bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440210; this version posted April 18, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Thalamocortical mechanisms regulating the relationship between transient

beta events and human tactile perception

Robert G. Law"*’, Sarah Pugliese', Hyeyoung Shin', Danielle D. Sliva', Shane Lee', Samuel

Neymotin', Christopher Moore', Stephanie R. Jones'?

'Brown University Department of Neuroscience; Providence RI
*Center for Neurorestoration and Neurotechnology; Providence VA Medical Center, Providence RI

? Current affiliation: Department of Psychiatry, Harvard Medical School, Cambridge MA

Corresponding authot:
Stephanie Jones
164 Angell St, Room 425

Providence, RI 02912

Stephanie Jones@Brown.edu

Ph: 401-863-5193

Fax: 401-863-7421

Keywords: Beta rhythm, Magnetoencephalography, tactile detection, neural modeling, event related

potential

Running title: Effect of beta events on sensory perception


mailto:Stephanie_Jones@Brown.edu
https://doi.org/10.1101/2021.04.16.440210
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440210; this version posted April 18, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Transient neocortical events with high spectral power in the 15-29Hz beta band are among
the most reliable predictors of sensory perception. Prestimulus beta event rates in primary
somatosensory cortex correlate with sensory suppression, most effectively 100-300ms before
stimulus onset. However, the neural mechanisms underlying this perceptual association are
unknown. We combined human magnetoencephalography (MEG) measurements with biophysical
neural modeling to test potential cellular and circuit mechanisms that underlie observed correlations
between prestimulus beta events and tactile detection. Extending prior studies, we found that
simulated bursts from higher-order, non-lemniscal thalamus were sufficient to drive beta event
generation and to recruit slow supragranular inhibition acting on a 300ms time scale to suppress
sensory information. Further analysis showed that the same beta generating mechanism can lead to
facilitated perception for a brief period when beta events occur simultaneously with tactile
stimulation before inhibition is recruited. These findings were supported by close agreement
between model-derived predictions and empirical MEG data. The post-event suppressive
mechanism explains an array of studies that associate beta with decreased processing, while the
during-event faciliatory mechanism may demand a reinterpretation of the role of beta events in the

context of coincident timing.
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While considerations of regular, sustained oscillations have supported many theories of neural
encoding (e.g. Kay et al. 2009; Fries 2015), neural oscillations often appear only briefly, raising subtle
questions as to precisely if, and how, a transient “rhythm” can pertain to sensory and cognitive
processing (Jones 2016; Cole and Voytek 2017; van Ede et al. 2018). The observation that brain
dynamics are nonstationary (e.g. Jestrovic¢ et al. 2014) — with time-localized spectral energy on
individual trials non-uniformly contributing to time-averaged spectral power — has become a focus
of a number of research efforts (Xing et al. 2009; Jones et al., 2009; Feingold et al. 2015; Jones 2016;
Lundqvist et al. 2016; Cole and Voytek 2017; Shin et al. 2017; van Ede et al. 2018, De Gennaro and
Ferrara 2003)). Modern consensus holds that many brain rhythms tend to occur as sparse,
energetically concentrated events (cf. bursts’) that can have marked influence on waking perception
and behavior.

Transient beta band (15-29Hz) rhythms are one of the most well-established event-/ike
rhythms, observed in sensory (Sherman et al. 2016; Shin et al. 2017), motor (Rule et al. 2017; Little
et al. 2018, Wessel 2020), prefrontal (Lundqvist et al. 2016; Sherman et al. 2016; Lundqvist et al.
2018), and subcortical regions (Feingold et al. 2015), and across species and recording modalities
(Shin et al. 2017). Modulation of beta events, as quantified in event rate or time-dependent
probability density, are associated with memory processes (Lundqvist et al. 2016; Lundqvist et al.
2018), sensory perception (Shin et al. 2017) and motor action in both health and disease (Torrecillos
et al. 2015; Cole et al. 2017; Tinkhauser et al. 2018; Little et al. 2018, Wessel 2020). The neural
mechanisms by which beta events relate to behavior are currently unknown, and their cognitive and
perceptual roles remain in debate (Engel and Fries 2010; Jenkinson and Brown 2011; Spitzer and

Haegens 2017).

* . . . . .

Here, we use “event” rather than “burst” so as not to confuse events with their mechanistic generators, which we
believe to be bursts in upstream sources. Our interpretation of events is as “sequences of bursts”, viz. “bursts of bursts”
where the length of the sequence can be as low as one.
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We have observed that the rate and timing of beta events in magnetoencephalographic
(MEG) and local field potential (LFP) recordings from primary somatosensory cortex (SI) predict
threshold-level tactile perception (Sherman et al. 2016; Shin et al. 2017). Two or more events in a
one-second prestimulus period decreased perception, with perception impaired for 100—300ms after
a beta event (Shin et al. 2017). Here, our goal was to uncover the neural mechanisms underlying this
relationship between beta events and tactile perception. To this end, we applied computational
neural modeling designed to interpret the circuit mechanisms of human MEG (or EEG) signals
based on their biophysical origin (Neymotin et al 2020). In prior research, we applied this modeling
framework to study the neural mechanisms underlying prestimulus SI beta events (Jones et al 2009;
Ziegler et al 2010; Sherman et al 2016) and of post-stimulus tactile evoked responses (Jones et al
2007; Jones et al 2009). Here, we join and extend these prior studies.

We first examine the relationship between prestimulus beta events and evoked correlates of
tactile detection in our MEG data and then combine simulation of beta events and tactile evoked
responses to interpret neural mechanisms mediating this relationship. Our prior study showed that
beta events are generated by synchronous bursts of excitatory synaptic drive to infragranular and
supragranular cortical layers, where the supragranular drive is stronger and lasts one beta period
(~50ms) (Sherman et al 2016). The supragranular drive excites distal apical dendrites of pyramidal
neurons inducing downward dendritic currents to produce a trough of ~50ms duration, which is the
dominant feature of recorded beta events. The bursts of activity generating this supragranular drive
are thought to originate in “higher-order” (cf. “modulatory”, “nonlemniscal”, or “matrix”) thalamus
( Mo and Sherman, 2019, Jones,1998; Jones 2001; Sherman 2016). We hypothesized further that
slow inhibitory currents at the GABAs1. timescale (Otis et al. 1993) are also recruited by these distal-
targeting bursts, based on the observation that inhibitory effects of beta events on tactile detection

last ~100-300ms (Shin et al 2017). By extending our model to incorporate this hypothesis, we were
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able to account for the observed relationship between prestimulus beta events and evoked correlates
of tactile detection, providing a mechanistic explanation as to why beta events often precede non-
detected tactile stimuli. Our simulations predicted -- and further data analysis revealed -- that the
exogenous thalamic drive that generates beta events also creates a brief window of excitation: Tactile
evoked responses occurring during beta events are enhanced, and perception is facilitated, before
the long-timescale inhibition is engaged. The model suggests the beta associated sensory facilitation
and suppression come down to the biophysical ability of SI pyramidal neurons to spike in response
to tactile stimulation, and hence to relay sensory information to other parts of the brain. These
results are discussed in relation to an array of studies that associate beta with decreased processing,
as well as literature that suggests beta may reflect timed prediction and learning of cognitively

relevant stimuli.

