREs achieved the better enrichment tissue specificity for spleen compared 

to non-AS ones (Fig. 8C & S9.2f).  

 

Discussion 
  

Many recent efforts have demonstrated that functional annotation of the reference genome 

improves the fine-mapping of disease variants (55-58). The unique advantage of EN-TEx is that 

the genetic variants and their functional annotations are determined for the same individual. 

This matching provides potentially direct insights into the mechanism by which the variants 

influence gene activity. Moreover, EN-TEx demonstrates that diploid functional genomics can be 

brought back to traditional haploid reference genome in a useful form, improving the detection 

and tissue characterization of functional genetic variants.   

 

Resource. A key contribution of EN-TEx is the creation of a broadly useful resource, enabling 

additional analyses outside of the scope of this paper. For example, the methylation data can be 

combined with biological clocks and related to the ages of the EN-TEx individuals (Fig. S10.5). 

In another example, one can see the cross-tissue epigenetics of the genes associated with 

COVID-19 (Fig. S10.6). 

 

All of the EN-TEx data are fully open-consented (Supplement); this consent is invaluable and is 

different from that in many other resources (e.g. GTEx, Roadmap, TCGA, and PsychENCODE) 

and has been shown to greatly improve data set utilization. In particular, all the raw sequencing 

data, annotations and decorations from downstream analyses, and associated tools can be 

freely downloaded (Supplement). These include the diploid and reference signal tracks, TAD 

annotations, a complete catalog of AS events, lists of tissue-specific active and repressive 

regulatory elements (Supplement & Fig. S1.3g). Finally, we developed two interactive 

applications for visualizing the resource (Supplement, Fig. S10.3 & S10.4): The first performs a 

variety of dimensionality reductions on the data (e.g. VAE and UMAP); the second is a 

chromosome <painting= tool for visualizing large-scale diploid maps of functional genomics 

signals.   

  

Selection & Buffering. A central question addressed by the resource is the biological impact of 

genetic variants. As expected, broadly and consistently active elements (e.g. housekeeping 

genes and ubiquitously active promotors) tend to be under strong constraint (i.e. purifying 

selection) and are less likely to be AS (Fig. S9.3a). The buffering hypothesis posits a 

mechanism for this (16): redundancy in important elements may dampen the impact of variants. 

For instance, redundant TF binding sites in cCREs can buffer the loss of a site from a genetic 

variant. However, this buffering is not always perfect: the subset of cCREs that are AS are likely 

not fully buffered, allowing the AS variants to have stronger functional impact. This is consistent 

with our observed enrichment of eQTL SNPs in this subset and provides a rationalization for 

how our AS decorations can refine the regulatory regions responsible for driving expression 

changes. 
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Rare Variants. Taken together, the four EN-TEx individuals have millions of genetic variants. 

Although considered healthy, they are expected to contain many rare, deleterious, or even 

disease-associated mutations, especially recessive ones. These rare variants are not normally 

accessible to traditional QTL studies, which are best powered for common variants. In contrast, 

the matched functional genomics data and AS analysis in EN-TEx can provide information on 

rare variants and in this regard is particularly informative to precision medicine. Moreover, in the 

future, the approach piloted by EN-TEx could be readily scaled up to more individuals, providing 

information on more rare variants -- in contrast to the situation for common variants, where a 

scale-up would provide diminishing amounts of information on new variants.  

 

Overall, ENTEX provides comprehensive tissue-specific maps of molecular phenotypes with 

matched genotypes. These data are valuable for developing and testing models of genotype-

phenotype relationships, which is fundamental to population genetics and precision medicine. 

Moreover, the EN-TEx approach can be readily extended to model organisms (59-68).  
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Figure Captions 

 

Fig. 1. Personal genome & data matrix. 

