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Abstract  

Accurate prediction of damaging missense variants is critically important for 

interpreting genome sequence. While many methods have been developed, their 

performance has been limited. Recent progress in machine learning and availability of 

large-scale population genomic sequencing data provide new opportunities to 

significantly improve computational predictions. Here we describe gMVP, a new method 

based on graph attention neural networks. Its main component is a graph with nodes 

capturing predictive features of amino acids and edges weighted by coevolution 

strength, which enables effective pooling of information from local protein context and 

functionally correlated distal positions. Evaluated by deep mutational scan data, gMVP 

outperforms published methods in identifying damaging variants in TP53, PTEN, 

BRCA1, and MSH2. Additionally, it achieves the best separation of de novo missense 

variants in neurodevelopmental disorder cases from the ones in controls. Finally, the 

model supports transfer learning to optimize gain- and loss-of-function predictions in 

sodium and calcium channels. In summary, we demonstrate that gMVP can improve 

interpretation of missense variants in clinical testing and genetic studies. 
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Main 

 

Missense variants are major contributors to genetic risk of cancers 1,2 and developmental 

disorders 3-5. Missense variants have been used, along with protein-truncating variants, 

to implicate new risk genes and are responsible for many clinical genetic diagnoses. 

However, the majority of rare missense variants are likely benign or only have minimal 

functional impact. As a result of the uncertainty of the functional impact, most rare 

missense variants reported in clinical genetic testing are classified as variants of 

uncertain significance (VUS)6, leading to ambiguity, confusion, overtreatment, and 

missed opportunities for clinical intervention. In human genetic studies to identify new 

risk genes by rare variants, pre-selecting damaging missense variants based on 

computational prediction is a necessary step to improve statistical power 4,5,7,8. 

Therefore, computational methods are critically important to interpret missense variants 

in clinical genetics and disease gene discovery studies.  

 

Numerous methods, such as Polyphen 9, SIFT 10, CADD11, REVEL12, MetaSVM13, M-

CAP14, Eigen15, MVP16, PrimateAI17, MPC18, and CCRs19, have been developed to 

address the problem. These methods differ in several aspects, including the prediction 

features, how the features are represented in the model, the training data sets, and how 

the model is trained. Sequence conservation or local protein structural properties are the 

main prediction features for early computational methods such as GERP20 and 

PolyPhen. MPC and CCRs estimate sub-genic coding constraints from large human 

population sequencing data which provide additional information not captured by 

previous methods. PrimateAI learns protein context from sequences and local structural 

properties using deep representation learning. A number of studies have reported 

evidence that functionally damaging missense variants are clustered in 3-dimensional 

protein structures21-23.   

 

Here we present gMVP, a graph attention neural network model designed to effectively 

represent or learn the representation of all the information sources to improve prediction 

of functional impact of missense variants. gMVP uses a graph to represent a variant and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.04.22.441037doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.441037
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

4 

its protein context with node features describing sequence conservation and local 

structural properties. gMVP uses a graph attention neural network to learn the 

representation of a large protein context, and uses coevolution strength as edge features 

which can potentially pool information about conservation and coding constraints of 

distal but functionally correlated positions. We trained gMVP using curated pathogenic 

variants and random rare missense variants in human population. We then 

benchmarked the performance using data sets that have been curated or collected by 

entirely different approaches, including cancer somatic mutation hotspots 24, functional 

readout datasets from deep mutational scan studies of well-known risk genes25-28, and de 

novo missense variants from studies of autism spectrum disorder (ASD) 4 and 

neurodevelopmental disorder (NDD)5. Finally, we investigated the potential utility of 

transfer learning for classifying gain- and loss- of-function variants in specific gene 

families based on the generic model trained across all genes. 

 

Results 

Model architecture and prediction features 

gMVP is a supervised machine learning method for predicting functionally damaging 

missense variants. The functional consequence of missense variants depends on both the 

type of amino acid substitution and its protein context. gMVP uses a graph attention 

neural network to learn representation of protein sequence and structure context and 

context-dependent impact of amino acid substitutions on protein function.  

 

The main component of gMVP is a graph that represents a variant and its protein 

context (Figure 1 and Supplementary Figure 1). Given a variant, we define the 128 

amino acids flanking the reference amino acid as protein context. We build a star-like 

graph with the reference amino acid as the center node and the flanking amino acids as 

context nodes and connect the center node and every context node with edges. We use 

coevolution strength between the center node of variant and the context node as edge 

features. Coevolution strength is highly correlated with functional interactions and 

protein residue-residue contact that captures the potential 3D neighbors in folded 

proteins29-32. For the center node, we include as features the amino acid substitution, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.04.22.441037doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.441037
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

5 

evolutionary sequence conservation, and predicted local structural properties such as 

secondary structures (Methods). For context nodes, in addition to primary sequence, 

sequence conservation, and local structure features, we also include expected and 

observed number of rare missense variants in human population to capture selection 

effect of damaging variants in human18,19. Let �, {�!}, and {�!} denote input feature 

vectors for the center node, neighbor nodes, and edges, respectively. We first use three 

1-depth dense layers to encode �, {�!}, and {�!} to latent representation vectors �, {��}, 
and {��}, respectively. We then use a multi-head attention layer to learn attention 

weight �� for each neighbor and to learn a context vector � by weighting the neighbors. 