Materials and Methods

MEG data collection and analysis

We analyze data from a previous study, where MEG data localized to primary
somatosensory (SI) cortex were collected during a tactile detection task (Jones et al. 2007). Detailed
MEG and behavioral data collection methods can be found in the original study (Jones et al. 2007),
and in a follow up study that analyzed the same data (Jones et al. 2009). Relevant details and data

analysis specific to the current study are described below.

Tactile-detection task
Subject’s (N=10 18—45-year-old adults; 6 female) performed a tactile detection task during
whole-head 306 channel MEG recordings (Elekta Neuromag Vectorview). Data were sampled at

600Hz and bandpassed online between 0.01Hz and 200Hz. Subjects were seated with eyes open and
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focused on a fixation cross in the middle of screen. Each 3 second trial began with a 2kHz auditory
cue presented to both ears for a duration of 2000ms. A tactile brief tactile stimulus was delivered at a
time sampled uniformly from a comb distribution spanning 500—1500ms after cue onset, consisting
of 11 evenly spaced postcue timings. The stimulus consisted of a single sinusoidal tactile pulse
lasting 10ms, delivered from a piezoelectric ceramic benderplate to the tip of the D3 digit of the
right hand. After auditory cue offset, subjects were instructed to press a button with the left hand
(second or third digit) to report whether the stimulus was perceived. Tactile stimulus pulse
amplitude was initially tuned to the individual’s perceptual threshold using the parameter estimation
by sequential testing method (Dat 1995; Leek 2001) and then dynamically maintained to a 50%
detection threshold (Jones et al. 2007). For each individual, the final 100 hit (detected) and 100 miss
(non-detected) trials were isolated for further analysis due to the stability of the dynamics at the end
of the experiment (Wan et al. 2011). In the current study, data were analyzed from 1 second before

to 140ms after the tactile stimulus.

MEG current dipole source localization

Activity from the hand-region of SI was localized using a two-dipole model (SI and SII),
fitting suprathreshold responses with a signal-space projection method (Tesche et al. 1995; Uusitalo
and Ilmoniemi 1997), see Jones et al 2007 for details. The localized SI signal analyzed in the current
study represents a primary current dipole, with units of current x distance (Ampere-meters, Am).
The neural model used in this study, detailed below, was specifically designed to simulate the
primary current dipole signals, with directly comparable Am units, as in the Human Neocortical

Neurosolver software (Jones et al. 2009, Neymotin et al 2020).

Defining beta events and assessing their perceptual effects
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Events in the prestimulus period were identified as regions in the time-frequency plane
whose energy crossed six times the median energy at a given frequency, computed separately for
each individual by convolution with a six-cycle Motlet wavelet (see Shin, et al 2017 for more detailed
methods). In this study we restricted our analysis to events crossing this threshold between 20—
22Hz, following the spectral concentration within the 15-29Hz beta wideband observed in human
somatosensory recordings (Jones et al. 2009; Sacchet et al. 2015). Trials were then partitioned into
those with one or more prestimulus events (event trials) and those without events (no-event trials), after

which we reverified that these narrowband beta events affected perception via the Wilcoxon test.

Evoked response time-derivative estimation

During evoked responses, bias may be introduced by beta events in the prestimulus period (see e.g.
Iemi et al, 2019), and so we did not baseline normalize the evoked responses in this study. Instead,
we examined both raw data and time-derivatives — these yield baseline-free comparisons of dipole
changes from active membrane processes. We used total-variation regularized differentiation, which
corrects noise amplification in first-difference estimates of time-derivatives while preserving jump
discontinuities (Chartrand 2011) observed in MEG data, without linear filtering artifacts. We fixed

the regularization parameter at 10° based on visual inspection of regularized fits to two trials.

Post-stimulus phase coberence

For post-stimulus intertrial phase-coherence analyses, we first filtered the data in the frequency band
of interest. To assure robustness of the results, we used both Chebyshev and Butterworth filters in
nearby frequency bands. For the phase coherence analysis over the low frequency 18-24Hz band in
Figure 10B, results from a 3" order Butterworth filter are reported (a 20-22Hz Chebyshev filter with

10dB within-band ripple gave similar results), while for the phase coherence over the higher
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frequency 160-200Hz band in Figure 10G/H, we used a Chebyshev filter with 10dB within-band
tipple (a 3" order Butterworth filter at 178--197Hz yielded similar results, but higher-order
Butterworth filters were numerically unstable). The same Chebyshev filter was applied to both
model and MEG data in Figure 10H. After bandpassing, we computed the (7.5. nonlocal) Hilbert
transform for each trial, computed the complex unit vectors associated with each timepoint (with
phase given by the complex angle of the unit vector), and then found cross-trial phase coherence as

the modulus of the complex mean of unit vectors over trials.

Computational Neural Model Construction and Analysis
ST circuit model

We adapted the model structure from Jones et al. 2009 to reflect additional anatomical and
physiological detail. Several changes to the 2009 model’s free parameters led to improved data fits
and were informed by use of the Human Neocortical Neurosolver software (Neymotin et al. 2020).
HNN freely distributes all of the code from the 2009 model, from which the current parameters
were adapted. A description of differences between Jones et al. 2009 and the current model is in
Supplementary Materials and Methods, and a direct comparison between parameters in each study
are in Supplementary Table 1.

In brief, the model represents a layered cortical column with multicompartment pyramidal
neurons and single compartment inhibitory neurons in supragranular layers 2/3 (1.2/3) and
infragranular layer 5 (L5), synaptically coupled with glutamatergic and GABAergic synapses (Figure
1).

