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Abstract

Accurate prediction of damaging missense variants is critically important for
interpreting genome sequence. While many methods have been developed, their
performance has been limited. Recent progress in machine learning and availability of
large-scale population genomic sequencing data provide new opportunities to
significantly improve computational predictions. Here we describe gMVP, a new method
based on graph attention neural networks. Its main component is a graph with nodes
capturing predictive features of amino acids and edges weighted by coevolution
strength, which enables effective pooling of information from local protein context and
functionally correlated distal positions. Evaluated by deep mutational scan data, gMVP
outperforms published methods in identifying damaging variants in TP53, PTEN,
BRCA1, and MSH2. Additionally, it achieves the best separation of de novo missense
variants in neurodevelopmental disorder cases from the ones in controls. Finally, the
model supports transfer learning to optimize gain- and loss-of-function predictions in
sodium and calcium channels. In summary, we demonstrate that gMVP can improve

interpretation of missense variants in clinical testing and genetic studies.
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Main

Missense variants are major contributors to genetic risk of cancers '* and developmental
disorders *°. Missense variants have been used, along with protein-truncating variants,
to implicate new risk genes and are responsible for many clinical genetic diagnoses.
However, the majority of rare missense variants are likely benign or only have minimal
functional impact. As a result of the uncertainty of the functional impact, most rare
missense variants reported in clinical genetic testing are classified as variants of
uncertain significance (VUS)®, leading to ambiguity, confusion, overtreatment, and
missed opportunities for clinical intervention. In human genetic studies to identify new
risk genes by rare variants, pre-selecting damaging missense variants based on
computational prediction is a necessary step to improve statistical power 78,

Therefore, computational methods are critically important to interpret missense variants

in clinical genetics and disease gene discovery studies.

Numerous methods, such as Polyphen °, SIFT '°, CADD", REVEL", MetaSVM", M-
CAP" Eigen', MVP!S PrimateAI'", MPC", and CCRs!, have been developed to
address the problem. These methods differ in several aspects, including the prediction
features, how the features are represented in the model, the training data sets, and how
the model is trained. Sequence conservation or local protein structural properties are the
main prediction features for early computational methods such as GERP* and
PolyPhen. MPC and CCRs estimate sub-genic coding constraints from large human
population sequencing data which provide additional information not captured by
previous methods. PrimateAl learns protein context from sequences and local structural
properties using deep representation learning. A number of studies have reported
evidence that functionally damaging missense variants are clustered in 3-dimensional

protein structures®-%.

Here we present gMVP, a graph attention neural network model designed to effectively
represent or learn the representation of all the information sources to improve prediction

of functional impact of missense variants. gMVP uses a graph to represent a variant and


https://doi.org/10.1101/2021.04.22.441037
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441037; this version posted June 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

its protein context with node features describing sequence conservation and local
structural properties. gMVP uses a graph attention neural network to learn the
representation of a large protein context, and uses coevolution strength as edge features
which can potentially pool information about conservation and coding constraints of
distal but functionally correlated positions. We trained gMVP using curated pathogenic
variants and random rare missense variants in human population. We then
benchmarked the performance using data sets that have been curated or collected by
entirely different approaches, including cancer somatic mutation hotspots *, functional
readout datasets from deep mutational scan studies of well-known risk genes®*?, and de
novo missense variants from studies of autism spectrum disorder (ASD) * and
neurodevelopmental disorder (NDD)®. Finally, we investigated the potential utility of
transfer learning for classifying gain- and loss- of-function variants in specific gene

families based on the generic model trained across all genes.

Results

Model architecture and prediction features

gMVP is a supervised machine learning method for predicting functionally damaging
missense variants. The functional consequence of missense variants depends on both the
type of amino acid substitution and its protein context. gMVP uses a graph attention
neural network to learn representation of protein sequence and structure context and

context-dependent impact of amino acid substitutions on protein function.

The main component of gMVP is a graph that represents a variant and its protein
context (Figure 1 and Supplementary Figure 1). Given a variant, we define the 128
amino acids flanking the reference amino acid as protein context. We build a star-like
graph with the reference amino acid as the center node and the flanking amino acids as
context nodes and connect the center node and every context node with edges. We use
coevolution strength between the center node of variant and the context node as edge
features. Coevolution strength is highly correlated with functional interactions and
protein residue-residue contact that captures the potential 3D neighbors in folded