Attention scores play a key part in attention-based neural networks33,34. Our attention 

scores account for both the node features and the edge features. Specifically, we 

use(���/(�[�, (�! , ��
]) as attention scores where ���/ denotes a hyperbolic tangent 

activation function, where � is the weight matrix to be trained. Next, we used a 

recurrent neural layer35, which is widely used to leverage sequence context in natural 

language modelling, to integrate the context vector � and the vector � of variant. 

Finally, we use a linear projection layer and a sigmoid layer to perform classification 

and output the damaging scores.  
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Figure 1. An overview of gMVP model. gMVP uses a graph to represent a variant and 

its protein context defined as 128 amino acids flanking the reference amino acid. The amino 

acid of interest is the center node (colored as orange) and the flanking amino acids are the 

context nodes (colored as light green). All context nodes are connected with the center node 

but not each other. The edge feature is coevolution strength. The node features include 

conservation and predicted structural properties. Additionally, center node features include 

the amino acid substitution; context node features include the primary sequence and the 

expected and observed number of rare missense variants in human population. We use three 

1-depth dense layers to encode the input features to latent representation vectors and used a 

multi-head attention layer to learn a context vector �. We then use a recurrent neural layer 

connected with softmax layer to generate prediction score from the context vector � and the 

representation vector � of variant. 
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Model training and testing  

We collected likely pathogenic and benign missense variants from curated databases 

(HGMD36, ClinVar37, and UniProt38) as training positives and negatives, respectively, 

excluding the variants with conflicting evidence in the databases (see Methods). To 

balance positive and negative sets, we randomly selected rare missense variants observed 

in human population sequencing data DiscovEHR as additional negatives for training. 

In total there are 59,701 positives and 59,701 negatives, which cover 3,463 and 14,222 

genes, respectively. We used stochastic gradient descent algorithm39 to update the 

model’s parameters with an initial learning rate of 1e-3, and applied early stopping with 

validation loss as metric to avoid overfitting. We implemented the model and training 

algorithms using TensorFlow40. Running on a Linux workstation with 1 NVIDIA Titan 

RTX GPU, the whole training process took ~4 hours. When benchmarking the 

performance using a range of datasets, we compared gMVP with other widely used 

methods in genetic studies including PrimateAI17, M-CAP41, CADD11, MPC18, and 

REVEL12. 

 

Human-curated pathogenic variants have hidden false positives that are likely caused by 

systematic bias and errors, which can be picked up by deep neural networks. Therefore, 

conventional approaches for performance evaluation using testing data randomly 

partitioned from the same source as training data usually lead to inflated performance 

measure. To objectively evaluate the performance of the model, we compiled cancer 

somatic mutations that are unlikely to share the same systematic errors as the training 

data sets. We included missense mutations located in inferred hotspots based on 

statistical evidence from a recent study 24 as positives and randomly selected rare 

variants from DiscovEHR database42 as negatives. The gMVP score distributions of 

cancer hotspot mutations and random variants have distinct modes (Figure 2a). When 

compared to published methods, gMVP achieved the best performance with an area 

under the receiver operating characteristic curve (AUROC) of 0.88 (Figure 2b and 

Supplementary Table 2). REVEL is close with an AUROC of 0.86.  
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gMVP can identify damaging variants in known disease genes 

Missense variants that occur in different protein contexts, even in the same gene, can 

have different consequences. This is the core problem of interpretation of variants from 

known risk genes in clinical genetic testing and discovery of new disease genes. As 

performance evaluation using variants across genes are confounded by gene-level 

properties, here we aim to evaluate gMVP and other methods in distinguishing 

damaging variants from neutral variants in the same genes. To this end, we obtained 

functional readout data from deep mutational scan assays of four well-known disease 

risk genes, TP5328, PTEN27, BRCA126, and MSH225, as benchmark data. The data 

includes 432 damaging (“positives”) and neutral (“negatives”) 1,476 negatives for 

BRCA1, 262 positives and 1632 negatives for PTEN, 540 positives and 1,108 negatives 

for TP53, and 414 positives and 5439 negatives for MSH2, respectively. We note that 

during gMVP training, all variants in these four genes were excluded to avoid inflation 

in performance evaluation.  

