

1 **Comparative Analysis of Emerging B.1.1.7+E484K SARS-CoV-2**

2 **isolates from Pennsylvania**

3

4 Ahmed M. Moustafa^{1,2}, Colleen Bianco¹, Lidiya Denu¹, Azad Ahmed³, Brandy Neide¹,
5 John Everett⁴, Shantan Reddy⁴, Emilie Rabut⁵, Jasmine Deseignora⁵, Michael D.
6 Feldman⁶, Kyle G. Rodino⁶, Frederic Bushman⁴, Rebecca M. Harris^{6,7}, Josh Chang
7 Mell³, Paul J. Planet^{1,7,8*}

8

9 **1. Division of Pediatric Infectious Diseases, Children's Hospital of Philadelphia,**
10 **Philadelphia, PA 19104, USA.**

11

12 **2. Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of**
13 **Philadelphia, Philadelphia, PA 19104, USA.**

14

15 **3. Department of Microbiology and Immunology, Center for Genomic Sciences,**
16 **Drexel University College of Medicine, Philadelphia, PA 19129, USA.**

17

18 **4. Department of Microbiology, Perelman School of Medicine, University of**
19 **Pennsylvania, Philadelphia, PA 19104, USA.**

20

21 **5. Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.**

22

23 **6. Department of Pathology and Laboratory Medicine, Perelman School of
24 Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.**

25

26 **7. Department of Pediatrics, Perelman College of Medicine, University of
27 Pennsylvania, Philadelphia, PA 19104, USA.**

28

29 **8. Sackler Institute for Comparative Genomics, American Museum of Natural
30 History, New York, NY 10024, USA.**

31

32 **Phone**

33 **PJP: +1 215-590-1169**

34 ***Corresponding Author**

35 **Emails**

36 **AMM: moustafaam@chop.edu**

37 **PJP: planetp@chop.edu**

38 **Abstract**

39 Rapid whole genome sequencing of SARS-CoV-2 has presented the ability to detect
40 new emerging variants of concern in near real time. Here we report the genome of a
41 virus isolated in Pennsylvania in March 2021 that was identified as lineage B.1.1.7
42 (VOC-202012/01) that also harbors the E484K spike mutation, which has been shown
43 to promote “escape” from neutralizing antibodies *in vitro*. We compare this sequence to
44 the only 5 other B.1.1.7+E484K genomes from Pennsylvania, all of which were isolated
45 in mid March. Beginning in February 2021, only a small number (n=60) of isolates with
46 this profile have been detected in the US, and only a total of 253 have been reported
47 globally (first in the UK in December 2020). Comparative genomics of all currently
48 available high coverage B.1.1.7+E484K genomes (n=235) available on GISAID
49 suggested the existence of 7 distinct groups or clonal complexes (CC; as defined by
50 GNUVID) bearing the E484K mutation raising the possibility of 7 independent
51 acquisitions of the E484K spike mutation in each background. Phylogenetic analysis
52 suggested the presence of at least 3 distinct clades of B.1.1.7+E484K circulating in the
53 US, with the Pennsylvanian isolates belonging to two distinct clades. Increased genomic
54 surveillance will be crucial for detection of emerging variants of concern that can escape
55 natural and vaccine induced immunity.

56

57 During the past six months of the pandemic several variants of concern (VOC), each
58 represented by a constellation of specific mutations thought to enhance viral fitness,
59 have emerged in viral lineages from the UK (20I/501Y.V1; B.1.1.7), South Africa
60 (20H/501Y.V2; B.1.351), and Brazil (20J/501Y.V3; P.1). These lineages were
61 concerning due to likely increased transmission rates¹⁻⁶. Two of these lineages, B.1.351
62 and P.1 were of specific concern because they harbor the mutation E484K, which has
63 been shown to enhance escape from neutralizing antibody inhibition in vitro⁷, and may
64 be associated with reduced efficacy of the vaccine⁸⁻¹¹. In general, viruses from the
65 B.1.1.7 lineage do not harbor this mutation. However, in February 2021 Public Health
66 England (PHE) published a concerning report of eleven B.1.1.7 genomes that had
67 acquired the E484K spike mutation¹².