The MEG signal studied is generated by a primary current dipole localized to SI. As
described in detail in prior studies (Jones et al. 2007; Jones et al. 2009; Neymotin et al. 2020), the

primary current dipole signal is simulated by net intracellular current flow in the pyramidal neural
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dendrites in the direction parallel to the apical dendrites, multiplied by the length of the cell, and
summed across all pyramidal neurons (see red arrows in Figure 1B). These intracellular currents are
generated by the interaction of active and passive membrane properties and synaptic dynamics.
Synaptic strengths in the current model are detailed in Figures and all other parameters used are
detailed in Supplementary Table 1. The units of measure of the simulated primary current signal are
directly comparable to the source localized MEG data (current x distance, Am), where a scaling
factor is applied to the net response to match the amplitude of the recorded signals and provides an
estimate of the size of the network contributing to the recorded response, described further below.
Details of how the evoked responses and beta events were simulated in the model are
described in the Results section. Further details are in Supplemental Computational Model Methods,

and a discussion of modeling limitations and parameter robustness are in the Discussion section.
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Figure 1 SI computational neural model A) Model 3D pyramidal geometry shown approximately
to scale. B) Reduced circuit schematic, with somata indicated in darker brown. Maximal

conductances for each synaptic site are given in multiples of 10° nS/cm’ Red arrows indicate the
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source of the primary current dipole calculated from the intracellular current flow in the pyramidal
neuron dendrites. The units of measure of this signal are directly comparable to MEG data (Am). C)
i) Schematic of lateral connections between pyramidal cells with synaptic weights labeled. i)

Schematic of lateral connections among interneurons.

Comparing MEG and Model Evoked Responses

Our initial analysis of the SI MEG tactile evoked responses relied on finding time-localized
differences between event and no-event trials, and between hit and miss trials (see Figure 3), which
we used to focus the model examination. The statistical methods for this comparison, and for the
validation of the model-derived prediction on phase coherence among evoked responses (Figure 10),
are described here. In both cases, because the number of statistical tests is equal to the number of
timepoints, multiple comparisons correction is accounted for by adopting a modified max-t test to
limit familywise error rate, as follows:

Let X be a data matrix with X (i, t) representing the observation at time t during trial i. Here
X (i, t) will be some property, such as current dipole ot instantaneous phase, of a MEG signal from
a single source-localized channel (real or modeled) at time ¢ on trial i. Let L be vector of labels with
L(i) representing the label for trial i. Here L € {0,1} will indicate a behavioral outcome or
prestimulus event, i.e. a correct detection or a beta event, for trial i.

We use permutation tests to test the null hypothesis that the labels and the data at time t are
independent (or, more generally, that the labels are exchangeable given the data, at time t). For
current dipole data our test statistic is the difference between the average current dipole on trials
with label 1 and the average current dipole on trials with label 0. For instantaneous phase data our
test statistic is the difference between the phase coherence on trials with label 1 and the phase

coherence on trials with label 0.
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Permutation tests work by randomly shuffling the trial labels and recomputing the test
statistic for nonsensically labelled data many times in order to obtain a null distribution. The
observed test statistic (on the correct trial labels) is compared to this null distribution in order to
obtain a p-value. We report two-sided p-values in all cases and use at least 5000 permutations. See
(Lehmann and Romano 20006) for more details about hypothesis testing and permutation tests. We
use the same trial label permutation for testing each time t (i.e. the shuffling is performed on entire
time-series, not independent time points). This is important for our method of controlling for
multiple hypothesis tests, described next.

Because we are testing a separate null hypothesis at each time t, we controlled for multiple
hypothesis tests using a variant of the max-t method, which creates a global test statistic by taking
the maximum (for the upper-tail) and minimum (for the lower tail) of the test-statistic over all times
t, and then creates a null distribution (one for each tail) in the usual way by shuffling trial labels. The
observed test statistic at each time t is compared to these common, global null distributions in order
to create adjusted p-values that provide strong control of the family-wise error rate. Rejecting those
null hypotheses with adjusted p-values < @ guarantees that the probability of zero false rejections is
= 1 — a. See (Westfall and Young 1993; Nichols and Hayasaka 2003) for more details about
permutation tests and multiple testing.

Our variant of the max-t method robustly standardizes the test statistics at each time t prior
to computing the maximum (or minimum) in order to more evenly distribute statistical power across
all of the hypotheses. The specific details of our procedure can be found in (Amarasingham et al.

2011 Nov 18) .

Results
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Human MEG reveals a relationship between prestimulus SI beta events and tactile
detection
A Single Narrowband Prestimulus Beta Event is a Signature of Decreased Tactile Detection

We had previously shown in human MEG and mouse LFP that two or more prestimulus
15-29Hz S1 beta events yield a bias toward non-detection of a perceptual threshold-level tactile
stimulus (Shin et al. 2017). Beta events were defined as periods with power above a 6x-median
threshold in the time-frequency plane and typically lasted <150ms (see Materials and Methods;
Figure 2A). Though the presence of a single 15-29Hz event did not significantly influence detection
(Shin et al. 2017), we observed that human beta events tend to concentrate in a narrowband near
20Hz (e.g. Figure 2A; note that in the figure, power is above 6x-median in the 20-22Hz band but
peaks near 18Hz). When restricting our analysis to the 20-22Hz range, trials with one or more
prestimulus beta event (event trials) were associated with lower detection probabilities compared to
no-event trials (8/10 participants Figure 2B, p < 0.01; Wilcoxon rank-sum test; in total: 502 event
trials (295 miss, 207 hit) and 1498 no-event trials (705 miss, 793 hit); per-subject mean and standard
deviation 50.2 = 9.5 event trials, 148.8 = 9.5 no-event trial; median reduction 10%; maximum

reduction 28%).
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Figure 2: Prestimulus beta events are associated with lower near-threshold detection

probabilities in human SI. A) Example trial with a beta event in i) the time-domain with beta
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event in black (stereotypical beta cycle is highlighted in green) and ii) as a wavelet spectrogram with
event timespan highlighted. B) Detection probabilities for all participants. Boxes show interquartile
ranges. Orange bars and triangles represent median and comparison intervals respectively; see
Methods. A beta event with > 6 median power at 20—22Hz in the prestimulus period reduces
detection probability (p < 0.01; Wilcoxon rank-sum test) by approximately 10% on average, and on

an individual basis a prestimulus beta event alters detection probability in a range of -28% to +7%.