(A) Illustration of the personal genome in contrast to the reference genome. The personal 

diploid genome of individual 3 is shown at the top of the panel. Its construction explicitly 

considers SNVs, indels, and SVs. The chromosomes are phased with long-read sequencing to 

form phased blocks. With known imprinting events (yellow) in the human genome, the maternal 

(blue) or paternal (red) origin of many of the phased haplotype blocks can be identified (see 

Supplement). Taking chromosome 13 (chr13) as an example, it contains two phased blocks, 

one of which has its maternal and paternal haplotypes identified based on an imprinted gene's 

AS expression patterns. A schematic diagram of a genomic region in chr13 shows the detailed 

differences between the personal diploid genome and the reference haploid genome. Because 

of the genetic variants in the personal genome, the diploid representation and the reference 

have different coordinate systems.   

(B) Mapping reads to personal and reference genomes. Due to the genetic variants in the 

diploid personal genome, some reads can be only mapped to this but not to the reference 

genome. Such reads (yellow) are referred to as <personal genome unique=. Compared to the 

reference genome, using the personal genome results in ~2.5% more mapped reads for various 

functional genomic experiments. This fraction ranges from ~1% for RNA-seq to ~4% for Hi-C 

data (more details in the Supplement and Fig. S1.4). 

(C) Classification of SVs detected in individual 3. The SVs are classified according to their type 

(e.g., insertion vs. deletion) and mechanism (e.g. transposable elements or not). 

(D) Data matrix for the EN-TEx resource. Each voxel in the cube stack corresponds to a 

functional genomic assay for a particular tissue from one of the four individuals. A dark grey 

voxel indicates that the functional genomic data have been generated. The total experimental 

counts per assay across the tissues and individuals are shown above the cube stack. The total 

experimental counts per tissue type are shown on the left. The color scheme of the tissues is 

adopted from GTEx (6).  

 

Fig. 2. Measuring AS Activity, Aggregating AS events & Forming a Catalog 

(A) Schematic illustrating the measurement of AS events at heterozygous SNV (hetSNV) loci 

and in genomic elements (e.g., cCREs). The two haplotypes for a genomic region are labeled as 

Hap1 and Hap2. In this region, there are three hetSNVs; thus, the reads overlapping these SNVs 

can be unambiguously mapped to either Hap1 or Hap2. For each hetSNV locus, we can test the 

resulting imbalance between the reads for Hap1 or Hap2. As shown, the hetSNV to the right 

lying outside of the cCRE does not have a significant imbalance (equal number of reads from 

Hap1 and Hap2). In contrast, the two hetSNV loci (to the left) in the cCRE have significant 

imbalances, i.e., 13 reads from Hap1 vs. 1 from Hap2 and 14 vs. 2, and thus are AS. Moreover, 

for the cCRE element as a whole, we can aggregate the reads from these two loci (i.e., 27:3 in 

this example). The imbalance test using this new ratio indicates whether the element as a whole 

is AS (see the Supplement for technical details). A standard pipeline is used for the primary 

assays such as RNA/ChIP/DNase/ATAC-seq, maximizing the consistency of the results; 

moreover, the pipeline is configured to reduce ambiguous read mapping bias (see Supplement 
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and Fig. S1.1) (17, 69). Specialized pipelines are used for methylation, proteomics, and Hi-C 

(see Supplement and Fig. S2.2 & S2.3).   

(B) Frequencies of the AS loci in the personal genome. With panel A procedures, the AS 

hetSNV loci and AS cCREs are identified for the different functional genomic data from each 

tissue of the four individuals (using the GTEx coloring for the tissues and the shapes to indicate 

the different individuals, from Fig. 1). Taking H3K27ac data from the spleen from individual 1 

as an example, there are 2.6k AS hetSNV loci and 0.7k AS cCREs. Most of the assay types have 

similar numbers of AS loci across EN-TEx tissues and individuals, as indicated by the box 

plots.       