68 Here we report a B.1.1.7 isolate with the E484K spike mutation isolated in
69 southeastern Pennsylvania (PA). Our laboratory at the Children's hospital of
70 Philadelphia performed sequencing on randomly selected isolates collected since
71 January 2021. **Figure 1A** shows the diversity of 114 randomly sequenced genomes.
72 Lineages B.1.1.7, B.1.429 (California), B.1.526 (New York) and R.1 (International
73 lineage with the E484K mutation) accounted for 69% of the sequenced genomes in
74 March. There was a massive increase in lineage B.1.1.7 from 2% (1/47) in February to
75 42% in March (15/36). Interestingly, one B.1.1.7 isolate carried the E484K spike
76 mutation that is present in the South African and Brazilian lineages.

77 To better understand the relationship between this isolate and publicly available
78 SARS-CoV-2 genomes, we compared it to all available B.1.1.7+E484K high coverage
79 genomes available on GISAID¹³ (n=235). Since the first report by PHE in February, a

80 total of 253 B.1.1.7+E484K genomes have been uploaded to GISAID from England and
81 14 other countries (Germany, France, Italy, Poland, Sweden, Ireland, Netherlands,
82 Portugal, Wales, Turkey, Slovakia, Austria, Czech Republic and USA)¹³ (as of
83 04/17/2021).

84 A temporal plot of the number of B.1.1.7+E484K isolates collected between
85 December 2020 to March 2021 (2-week window) is shown in **Figure 1B**. The first
86 isolate of the 60 US isolates available on GISAID was collected on 02/06/2021 from
87 Oregon (OR). Isolates were also reported from 15 other states (New York, North
88 Carolina, Connecticut, Georgia, New Jersey, Maryland, Florida, West Virginia,
89 California, Pennsylvania, Michigan, Texas, Massachusetts, Washington, and Colorado).
90 Of these isolates 48% were from Florida (n=17) and New York (n=12) and 28% were
91 from New Jersey (n=7), California (n=4) and Pennsylvania (n=6). Two isolates were
92 from Oregon (OR), Connecticut (CT), Maryland (MD), and single isolates are recorded
93 from Georgia (GA), Texas (TX), Massachusetts (MA), Washington (WA), Colorado
94 (CO), West Virginia (WV), Michigan (MI), and North Carolina (NC). The number of US
95 isolates in March (n=47 including the PA isolates) was nearly 6 times the number of the
96 isolates reported in February. This increase raises the concern that more
97 B.1.1.7+E484K sequences may be emerging even as herd immunity increases by
98 natural immunity and vaccines.

99 Although all 236 genomes were typed as B.1.1.7 using Pangolin¹⁴, a more granular
100 view using our typing tool “GNUVID”¹⁵ shows that they belong to 7 different clonal
101 complexes (CCs 45062, 46649, 49676, 57630, 58534, 62415 and 67441) (**Figure 1C**
102 and **Supplementary Table 1**). In the GNUVID typing system, these correspond to 7 of

103 10 CCs in the B.1.1.7 lineage. For each of these CCs, representative sequences
104 without the E484K mutation have been circulating since at least November 2020,
105 predating the first E484K in each CC. This raises the possibility that the E484K mutation
106 was acquired independently in each of these CCs in independent events.

107 Phylogenetic analysis of the 235 B.1.1.7+E484K GISAID isolates showed that
108 US isolates are found in at least 3 different clades. The genome presented here falls in
109 a well-supported clade of 28 isolates, 6 of which were from the US (CT, FL, OR, PA and
110 NY), 18 from Sweden, 2 from Poland and 1 from Germany (**Figure 2A**). The only other
111 4 isolates reported from PA, were in a large clade containing the majority of US
112 genomes, and were located in a well-supported subclade with genomes from the nearby
113 state of West Virginia.

114 Analysis of SNPs in the 236 isolates compared to the reference MN908947.3¹⁶
115 (**Figure 2B and Supplementary Figure 1**) showed that the isolate presented here had
116 12/17 of the B.1.1.7 defining SNPs (**Supplementary Table 2**), while the other
117 Pennsylvanian isolate in the same clade had 17/17 of the SNPs. It also shared with 9
118 other US isolates a stop mutation (A28095T) in ORF8 (**Figure 2B**).