Amplitude and slope differences in the 80-110ms post-stimulus time period link beta events and correlates of detection
in the tactile evoked response

Our prior studies showed that the tactile evoked waveform has a slower rise and smaller
amplitude after the earliest prominent trough at ~70ms on non-detected trials (Jones et al. 2007).
These results are refined in Figure 3A, where the regularized time derivative of the signal differed
between detected (hit) and non-detected (miss) trials at ~75-97ms post-stimulus (Figure 3A; inset),
with smaller derivatives, and smaller waveform amplitudes from ~87-140ms on miss trials (Figure
3A; yellow: p < 0.05; permutation test, uncorrected; green: alpha = 0.05; FWER-corrected
permutation test)). We next set out to understand if prestimulus beta events influence the evoked
response in a similar manner, indicating a potential causal relationship between beta generating
mechanisms and detection. We found that the two perceptual effects described above were also
observed when comparing prestimulus event and no-event trials (Figure 3B). Prestimulus events led
to a slower rise ~80-95ms post-stimulus, (Figure 3B inset), and to smaller evoked amplitude from
~98-113ms (Figure 3B; yellow bars; p < 0.05; permutation test, uncorrected). Figures 3C and 3D
highlight the similarities further by plotting the no event and hit trials together, and the one or more

events and miss trials together.
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We note that the due to the small amplitude threshold level stimulus used in this study,
earlier components of the evoked response (< 70ms) are difficult to distinguish in the macroscale
current dipole signals, and circuit difference may not be visible in the recorded MEG signal.
However, our modeling results below showed clear differences at the cellular level on trials with and
without beta events beginning at ~25ms post-stimulus. We further note that the lower amplitude
baseline at time zero on miss/beta event trials (Figure 3A/B) is consistent with the assumed beta

generation mechanisms which creates downward deflecting SI current dipoles (see Figure 5 below).
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Figure 3: Human tactile evoked responses conditioned on prestimulus beta events and
perception. A) Mean evoked responses for detected (hit) and nondetected (miss) trials. B) Mean
evoked responses for trials with (one or more events) or without (no event) a prestimulus beta
event. Significance is reported both pointwise in yellow (p < 0.05; permutation test) and after

FWER-correction in green (« = 0.05; modified max-t test; see Methods). Iusets: Mean evoked
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response time-derivatives (after total-variation regularization; see Methods). C) Overlay of hit and

no event trials. D) Overlay of miss and one or more event trials.

Computational modeling shows burst mechanisms producing SI beta events also generate
the observed relationship between beta events and correlates of detection in the tactile

evoked response

Having established an empirical relationship between prestimulus beta events and tactile
detection (Figure 3), we next sought to understand circuit mechanisms by which this could occur
using our computational neural modeling framework. We begin with a review of how evoked

responses and beta events are reproduced in the model and then simulate them together.

Simulating a tactile evoked response

To model the tactile-evoked response, we simulated a sequence of external drives to the
local cortical network through layer-specific pathways based on known sensory evoked inputs to SI,
as in our prior studies (Jones et al. 2007; Jones et al. 2009; Ziegler et al 2010; Sliva et al 2017;
Neymotin et al 2020) and reviewed here (Figure 4A, Supplementary Table 1). Sensory input first
arrives from the periphery through the lemniscal thalamus to granular layers at 25ms and then
propagates directly to the supragranular and infragranular layers. This initial cortical input is
simulated with a “proximal” or “feedforward” synaptic drive to the local network (Figure 4A, left).
To reflect the threshold nature of the task, the strength of this feedforward drive was tuned to create
minimal spiking in the L.2/3 cells, and to not cause L5 cells to spike. Spiking in the 1.2/3 pyramidal
neurons then creates backpropagating action potentials and generates a small positive deflection in

the current dipole response (recall that the size of the response is proportional to the length of the
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dendrites). This is followed by recurrent inhibition at the soma that pulls current down the dendrites
and generates a small negative deflection. Note that, while this early response is observed in the
model, it is obscured in the macroscale MEG data (Figure 3) which represents activity averaged over
a larger network, as discussed further below.

At 70ms, excitatory feedback synaptic inputs — likely originating in SII (Cauller and Kulics
1991) — arrive at supragranular targets, activating 1.2/3 interneurons and 1.2/3 and L5 pyramidal
neuron tufts (see distal /feedback synaptic drive in Figure 4A; middle). This drive initially pushes
current flow down the pyramidal neuron dendrites in both layers to generate a negative deflection
near 70ms. Subsequently, the pyramidal neurons in both layers generate persistent action potentials
(via local recurrent synaptic excitation) that propagates up their apical dendrites to induce a positive
deflection between ~80-120ms. At 135ms, a second, stronger “feedforward” input is presumed to
arrive as part of an induced thalamocortical loop of activity (see proximal 2 /re-entrant synaptic
drive in Figure 4A right). This drive once again generates spiking in the pyramidal neurons, that
propagates up the dendrites to induce a late positive deflection near 140ms. The raw SI current
dipole response (gray) and net spiking activity in each cell population during this sequence of
external perturbations are shown in Figure 4B, where black arrows mark the times of the exogenous
drive. A smoothed version and comparison to the MEG measured SI evoked response are shown in
Figure 4C/D. This smoothing account for spatiotemporal averaging that occurs when recording the

response over a large heterogeneous network in the data as compared to the model.

Importantly, in tuning the model parameters, we began with the evoked response parameters
used in our prior modeling study (Jones et al 2009). We then adjusted the evoked response proximal
and distal input parameters until a single set of input parameters could produce both the event and

no event waveforms as observed in our data, particularly the difference between event and no event
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cases near ~100ms, as in Figure 3B (see comparison of parameters used to those in Jones et al 2009;
Supplementary Table 1). This single set of input parameters was applied in all simulations; posz boc
model tuning was not performed for quantitative data fits (Figure 9) or predictions in subsequent
analyses (Figure 10).

A scaling factor is applied to the model output (reported in picoampere-meters; pAm) to
match units and amplitude in the data (the standard nanampere-meters; nAm), under assumption
that the empirical MEG signal is produced by larger populations of synchronous cortical pyramidal
neurons than the 200 simulated pyramidal cells. We use this scaling factor to estimate the size of the
network that contributes to the recorded response (Jones et al. 2007; Jones et al. 2009; Neymotin et

al 2020).
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Figure 4: The SI model qualitatively reproduces the MEG-measured SI no-event/hit evoked
response A) Schematic of the feedforward/feedback exogenous input sequence reproducing the
somatosensory evoked response. Sites of proximal glutamatergic “feedforward” input are shown in
blue and sites of distal “feedback” inputs in green. Pyramidal cells have three proximal sites (two on
the basal dendrites, one on the oblique dendrite), each with the weight indicated here. B) Spike
histograms and raw sensory evoked response from the model at rest (i.e. without a prestimulus beta
event): arrows same as in (A). C) The same model evoked response after smoothing by convolving
with a 45ms Hamming window. D) MEG evoked response averaged over all hit trials without a

prestimulus beta event.