(C) Aggregating different tissues for AS detection. Here hetSNVs are indicated in red if they are 

significantly imbalanced (i.e. AS) and gray, if not. One approach to aggregation is to take the 

union of all AS hetSNVs (i.e., significantly imbalanced hetSNVs) from different tissues to 

identify unique AS loci in the genome. The hetSNVs that are AS in any tissue are considered as 

AS, and this rule can also be applied for detecting AS elements. This approach is referred to as 

the <union approach.= Another approach is <pooling= the haplotype-specific reads at an hetSNV 

locus (regardless of its being AS or not in particular tissue) across the tissues to conduct the 

imbalance test. Such reads may not be significantly imbalanced (and thus not AS [gray in the 

figure]) in any given tissue sample, but pooling across many samples may increase the statistical 

power to observe an AS event at the locus (indicated in red). 

(D) Using the two aggregation approaches to construct the AS catalog. (1) As a reference, 

H3K27ac from the spleen in individual 1 is re-shown (from panel B) using the direct 

ascertainment shown in panel A. (2) For H2K27ac, aggregating the spleens from the four 

individuals (union approach in panel C) results in 9.3K AS hetSNVs and 2.5K AS elements. (3) 

For H3K27ac, aggregating the different tissues of the same individual with the union approach 

results in 11K AS hetSNVs. In contrast, using the pooling approach to aggregate the different 

tissues of the same individual leads to 27K AS hetSNVs. (4) For H3K27ac, aggregating different 

tissues within the same individual and the tissues across all four individuals simultaneously with 

the union approach results in 30K AS hetSNVs. Using the pooling approach for tissues and the 

union approach for individuals together increases these numbers to 79K. These four different 

strategies focus on either spleen and/or H3K27ac. The average numbers of AS loci detected for 

other tissues and assays are reported in the panel's right column. For each number in this column, 

the red-green-blue operation icon indicates whether we are doing a union, pooling, or averaging 

over individuals, tissues and assays. Finally, at the bottom of the right column, we aggregate all 

the available assays and tissues from all the individuals to determine a final set of AS hetSNVs, 

either by union or pooling (more detail in the Supplement). Note that the AS loci reported in this 

figure are identified using RNA/ChIP/ATAC-seq.  

 

Fig. 3. Mining the catalog. 

(A) Analysis of purifying selection on AS loci. The horizontal axis measures purifying selection 

in terms of the fraction of rare variants, relative to the total number of variants, in a genomic 

region (see Supplement for details).  

(B) The performance of a model predicting AS events for three assays: CTCF, RNA-seq, and 

POLR2A ChIP-seq. The model is trained on AS SNVs from individual 3 and then tested on non-

overlapping SNVs in other individuals. The left panel shows the accuracy in terms of AUROC 

score. The right panel shows the average attention score of the model for the three assays. The 

score is averaged over 2,000 randomly selected test samples. The attention score reflects the 
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weights that the model attaches to different nucleotide positions in the input sequences. As 

expected, the score peaks around the center at the hetSNV for CTCF. Note how more attention at 

the center is given to CTCF (strongest motif), then ATAC-seq and then RNA-seq (which has no 

focusing motif).      

(C) Determining compatibility between AS expression and AS promoter state. Note how the 

compatible expression direction changes for repressive marks. 

(D) Relating AS expression to the AS H3K27ac modification and eQTL effect. On left, for AS 

genes with promoters accessible to H3K27ac, the fraction of H3K27ac ChIP-seq reads in the 

promoter mapped to Hap1 are plotted against the fraction of Hap1 RNA-seq reads. The exact 

read counts giving rise to these fractions for two genes (LAMTOR1 and RPL4P4) are indicated 

in panel C. For the eQTL effect, the slope (beta coefficient) of the leading eQTL associated with 

an AS gene (6) is correlated with the fraction of RNA-seq reads mapped to the alternative allele 

on that gene (overall Pearson9s correlation coefficient = 0.6, p = 0.01). Note that genetic variants 

with slopes around 0 are unlikely to have statistical significance to be identified as eQTLs. This 

also holds for hetSNVs with read fractions of approximately 0.5. 