119 Here we present a comparative analysis of the first SARS-CoV-2 B.1.1.7 isolates
120 detected in PA that harbor the E484K spike mutation, a mutation that could be
121 associated with reduced efficacy of both vaccine-induced and natural immunity. Our
122 analysis suggests that multiple lineages of B.1.1.7+E484K are circulating in the US, and
123 that these lineages may have acquired E484K independently.

124

125 **Methods**

126 A nasopharyngeal swab sample that had residual volume after initial laboratory
127 processing, positive PCR testing for SARS-CoV-2, was obtained for this study. RNA
128 was extracted from nasopharyngeal swab samples using QIAamp Viral RNA Mini
129 (Qiagen). Whole genome sequencing was done by The Genomics Core Facility at
130 Drexel University. Briefly, WGS of extracted viral RNA was performed as previously
131 described using Paragon Genomics CleanPlex SARS-CoV-2 Research and
132 Surveillance NGS Panel^{17,18}. Libraries were quantified using the Qubit dsDNA HS (High
133 Sensitivity) Assay Kit (Invitrogen) with the Qubit Fluorometer (Invitrogen). Library quality
134 was assessed using Agilent High Sensitivity DNA Kit and the 2100 Bioanalyzer
135 instrument (Agilent). Libraries were then normalized to 5nM and pooled in equimolar
136 concentrations. The resulting pool was quantified again using the Qubit dsDNA HS
137 (High Sensitivity) Assay Kit (Invitrogen) and diluted to a final concentration of 4nM;
138 libraries were denatured and diluted according to Illumina protocols and loaded on the
139 MiSeq at 10pM. Paired-end and dual-indexed 2x150bp sequencing was done using
140 MiSeq Reagent Kits v3 (300 cycles). Sequences were demultiplexed and basecalls
141 were converted to FASTQ using bcl2fastq2 v2.20. The FASTQ reads were then
142 processed to consensus sequence and variants were identified using the ncov2019-
143 artic-nf pipeline (<https://github.com/connor-lab/ncov2019-artic-nf>). Briefly, the pipeline
144 uses iVar¹⁹ for primer trimming and consensus sequence making (options: --
145 ivarFreqThreshold 0.75). A bed file for the Paragon kit primers was used in the pipeline.

146 All 253 SARS-CoV-2 genomes that were assigned to Pango lineage¹⁴ B.1.1.7
147 and possessing the E484K spike mutation (including the study isolate CHOP_204) were
148 downloaded from GISAID¹³ on 04/17/2021. An acknowledgement table of the submitting

149 laboratories providing the SARS-CoV-2 genomes used in this study is in **Supplemental**
150 **Table 3.** Seventeen sequences were excluded for lower coverage (> 5% Ns) (n=14)
151 and missing collection date (n=3). All the high coverage SARS-CoV-2 genomes (n=236)
152 were assigned a clonal complex using the GNUVID v2.2 database (version January 6th
153 2021)¹⁵. Temporal plots were plotted in GraphPad Prism v7.0a.

154 To show the relationship amongst the genomes of the 236 isolates, a maximum
155 likelihood tree was constructed. Briefly, consensus SARS-CoV-2 sequences for the 236
156 isolates were aligned to MN908947.3¹⁶ using MAFFT's FFT-NS-2 algorithm²⁰ (options:
157 --add --keeplength). The 5' and 3' untranslated regions were masked in the alignment
158 file using a custom script. A maximum likelihood tree using IQ-TREE²¹ was then
159 estimated using the GTR+F+I model of nucleotide substitution²², default heuristic search
160 options, and ultrafast bootstrapping with 1000 replicates²³. The tree was rooted to
161 MN908947.3. The snipit tool was then used to summarize the SNPs in the 236 isolates
162 relative to MN908947.3 (<https://github.com/aineniamh/snipit>).

163 The sample was obtained by as part of routine clinical care, solely for non-
164 research purposes, carrying minimal risk, and were therefore granted a waiver of
165 informed consent as reviewed under protocol number under IRB 21-018478.