proteins®-*2. For the center node, we include as features the amino acid substitution,
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evolutionary sequence conservation, and predicted local structural properties such as
secondary structures (Methods). For context nodes, in addition to primary sequence,
sequence conservation, and local structure features, we also include expected and
observed number of rare missense variants in human population to capture selection
effect of damaging variants in human'". Let x, {n;}, and {f;} denote input feature
vectors for the center node, neighbor nodes, and edges, respectively. We first use three
1-depth dense layers to encode x, {n;}, and {f;} to latent representation vectors h, {t;},
and {e;}, respectively. We then use a multi-head attention layer to learn attention
weight w; for each neighbor and to learn a context vector ¢ by weighting the neighbors.
Attention scores play a key part in attention-based neural networks*?!. Our attention
scores account for both the node features and the edge features. Specifically, we

use tanh(W|h, t;, e;]) as attention scores where tanh denotes a hyperbolic tangent
activation function, where W is the weight matrix to be trained. Next, we used a
recurrent neural layer®, which is widely used to leverage sequence context in natural
language modelling, to integrate the context vector ¢ and the vector h of variant.
Finally, we use a linear projection layer and a sigmoid layer to perform classification

and output the damaging scores.
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Node features:

= Amino acid identity

= Sequence conservation

= Local structural properties

= Observed and expected number of
missense variants in population

Edge feature:

.-~ Coevolution strength

Pool information using
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A: variant of interest
N;: amino acids in the flanking window of size L, ordered by
primary sequence of the protein. £=1,2, ..., L

A 4 v

Representation vector of Representation vector of
protein context ¢ variant h

~
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Figure 1. An overview of gM VP model. gMVP uses a graph to represent a variant and
its protein context defined as 128 amino acids flanking the reference amino acid. The amino
acid of interest is the center node (colored as orange) and the flanking amino acids are the
context nodes (colored as light green). All context nodes are connected with the center node
but not each other. The edge feature is coevolution strength. The node features include
conservation and predicted structural properties. Additionally, center node features include
the amino acid substitution; context node features include the primary sequence and the
expected and observed number of rare missense variants in human population. We use three
1-depth dense layers to encode the input features to latent representation vectors and used a
multi-head attention layer to learn a context vector ¢. We then use a recurrent neural layer
connected with softmax layer to generate prediction score from the context vector ¢ and the

representation vector h of variant.
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Model training and testing

We collected likely pathogenic and benign missense variants from curated databases
(HGMD?*, ClinVar®, and UniProt®) as training positives and negatives, respectively,
excluding the variants with conflicting evidence in the databases (see Methods). To
balance positive and negative sets, we randomly selected rare missense variants observed
in human population sequencing data DiscovEHR as additional negatives for training.
In total there are 59,701 positives and 59,701 negatives, which cover 3,463 and 14,222
genes, respectively. We used stochastic gradient descent algorithm® to update the
model’s parameters with an initial learning rate of le-3, and applied early stopping with
validation loss as metric to avoid overfitting. We implemented the model and training
algorithms using TensorFlow?. Running on a Linux workstation with 1 NVIDIA Titan
RTX GPU, the whole training process took ~4 hours. When benchmarking the
performance using a range of datasets, we compared gMVP with other widely used
methods in genetic studies including PrimateAI'", M-CAP*, CADD!", MPC, and
REVEL".

Human-curated pathogenic variants have hidden false positives that are likely caused by
systematic bias and errors, which can be picked up by deep neural networks. Therefore,
conventional approaches for performance evaluation using testing data randomly
partitioned from the same source as training data usually lead to inflated performance
measure. To objectively evaluate the performance of the model, we compiled cancer
somatic mutations that are unlikely to share the same systematic errors as the training
data sets. We included missense mutations located in inferred hotspots based on
statistical evidence from a recent study ** as positives and randomly selected rare
variants from DiscovEHR database® as negatives. The gMVP score distributions of
cancer hotspot mutations and random variants have distinct modes (Figure 2a). When
compared to published methods, gMVP achieved the best performance with an area
under the receiver operating characteristic curve (AUROC) of 0.88 (Figure 2b and
Supplementary Table 2). REVEL is close with an AUROC of 0.86.
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Figure 2. Evaluating gM VP and published methods using cancer somatic

mutation hotspots and random variants in population. (a) The gMVP score
distributions for variants in cancer hotspots (labeled positives) and random missense
variants in population (labeled negatives). (b) Comparison of ROC curves of gMVP and
published methods. The ROC curves are evaluated on 878 cancer mutations located in
hotspots from 209 genes, and 1756 (2 times of the positives) randomly selected rare variants
from the DiscovEHR data.