Stmulating beta event generation and hypothesized recruitment of long-time scale supragranular inhibition
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We have previously shown that 50ms bursts of excitatory synaptic input arriving at
supragranular layers (i.e. the apical tuft arborization of cortical pyramidal neurons) can explain the
prominent negative deflecting peak of the beta event waveshape, see Figure 2Ai (Sherman et al.
2016). Spiking in SI pyramidal cells is not needed to explain these macroscale beta event features,
which can arise from the summed subthreshold activity of pyramidal neurons over a large spatial

extent. The upstream region creating this burst of input is unspecified in the model. However, a

» <C
b

likely source is “higher-order” (cf. “modulatory”, “nonlemniscal”, or “matrix”) thalamus ( Mo and
Sherman, 2019, Jones,1998; Jones 2001; Sherman 2016). This hypothesis is bolstered by a line of
work showing that nonlemniscal thalamic spikes generate subthreshold effects on both 1.2/3 and
L5b apical dendrites in mice (e.g. Wimmer et al, 2010; Viaene, Petrof and Sherman, 2011; Audette et
al, 2017). Importantly, these thalamic inputs concurrently recruit supragranular interneurons,
including VIP+ interneurons and potentially other 5SHT3a+ interneurons with cell bodies in 1.2/3
(Audette et al. 2017). The effects on the burst input on the cortical interneuron subnetwork were
not accounted for in our previous model (Sherman et al, 2016). Here, we included recruitment of
supragranular layer interneurons to examine if and how their recruitment may impact the beta event
waveform shape and the relationship between beta events and tactile perception, based on the
following motivation.

In brief, the “default” state of cortex is thought to involve tuft inhibition of pyramidal
dendrites by apical dendrite-targeting interneurons, e.g. somatostatin-positive (SOM+) interneurons
(see Scheyltjens and Arckens, 2016; Figure 5Ai). The immediate higher-order thalamic action on
supragranular cortex appears to be disinhibition -- e.g. VIP+ removal of SOM+ inhibition, with

calretinin and calbindin playing analogous roles in many primate studies (Meskenaite, 1997;

DeFelipe, 1997; Barbas et al, 2018; see also Melchitsky and Lewis, 2008; Krienen et al, 2020) -- and
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subthreshold pyramidal excitation as mentioned above' (Figure 5Aii). Yet, on longer timescales,
strong stimulation of rodent thalamic homolog Pom (see Krubitzer and Kass 1992 ) profoundly
reduced sensory-evoked spiking in rodent barrel cortex (Castejon et al. 2016)(Chou et al, 2020),
suggesting that the thalamus may act on cortex at multiple timescales by first facilitating and then
suppressing activity.

We therefore hypothesized that the thalamic inputs responsible for beta event generation
elicit long-timescale inhibition of cortical pyramidal neurons (Figure 5Aiii). Noting that the tactile
suppression timescale of ~300ms (Shin et al, 2017) corresponds to that of GABAgi. G-protein
coupled inhibition, we furthermore proposed that 1.2/3 neurogliaform (NGF) cells are one pathway
that can mediate this effect (Figure 5Aiii). NGFs are represented among 5SHT3a+ interneurons in
1.2/3 and are coupled to all other interneuron populations via gap junctions (Olah et al. 2009),
Figure 5Aiii. Direct recruitment of NGFs through nonlemniscal bursting is therefore plausible
(Audette et al. 2017), but local neurogliaform cells can also be influenced to spike through electrical
coupling — thalamic-burst VIP+ recruitment is arguably the single most likely means of activating a
gap junction mediated NGF “circuit-breaker” in 1.2/3. Neurogliaform cells then act perisomatically
on 1.2/3 pyramids, either postsynaptically (Kawaguchi and Kubota 1997; Simon et al. 2005;
Opverstreet-Wadisch and McBain, 2015; but see also Tremblay, Lee and Rudy 2016) or through
volume transmission (Olah et al. 2009; Overstreet-Wadisch and McBain, 2015; but see also
Chittajallu, Pelkey, and McBain, 2013) and on middle-apical dendrites of L5 pyramidal cells (cf.
Pérez-Garci et al. 2000). The same effect can be driven by recruitment of those L1 NGFs whose

axons ramify mainly in 1.2/3 (see Figure 3B1 in Wozny and Williams, 2011; cf. Fan, et al 2020).

" Of these, only the excitation will substantially affect the dipole as the resting (disinhibitory) potential is near the
chloride reversal (GABA, inhibitory) potential. We therefore do not explicitly model the SOM+/VIP+ interaction.
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While the above provides motivation for our model assumptions, we do not assume
thalamic bursts are the sole means of causing slow inhibition of the cortical circuit (see Figure 9 and
associated discussion), or that NGF cells the only interneuron type that can mediate the slow
inhibition. Astrocytes represent another potential source of bulk GABA release that could mediate a
GABAg effect, and another candidate for non-GABAg slow inhibition is slow post-inhibitory
rebound bursting in SOM+ cells (Audette et al. 2017). Presynaptic GABAg time constants are an
order of magnitude slower than our behavioral observations (see Pfrieger et al, 1994) and not
considered here. The key necessary assumption in the model is that slow inhibition acts on 1.2/3
pyramids perisomatically and on the mid (or as effectively distal) apical dendrites of the L5
pyramidal neurons, as shown in Figure 5B.

Given the above, we simulated a beta event and its recruitment of slow inhibition as follows.
Burst of spikes simultaneously activate excitatory synapses in the SI circuit in a proximal and distal
projection pattern, as shown in Figure 5B/Ci and Cii. The proximal drive could emerge from the
same higher order thalamus (e.g. see Audette et al. 2017) or from coactivity in a lemniscal thalamic
source projecting to granular and infragranular layers. This excitatory drive induces subthreshold
currents up and down the pyramidal neuron apical dendrites to generate the beta event waveform
shape (Figure Ciii). In addition to subthreshold activation of the pyramidal distal dendrites, the
supragranular drive elicits spiking in the 1.2/3 inhibitory neurons (Figure 5B/C). The inhibitory
population is a collapsed representation of interneurons that produce both fast and slow inhibition,
e.g. parvalbumin and NGF cells. To represent recruitment of slow inhibition, we simulated a
GABAg “synapse” from 1.2/3 inhibitory cells to the L5 pyramidal neuron middle-apical dendrite in
event trials (Figure 5B). All other aspects of the model were identical in event and no-event trials
(see Supplementary Table 1 for parameter values and a comparison to earlier model results