166

167 **Availability of data and material**

168 The sequence has been uploaded to GISAID with accession number
169 EPI_ISL_1629709.

170

171 **Conflict of interest**

172 The authors declare that they have no competing interests.

173

174 **Acknowledgements**

175 We would like to thank the Global Initiative on Sharing All Influenza Data (GISAID) and

176 thousands of contributing laboratories for making the genomes publicly available. A full

177 acknowledgements table is available in Supplementary Table 3. We would like to

178 acknowledge the staff members of the Drexel Genomics Core Facility at the Drexel

179 University College of Medicine for processing and sequencing the isolates. P.J.P and

180 A.M.M are supported by 1R01AI137526-01 and 1R21AI144561-01A1 (A.M.M. and

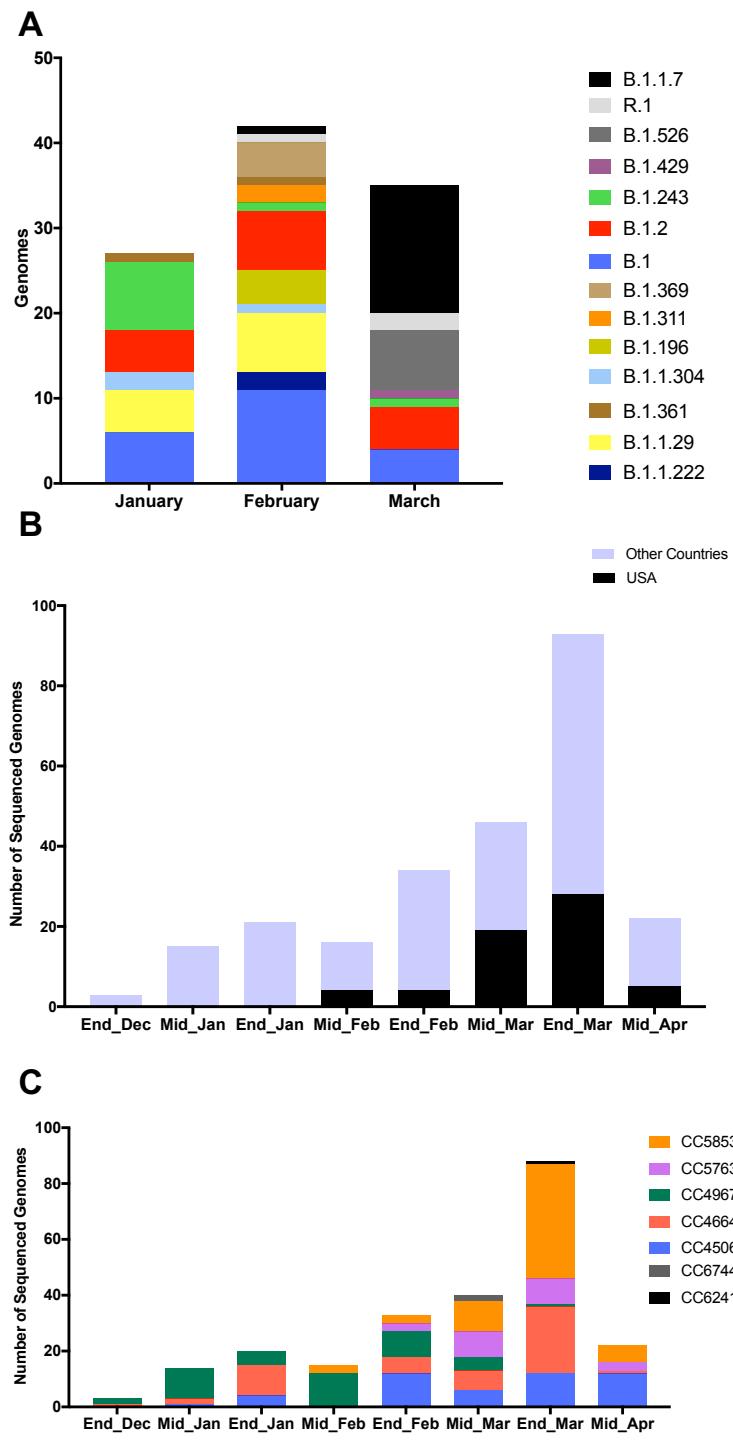
181 P.J.P.), and R01NR015639 (P.J.P.).