 
Figure 2. Evaluating gMVP and published methods using cancer somatic 

mutation hotspots and random variants in population. (a) The gMVP score 

distributions for variants in cancer hotspots (labeled positives) and random missense 

variants in population (labeled negatives). (b) Comparison of ROC curves of gMVP and 

published methods. The ROC curves are evaluated on 878 cancer mutations located in 

hotspots from 209 genes, and 1756 (2 times of the positives) randomly selected rare variants 

from the DiscovEHR data. 

a b
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We first investigated the gMVP score distributions of damaging and neutral variants. 

Damaging variants clearly have different score distribution compared to the neutral 

ones in each gene (Supplementary Fig. 2). Additionally, gMVP scores are highly 

correlated with functional scores from the deep mutational scan assays, with a 

Spearman correlation coefficient of 0.67 (p=1e-246), -0.48 (p=8e-122), -0.53 (p=7e-151), 

and 0.29 (p=7e-117) in TP53, PTEN, BRCA1 and MSH2, respectively (Supplementary 

Fig. 3 and Supplementary Table 3-6). 

 

We then used functional readout data as ground truth to estimate precision/recall and 

compared gMVP with other methods. The areas under the precision-recall curves 

(AUPRC) of gMVP are 0.78, 0.85, 0.81, and 0.39 for PTEN, TP53, BRCA1, and MSH2, 

respectively (Figure 3), while AUPRC of the second-best method (REVEL) is 0.63, 0.74, 

0.73, and 0.35, respectively.  PrimateAI, a recent deep representation learning-based 

method, has a AUPRC of 0.32, 0.68, 0.45, and 0.20, respectively. A comparison using 

receiver operating characteristic (ROC) curves shows similar patterns (Supplementary 

Figure 4).  
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Prioritizing rare de novo missense variants in autism spectrum disorder 

and neural developmental disorders using gMVP 

To further evaluate the utility of gMVP in new risk gene discovery, we compared gMVP 

scores of de novo missense variants from cases with developmental disorders and 

controls. We obtained published de novo missense variants (DNMs) from 5924 cases in 

an autism spectrum disorder (ASD) study4, 31058 cases in a NDD study5 and DNMs 

from 2007 controls (unaffected siblings)4. Although there is no ground truth because 

 
Figure 3. Evaluating gMVP and published methods in identifying damaging 

variants in known disease genes including TP53, PTEN, BRCA1, and MSH2.  

The precision-recall curves of gMVP and published methods are shown for each gene using 

functional readout data as ground truth. 
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most of these de novo variants are not previously implicated with diseases, there is a 

significant excess of such variants in cases compared to controls43-45, indicating that a 

substantial fraction of variants in cases are pathogenic. We therefore tested whether the 

predicted scores of variants in cases and controls are significantly different and use 

significance as a proxy of performance (Figure 4a). gMVP achieves a p-value of 3e-9 and 

2e-40 for ASD versus controls and NDD versus controls, respectively, while the second-

best method PrimateAI achieves a p-value of 3e-6 and 2e-38, respectively 

(Supplementary Fig. 5). 

 

We then calculated the enrichment rate of predicted damaging DNMs by a method with 

a certain threshold in cases compared to the controls, and then estimated precision and 

the number of true risk variants (Methods), which is a proxy of recall since the total 

number of true positives in all cases is a (unknown) constant independent of methods. 

 

 
Figure 4. Evaluating gMVP and published methods in distinguishing rare de 

novo missense variants in cases with neurodevelopmental disorders from the 

ones in controls. (a) Distributions of gMVP predicted scores of rare de novo missense 

variants from ASD and NDD cases and controls. We used Mann–Whitney U test to assess 

the statistical significance of the difference between cases and controls. NDD: neural 

developmental disorders; ASD: autism spectrum disorder; controls: unaffected siblings from 

the ASD study. (b) Comparison of gMVP and published methods using de novo variants 

from ASD cases and controls by precision-recall-proxy curves. Numbers on each point 

indicate rank percentile thresholds. The positions of “All Mis” points are estimated from all 

missense variants without using any prediction method. (c) The same comparison using 

data from NDD cases and controls.  
 

a b c
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The estimated precision and recall values are directly related to power of detecting new 

risk genes 5,46. We compared the performance of gMVP to other methods by estimated 

precision and recall-proxy (Figure 4b and 4c). The optimal threshold of gMVP rank 

score in cancer hotspots is 0.75. With 0.75 as the threshold, we observed an enrichment 

rate of 2.7 in NDD and an enrichment of 1.5 in ASD (Supplementary Table 7 and 8), 

corresponding to estimated precision-recall of (0.62, 4818) and (0.35, 328), respectively. 

Additionally, when using a lower threshold 0.7, gMVP can still keep the precision as 

high as 0.34 and achieved a recall of 377 in ASD. PrimateAI achieved overall second-

best estimated precision and recall under different thresholds in both ASD and NDD. 

MPC with a threshold of 0.8 can reach a high precision at 0.65 and 0.36 in NDD and 

ASD respectively, but overall it has substantially lower recall than gMVP and 

PrimateAI.  