(Sherman et al. 2016), further results in Supplementary Figures 1 and 2). Figure 5D summarizes the
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time dependent effects of this beta generation mechanism on a tactile evoked response, as detailed

below.
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Figure 5: Simulating beta events and the associated recruitment of inhibition in the
SI model A) Idealization of the SI circuit activation pattern before, during and after a beta event.
i) Before an event, SOM+ cells are active, inhibiting the pyramidal dendritic tuft. ii) During an
event, a thalamic burst induces the VIP+ activation that inhibits SOM+ and activates NGFs via gap

junctions, and also excites tufts of pyramidal dendrites, generating a downward current dipole. iii)
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Neurogliaform cells activate metabotropic GABAg receptors, with a delay in inhibition due to their
intrinsic dynamics and the slow rise time of GABAg currents. Individual interneuron types are not
explicitly modeled. The essential model features is simulation of interneuron firing that generates
GABAg currents at the time of the beta event trough. B) Model of incident thalamocortical burst
through proximal and distal project pathways, with weights onto cell compartments specified. C)
Model implementation of the thalamic burst generating a beta event i). Histogram of spikes incident
on the distal (green) and proximal (ii, blue) dendrites of the cortical pyramidal and inhibitory
neurons, as shown in (B), which generate the simulated beta event. iii) Corresponding current
dipoles with concurrent spike histogram. Only the model 1.2/3 inhibitory neurons fire action
potentials during a beta event. Activation of these interneurons causes GABAgi, inhibition on
pyramidal neurons, as shown in (B; red). iv) Time-frequency representation of the simulated beta
event. The resulting time-dependent modulation in circuit sensitivity to tactile evoked input is
schematized in (D).
Model reproduces the relationship between beta events and tactile evoked responses via multiple latency-dependent effects
Next, we simulated a tactile evoked response during and after a beta event. Our prior work
showed that on average events are nearly uniformly distributed across the 1000ms prestimulus
period (Shin et al. 2017). We inferred that some events were also likely to occur in the peristimulus
interval before and at the time of the arrival of the tactile stimulation to the cortex at 25ms, and
therefore modeled beta event centers as occurring between -975ms to 25ms at 100ms increments
(t=0 1s tactile stimulus onset). We assumed that the macroscale beta events have a dominant impact
on the tactile evoked response and for simplicity no inputs were provided to the model other than
the thalamic burst drive (Figure 5) and the tactile input sequence (Figure 4). However, similar
results were obtained with subthreshold noise inputs to the pyramidal neurons, see Supplementary

Figure 3.
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There were multiple latency-dependent effects that, when averaged, reproduced the
relationship between prestimulus beta events and the MEG SI evoked response (Figure 6A/B).
Specifically, the rise after the prominent ~70ms peak was slower and the amplitude of the response
around 90ms was smaller for the event trials in both the model and MEG data (compare Figure 6A
and B, see also Supplementary Figure 4 for time derivatives). Additionally, the model yielded a lower
baseline dipole in the event condition, which is also visible in the MEG data (compare Figure 6A
and 6B near Oms). This initial activity reflects the net downward dipole current occurring during and
after a beta event (Figure 5).

A closer look at the latency dependent effects reveals three different evoked response
patterns, as color coded in Figure 6Eii: we denote these Class 1 (green), Class 2 (red) or Class 3
(blue); smoothed overlaid responses are shown to the right (see also Supplementary Figure 4). Model
Class 1 responses occurred when the thalamic burst and tactile stimulus coincided in SI. Here, the
model generated more prominent early dipole activity near 40ms than at other latencies. Class 2
responses occurred when the stimulus arrived between ~50ms-400ms after an event trough. Here,
the initial dipole response to the initial feedforward input is neatly flat, with a unitary downward
deflection at the time of the 70ms feedback input. Class 3 responses occurred when the stimulus
arrived >400ms post-beta-event. These evoked responses were comparable to the no-event
responses shown in gray, indicating that the effect of the beta generating mechanisms had worn off
after 400ms. Averaging the Class 1 and 3 trials together as model “hit” trials and Class 2 as model
“miss” trials reproduced the empirical hit/miss trials without further model tuning (Figure 6C/D);

motivation for and further testing of these groupings is detailed in the next Section.
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Figure 6. The SI model reproduces the relationship between beta events and tactile evoked
responses through three latency-dependent effects A) Model evoked responses averaged over
all 11 latencies in (Eii) compared to the evoked response from rest (no event). B) Human MEG SI
tactile evoked responses averaged over all trials with or without a beta event in the prestimulus
period, as in Figure 3B. C) Model evoked responses averaged over class 1 and class 3 trails (assumed

hit trials), and over class 2 trials (assumed to be miss trials) D) MEG SI tactile evoked responses
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averaged over detected (hit) and non-detected (miss) trials. E) Effects of beta events on model
evoked responses depend on latency from the event. i) Beta event depicted from event onset to
1000ms after event onset (otherwise identical to Figure 4C). ii) left: Raw model evoked responses as
a function of latency from event onset. (1) and (ii) are aligned such that (i) is the dipole during and
following the event and (ii) is the evoked response when the first sensory input arrives in SI at the
timepoint shown in (i). This +25ms shift accounts for conduction delay from the periphery. Time
axis in panel ii is the same as in Figure 4A/B. Evoked responses from rest represent no event trials
and are shown in grey for comparison. Color-coding represents a by-eye classification of response
types. These three latency-dependent patterns are subsequently referred to as Class 1, Class 2 and
Class 3 evoked responses. Right: Smoothed model evoked responses, corresponding to the 11 raw
latency-dependent responses in (Eii). Pointwise significance is shown in yellow (p < 0.05;
permutation test) and after FWER-correction in green (« = 0.05; standardized uniform-norm

permutation test; see Methods).

What are the precise circuit mechanisms underlying the close agreement between the model

and data, and how might they causally relate to detection?

We next provide a detailed explanation of the circuit mechanisms generating the model
response classes. This examination leads to several new predictions that can be tested with the
empirical data. We first examined model spiking activity for each cell type during each class of
response and inferred how these responses may correspond to detection correlates in our MEG
data.

Figure 7A shows spike histograms for each cell type along with raw (lighter) and smoothed

(darker) net current dipole during each evoked response class. Layer specific responses are shown in
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panels B (12/3) and C (L5). In all panels, spike rates and dipoles are averaged over all latencies for a

given class.
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Figure 7: Network spiking activity during three different evoked response classes. A) i.
Class 1 evoked response averaged over each layer for 101 latencies, using a 10ms rather than the
100ms resolution in Figure 6, and corresponding spike histograms for each cell type in the model.
ii.and iii). Same as (i), but for Class 2 and Class 3 responses. The Class 1 response shows early and
persistent spiking, while the Class 2 response shows suppressed spiking. B and C) Contributions
to the net current dipole response from 1.2/3 and L5 separately. (i) During the Class 1 response,
1.2/3 contributes to the early dipole and L5 to the later dipole. (ii) During Class 2 responses, 1.2/3
shows a prominent dipole deflection despite suppression of action potentials in both layers. (iii) The
Class 3 response is similar to the no beta response in Figure 4C. In each panel, the thin curves show
the raw dipole waveform before smoothing and the units of the smooth curve are multiplied by 10

to match the amplitude of the raw dipole.
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Class 1 responses show early spiking activity and are predicted to be bit trials

During Class 1 responses, feedforward sensory input coincides with depolarization from
beta-event excitation of 1.2/3 pyramidal dendritic tufts and stimulus-driven feedforward inputs on
the basal dendrites (Figure 7A-Ci, see also Figures 4/5A). This combined excitation is marked by
early spiking activity all 1.2/3 cells that spreads to spiking activity in all L5 cells, where the spiking
persists for a longer period (Figure 7B-Ci). Backpropagating pyramidal action potentials generate the
primary positive deflection in the Class 1 dipole response with a high-frequency MEG signature in
the unsmoothed signal (green curve Figure 7A) .