182

183

184 **Figure Legends**

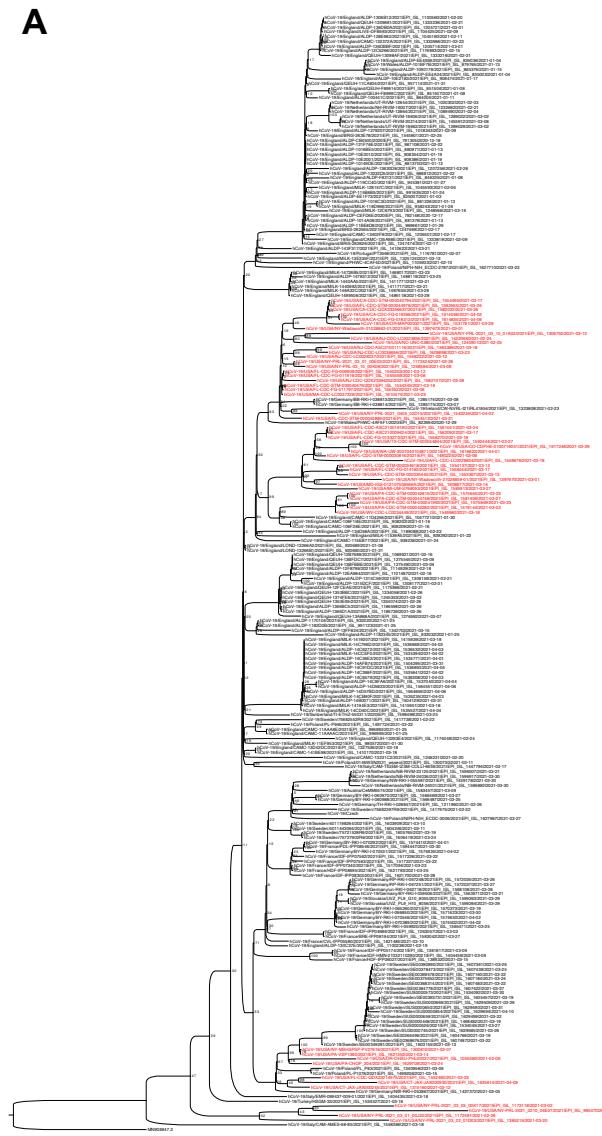
185 **Figure 1. Diversity of SARS-CoV-2 in Philadelphia and global diversity of**
186 **sequenced B.1.1.7+E484K genomes. A.** Stacked bar plot showing the diversity of
187 random genomes sequenced by our laboratory at Children's Hospital of Philadelphia
188 during January, February and March 2021. Ten lineages that were represented by only
189 one genome (B.1.1, B.1.1.106, B.1.1.129, B.1.1.197, B.1.1.281, B.1.1.296, B.1.119,
190 B.1.234, B.1.350, B.1.409) were excluded from the plot. One isolate that is B.1.526.1
191 was counted with the parent B.1.526 for easier visualization. **B.** Bar plot showing
192 number of GISAID genomes (n=250) that are 20I/501Y.V1 and have the E484K spike
193 mutation over time in the US and globally. **C.** Diversity of 236 isolates according to
194 GNUVID. Bar plot showing relative abundance of circulating clonal complexes (CC) for
195 the 236 B.1.1.7+E484K isolates (typed by GNUVID). The bar plot shows that the
196 isolates belong to 7 different CCs. Isolate EPI_ISL_1385215 was not assigned to any of
197 the 7 CCs (CC255). Fourteen isolates were excluded from the plot as they had > 5%
198 nucleotides designated "N" in the sequence.