(E) Compatibility between AS expression and promoter AS chromatin activity. The 

compatibility is measured by the fraction of genes for which AS expression is compatible with 

promoter AS chromatin state or AS peptide expression (see Supplement and Fig. S4.4a). We 

randomly paired genes with promoters (and peptides) to calculate a z-score (more details in the 

Supplement). Compatibility between AS expression and AS methylation (meCpG), H3K9me3, 

and H3K27me3 is weak, potentially because these marks of repressed chromatin can also be 

associated with genes poised for transcription or genes that are actively transcribed (70, 71). 

 

Fig. 4. Examples of coordinated AS activity across assays. 

(A) AS events detected at a known imprinted locus: H19/IGF2. Functional genomic signals are 

measured in the gastrocnemius medialis of individual 2. In agreement with the known imprinting 

mechanism (top), we detected AS expression of H19 on haplotype 2 (maternally expressed) and 

expression of IGF2 on haplotype 1 (paternally expressed) along with CTCF in the imprinting 

control region of haplotype 2. Consistent with the expression data, we found an AS Hi-C 

interaction between an upstream cCRE and H19 on haplotype 2 (the bold blue arc), and an AS 

interaction between the same cCRE and IGF2 on haplotype 1 (the bold red arc). Other 

neighboring AS Hi-C interactions (which have fewer read counts or connect near but not onto 

the relevant genes) are also depicted with shaded arcs. 

(B) AS events detected at an uncharacterized, disease-associated locus: the DNAH11 gene 

associated with ciliary dyskinesia. The polarity of the AS DNA methylation in the promoter 

region is in the opposite direction to that of the AS expression and chromatin state in the gene 

body, consistent with transcriptional downregulation in cis and the repressive nature of 

regulatory DNA methylation. Also, the active epigenetic marks H3K4me3 and H3K27ac 

demonstrate consistent AS imbalances. Moreover, most of the AS hetSNVs associated with 

DNAH11 are known eQTLs from GTEx. One such hetSNV (rs11760336) lies within the 

DNAH11 promoter, consistent with its effect on gene expression. Also indicated is that some of 

the AS hetSNVs overlap with known GWAS variants.  

(C) Coordinated AS activity across a chromosome. Haplotype 1 of ChrX is inactivated in 

individual 3. The signal tracks show that, in the tibial nerve, Hap1 ChrX generally has lower 

expression levels, lower H3K27ac levels, and higher H3K27me3 levels than Hap2 ChrX. In 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.26.441442doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441442
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 
 

contrast, the histograms on the left show that the autosomes display balanced gene expression 

and histone modification levels between the two haplotypes. The top inset bar graphs show the 

expression of five example genes. DHRSX, located in the pseudoautosomal region (pink bars at 

the ChrX ends of the signal track), and KDM6A, known to escape ChrX-inactivation, show 

balanced expression between haplotypes. In contrast, TBL1X and SLC25AC fall in the 

inactivated region of ChrX, showing lower Hap1 expression. Expression of XIST is known to 

induce ChrX inactivation and is, therefore, higher in haplotype 1. 
 

Fig. 5. Relating SVs to chromatin & expression. 

(A) The chromosomal distribution of SVs in individual 3 is shown as SV density. The zoom-in 

views add (to the SV density) the average H3K27ac level and expression level of RNA. Two 

examples are shown in panels B and C. 

(B) A 2.6-kb deletion in Hap2 reduces ZFAND2A expression in the thyroid, consistent with 

previous work (39). This deletion removes several H3K27ac peaks from Hap2 (more detail in 

Fig. S6.1b). 

(C) A 98-bp deletion in Hap2 removes an H3K27ac peak downstream of PSCA, potentially 

contributing to the lower gene expression in Hap2. This is in the transverse colon of individual 3. 

The heights of the green bars indicate the allele frequencies of the deletion and the surrounding 

GTEx eQTLs in Hap2. The frequencies are similar, suggesting the SV is potentially in linkage 

disequilibrium with the eQTL variants. (Note, the height of a green bar plus its corresponding 

magenta bar equals 1.) Similar results are observed in two other tissues (see Fig. S6.1c).  