It is well-known that the excitatory pyramidal neurons in the neocortex relay information to
upstream areas including higher order cortical areas, as well as to motor initiation zones, and their
activation is critical to somatosensory processing (Vecchia et al, 2020). The high levels of pyramidal
spiking activity in the model Class 1 response suggests that tactile information is quickly relayed out
of SI to upstream structures, which ultimately allows for registration and report of a stimulus. This
finding therefore led us to hypothesize that Class 1 trials correspond to hit trials in our MEG data
(Figute 6C/D), and yields a high frequency component that will later aid in validating this prediction

with the MEG data.

Class 2 responses show a complete abolishment of spiking activity and are predicted to be non-detected (miss) trials
Class 2 trials (Figure 7Aii, Bii, and Cii) were characterized by a near-complete absence of
spikes in pyramidal cells of both layers (although isolated doublets from single cells in L5 appeared
between 80 and 100ms late in the suppression period). The only spiking response from the initial
feedforward input was in 1.2/3 interneurons — a population that had already been activated by a

beta event. Note that the spikes appearing near 0, 10, and 20ms before the ~25ms feedforward
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input in Figure 7Bii are from the beta-generating thalamic drive. Prestimulus recruitment of these
interneurons is responsible for preventing spiking activity in both 1.2/3 and L5 mainly via the
GABAg hyperpolarization.

The observed lack of firing in the pyramidal neurons suggests that, during the Class 2
responses, information about the presence of a tactile stimulus does not exist in SI and thus is not
relayed to upstream structures to register and report detection of the stimulus. This finding led us to
the hypothesis applied in Figure 6C (and tested further in our MEG data below) that Class 2 trials

correspond to miss trials in the MEG data.

A closer excamination of the mechanisms creating the Class 2 current dipole response

Given that Class 2 responses exhibit a complete lack of pyramidal neuron firing, it is
somewhat surprising and non-intuitive that there remains such a strong negative deflection in the
dipole response (red curve, Figure 7A). Here, we provide a detailed examination of the layer-specific
circuit mechanisms underlying this response. The membrane potentials in each compartment of
example 1.2/3 and L5 pyramidal neurons at ~70ms post-stimulus during a simulated evoked
response, without and with a prestimulus beta event, are shown in Figure 8A and 8B respectively.
The lack of spiking in 1.2/3 pyramidal neurons after a beta event was due to petisomatic inhibition
evoked by the thalamic-induced spiking in the 1.2/3 inhibitory neurons (recall Figure 5; compare
1.2/3 somatic responses in Figure 8Ai/Bi). The lack of spiking in the L5 pyramidal neurons was due
to a combination of two processes. One was a lack of excitatory drive from 1.2/3 to L5 pyramidal
neurons, as the 1.2/3 pyramidal neurons did not spike. The second was the 1.2/3 inhibition of the
L5 pyramidal mid-apical dendrites (see connection in Figure 5A). This inhibition created GABAg-
mediated attenuation of the L5 response to the 70ms feedback input (compare response in L5 apical

dendrites in Figure 8Aii/Bii; note, inhibitory interneuron spiking that provides GABAg input in
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Figure 8Bii pink shaded regions). In comparison, without a beta event (Figure 8A), L5 pyramidal
neurons exhibit a calcium-mediated dendritic burst in response to the 70ms feedback input. This
burst starts in the distal dendrites and propagates to the soma (indicated with numbers 1-3 in Figure
8Aii) creating a downward deflecting dipole current near 70ms. We note in this simulation that the
calcium-mediated dendritic burst (Figure 8Aii) is only present during the evoked response and not
during the beta event generation due to the fact that the conductance of the AMPA drive from the
evoked top-down distal input at ~70ms is an order of magnitude larger than the conductance from
the thalamic burst generating the beta event, which was specifically tuned so that the response in the
pyramidal neurons remains subthreshold (5000pS during evoked distal input, see Figure 4, and
400pS during the beta event, see Figure 5).

To understand why the model Class 2 response exhibited a prominent ~70ms deflection
without pyramidal neuron firing, we first recall that this peak was created solely by L. 2/3 dipole
response (Figure 7B, red curves). We examined the difference between 1.2/3 membrane potentials
during no-event and event evoked responses (Figure 8Ai, 8Bi, respectively). Remarkably, the large
dipole deflection for Class 2 responses in beta event trials was caused by downward-propagating
dendritic spikes in 1.2/3 pyramidal cells that were actively attenuated at the soma by GABAg
suppression; this suppression was not present in the no event case (compare somatic responses in
Figure 8Ai/Bi). The voltage difference between the dendritic and somatic compartments creates a

large, downward intracellular dipole current in the Class 2 trials (see red arrows Fig 8Bi).
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Figure 8: Model Class 2 responses are created by active attenuation of dendritic spikes by
strong somatic inhibition. A) Membrane potentials are shown for each compartment of exemplar
model pyramidal neurons within L. 2/3 (i) and L5 (ii), responding to stimulus evoked “top-down”
feedback arriving 70ms after stimulus onset, without a prestimulus beta event, and with a
prestimulus beta event (B). Without a beta event, the 70ms feedback input generates dendritic
spikes in the pyramidal neurons that propagate to the soma to create negative deflecting dipole
currents. Indices 1-3 denote the temporal ordering if of the L5 burst. With a beta event, event-
evoked GABAB;, inhibition (Bi) prevents dendritic spikes from reaching the axon initial segment
(considered as patt of the somatic compartment) in 1.2/3 pyramids creating large downward dipole
currents that generates the Class 2 evoked response shown in Figures 6B and 7, and (Bii) attenuates
the feedback response to L5, which prevents any activity in L5 pyramidal neurons. Sites of inhibition
are shaded pink; interneurons are not shown. Red arrows in (Bi) show that the difference in voltage

between the soma and dendritic trunk in 1.2/3 pyramids creates an effectively maximal dipole.
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Class 3 responses show spiking activity similar to no beta event responses and are predicted to be detected (hit) trials

Class 3 trials (Figure 7Aiii, Biii, Ciii) occurred at latencies where the inhibitory effect during a
prestimulus beta event had effectively worn off (i.e. >400ms after the beta event), and waveforms
were similar to no-event trials (compare to Figure 4). Details of how the current dipole waveform
was generated in this case are described in the description of Figure 4. This finding led us to the

hypothesis applied in Figure 6C that Class 3 trails correspond to hit trials in the MEG data.