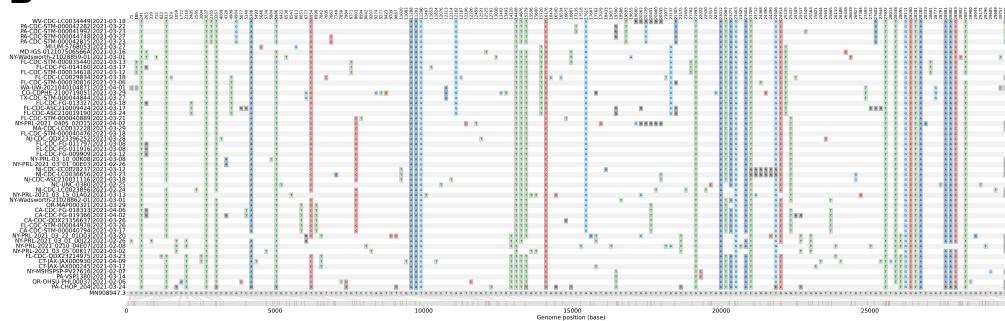

199 **Figure 2. SNP-based Phylogeny and variations of the B.1.1.7+E484K isolates. A.**
200 Maximum likelihood tree of the B.1.1.7+E484K isolates. US isolates are in red. For the
201 CHOP_204 isolate the alternative allele was called as consensus if its frequency was at
202 least 0.75. The tree was rooted with MN908947.3. Bootstrap values are shown on the
203 branches. **B.** SNP patterns in the 53 US isolates compared to MN908947.3. SNP
204 variations in the 236 isolates are shown in Supplementary Figure 1. Mutations identified
205 in CHOP_204 are available in Supplementary Table 2. Seven US isolates were
206 excluded from the plot as they had > 5% nucleotides designated "N" in the sequence.

207 An acknowledgement table of the submitting laboratories providing the SARS-CoV-2

208 genomes used in this study is in Supplemental Table 3.

209


210 **Figure 1**


211

212 **Figure 2**

A

B

214 **Supplementary Table 1. Excel Sheet of GNUVID results for the 236 isolates.**

215 **Supplementary Table 2. Mutations and deletions in CHOP_204 compared to**

216 **MN908947.3.**

Mutation	Protein	AA change	Frequency
C241T	-	-	1
C913T	ORF1ab	synonymous	0.92
C1059T	ORF1ab	T265I	0.33
C2110T	ORF1ab	synonymous	0.98
C3037T	ORF1ab	synonymous	1
C3267T	ORF1ab	T1001I	0.64
C4320T	ORF1ab	synonymous	0.38
C5388A	ORF1ab	A1708D	0.65
C5986T	ORF1ab	synonymous	0.62
T6954C	ORF1ab	I2230T	0.74
T7984C	ORF1ab	synonymous	0.65
T9867C	ORF1ab	L3201P	0.33
11288 (del-9)	ORF1ab	SGF3675-77 deletion	0.99
C12781T	ORF1ab	synonymous	0.96
C14120T	ORF1ab	Q4619*	0.95
C14408T	ORF1ab	synonymous	1
C14676T	ORF1ab	P4804L	0.96
C15279T	ORF1ab	T5005I	0.66
T16176C	ORF1ab	L5304P	0.72
A16500C	ORF1ab	K5412T	0.30
C16887T	ORF1ab	synonymous	0.31
C19390T	ORF1ab	synonymous	1
C21575T	S	L5F	0.35
21765 (del6)	S	HV69-70 deletion	0.99
21991 (del3)	S	Y144 deletion	0.98
G23012A	S	E484K	0.77
A23063T	S	N501Y	0.95
C23271A	S	A570D	1
A23403G	S	D614G	1

C23604A	S	P681H	0.98
C23664T	S	A701V	0.41
C23709T	S	T716I	0.99
T24506G	S	S982A	0.55
G24914C	S	D1118H	0.94
C25517T	ORF3a	P42L	0.36
C27972T	ORF8	Q27*	0.93
A28095T	ORF8	K68*	0.93
A28111G	ORF8	Y73C	0.96
A28271 (del1)	-	deletion	0.97
GAT28280CTA	N	D3L	0.97
C28869T	N	P199L	0.38
GGG28881AAC	N	R203K, G204R	0.55
C28977T	N	S235F	0.88
C29137T	N	synonymous	0.54

217

218 **Supplementary Table 3. GISAID Acknowledgement Table.**

219

220

221

222

223

224

225

226

227

228

229 **Supplementary Figure 1. SNP variations in all available 20I/501Y.V1+E484K**

230 **isolates.**

231

232

233 **References**

234

235 1 Davies, N. G. *et al.* Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7
236 in England. *Science*, eabg3055, doi:10.1126/science.abg3055 (2021).

237 2 Tegally, H. *et al.* Emergence and rapid spread of a new severe acute respiratory
238 syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in
239 South Africa. *medRxiv*, 2020.2012.2021.20248640, doi:10.1101/2020.12.21.20248640
240 (2020).