gMVP can identify damaging variants in known disease genes

Missense variants that occur in different protein contexts, even in the same gene, can
have different consequences. This is the core problem of interpretation of variants from
known risk genes in clinical genetic testing and discovery of new disease genes. As
performance evaluation using variants across genes are confounded by gene-level
properties, here we aim to evaluate gMVP and other methods in distinguishing
damaging variants from neutral variants in the same genes. To this end, we obtained
functional readout data from deep mutational scan assays of four well-known disease
risk genes, TP55% PTEN?", BRCA1*, and MSHZ2*, as benchmark data. The data
includes 432 damaging (“positives”) and neutral (“negatives”) 1,476 negatives for
BRCA1, 262 positives and 1632 negatives for PTEN, 540 positives and 1,108 negatives
for TP53, and 414 positives and 5439 negatives for MSH2, respectively. We note that
during gMVP training, all variants in these four genes were excluded to avoid inflation

in performance evaluation.
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We first investigated the gMVP score distributions of damaging and neutral variants.
Damaging variants clearly have different score distribution compared to the neutral
ones in each gene (Supplementary Fig. 2). Additionally, gMVP scores are highly
correlated with functional scores from the deep mutational scan assays, with a
Spearman correlation coefficient of 0.67 (p=1e-246), -0.48 (p=8e-122), -0.53 (p=Te-151),
and 0.29 (p=7e-117) in TP53, PTEN, BRCA1 and MSH2, respectively (Supplementary
Fig. 3 and Supplementary Table 3-6).

We then used functional readout data as ground truth to estimate precision/recall and
compared gMVP with other methods. The areas under the precision-recall curves
(AUPRC) of gMVP are 0.78, 0.85, 0.81, and 0.39 for PTEN, TP53, BRCA1, and MSH2,
respectively (Figure 3), while AUPRC of the second-best method (REVEL) is 0.63, 0.74,
0.73, and 0.35, respectively. PrimateAl, a recent deep representation learning-based
method, has a AUPRC of 0.32, 0.68, 0.45, and 0.20, respectively. A comparison using
receiver operating characteristic (ROC) curves shows similar patterns (Supplementary

Figure 4).
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Figure 3. Evaluating gM VP and published methods in identifying damaging
variants in known disease genes including TP53, PTEN, BRCA1, and MSH2.
The precision-recall curves of gMVP and published methods are shown for each gene using
functional readout data as ground truth.

Prioritizing rare de novo missense variants in autism spectrum disorder
and neural developmental disorders using gMV P

To further evaluate the utility of gMVP in new risk gene discovery, we compared gMVP
scores of de novo missense variants from cases with developmental disorders and
controls. We obtained published de novo missense variants (DNMs) from 5924 cases in
an autism spectrum disorder (ASD) study*, 31058 cases in a NDD study® and DNMs
from 2007 controls (unaffected siblings)*. Although there is no ground truth because
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most of these de novo variants are not previously implicated with diseases, there is a

43-45

significant excess of such variants in cases compared to controls®*, indicating that a
substantial fraction of variants in cases are pathogenic. We therefore tested whether the
predicted scores of variants in cases and controls are significantly different and use
significance as a proxy of performance (Figure 4a). gM VP achieves a p-value of 3e-9 and
2e-40 for ASD versus controls and NDD versus controls, respectively, while the second-
best method PrimateAl achieves a p-value of 3e-6 and 2e-38, respectively

(Supplementary Fig. 5).

We then calculated the enrichment rate of predicted damaging DNMs by a method with
a certain threshold in cases compared to the controls, and then estimated precision and
the number of true risk variants (Methods), which is a proxy of recall since the total

number of true positives in all cases is a (unknown) constant independent of methods.
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Figure 4. Evaluating gM VP and published methods in distinguishing rare de
novo missense variants in cases with neurodevelopmental disorders from the
ones in controls. (a) Distributions of gMVP predicted scores of rare de novo missense
variants from ASD and NDD cases and controls. We used Mann—Whitney U test to assess
the statistical significance of the difference between cases and controls. NDD: neural
developmental disorders; ASD: autism spectrum disorder; controls: unaffected siblings from
the ASD study. (b) Comparison of gMVP and published methods using de novo variants
from ASD cases and controls by precision-recall-proxy curves. Numbers on each point
indicate rank percentile thresholds. The positions of “All Mis” points are estimated from all
missense variants without using any prediction method. (¢) The same comparison using
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The estimated precision and recall values are directly related to power of detecting new
risk genes >, We compared the performance of gMVP to other methods by estimated
precision and recall-proxy (Figure 4b and 4c). The optimal threshold of gMVP rank
score in cancer hotspots is 0.75. With 0.75 as the threshold, we observed an enrichment
rate of 2.7 in NDD and an enrichment of 1.5 in ASD (Supplementary Table 7 and 8),
corresponding to estimated precision-recall of (0.62, 4818) and (0.35, 328), respectively.
Additionally, when using a lower threshold 0.7, gMVP can still keep the precision as
high as 0.34 and achieved a recall of 377 in ASD. PrimateAl achieved overall second-
best estimated precision and recall under different thresholds in both ASD and NDD.
MPC with a threshold of 0.8 can reach a high precision at 0.65 and 0.36 in NDD and
ASD respectively, but overall it has substantially lower recall than gMVP and
PrimateAl.

