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Abstract:

Genome-Wide Association studies have typically been limited to single phenotypes,
given that high dimensional phenotypes incur a large multiple comparisons burden: ~1 million
tests across the genome times the number of phenotypes. Recent work demonstrates that a
Multivariate Omnibus Statistic Test (MOSTest) is well powered to discover genomic effects
distributed across multiple phenotypes. Applied to cortical brain MRl morphology measures,
MOSTest has resulted in a drastic improvement in power to discover loci when compared to
established approaches (min-P). One question that arises is how well these discovered loci
replicate in independent data. Here we perform 10 times cross validation within 35,644
individuals from UK Biobank for imaging measures of cortical area, thickness and sulcal depth
(>1,000 dimensionality for each). By deploying a replication method that aggregates discovered
effects distributed across multiple phenotypes, termed PolyVertex Score (PVS), we demonstrate
a higher replication yield and comparable replication rate of discovered loci for MOSTest (#
replicated loci: 348-845, replication rate: 94-95%) in independent data when compared with the
established min-P approach (# replicated loci: 31-68, replication rate: 65-80%). An out-of-
sample replication of discovered loci was conducted with a sample of 8,336 individuals from the
Adolescent Brain Cognitive Development® (ABCD) study, who are on average 50 years younger
than UK Biobank individuals. We observe a higher replication yield and comparable replication
rate of MOSTest compared to min-P. This finding underscores the importance of using well-
powered multivariate techniques for both discovery and replication of high dimensional

phenotypes in Genome-Wide Association studies.
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Introduction

Performing Genome Wide Association Studies (GWAS) on high dimensional phenotypes
incurs a large multiple comparisons burden (number of independent genetic tests by number of
phenotypes) using traditional approaches, which can result in low power to detect associations.
Vertex-wise measures of cortical morphology (area, thickness and sulcal depth) represent high
dimensional phenotypes (>1000 dimensions) and, from twin studies, are known to have high
heritabilities of up to 90% and 50% for total and regional area respectively, and 80% and 60%
for mean and regional thickness respectively(1,2). Our group has previously developed a novel
Multivariate Omnibus Test (MOSTest) (3-5), which aggregates the effect of a genomic variant
across the cortex. This method significantly boosts discovery of genetic loci linked to cortical
morphology, with an up to 10x increase in number of loci discovered — when compared to an
established approach (min-P) deployed for the same phenotypes(5). Additionally, discovered
loci show strong enrichment with pathways involved in neurogenesis and cell differentiation.
Two main benefits of MOSTest over established techniques, like min-P, are: 1) its ability to
aggregate pleiotropic effects into a single statistical test and 2) it drastically reduces the multiple
comparison burden across the dimensionality of phenotypes, while still accounting for genome-
wide multiple comparisons correction. Given such a dramatic increase in discovery of genomic
loci, it is of interest to understand how well these discoveries replicate in independent data.

Here we perform 10-times cross validation with brain imaging data taken from the UK
Biobank, and randomly split the sample into % training and % replication splits. For the training
samples we perform discovery of vertex-wise measures of area, thickness and sulcal depth as
in (4). Having discovered genomic loci in training folds, we perform replication of these loci in
the test sets. To perform replication for each SNP we calculate a PolyVertex Score (PVS)
(similar to (6,7)) from imaging data in the test set for each MOSTest discovered locus. This PVS
aggregates the distributed effects across the cortex by taking a weighted sum across all vertices

using mass univariate z statistics as weights from the training set. This approach is similar to the
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widely used method of Polygenic Risk Scores (PRS) in genetics(8), where instead of predicting
a phenotype we are predicting a single genomic variant and instead of using distributed effects
across the genome as predictors we use the distributed effects across the cortex, estimated in
the training set. For each discovered training set we generate a PVS for each individual, which
represents a continuous prediction of the genotype in the test set. We then correlate each PVS
with its corresponding measured genomic variant in the test set to test how well these
discovered loci replicate (one tailed t test, p<0.05). We test this MOSTest discovery and PVS

replication, against an established GWAS approach (min-P)(9). Figure 1 displays a schematic of

how replication of how min-P and MOSTest differs for a single discovered variant. We confirm a
higher replication yield and comparable replication rate MOSTest versus min-P. Finally, we test
the generalization of loci discovered in UK Biobank to a developmental cohort of 9-10 year old

children from the Adolescent Brain Cognitive Development® (ABCD; https://abcdstudy.org)