(D) A 2.3-kb homozygous deletion in individual 3. This SV removes an H3K27ac peak 

downstream of lncRNA RP11-362F19.1, which has lower expression in this individual. The 

nearby CTCF peaks suggest a potential interaction between the H3K27ac peaks downstream 

and upstream of the lncRNA and may indicate a mechanism by which the loss of the H3K27ac 

peak reduces the gene expression. See Fig. S6.1d for more detail. 

(E) A 5.2-kb homozygous deletion in individual 2. This SV removes an H3K9me3 peak, 

potentially increasing PCCB expression in individual 2. The sashimi plots show examples of 

novel splicing isoforms identified by long-read RNA-seq, which may be associated with the SV. 

Fig. S6.1e shows more detail on the splicing isoforms. The differences in splicing between 

individuals 2 and 3 could reflect the SV disrupting regions important to splicing, as suggested by 

the known GTEx sQTL sites nearby (72). Alternatively, the differences in splicing between the 

two samples may be caused by tissue specificity: the individual 2 sample is from the adrenal 

gland, and the individual 3 sample is from the heart left ventricle. See Fig. S6.1f for another 

example of novel splicing variants that are potentially associated with an SV.    

(F) The genomic regions neighboring TE SVs show reduced chromatin accessibility. The 

change in accessibility is determined by comparing the accessibility (from ATAC-seq) of 

individuals 2 and 3, taking as a reference the one without the SV (see Supplement & Fig. 

S6.2a). The x-axis is the chromatin openness in the reference individual. P-values are based on 

the Chi-squared test. 

 

Fig. 6. Decorating the ENCODE Encyclopedia. 

(A) Workflow for decorating cCREs by personal functional genomic data. The workflow starts 

with the master list of cCREs from the ENCODE Registry. These 0.9 million cCREs are not 

necessarily tissue-specific. The spleen is used as an example to illustrate the tissue-specific 
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decoration of these cCREs. In this tissue, 290k cCREs have functional genomic signals and can 

be categorized as active (117k), repressed (154k), or bivalent (19k). Then for each category, the 

cCREs can be consecutively classified according to their genomic locations (proximal or distal), 

CTCF binding, and allele specificity. (This classification can occur in any order.) As a result, the 

spleen has 2,866 AS cCREs with various genomic activities and locations. More details on the 

workflow are described in the Supplement. The numbers of active and repressed cCREs are 

comparable in each tissue (i.e., on average ~202k active and ~166k repressed cCREs).  Only a 

small subset of the active cCREs exhibit AS activity (~2.5% or 1,750 cCREs, averaging across 

tissues; see Fig. S7.2d for all available tissues).    

(B) The relationship between decorated cCREs and chromatin compartments from Hi-C. Active 

and tissue-specific cCREs are more likely to be located in the active compartment (A), while 

repressed tissue-specific cCREs are relatively skewed to compartment B (see Fig. S7.4 for all 

available tissues). 

(C) Functional genomic data across individuals, tissues and assays. The joint analysis of 

variation  is used to aggregate the functional data (JIVE) (44) into two-dimensional projections 

(showing each individual-tissue pair as a dot) for each assay and then into a single overall 

combined projection for all assays. (The tissues are colored according the GTEx convention 

from Fig. 1 and for each tissue the number of colored dots indicates the number of individuals, 

up to four.) In addition, a linear-regression-based approach is used to measure the difference 

between functional genomic signals in different tissues, assays, or individuals (details in 

Supplement). The difference is measured by one minus the explained variance of the 

regression. For example, on average, for H2K27ac 14% of the variation across the cCREs 

between the spleens of two individuals was unexplained (resulting in a dissimilarity between 

individuals). The corresponding dissimilarity was also small (15%) between the transverse 

colons of two individuals. In contrast, the average dissimilarity between these two types of 

tissue (in the same individual) increases to 35%. For H3K27me3, the dissimilarity between 

different tissues is also high (42%). The dissimilarities between different types of functional 

activity are even higher: in particular, the dissimilarity between H3K27ac and H3K4me3 is 51%. 