Classifying gain-of function and loss-of-function variants using transfer
learning

In many genes, the functional impact of missense variants is complex and cannot be
simply captured by a binary prediction. Recently, Heyne et al/” investigated the
pathogenetic variants that alter the channel activity of voltage-gated sodium (Navs) and
calcium channels (Cavs) and inferred loss-of function (LOF) and gain-of function (GOF)
variants based on clinical phenotypes of variant carriers and electrophysiology data.
Additionally, the study described a computational model (“funNCion”) to predict LOF
and GOF variants using a large number of human-curated features on biochemical
properties. Here we sought to classify LOF and GOF variants using gMVP model
through transfer learning without additional curated prediction features. Transfer
learning allows us to further train a model for a specific purpose using a limited number
of training points by only exploring a reasonable subspace of the whole parameter

spaces guided by previously trained models.

We obtained 1517 pathogenetic and 2328 neutral variants in 10 voltage-gated sodium

and 10 calcium channel genes, in which 518 and 309 variants were inferred as LOF and
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GOF variants, respectively, from Heyne et al *. To benchmark the performance, we

used the same training and testing sets (90%/10% breakdown) as funNCion.

a
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Figure 5. Evaluating gM VP and published methods in classifying pathogenetic
and neutral variants and in predicting GOF and LOF variants in ion channel
genes. (a) Comparison of ROC curves in classifying pathogenetic variants and neutral
variants. gMVP-TL1 denotes the model further trained on the pathogenetic and neutral
variants in SCNzA genes starting from the weights of the original gMVP model. (b)
Comparison of ROC curves in classifying GOF and LOF variants. gMVP-TL2 denotes the
model further trained on GOF and LOF variants starting from the weights of the original
gMVP model.

We first evaluated the performance of gMVP and previous methods in distinguishing
LOF or GOF from neutral variants. gMVP and REVEL both achieved the best
AUROC at 0.94 (Figure 5a and Supplementary Table 9). FunNCion*" which was trained
specifically on the variants of the ion channel genes achieved nearly identical AUROC
(0.93). We next sought to improve the performance using transfer learning. Starting
from the weights from the original gMVP model, we trained a new model, gMVP-TL1,
with both LOF and GOF variants in these genes as positives and neutral variants as
negatives (Methods). gMVP-TL1 achieved an AUROC of 0.96, outperforming the
original gMVP and published methods. Furthermore, to distinguish LOF and GOF
variants, we trained another model, gMVP-TL2, also starting from the weights of the
original gMVP model but with different output labels for training (LOF versus GOF)
(Methods). The training set includes 465 LOF and 279 GOF variants and the testing set
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includes 51 LOF and 30 GOF variants. gMVP-TL2 achieved an AUROC of 0.95,
substantially better than funNCion (AUROC, 0.84) which trained on the same variants
set with manually curated prediction features (Figure 5b and Supplementary Table
S10). This demonstrates that the gMVP model aided by transfer learning technique can
accurately predict GOF and LOF variants in channel genes with a very limited training

dataset.

gMVP prediction captures information on conservation, protein structure,
and selection in human

We calculated the correlation between predicted scores of gMVP and other methods on
de novo variants from ASD and NDD cases and controls (Figure 6a). gMVP has the
highest correlation with REVEL (Spearman p=0.78), followed by a few other widely
used methods such as MPC, CADD, and PrimateAl (p>0.6).

We then performed principal component analysis (PCA) on the de novo variants from
cases and controls to investigate the contributing factors that separate the variants in
cases and controls (Figure 6b and Supplementary Fig.6). The input of the PCA is a
score matrix where rows represent variants and columns represent predicted scores by
gMVP and other methods. We included two additional columns with gene-level
gnomAD constraint metrics o/e-LoF and o/e-Mis* (observed over expected for LoF and
missense) to represent selection effect in human population. The first component (PC1)
captures the majority of the variance of the data and best separates the de novo
variants in cases and the ones in controls. All methods have large loadings on PC1
(Figure 6b). The second component (PC2) is largely driven by the gene-level gnomAD
constraint metrics (Figure 6b). The joint distribution of PC1/2 scores of DNMs from
controls has a single mode at the center. The joint distributions of scores of DNMs from
cases have two modes (Figure 6b and Supplementary Fig. 6b), representing mixtures of
likely pathogenic variants and random DNMs. Notably, gnomAD metrics have near
orthogonal loadings on PC1/2 with GERP which is purely based on cross-species
conservation, suggesting that selection effect in human provides complementary

information to evolutionary conservation about genetic effect of missense variants. All
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methods (PolyPhen, eigen, CADD, VEST, and REVEL) that do not use human or
primate population genome data have loadings close to GERP on PC1/2. MPC and M-
CAP, which use sub-genic or gene-level mutation intolerance metrics similar to gnomAD
metrics, have closest loadings as gnomAD metrics on PC1/2. gMVP and PrimateAl
have similar loadings that are in the middle of GERP and gnomAD metrics.