 

Classifying gain-of function and loss-of-function variants using transfer 

learning 

In many genes, the functional impact of missense variants is complex and cannot be 

simply captured by a binary prediction. Recently, Heyne et al47 investigated the 

pathogenetic variants that alter the channel activity of voltage-gated sodium (Navs) and 

calcium channels (Cavs) and inferred loss-of function (LOF) and gain-of function (GOF) 

variants based on clinical phenotypes of variant carriers and electrophysiology data. 

Additionally, the study described a computational model (“funNCion”) to predict LOF 

and GOF variants using a large number of human-curated features on biochemical 

properties. Here we sought to classify LOF and GOF variants using gMVP model 

through transfer learning without additional curated prediction features. Transfer 

learning allows us to further train a model for a specific purpose using a limited number 

of training points by only exploring a reasonable subspace of the whole parameter 

spaces guided by previously trained models.  

 

We obtained 1517 pathogenetic and 2328 neutral variants in 10 voltage-gated sodium 

and 10 calcium channel genes, in which 518 and 309 variants were inferred as LOF and 
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GOF variants, respectively, from Heyne et al 47. To benchmark the performance, we 

used the same training and testing sets (90%/10% breakdown) as funNCion.  

 

 

We first evaluated the performance of gMVP and previous methods in distinguishing 

LOF or GOF from neutral variants. gMVP and REVEL both achieved the best 

AUROC at 0.94 (Figure 5a and Supplementary Table 9). FunNCion47 which was trained 

specifically on the variants of the ion channel genes achieved nearly identical AUROC 

(0.93). We next sought to improve the performance using transfer learning. Starting 

from the weights from the original gMVP model, we trained a new model, gMVP-TL1, 

with both LOF and GOF variants in these genes as positives and neutral variants as 

negatives (Methods). gMVP-TL1 achieved an AUROC of 0.96, outperforming the 

original gMVP and published methods. Furthermore, to distinguish LOF and GOF 

variants, we trained another model, gMVP-TL2, also starting from the weights of the 

original gMVP model but with different output labels for training (LOF versus GOF) 

(Methods). The training set includes 465 LOF and 279 GOF variants and the testing set 

 
Figure 5. Evaluating gMVP and published methods in classifying pathogenetic 

and neutral variants and in predicting GOF and LOF variants in ion channel 

genes. (a) Comparison of ROC curves in classifying pathogenetic variants and neutral 

variants. gMVP-TL1 denotes the model further trained on the pathogenetic and neutral 

variants in SCNxA genes starting from the weights of the original gMVP model. (b) 

Comparison of ROC curves in classifying GOF and LOF variants. gMVP-TL2 denotes the 

model further trained on GOF and LOF variants starting from the weights of the original 

gMVP model. 

a b
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includes 51 LOF and 30 GOF variants. gMVP-TL2 achieved an AUROC of 0.95, 

substantially better than funNCion (AUROC, 0.84) which trained on the same variants 

set with manually curated prediction features (Figure 5b and Supplementary Table 

S10). This demonstrates that the gMVP model aided by transfer learning technique can 

accurately predict GOF and LOF variants in channel genes with a very limited training 

dataset. 

 

gMVP prediction captures information on conservation, protein structure, 

and selection in human 

We calculated the correlation between predicted scores of gMVP and other methods on 

de novo variants from ASD and NDD cases and controls (Figure 6a). gMVP has the 

highest correlation with REVEL (Spearman Ã=0.78), followed by a few other widely 

used methods such as MPC, CADD, and PrimateAI (Ã>0.6).  

 

We then performed principal component analysis (PCA) on the de novo variants from 

cases and controls to investigate the contributing factors that separate the variants in 

cases and controls (Figure 6b and Supplementary Fig.6). The input of the PCA is a 

score matrix where rows represent variants and columns represent predicted scores by 

gMVP and other methods. We included two additional columns with gene-level 

gnomAD constraint metrics o/e-LoF and o/e-Mis48 (observed over expected for LoF and 

missense) to represent selection effect in human population. The first component (PC1) 

captures the majority of the variance of the data and best separates the de novo 

variants in cases and the ones in controls. All methods have large loadings on PC1 

(Figure 6b). The second component (PC2) is largely driven by the gene-level gnomAD 

constraint metrics (Figure 6b). The joint distribution of PC1/2 scores of DNMs from 

controls has a single mode at the center. The joint distributions of scores of DNMs from 

cases have two modes (Figure 6b and Supplementary Fig. 6b), representing mixtures of 

likely pathogenic variants and random DNMs. Notably, gnomAD metrics have near 

orthogonal loadings on PC1/2 with GERP which is purely based on cross-species 

conservation, suggesting that selection effect in human provides complementary 

information to evolutionary conservation about genetic effect of missense variants. All 
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methods (PolyPhen, eigen, CADD, VEST, and REVEL) that do not use human or 

primate population genome data have loadings close to GERP on PC1/2. MPC and M-

CAP, which use sub-genic or gene-level mutation intolerance metrics similar to gnomAD 

metrics, have closest loadings as gnomAD metrics on PC1/2. gMVP and PrimateAI 

have similar loadings that are in the middle of GERP and gnomAD metrics.  