A similar analysis can also be done comparing RNA and protein abundances. A large-scale 

analysis for all available assays and tissues indicates that the dissimilarity is markedly assay 

and tissue-specific (see Supplement and Fig. S7.5). 

 

Fig. 7. Measuring tissue specificity. 

(A) Tissue specificity of various genomic annotations. For a given element, tissue specificity is 

measured by the number of tissues for which the element is active (see Supplement and Fig. 

S8.1 for more detail). Then by determining the fraction of elements in an annotation category 

(e.g. distal active cCREs) that are active in just one tissue, we determine fractional uniqueness 

for that category. A smaller uniqueness indicates a category that is more ubiquitous. The plot 

shows uniqueness values for many diverse annotation categories.  

(B) Purifying selection on active and repressed cCREs in relation to tissue specificity. Purifying 

selection is measured as the fraction of rare variants to the total number of variants in an 

element (details in the Supplement). Rare variants are determined from 1,000 Genomes. A 

subset of active cCREs with a strong "peak-valley-peak" pattern of H3K27ac signal is identified 

("stringent subset", see Supplement), and this set of cCREs has increased purifying selection. 
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(C) The direction of AS imbalance across accessible cCREs. The imbalance between the two 

haplotypes is measured by the fraction of AS reads that map to haplotype 1. A zoomed-in view 

of the most ubiquitous (non tissue-specific) AS cCREs shows that the imbalance direction is 

consistent across tissues. However, a few tissue-specific cCREs show directional flips between 

tissues. 

(D) Distribution of cCREs with AS H3K27ac in tissues of individual 3 is shown in an UpSet plot. 

Most of these AS cCREs are detected only in a single tissue but are not AS in other tissues. 

However, a few AS cCREs are observed across many tissues. 

 

Fig. 8. Relating Encyclopedia decorations to QTLs & GWAS loci. 

(A) Comparing the effect of AS decoration for eQTL (top left) and sQTL (bottom left) enrichment. 

Colored dots show the enrichment for each tissue (using the GTEx colors from Fig. 1). Each bar 

shows the median enrichment over all tissues for a given decorated annotation subset. Overall, 

AS elements show stronger enrichments compared to non-AS ones. Median enrichment of 

Roadmap <Enh= and <TssA= annotations are shown as dashed and dotted lines, respectively, as 

a reference. The enrichments for the liver are highlighted. To estimate the robustness of this 

particular calculation, we resampled the genetic variants as described in Fig S9.1, estimating a 

range of enrichments, shown with whiskers. (Also, see Fig. S9.1a for enrichment results on all 

tissues and the Supplement for more detail.) 

 

(B) The relationship between the tissue-specificity of GTEx eQTLs and H3K27ac signal. For 

each eQTL SNV we observe H3K27ac signal present in most tissues where the eQTL is active 

(right-hand-side) and absent in the tissues where the eQTL is not active (left-hand-side). Thus 

H3K27ac signal in different tissues can be used as a predictor of tissue activity for each eQTL 

SNV (see also Fig. S9.1d). 

(C) GWAS tag SNP and LDSC enrichment of EN-TEx AS decorations. The heatmap (center) 

shows the GWAS tag SNP enrichment of distal active CTCF+ cCREs. The tissues (colored 

according to the GTEx convention from Fig. 1) run along the bottom, and phenotypes (usually 

diseases, not explicitly labeled) run along the vertical axis. Around the heatmap, we show 

zoomed-in views highlighting various comparisons. At the bottom, we show that the tissue 

specificity of the enrichment for the trait Granulocyte % of Myeloid WBC is much stronger for AS 

versus non-AS cCREs. On the left, we show higher LDSC enrichment for AS elements 

compared to the corresponding non-AS ones for one tissue (coronary artery) across many 

associated traits. Left-bottom extends this comparison (for a single tissue-trait pair) to include 

roadmap annotations.  
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