We inspected the BRCT2 domain of BRCA1 to show how the gMVP model captures
context-dependent functional impact. We observed that most damaging variants
predicted by gMVP (>0.75) are located in the core region of BRCT2 domain (Figure
6¢). Additionally, gMVP scores are highly correlated with evolutionary conservation
(Figure 6d and Supplementary Fig. 7a, p=0.57). Variants in the B-sheets are
significantly more damaging than the ones in a-helix regions, and the ones in a-helix
regions are more damaging than the ones in coil regions (Figure 6d and Supplementary
Fig. 7b), consistent with previous discoveries****’. Finally, amino acids mutated to
Proline (P) in helix regions are predicted to be highly damaging, even in positions not
well conserved (Figure 6d). This is consistent with the fact that Proline rarely occurs in

the middle of an alpha-helix®'.
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Figure 6. Interpreting gM VP predictions with conservation, protein structure,

and genetic coding constraints. (a) Spearman correlation between gMVP and other
published methods, calculated by scores of the de novo variants in ASD, NDD, and controls.
(b) PCA on de novo variants from ASD and NDD cases and controls. Red arrows show the
loadings of gMVP and published methods on the first two components; the density contour
shows the distribution of PC1/2 scores of the variants in NDD (purple) and controls (light
blue). The density curves along the axes show the distribution of PC1 or PC2 scores of the
cases and controls. (c) The protein tertiary structure of BRCT2 domain of BRCA1. We
colored a residue as blue if at least one missense on this position is predicted as damaging
(gMVP > 0.75) and orange otherwise. (d) gMVP scores of all possible missense variants on
BRCT2 domain of BRCA1. The top histogram and the following bar show the predicted and
real protein secondary structures, respectively. The middle heatmap shows gMVP scores for
all possible missense variants on each protein position. The bottom histogram shows the
evolutionary conservation measured with the entropy of the amino acid distribution among
homologous sequences.
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Discussion

We developed gMVP, a new method based on graph attention neural networks, to
predict functionally damaging missense variants. gMVP uses attention neural networks
to learn representations of protein sequence and structure context through supervised
learning trained with large number of curated pathogenic variants. The graph structure
allows coevolution-guided pooling of predictive information of distal amino acid
positions that are functionally correlated or potentially close in 3-dimensional space. We
demonstrated the utility of the gMVP in clinical genetic testing and new risk gene
discovery studies. Specifically, we showed that gMVP achieves better accuracy in
identification of damaging variants in known risk genes based on functional readout
data from deep mutational scan studies. Additionally, gMVP achieved better
performance in prioritizing de novo missense variants in cases with autism or NDD,
suggesting that it can be used to pre-select damaging variants or weight variants to
improve statistical power of new gene discovery. Finally, we showed that with transfer
learning technique, gMVP model can accurately classify GOF and LOF variants in ion

channels even with a limited training set without additional prediction features.

gMVP learns a representation of protein context from training data, while previous
ensemble methods such as REVEL, M-CAP, MetaSVM, and CADD used scores from
other predictors or other human-engineered features as inputs. With recent progress of

55 neural network representations

machine learning in protein structure prediction
could capture latent structure beyond common linear representations of understanding
of the biophysical and biochemical properties. We showed that representation learning
allows gMVP to capture the context-dependent impact of amino acid substitutions on
protein function. PrimateAl is a recently published method that also uses deep
representation learning. gMVP achieved better performance than PrimateAl in
identification of damaging variants in known disease risk genes in comparisons using
functional readout data and in prioritizing rare de novo variants from ASD and DDD
studies. While both models used evolutionary conservation and protein structural

properties as features, the two methods have entirely different model architecture and

training data. gMVP uses a graph attention neural network to pool information from
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both distal and local positions with coevolution strength, while PrimateAl uses a
convolutional neural network to extract local patterns from protein context. For
training data, gMVP used expert-curated variants and random variants in population as
training positives and negatives, respectively. In contrast, PrimateAl used common
variants in primates as negatives and unobserved variants in population as positives.
Based on functional readout data of the four well-known risk genes, only 15-25% of
random variants have discernable impact on protein function. Therefore, the positives
used in PrimateAl training may contain a large fraction of false positives. PrimateAl’s
training strategy does have advantages. It avoids human interpretation bias and errors
in curated databases of pathogenic variants, the positives used in gMVP training. It also
can cover almost all human protein-coding genes, whereas curated databases such as
ClinVar only cover hundreds of genes. Additionally, common variants in primates are
likely all true negatives, whereas random observed rare variants in human population
could have a non-negligible fraction of damaging variants. Making a new model that can

utilize all these datasets in training could further improve the prediction performance.