241 3 Faria, N. R. *et al.* Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus,
242 Brazil. *medRxiv*, 2021.2002.2026.21252554, doi:10.1101/2021.02.26.21252554 (2021).

243 4 Rambaut, A., *et al.* *Preliminary genomic characterisation of an emergent SARS-CoV-2*
244 *lineage in the UK defined by a novel set of spike mutations.* <https://virological.org/t/563>
245 (2020).

246 5 Chen, R. E. *et al.* Resistance of SARS-CoV-2 variants to neutralization by monoclonal and
247 serum-derived polyclonal antibodies. *Nature Medicine*, doi:10.1038/s41591-021-01294-
248 w (2021).

249 6 Volz, E. *et al.* Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from
250 linking epidemiological and genetic data. *medRxiv*, 2020.2012.2030.20249034,
251 doi:10.1101/2020.12.30.20249034 (2021).

252 7 Weisblum, Y. *et al.* Escape from neutralizing antibodies by SARS-CoV-2 spike protein
253 variants. *eLife* 9, e61312, doi:10.7554/eLife.61312 (2020).

254 8 Zhou, D. *et al.* Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and
255 vaccine-induced sera. *Cell*, doi:10.1016/j.cell.2021.02.037.

256 9 Garcia-Beltran, W. F. *et al.* Multiple SARS-CoV-2 variants escape neutralization by
257 vaccine-induced humoral immunity. *Cell*, doi:10.1016/j.cell.2021.03.013 (2021).

258 10 Wu, K. *et al.* Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine. *N Engl J Med*,
259 doi:10.1056/NEJMc2102179 (2021).

260 11 Collier, D. A. *et al.* Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies.
261 *Nature*, doi:10.1038/s41586-021-03412-7 (2021).

262 12 *Public Health England. Investigation of novel SARS-CoV-2 variant: Variant of Concern*
263 *202012/01 (Technical briefing 5).*
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959426/Variant_of_Concern_VOC_202012_01_Technical_Briefing_5.pdf
(2021).

267 13 Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data - from vision
268 to reality. *Euro Surveill* 22, doi:10.2807/1560-7917.ES.2017.22.13.30494 (2017).

269 14 Rambaut, A. *et al.* A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist
270 genomic epidemiology. *Nat Microbiol*, doi:10.1038/s41564-020-0770-5 (2020).

271 15 Moustafa, A. M. & Planet, P. J. Emerging SARS-CoV-2 diversity revealed by rapid whole
272 genome sequence typing. *bioRxiv*, doi:10.1101/2020.12.28.424582 (2020).

273 16 Wu, F. *et al.* A new coronavirus associated with human respiratory disease in China.
274 *Nature* 579, 265-269, doi:10.1038/s41586-020-2008-3 (2020).

275 17 Li, C. *et al.* Highly sensitive and full-genome interrogation of SARS-CoV-2 using
276 multiplexed PCR enrichment followed by next-generation sequencing. *bioRxiv*,
277 2020.2003.2012.988246, doi:10.1101/2020.03.12.988246 (2020).

278 18 Pandey, U. *et al.* High Prevalence of SARS-CoV-2 Genetic Variation and D614G Mutation
279 in Pediatric Patients with COVID-19. *Open Forum Infectious Diseases* (2020 (In Press)).

280 19 Grubaugh, N. D. *et al.* An amplicon-based sequencing framework for accurately
281 measuring intrahost virus diversity using PrimalSeq and iVar. *Genome Biol* **20**, 8,
282 doi:10.1186/s13059-018-1618-7 (2019).

283 20 Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple
284 sequence alignment based on fast Fourier transform. *Nucleic Acids Res* **30**, 3059-3066,
285 doi:10.1093/nar/gkf436 (2002).

286 21 Minh, B. Q. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
287 Inference in the Genomic Era. *Mol Biol Evol* **37**, 1530-1534,
288 doi:10.1093/molbev/msaa015 (2020).

289 22 TavarÈ, S. Some probabilistic and statistical problems in the analysis of DNA sequences.
290 *Lectures on Mathematics in the Life Sciences* **17**, 57-86 (1986).

291 23 Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2:
292 Improving the Ultrafast Bootstrap Approximation. *Mol Biol Evol* **35**, 518-522,
293 doi:10.1093/molbev/msx281 (2018).

294