Study, where we see a higher yield of replicated loci for MOSTest versus min-P.
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Figure 1. Schematic of replication process for a single SNP. Variant rs8025239 is discovered in training fold and has mass
univariate map of association statistics with cortical area. Min-P replication (indicated by orange box and arrow) takes most
significant vertex and associates that vertex with variant rs8025239 in test data. MOSTest replication (indicated by blue box and
arrow) computes a PolyVertex Score (PVS) in test data which aggregates all effects across the cortex by taking a weighted sum
(using association statistics from training set) across all vertices — the PVS is then correlated with the variant rs8025239. This
process is repeated for all discovered variants in training set with a separate PVS being generated for each MOSTest discovery.
Replication of a variant is defined as p<0.05 in one tailed t-test.

Across training folds, the UK Biobank sample, we confirm that MOSTest confers up to a
10-fold increase in discovered loci over min-P (area: min-P,.,=52, MOSTest,,=433, thickness:
min-P,..=42, MOSTest,,=367 and sulcal depth min-P,,=85, MOSTest,,=890). When replication
of loci is defined at the nominal level (p<0.05, see methods) we see a higher number of
replicated loci, as well as comparable replication rate for MOSTest (area:94%, thickness: 95%,

sulcal depth: 95%) vs min-P (area:65%, thickness: 72%, sulcal depth: 80%) — see Figure 2.

Averaged across cross-validation folds, we found that the lead SNP of the top locus accounted
for more variance in the replication set with MOSTest (= area:0.037 =3.8x107, thickness:
0.059 =1.4x107, sulcal depth: 0.052 =4.0x10°) compared to min-P ( = area: 0.011

=1.2x107, thickness: 0.011 =2.2x107, sulcal depth: 0.015 =1.6x107). If replication is defined


https://doi.org/10.1101/2021.04.23.441215
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441215; this version posted June 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

more conservatively with significance corrected for the number of discovered loci (p<0.05/# of
discovered loci), we again find that MOSTest confers a comparable replication rate (area: 69%,

thickness: 70%, sulcal depth: 68%) to min-P (area: 41%, thickness: 55%, sulcal depth: 50%).
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Figure 2 Cross-validation discovery and replication yield within 10-times cross validation within UK Biobank for cortical
morphometry measures. Solid bars represent the number of genome wide significant loci associated with each measure. Hashed
bars represent the number of loci that replicate in test folds at a nominal significance level (p<0.05). Error bars are standard
deviations across 10 cross-validation repetitions. Numbers in parentheses represent replication rate (# of discovered loci / #
replicated loci) for each method-phenotype pair.

Next, we tested the generalization performance of loci discovered in each training fold of
UK Biobank to a developmental cohort of adolescents from the Adolescent Brain Cognitive
Development study. Here we once again see a higher absolute number of replicated loci
(nominal p<0.05 level), as well as a comparable replication rate for MOSTest (area: 74%,
thickness: 69%, sulcal depth: 72%) to min-P (area: 51%, thickness: 48%, sulcal depth: 57%) -
see figure 2. Again, the variance explained by the lead SNP of the top locus (averaged across
cross-validation folds) accounted for more variance for MOSTest (R%= area: 1.6x10? 6=9.0x10
* thickness: 2.9x10? 0=8.4x103, sulcal depth: 2.1x10? 6=1.5x10"%) than for min-P (R?= area:

7.1x10° 6=1.0x10, thickness: 4.8x10° 6=1.1x107, sulcal depth: 9.1x10° 0=5.0x10).
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Figure 3 Replication yield within the ABCD dataset across 10 training folds of UK Biobank for cortical morphometry measures.
Bars represent the number of loci that replicate in ABCD at a nominal significance level (p<0.05). Error bars are standard
deviations across 10 training sets of UK Biobank. Numbers in parentheses represent replication rate (# of discovered loci / #
replicated loci). ABCD: Adolescent Brain Cognitive Development Study.