 

We inspected the BRCT2 domain of BRCA1 to show how the gMVP model captures 

context-dependent functional impact. We observed that most damaging variants 

predicted by gMVP (>0.75) are located in the core region of BRCT2 domain (Figure 

6c). Additionally, gMVP scores are highly correlated with evolutionary conservation 

(Figure 6d and Supplementary Fig. 7a, Ã=0.57). Variants in the ³-sheets are 

significantly more damaging than the ones in ³-helix regions, and the ones in ³-helix 

regions are more damaging than the ones in coil regions (Figure 6d and Supplementary 

Fig. 7b), consistent with previous discoveries21,49,50. Finally, amino acids mutated to 

Proline (P) in helix regions are predicted to be highly damaging, even in positions not 

well conserved (Figure 6d). This is consistent with the fact that Proline rarely occurs in 

the middle of an alpha-helix51.  
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Figure 6. Interpreting gMVP predictions with conservation, protein structure, 

and genetic coding constraints. (a) Spearman correlation between gMVP and other 

published methods, calculated by scores of the de novo variants in ASD, NDD, and controls. 

(b) PCA on de novo variants from ASD and NDD cases and controls. Red arrows show the 

loadings of gMVP and published methods on the first two components; the density contour 

shows the distribution of PC1/2 scores of the variants in NDD (purple) and controls (light 

blue). The density curves along the axes show the distribution of PC1 or PC2 scores of the 

cases and controls. (c) The protein tertiary structure of BRCT2 domain of BRCA1. We 

colored a residue as blue if at least one missense on this position is predicted as damaging 

(gMVP > 0.75) and orange otherwise. (d) gMVP scores of all possible missense variants on 

BRCT2 domain of BRCA1. The top histogram and the following bar show the predicted and 

real protein secondary structures, respectively. The middle heatmap shows gMVP scores for 

all possible missense variants on each protein position. The bottom histogram shows the 

evolutionary conservation measured with the entropy of the amino acid distribution among 

homologous sequences. 

 

a

d
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Discussion 

We developed gMVP, a new method based on graph attention neural networks, to 

predict functionally damaging missense variants. gMVP uses attention neural networks 

to learn representations of protein sequence and structure context through supervised 

learning trained with large number of curated pathogenic variants. The graph structure 

allows coevolution-guided pooling of predictive information of distal amino acid 

positions that are functionally correlated or potentially close in 3-dimensional space. We 

demonstrated the utility of the gMVP in clinical genetic testing and new risk gene 

discovery studies. Specifically, we showed that gMVP achieves better accuracy in 

identification of damaging variants in known risk genes based on functional readout 

data from deep mutational scan studies. Additionally, gMVP achieved better 

performance in prioritizing de novo missense variants in cases with autism or NDD, 

suggesting that it can be used to pre-select damaging variants or weight variants to 

improve statistical power of new gene discovery. Finally, we showed that with transfer 

learning technique, gMVP model can accurately classify GOF and LOF variants in ion 

channels even with a limited training set without additional prediction features. 

 

gMVP learns a representation of protein context from training data, while previous 

ensemble methods such as REVEL, M-CAP, MetaSVM, and CADD used scores from 

other predictors or other human-engineered features as inputs. With recent progress of 

machine learning in protein structure prediction 52-55, neural network representations 

could capture latent structure beyond common linear representations of understanding 

of the biophysical and biochemical properties. We showed that representation learning 

allows gMVP to capture the context-dependent impact of amino acid substitutions on 

protein function. PrimateAI is a recently published method that also uses deep 

representation learning. gMVP achieved better performance than PrimateAI in 

identification of damaging variants in known disease risk genes in comparisons using 

functional readout data and in prioritizing rare de novo variants from ASD and DDD 

studies. While both models used evolutionary conservation and protein structural 

properties as features, the two methods have entirely different model architecture and 

training data. gMVP uses a graph attention neural network to pool information from 
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both distal and local positions with coevolution strength, while PrimateAI uses a 

convolutional neural network to extract local patterns from protein context. For 

training data, gMVP used expert-curated variants and random variants in population as 

training positives and negatives, respectively. In contrast, PrimateAI used common 

variants in primates as negatives and unobserved variants in population as positives. 