Several previous studies have shown that the functional impact of missense variants is
correlated among 3-dimensional neighbors? >, Pooling information from 3-dimensional
neighbors could therefore improve predictions of functional impact. However, directly
considering 3 dimensional distances is limited by the fact that most human proteins
have no solved tertiary structures with considerable coverage. gMVP addresses this
issue by taking a large segment of the protein context that include both local and distal
positions that are potential neighbors in folded proteins, and then uses coevolution
strength to effectively pool information from potential 3D neighbors. Used as edge
features in a graph attention model, coevolution strength allows more precise pooling of
information from distal residues than the convolutional layer without prior structure.
Coevolution strength has been used in ab initio protein structure prediction
extensively**557, The extraordinary performance of AlphaFold2% in CASP14 shows that
it contains critical information about physical residue-residue distances for accurate
structure prediction to many more proteins. More recently, the language model

Transformer®* has been applied on protein sequences and multi-sequence alignments
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(MSAs) to improve the performance of coevolution strength estimation and protein

58-60

residue-residue contacts prediction® . gMVP could be further improved by integrating

components of Transformer in the model.

With transfer learning, the trained gMVP model can be further optimized for more
specific tasks in genetic study. The idea is to transfer the general knowledge learned
from large training data sets to a new related and more specific task with only limited
training data. The trained model can set the initial values of the weights in the model
to be updated by further training to explore only a subspace of the whole parameter
space. We have shown its feasibility in classifying GOF and LOF variants in the ion
channel genes using a limited number of training data points without additional
prediction features. We expect that with transfer learning, gMVP can potentially
improve variant interpretation by training on gene family-specific models® and to

identify disease-specific damaging variants®.

Functional readout data from deep mutational scan provides strong evidence of
classifying variants as damaging or neutral®**6, However, these in vitro functional
readout assay usually reveals only one aspect of a protein’s function in a limited number
of cell types, therefore, they are often not completely correlated with the functional
impact of the variants in vivo. We expect that more comprehensive deep mutational
scan assays will become available and facilitate substantial improvement in the training

and evaluation of computational methods.

Finally, we showed that while evolutionary conservation remains one of the most
informative sources for computational methods, selection in human population can
provide complementary information for prediction. Selection coefficient is correlated
with allele frequency, especially for variants under strong negative selection 66567,
Larger population genome data sets can further improve estimation of allele frequency
of rare variants. We anticipate large ® and diverse ® population genome data released in
the future will improve estimation of selection effect in human and in turn improve

gMVP.
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Methods

Training data sets

For positive training set, we collected 22,607 variants from ClinVar database®” under the
Pathogenic and Likely-Pathogenic categories with review status of at least one star,
48,125 variants from Human Gene Mutation Database Pro version 2013 (HGMD)
database® under the disease mutation (DM) category, and 20,481 variants from UniProt
labeled as Disease-Causing. For negative training sets, we collected 41,185 variants
from ClinVar under the Benign and Likely-Benign categories, 33,387 variants from
SwissVar® labeled as Polymorphism. After excluding 3,751 variants with conflicting
interpretations by the three databases, we have 63,304 and 66,102 unique positives and
negatives. We next excluded 36,499 common variants (653 positives and 35,846
negatives) with allele frequency > 1le-3 in gnomAD (all populations) ™ and 3,080
overlapping variants (2,680 positives and 400 negatives) with testing datasets from the
training dataset, resulting in a dataset of 59,701 positives and 29,856 negatives. To
balance the positive and negative training samples, we randomly selected 29,845 rare
missense variants from DiscovEHR database!? that are not already covered by
previously selected training data as additional negative training points. In the end, we
have 59,701 and 59,701 unique positive and negative training variants (Supplementary

Table 1), which cover 3,463 and 14,222 genes, respectively.

Testing data sets

1. Cancer somatic mutation hotspots: we obtained 878 missense variants located in
somatic missense mutations hotspots in 209 cancer driver genes from a recent study*
as positives, and randomly selected 2 times more rare missense variants (N=1756)

from the population sequencing data DiscovEHR*.