Discussion

Here we have confirmed the increased power of using a MOSTest across training folds
of UK Biobank. Further, through the deployment of PVS we show that loci discovered with
MOSTest result in a higher replication yield and comparable replication rate to independent data
than established approaches. The comparable replication rate for MOSTest loci (94-95% vs 65-
80% for min-P) indicates that the difference in absolute number of replicated loci for MOSTest
vs min-P is not merely a result of MOSTest discovering a higher number of loci. Furthermore,
we still see a comparable replication rate when we penalize the replication significance
threshold by the number of loci discovered by each method (i.e. p<0.05/ # of discovered loci).
This underscores the distributed effects of the genome across the cortex, which multivariate
methods are better powered to capture and in turn, will display stronger generalization to

independent data.
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Additionally, we have shown that genetic-cortical morphology associations learned within
an adult population (mean age 64 years) of individuals from the UK generalize out of sample to
adolescents aged 9-10 years old in the United States of America taken from the ABCD study.
There are marked differences between the training sample of UK Biobank and validation sample
of ABCD including: large age differences, a high degree of ancestry admixture in ABCD,
different scanners used, imaging protocols and the number of individuals in validation sets. In
spite of these differences we observe a high replication rate in ABCD of discoveries found within
UK Biobank via MOSTest. We see higher replication for cortical area and sulcal depth in ABCD
than for cortical thickness. Cortical thickness changes more dynamically over the lifespan(10),
therefore, given the large age disparity between the two samples, perhaps it is not a surprise to
see that cortical thickness is the measure that exhibits the largest reduction in replication rates
in ABCD when compared across cross-validation folds of UK Biobank for MOSTest (69% vs
95%). We may expect that the replication rate of discovered cortical thickness loci to increase
as the children develop, a hypothesis that can be tested as more longitudinal ABCD data is
collected. Despite differences across these datasets we observe greater replication of UK
Biobank discovered loci in ABCD when taking into account the multivariate nature of
associations across the cortex (i.e. MOSTest and PVS).

Furthermore, we demonstrated that lead MOSTest discoveries explained a notable
amount of variance out of sample, by GWAS standards: 3-6% in UK Biobank and 1-3% in
ABCD. Methods, such as MOSTest and PVS, that result in high replication yield and out of
sample variance explained may support precision medicine efforts(11). In particular if these
methods are deployed on disorders of the brain they may provide complimentary predictive
power to well established models such as Polygenic Risk Scores.

The training data used here to detect loci and train PVS projections weights were
taken from individuals of European ancestry from the UK Biobank. We may expect that the

genetic architecture of cortical morphology to differ between ancestry groups(12). We also
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acknowledge that our use of PVS to predict genotypes out of sample is just one possible
projection weighting scheme, which may not provide optimal out of sample prediction. Here we
have demonstrated the high generalization performance of cortical morphology discoveries
using MOSTest to independent data. This was shown both within study (UK Biobank) and
across studies (UK Biobank to ABCD) despite substantial age differences of participants. This
work underscores the importance of deploying well powered multivariate methods when

performing GWAS on high dimensional phenotypes, both for discovery and replication.
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Methods
The UK Biobank sample and methods used for min-P and MOSTest discovery overlap

with previous work(4,5).

UK Biobank Sample

Genotypes, MRI scans, demographic and clinical data were obtained from the UK Biobank
under accession number 27412, excluding participants who withdrew their consent. For this
study we selected white British individuals (as derived from both self-declared ethnicity and
principal component analysis) who had undergone the neuroimaging protocol. The resulting
sample contained 35,644 individuals with a mean age of 64.4 years (standard deviation 7.5

years), 18,433 female. T;-weighted MRI scans were collected from three scanning sites
throughout the United Kingdom, all on identically configured Siemens Skyra 3T scanners, with

32-channel receive head coils. We used UK Biobank v3 imputed genotype data(13).