Based on functional readout data of the four well-known risk genes, only 15-25% of 

random variants have discernable impact on protein function. Therefore, the positives 

used in PrimateAI training may contain a large fraction of false positives. PrimateAI’s 

training strategy does have advantages. It avoids human interpretation bias and errors 

in curated databases of pathogenic variants, the positives used in gMVP training. It also 

can cover almost all human protein-coding genes, whereas curated databases such as 

ClinVar only cover hundreds of genes. Additionally, common variants in primates are 

likely all true negatives, whereas random observed rare variants in human population 

could have a non-negligible fraction of damaging variants. Making a new model that can 

utilize all these datasets in training could further improve the prediction performance.  

 

Several previous studies have shown that the functional impact of missense variants is 

correlated among 3-dimensional neighbors21,22,56. Pooling information from 3-dimensional 

neighbors could therefore improve predictions of functional impact. However, directly 

considering 3 dimensional distances is limited by the fact that most human proteins 

have no solved tertiary structures with considerable coverage. gMVP addresses this 

issue by taking a large segment of the protein context that include both local and distal 

positions that are potential neighbors in folded proteins, and then uses coevolution 

strength to effectively pool information from potential 3D neighbors. Used as edge 

features in a graph attention model, coevolution strength allows more precise pooling of 

information from distal residues than the convolutional layer without prior structure. 

Coevolution strength has been used in ab initio protein structure prediction 

extensively30,55,57. The extraordinary performance of AlphaFold253 in CASP14 shows that 

it contains critical information about physical residue-residue distances for accurate 

structure prediction to many more proteins. More recently, the language model 

Transformer33 has been applied on protein sequences and multi-sequence alignments 
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(MSAs) to improve the performance of coevolution strength estimation and protein 

residue-residue contacts prediction58-60. gMVP could be further improved by integrating 

components of Transformer in the model. 

 

With transfer learning, the trained gMVP model can be further optimized for more 

specific tasks in genetic study. The idea is to transfer the general knowledge learned 

from large training data sets to a new related and more specific task with only limited 

training data. The trained model can set the initial values of the weights in the model 

to be updated by further training to explore only a subspace of the whole parameter 

space. We have shown its feasibility in classifying GOF and LOF variants in the ion 

channel genes using a limited number of training data points without additional 

prediction features. We expect that with transfer learning, gMVP can potentially 

improve variant interpretation by training on gene family-specific models61 and to 

identify disease-specific damaging variants62.  

 

Functional readout data from deep mutational scan provides strong evidence of 

classifying variants as damaging or neutral25-28,63,64. However, these in vitro functional 

readout assay usually reveals only one aspect of a protein’s function in a limited number 

of cell types, therefore, they are often not completely correlated with the functional 

impact of the variants in vivo. We expect that more comprehensive deep mutational 

scan assays will become available and facilitate substantial improvement in the training 

and evaluation of computational methods. 

 

Finally, we showed that while evolutionary conservation remains one of the most 

informative sources for computational methods, selection in human population can 

provide complementary information for prediction. Selection coefficient is correlated 

with allele frequency, especially for variants under strong negative selection 46,65-67. 

Larger population genome data sets can further improve estimation of allele frequency 

of rare variants. We anticipate large 68 and diverse 69 population genome data released in 

the future will improve estimation of selection effect in human and in turn improve 

gMVP.   
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Methods 

Training data sets 

For positive training set, we collected 22,607 variants from ClinVar database37 under the 

Pathogenic and Likely-Pathogenic categories with review status of at least one star, 

48,125 variants from Human Gene Mutation Database Pro version 2013 (HGMD) 

database36 under the disease mutation (DM) category, and 20,481 variants from UniProt 

labeled as Disease-Causing.  For negative training sets, we collected 41,185 variants 

from ClinVar under the Benign and Likely-Benign categories, 33,387 variants from 

SwissVar38 labeled as Polymorphism. After excluding 3,751 variants with conflicting 

interpretations by the three databases, we have 63,304 and 66,102 unique positives and 

negatives. We next excluded 36,499 common variants (653 positives and 35,846 

negatives) with allele frequency > 1e-3 in gnomAD (all populations) 70 and 3,080 

overlapping variants (2,680 positives and 400 negatives) with testing datasets from the 

training dataset, resulting in a dataset of 59,701 positives and 29,856 negatives. To 

balance the positive and negative training samples, we randomly selected 29,845 rare 

missense variants from DiscovEHR database42 that are not already covered by 

previously selected training data as additional negative training points. In the end, we 

have 59,701 and 59,701 unique positive and negative training variants (Supplementary 

Table 1), which cover 3,463 and 14,222 genes, respectively.  

 

Testing data sets 

1. Cancer somatic mutation hotspots: we obtained 878 missense variants located in 

somatic missense mutations hotspots in 209 cancer driver genes from a recent study24 

as positives, and randomly selected 2 times more rare missense variants (N=1756) 

from the population sequencing data DiscovEHR42.  