2. Functional readout data from deep mutational scan experiments: we compiled
variants in BRCA1*°, PTEN*, TP53®, and MSH2*”. We only include the single
nucleotide variants (SNVs) for comparison as most published methods don’t provide

scores for the non-SNVs. There are 432 positives and 1,476 negatives in BRCA1, 258
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positives and 1601 negatives in PTEN, and 540 positives and 1,108 negatives in
TP53, and 414 positives and 5439 negatives in MSH2.

3. De novo variants: to evaluate utility in new risk gene discovery, we used published
rare germline de novo missense variants (DNVs) from 5,924 cases and 2,007 controls
in an autism spectrum disorder (ASD) study* and 31,058 cases in a neural

developmental study®.

To fairly compare our methods with published methods, we excluded the overlapping
variants with testing datasets from the training datasets. We further excluded all
variants in PTEN, TP53, BRCA1, and MSH2 in training to avoid inflation in

performance evaluation.

The Graph Attention Neural Network model

gMVP uses a graph to represent a variant and its protein context. We first defined the
128 amino acids flanking the reference amino acid as protein context. We next built a
star-like graph with the reference amino acid as the center node and the flanking amino
acids as context nodes, and with edges between the center node and each context node

(Figure 1 and Supplementary Fig. 1).

Let x, n;, and f; denote input feature vectors for the center node, each context node,
and each edge, respectively. We first used three 1-depth dense layers to encode x, n;,
and f; to latent representation vectors h, t;, and e;, respectively. We used RELU™ as

the activation function and 512 neurons for each dense layer.

We then used a multi-head layer adapted from the attention layer in the Transformer
model* to pool information from context nodes and finally to learn a context vector c.

Specifically, for the kth head, we first calculated the value vectors for each context node
) _

by v; W®t,. We next calculated attention scores for each context node through
sk = tanh(W®[h, e;, t;]) + p;, where tanh denotes a hyperbolic tangent activation

function, and p; is a position bias which is a simplified positional encoding™. We note
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here p; allows the model to capture local protein sequence context. Attention weights are

calculated by applying a softmax operation on the attention scores, [Wék), Wl-(k), ] =

softmax( [sék),... ,si(k),...] ).

The context vector ¢® for the kth head is calculated as ¢® = ¥ wi(k)vi(k). The final
context vector is obtained by a linear projection on the concatenation vector of the

context vectors from each head,

c=W,[c®,..,c9, .., KD

Here Kdenotes the number of heads and we used 4 heads in our model. And we note

that in the model, WX W& and W, are weight matrices to be trained.

We next used a gated recurrent unit (GRU) layer® to leverage the context vector ¢ and
the latent vector h of the given variant where the relative importance of the whole
context can be determined. We used 512 neurons and a hyperbolic tangent activation
function for the GRU layer. We finally used a linear projection layer and a sigmoid

layer to perform classification.

Input features

The center node, which represents the variant, has the following features:
reference and alternate amino acids, evolutionary conservation, and predicted
local structural properties. The context nodes have the following features:
reference amino acids, evolutionary conservation, predicted local structural
properties, and observed and expected missense alleles in gnomAD *. The feature
of edges is coevolution strength between the position of variant and other

positions, estimated from multiple sequence alignments of homologous sequences.

Reference and alternate amino acids (40 values): we used one-hot encoding with

a dimension of 20 to represent reference and alternate amino acids.

Protein primary sequence (20 values): We also used one-hot encoding to

represent each amino acid in the protein primary sequence.
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Evolutionary conservation (42 values): we estimated the evolutional conservation from
two sources: (1) we searched the homologous of the protein of interest against SwissProt
database™ with 3 iterations of search and then built the multiple sequence alignments
(MSAs) with HHblits suite™. (2) we downloaded the MSAs of 200 species from Ensembl
website for each human protein sequence™. We then calculated the frequencies of 20
amino acids and the gap for each position for the two MSAs separately and

concatenated the two frequency vectors.

Predicted protein structural properties (5 values): we predicted the protein secondary
structures (3 values), solvent accessibility (1 value), and the probability of a residue

participating in interactions with other proteins (1 value) using NetsurfP.

Observed number of missense alleles in gnomAD and expected number (2 values): to
capture selection effect in human, we obtained the observed number of rare missense
variants in gnomAD* and the expected number of rare missense variants estimated

using a background mutation model®.