Adolescent Brain Cognitive Development® (ABCD) Sample

The ABCD study is a longitudinal study across 21 data acquisition site following 11,878 children
starting at 9 and 10 years old. This paper analyzed the full baseline sample from data release
3.0 (NDA DOI:10.151.54/1519007). The ABCD study used school-based recruitment strategies
to create a population-based, demographically diverse sample with heterogeneous ancestry. T;-
weighted MRI scans were collected using Siemens Prisma, GE 750 and Phillips 3T scanners.
Scanning protocols were harmonized across 21 acquisition sites. Genetic ancestry factors were
estimated using fastStructure(14) with four ancestry groups. Genotype data was imputed at the
Michigan Imputation Server(15), using the HRC reference panel as described in(16,17). We
selected individuals who had passed neuroimaging and genetic quality control checks, resulting

in 8,336 individuals with a mean age of 9.9 years (standard deviation 0.62 years), 3,974 female.
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Data processing
T1-weighted structural MRI scans were processed with the FreeSurfer v5.3 standard “recon-all”

processing pipeline(18) to generate 1,284 non-smoothed vertex-wise measures (ico3
downsampling with the medial wall removed) summarizing cortical surface area, thickness and
sulcal depth. All measures were pre-residualized for age, sex, scanner site, the first ten genetic
principal components. In contrast to previous MOSTest work(3,5) we did not pre-residualize for
global measures specific to each set of variables (total cortical surface area or mean cortical
thickness) as there is no clear corollary for sulcal depth, nor did we control for Euler number.
Subsequently, a rank-based inverse normal transformation was applied to the residualized
measures. For genomic data we carried out standard quality-checks as described previously(3),
setting a minor allele frequency threshold of 0.5% and finding the intersecting variants between
UK Biobank and ABCD, leaving 8 million variants. Variants were tested for association with
cortical surface area, cortical thickness and sulcal depth at each vertex using the standard
univariate GWAS procedure. Resulting univariate p-values and effect sizes were further
combined in the MOSTest and min-P analyses to identify area, thickness and sulcal depth

associated loci.

Cross validation

We performed 10 times cross validation within UK Biobank with approximately % training, 75
testing splits, performed randomly except for related individuals were kept together. Due to
relatedness in the sample we wanted to ensure that individuals who were highly genetically
related were not split across training and testing folds. We estimated relatedness using ‘plink —
genome’ and from this defined relatedness clusters with individuals who were related as 3rd
degree relatives (threshold>1/8). This resulted in 34,813 clusters. Across the 10 folds, the mean

training sample size was 24,471 individuals (S.D. =9.5).

MOSTest Discovery
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Consider N variants and M (pre-residualized) phenotypes. Let z; be a z-score from the
univariate association test between i" variant and | (residualized) phenotype and z; be the
vector of z-scores of the i variant across phenotypes. Let Y be a matrix of (pre-residualized)
phenotypes with | (individuals) rows and M (phenotypes) columns, and R be its correlation
matrix. R can be decomposed using singular valued decomposition as R = USVT (U and V —
orthogonal matrixes, S — diagonal matrix with singular values on its diagonal). Consider the
regularized version of the correlation matrix R = US, V', where S, is obtained from S by
keeping r largest singular values and replacing the remaining with r* largest. The MOSTest
statistics for i variant (scalar) is then estimated as y; = z;R; 'z, where regularization
parameter is selected separately for cortical area, thickness and sulcal depth to maximize the
yield of genome-wide significant loci. As established in previous work(3-5) the largest yield for
cortical surface area is obtained with » =10; the optimal choice for cortical thickness and sulcal
depth was r =20. The distribution of the test statistics under null (CDF™Y) is approximated from
the observed distribution of the test statistics with permuted genotypes, using the empirical
distribution in the 99.99 percentile and Gamma distribution in the upper tail, where shape and
scale parameters of Gamma distribution are fit to the observed data. The p-value of the

MOSTest test statistic for the i variant is then obtained as ppes; = CDFREt ().

min-P Discovery
Similar to the MOSTest analysis, consider N variants M and pre-residualized phenotypes.

Let z; ; be a z-score from the univariate association test between i™ variant and | (residualized)
phenotype and z; be the vector of z-scores of the i variant across phenotypes. The min-P
statistics for the i" variant is then estimated as y; = 2&(— maxj=y_u(|2;;])), where @ is a
cumulative distribution function of the standard normal distribution. The distribution of the min-P
test statistics under null (CDF2IMP) s approximated from the observed distribution of the test

statistics with permuted genotypes, using the empirical distribution in the 99.99» percentile and
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Beta distribution in the upper tail, where shape parameters of Beta distribution (a and ) are fit

to the observed data. The p-value of the min-P test statistic for the i" variant is then obtained as

Pminp = CDFrrl?jlrllP (yl)