 

2. Functional readout data from deep mutational scan experiments: we compiled 

variants in BRCA126, PTEN27, TP5328, and MSH225. We only include the single 

nucleotide variants (SNVs) for comparison as most published methods don’t provide 

scores for the non-SNVs. There are 432 positives and 1,476 negatives in BRCA1, 258 
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positives and 1601 negatives in PTEN, and 540 positives and 1,108 negatives in 

TP53, and 414 positives and 5439 negatives in MSH2.  

 

3. De novo variants: to evaluate utility in new risk gene discovery, we used published 

rare germline de novo missense variants (DNVs) from 5,924 cases and 2,007 controls 

in an autism spectrum disorder (ASD) study4 and 31,058 cases in a neural 

developmental study5. 

 

To fairly compare our methods with published methods, we excluded the overlapping 

variants with testing datasets from the training datasets. We further excluded all 

variants in PTEN, TP53, BRCA1, and MSH2 in training to avoid inflation in 

performance evaluation. 

 

The Graph Attention Neural Network model 

gMVP uses a graph to represent a variant and its protein context. We first defined the 

128 amino acids flanking the reference amino acid as protein context. We next built a 

star-like graph with the reference amino acid as the center node and the flanking amino 

acids as context nodes, and with edges between the center node and each context node 

(Figure 1 and Supplementary Fig. 1). 

 

Let �, �!, and �! denote input feature vectors for the center node, each context node, 

and each edge, respectively. We first used three 1-depth dense layers to encode �, �!, 

and �� to latent representation vectors �, ��, and ��, respectively. We used RELU71 as 

the activation function and 512 neurons for each dense layer. 

 

We then used a multi-head layer adapted from the attention layer in the Transformer 

model33 to pool information from context nodes and finally to learn a context vector �. 
Specifically, for the �th head, we first calculated the value vectors for each context node 

by ��(�) = �:(�)��. We next calculated attention scores for each context node through 

�!& = tanh@�(�)[�, ��, ��]A( + �', where ���/ denotes a hyperbolic tangent activation 

function, and �' is a position bias which is a simplified positional encoding72. We note 
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here �! allows the model to capture local protein sequence context. Attention weights are 

calculated by applying a ������� operation on the attention scores, H�(
(&), &�!

(&), & K =
softmax([�((&),…,�!(&),…]).  

 

The context vector �(&) for the �th head is calculated as �(�) = 3�!

(&)�!()). The final 

context vector is obtained by a linear projection on the concatenation vector of the 

context vectors from each head, 

� = �*R�((), & , �(!), & , �(+,-)S. 

Here �denotes the number of heads and we used 4 heads in our model. And we note 

that in the model, �(&), �:(&), and �* are weight matrices to be trained. 

We next used a gated recurrent unit (GRU) layer35 to leverage the context vector � and 

the latent vector � of the given variant where the relative importance of the whole 

context can be determined. We used 512 neurons and a hyperbolic tangent activation 

function for the GRU layer. We finally used a linear projection layer and a sigmoid 

layer to perform classification. 

 

Input features 

The center node, which represents the variant, has the following features: 

reference and alternate amino acids, evolutionary conservation, and predicted 

local structural properties. The context nodes have the following features: 

reference amino acids, evolutionary conservation, predicted local structural 

properties, and observed and expected missense alleles in gnomAD 48. The feature 

of edges is coevolution strength between the position of variant and other 

positions, estimated from multiple sequence alignments of homologous sequences. 

 

Reference and alternate amino acids (40 values):  we used one-hot encoding with 

a dimension of 20 to represent reference and alternate amino acids. 

 

Protein primary sequence (20 values): We also used one-hot encoding to 

represent each amino acid in the protein primary sequence. 
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Evolutionary conservation (42 values):  we estimated the evolutional conservation from 

two sources: (1) we searched the homologous of the protein of interest against SwissProt 

database73 with 3 iterations of search and then built the multiple sequence alignments 

(MSAs) with HHblits suite74. (2) we downloaded the MSAs of 200 species from Ensembl 

website for each human protein sequence75. We then calculated the frequencies of 20 

amino acids and the gap for each position for the two MSAs separately and 

concatenated the two frequency vectors.  

 

Predicted protein structural properties (5 values):  we predicted the protein secondary 

structures (3 values), solvent accessibility (1 value), and the probability of a residue 

participating in interactions with other proteins (1 value) using NetsurfP76. 

 

Observed number of missense alleles in gnomAD and expected number (2 values): to 

capture selection effect in human, we obtained the observed number of rare missense 

variants in gnomAD48 and the expected number of rare missense variants estimated 

using a background mutation model48. 