Coevolution strength (442 values):
We extract pairwise statistics from the MSA as coevolution strength. It is estimated
based on the covariance matrix constructed from the input MSA. First, we compute 1-

site and 2-site frequency counts f;(A) = %Z%ﬂ 8ax,, and f;;j(A,B) =

% M, 84X, m OB,x; > Where A and B denote amino acid identities (20 + gap), 6 is the
Kronecker delta, i and j are position indexes on the aligned protein sequence, m is the
sequence index of the MSA with a total of M aligned sequences, and X; ,,, indicates the
amino acid identity of position i on sequence m. We then calculate the sample
covariance (21x21) matrix C{fl ]'.B = f;,j(4,B) — fi(A)f;j(B), and flatted it into a vector with

441 elements. We also convert the covariance matrix to a single value by computing its

2
. AB
Frobenius norm s; ; = \/ >0, f;(;l(ci ; ) , and then concatenate the norm and the

flattened vector as the edge features.
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We built these features only for canonical transcripts defined by Ensembl ™ Version92.

We annotated the variants using VEP™.

Training algorithm

We used cross-entropy loss as the training loss. We used the Adam algorithm® to
update the model parameters with an initial learning rate of 1le-3 and decayed the
learning rate with a polynomial decay schedule™. We randomly selected 10% of training
samples as validation set and early stopping was applied with validation loss as
watching metric. We trained 5 models by repeating the above training process five times
and for testing we averaged the outputs of the five models as prediction scores. The

model and training algorithm were implemented using TensorFlow™.

Classifying GOF and LOF variants using gM VP model and transfer

learning

To investigate the potential for transfer learning, we further trained gMVP to classify
GOF and LOF variants in ion channel genes with additional training data but without
new features. We collected 1517 pathogenetic and 2328 neutral variants in SCNzA genes
which encode Voltage-gated sodium (Navs) and calcium channels (Cavs) protein, in
which 518 and 309 variants are inferred as LOF and GOF variants, respectively, from a

recent study*’.

We first trained a model, gMVP-TL1, to classify pathogenetic and neutral variants in
SCNzA genes. We used the same data set as funNCion', including 3466 variants for
training and 379 variants for testing. We randomly selected 10% variants from training
set as validation set. We used the same model architecture with gMVP and the weights
of gMVP model previous trained using all genes as the initial values of new model. In
the new model training, we used Adam algorithm to update parameters with an initial
learning rate of le-3, and used the validation loss as stopping criteria. We trained 5
gMVP-TL1 models, starting from each of the 5 trained gMVP models and for testing we

averaged the outputs of these models as prediction scores.
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We next trained another model gMVP-TL2 to classify GOF versus LOF variants in
SCNzA genes. We used 744 variants as training set and 81 variants as testing set, which
are same sets used by funNCion"". Like gMVP-TL1, gMVP-TL2 were also trained
staring from the weights of gMVP model previous trained using all genes. We used the

same hyperparameter setting with gMVP-TL1 in training.

Normalization of scores using rank percentile

For each method, we first sorted predicted scores of all possible rare missense
variants across all protein-coding genes, and then converted the scores into rank
percentiles. The higher rank percentile indicates more damaging, e.g., a rank
score of 0.9 indicates the missense variant is more likely to be damaging than

90% of all possible missense variants.

Precision-recall-proxy curves
Since there is no ground truth data to benchmark our performance on de novo variants,
we estimate precision and recall at various thresholds based on the enrichment of

predicted damaging variants in cases compared to controls.

Let S; be the rate of synonymous variants in cases, and S, be the rate of synonymous

variants in controls. Then the synonymous rate ratio « is defined as
=3

Denote the total number of variants in cases as N;, the number of variants in controls

a

as Ny, the number of variants predicted as pathogenic in cases as M;, and the number of
variants predicted as pathogenic in controls as M. We assume that for there to be no
batch effect, the rate of synonymous variants should be the same in the cases and
controls. So, we estimate the enrichment of predicted pathogenic variants in cases

compared to controls by:
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Then, the true number of pathogenic de novo variants M; is estimated by
M;(R—-1
UGS
R
And the estimated precision is
My
Precision = —
M,

Data availability

1. Precomputed gMVP scores for all possible missense variants in canonical
transcripts on human hg38 can be downloaded from:
https://www.dropbox.com /s /nceljhg3i7jwlhx/gMVP.2021-02-28.csv.gz?dl1=0.

2. The training data of the main model were downloaded from:

http://www.discovehrshare.com/downloads (DiscovEHR),
http://www.hgmd.cf.ac.uk/ac/index.php (HGMD),

https://www.uniprot.org/docs/humpvar (UniProt), and
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vef GRCh37/ (ClinVar).

3. Other data sets supporting the findings of this study are available in the

manuscript and supplementary information files.

Code availability

The codes for the model design and training and testing procedure are available on

GitHub: https://github.com/ShenLab/gMVP/
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