Locus definition
Independent significant SNPs and genomic loci were identified in accordance with the PGC

locus definition, as also used in FUMA SNP2GENE(19). First, we select a subset of SNPs that
pass genome-wide significance threshold 5x10®, and use PLINK to perform a clumping
procedure at LD r2=0.6, to identify the list of independent significant SNPs. Second, we clump
the list of independent significant SNPs at LD r2=0.1 threshold to identify lead SNPs. Third, we
query the reference panel for all candidate SNPs in LD r2 of 0.1 or higher with any lead SNPs.
Further, for each lead SNP, it's corresponding genomic loci is defined as a contiguous region of
the lead SNPs' chromosome, containing all candidate SNPs in r2=0.1 or higher LD with the lead
SNP. Finally, adjacent genomic loci are merged if they are separated by less than 250 KB.
Allele LD correlations are computed from EUR population of the 1000 genomes Phase 3 data.
Obtained clumps of variants were considered as independent genome-wide significant genetic

loci.

Replication of Discovered Variants

A schematic displaying the difference between min-P and MOSTest replication is
displayed in Figure 1. For genome-wide significant loci defined in the training folds, we
performed replication in test folds of UK Biobank, as well as the whole sample of ABCD. Let
X'est represent the genotype matrix of individuals in the test set of | individuals and N variants

and Y*¢st represent the phenotype matrix of | individuals and M (pre-residualized) phenotypes.
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Replication was performed in one of two ways, depending on whether the genetic variant was
discovered using min-P or MOSTest. Firstly, for a min-P discovery, implicated by the

association statistic z; ;, the i™ variant, xS, is associated with the [ (residualized) phenotype

y}e“, in the test set. Secondly, for MOSTest validation the i"" discovered loci corresponds to a

vector of mass univariate association statistics across all vertices z; - these are used to

generate projection weights to create a PolyVertex Score (PVS) (7), x,tfvsst‘i, This approach largely

mirrors the use of polygenic scores used in genetics, where here we are aggregating effects of
vertices across the cortex. For polygenic scores, it is well known that the correlation structure
(i.e. linkage disequilibium) across the genome can result in suboptimal out of sample
performance. This has motivated techniques like LD-Pred(20) and PRSice(21) to first account
for this genomic correlation before generating scores. Similarly, we decorrelate the association
statistics, z;, as w; = R, z; using the regularized correlation matrix R, that was learned in the
training fold. We then generate the polyvertex score for the i genomic variant as the dot

product of w; with the (pre-residualized) phenotype matrix, Y*¢¢, in the test set: fﬁ,evs;i =

wiytest.

To perform the association in test set, both of min-P and MOSTest/PVS replications, we
used linear mixed-effect models (LMMs) to control for genetic/family relatedness — this is
particularly relevant for the ABCD dataset which has a high degree of family relatedness. We
used a single fixed effect of the discovered variant, x;, and a random effect intercept using a
grouping, c, of either: i) genetic relatedness cluster (defined above) for UK Biobank replication
or ii) family id (rel_family_id) for ABCD replication. The response variable was either a) the most

significant vertex for min-P validation, y,,;,p ;, Or b) the computed PVS, i,tf,,sst‘i, for MOSTest. For

min-P replication:

Yminp,i ~ Xi T (1lc)
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And for MOSTest replication:
Xpys,i~ x; + (1]c)

As the phenotype matrix, Yt¢t, was pre-residualized for covariates before taking the
most significant vertex (min-P) or computing the PVS (MOSTest) we did not need to control for
other covariates. We fit an LMM for each discovered locus in training set. For both min-P and
MOSTest validation, we one-tailed p values from t statistics of the fixed effect as we assume the
effect to be in the same direction for training folds and test sets. To define replicated loci we use
a nominal p value threshold of 0.05 for associations. Due to the higher number of discovered
loci for MOSTest vs min-P, we additionally report the number of loci validated at a Bonferroni
corrected threshold, where this number of independent tests is taken to be the number of
discovered loci in the training set. This corrected threshold penalizes MOSTest to a greater
extent than min-P for discovering a larger number of loci. We calculate the variance explained

by the single lead i variant in the replication sample from t statistics of x; from fitted LMMs and

degrees of freedom (df) as: R? = = fdf). We report the average and standard deviation (o) of

this value across training folds.
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