 

Coevolution strength (442 values): 

We extract pairwise statistics from the MSA as coevolution strength. It is estimated 

based on the covariance matrix constructed from the input MSA. First, we compute 1-

site and 2-site frequency counts �!(�) = -

.
3 ·/,1!,#

.
23-   and �!,4(�, �) =

-

.
3 ·/,1!,#

.
23- ·5,1$,#

, where A and �  denote amino acid identities (20 + gap), · is the 

Kronecker delta, �	and	� are position indexes on the aligned protein sequence, m is the 

sequence index of the MSA with a total of � aligned sequences, and �!,2 indicates the 

amino acid identity of position � on sequence �. We then calculate the sample 

covariance (21x21) matrix �!,4/,5 = �!,4(�, �) 2 �!(�)�4(�), and flatted it into a vector with 

441 elements. We also convert the covariance matrix to a single value by computing its 

Frobenius norm �!,4 = a3 3 b�!,4/,5c
6

6(
53-

6(
/3- , and then concatenate the norm and the 

flattened vector as the edge features. 
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We built these features only for canonical transcripts defined by Ensembl 77 Version92. 

We annotated the variants using VEP78. 

 

Training algorithm 

We used cross-entropy loss as the training loss. We used the Adam algorithm39 to 

update the model parameters with an initial learning rate of 1e-3 and decayed the 

learning rate with a polynomial decay schedule79. We randomly selected 10% of training 

samples as validation set and early stopping was applied with validation loss as 

watching metric. We trained 5 models by repeating the above training process five times 

and for testing we averaged the outputs of the five models as prediction scores. The 

model and training algorithm were implemented using TensorFlow40.  

 

Classifying GOF and LOF variants using gMVP model and transfer 

learning 

To investigate the potential for transfer learning, we further trained gMVP to classify 

GOF and LOF variants in ion channel genes with additional training data but without 

new features. We collected 1517 pathogenetic and 2328 neutral variants in SCNxA genes 

which encode Voltage-gated sodium (Navs) and calcium channels (Cavs) protein, in 

which 518 and 309 variants are inferred as LOF and GOF variants, respectively, from a 

recent study47. 

 

We first trained a model, gMVP-TL1, to classify pathogenetic and neutral variants in 

SCNxA genes. We used the same data set as funNCion47, including 3466 variants for 

training and 379 variants for testing. We randomly selected 10% variants from training 

set as validation set. We used the same model architecture with gMVP and the weights 

of gMVP model previous trained using all genes as the initial values of new model. In 

the new model training, we used Adam algorithm to update parameters with an initial 

learning rate of 1e-3, and used the validation loss as stopping criteria. We trained 5 

gMVP-TL1 models, starting from each of the 5 trained gMVP models and for testing we 

averaged the outputs of these models as prediction scores. 
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We next trained another model gMVP-TL2 to classify GOF versus LOF variants in 

SCNxA genes. We used 744 variants as training set and 81 variants as testing set, which 

are same sets used by funNCion47. Like gMVP-TL1, gMVP-TL2 were also trained 

staring from the weights of gMVP model previous trained using all genes. We used the 

same hyperparameter setting with gMVP-TL1 in training. 

 

Normalization of scores using rank percentile 

For each method, we first sorted predicted scores of all possible rare missense 

variants across all protein-coding genes, and then converted the scores into rank 

percentiles. The higher rank percentile indicates more damaging, e.g., a rank 

score of 0.9 indicates the missense variant is more likely to be damaging than 

90% of all possible missense variants.  

  

Precision-recall-proxy curves 

Since there is no ground truth data to benchmark our performance on de novo variants, 

we estimate precision and recall at various thresholds based on the enrichment of 

predicted damaging variants in cases compared to controls.  

 

Let �- be the rate of synonymous variants in cases, and �( be the rate of synonymous 

variants in controls. Then the synonymous rate ratio � is defined as 

� = �-
�( 

Denote the total number of variants in cases as �-, the number of variants in controls 

as �(, the number of variants predicted as pathogenic in cases as �-, and the number of 

variants predicted as pathogenic in controls as �(. We assume that for there to be no 

batch effect, the rate of synonymous variants should be the same in the cases and 

controls. So, we estimate the enrichment of predicted pathogenic variants in cases 

compared to controls by: 

� =
�-�-�(�(
× �
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Then, the true number of pathogenic de novo variants �-
7 is estimated by 

�-
7 = �-(� 2 1)

�  

And the estimated precision is 

��������� = �-
7

�-

n
 

 

Data availability 

1. Precomputed gMVP scores for all possible missense variants in canonical 

transcripts on human hg38 can be downloaded from:  

https://www.dropbox.com/s/nce1jhg3i7jw1hx/gMVP.2021-02-28.csv.gz?dl=0. 

2. The training data of the main model were downloaded from:  

http://www.discovehrshare.com/downloads (DiscovEHR), 

http://www.hgmd.cf.ac.uk/ac/index.php (HGMD), 

https://www.uniprot.org/docs/humpvar (UniProt), and 

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/ (ClinVar). 

3. Other data sets supporting the findings of this study are available in the 

manuscript and supplementary information files. 

 

Code availability 

The codes for the model design and training and testing procedure are available on 

GitHub: https://github.com/ShenLab/gMVP/ 
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