Testing two essential model-derived predictions in the MEG data: (i) Class 1 evoked
responses correspond to hit trials, and (i) Class 2 evoked responses correspond to miss

trials (Figure 6C/D)

Testing Model Prediction i: Class 2 evoked responses correspond to miss trials in the MEG data

To test this prediction, we compared simulated Class 2 evoked responses to averaged evoked
responses on miss trials in MEG data. Remarkably, the Class 2 model evoked response was in
immediate visual agreement with the averaged evoked response on miss trials with or without a
prestimulus beta events (Figure 9). The similarity of the average response on miss trials without an
event suggests similar inhibitory mechanisms can and do occur in no-event cases. A linear regression
of the model Class 2 response onto the mean response of miss trials revealed similar regression
coefficients for each condition and for the average (+*=0.74, 0.83, 0.86, respectively; corresponding
scaling factors matching the data amplitude are also shown in Figure 9, see detailed methods of
correlating Class 2 model waveforms and MEG miiss trials in Supplementary Materials and
Methods). The model scaling factor is approximately 2000 in all cases; this suggests that

approximately 200,000 pyramidal neurons in 1.2/3 (100 cells in the model multiplied by this factor)
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are needed to generate the Class 2 response (as L5 did not generate significant dipole activity; see

Figure 7Bii).
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Figure 9: Model Class 2 responses correlate with miss trials. A. The model Class 2 response
directly correlates with the average MEG response for miss trials, with or without a prestimulus
beta event. The legend (right) indicates the model (thick lines) and MEG data distributions (thin
lines; shading indicates standard error of the mean) for trials with and without events, and for all
trials in aggregate. The model was fit by regressing directly onto the empirical means, and the
corresponding 1 values and fitting parameters confirm a consistent agreement between model Class
2 trials and miss trials in MEG. Inset are scaling factors: multiplying these by 100 (the number of
L.2/3 pyramidal cells in the model) indicates that 200,000 L.2/3 pyramids ate sufficient to generate

these dipoles.
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Testing Model Prediction ii: Class 1 evoked responses correspond to hit trials in the MEG data, and are biased to
ocenr during the falling and trongh phases of a beta event.

We expected Class 1 evoked responses to be rare in our MEG data, as they were not visible
in hit trial averages (compare Figure 3B and Figure 7A1) and because pre-stimulus beta events
themselves were observed in only 25% of trials (502 event trials, 1498 no-event trials). However,
model details provided several quantifiable targets to find correlates of Class 1 evoked responses (see
Figure 10A), and to test the prediction that they are predominantly hit trials.

First, the model predicted that during these Class 1 trials, the first feedforward sensory input
to SI (at ~25ms post-stimulus;) coincides with the falling or trough phases of a beta event (Figure
10A; phase interval ~1/4-1/2). For this to be true, beta events would have to reliably occur during
the peristimulus period and be aligned such that their troughs occurred near ~25ms post-stimulus
on at least a subset of hit trials. We tested this by calculating beta-frequency phase coherence across
trials in our MEG data (18-24 Hz see Materials and Methods, Figure 10B). We found that beta-
frequency coherence in the post-stimulus period was significantly higher on hit compared to miss
trials, with the highest significance precisely at ~25ms post-stimulus (22-32ms, alpha = 0.02; FWER-
corrected permutation test). This indicates that a significant fraction of the hit trials had a time
locked beta event near the model-predicted timepoints highlighted in Figure 10A. We then verified
that the phase of beta frequency activity at 25ms post-stimulus most often occurred near the beta
trough on hit trials, namely near phase = V2, by filtering the prestimulus signal in the beta band and
generating a histogram of the beta phase at 25ms post-stimulus separately for hit and miss trials
(Figure 10B inset).

Second, to find Class 1 responses, we performed a cross correlation analysis between the
model Class 1 waveforms and our MEG trials. We identified evoked responses that had a high

cross-correlation with the model Class 1 waveshape near stimulus onset (see Supplementary
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Materials and Methods). We then examined if those whose onset occurred during Y4 to 72- beta
phase (corresponding to the falling or trough phases of a beta event, respectively; see Figure 10A)
were hit trials. We found 18 such Class 1 correlates at various phases of a peristimulus beta event in
our data (Figure 10C-F). Figure 10C shows an example of the close cross-correlative agreement
between the model and one of the identified Class 1 evoked responses in our MEG data.
Approximately half of the identified Class 1 responses corresponded to hit trials (10 hit trials and 8
miss trials, green and red, respectively Figure 10F, corresponding phases are as in 10D). However,
the hit trial average had a downward sloping dipole during the 0-25ms post stimulus period, while
the miss trials did not, consistent with the prediction that hit trials occur during the falling phases of
a spontaneous beta event (Figure 10E). Indeed, all hit trials (green Figure 10F) occurred during
falling and trough phases of the prestimulus activity (10 of 10). All except for 3 of 8 miss trials (red
Figure 10F) occurred outside of falling phases. Miss trials unexplained by the model are shown with
pink background in Figure 10F.

Thitrd, during Class 1 evoked responses, the model 1.2/3 neurons generated a fast oscillation
in the average dipole waveform, beginning near ~40ms (see unsmoothed green waveform in Figure
7Ai and 7Bi). The inter-peak interval in the model dipole oscillation was approximately 6ms and
high frequency coherence across trials (160-200Hz) occurred with a peak near ~40ms (Figure 10G).
This led to the prediction that Class 1 correlated hit trials in the MEG data should have a reliable
(i.e. stimulus-locked) fast oscillating response in the dipole waveform with high-frequency cross-trial
coherence that is not present in miss trials. Indeed, we found higher 160-200Hz cross-trial
coherence on hit compared to miss trials, and miss trial coherences were neatly zero throughout the
early evoked response period (Figure 10H; alpha = 0.05; FWER-corrected permutation test). The

timing of the significant differences between hit and miss trials in the MEG data peaked near 40ms
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and was within 5ms precision of the times of peak coherence as predicted by the model (compare

10G and 10H).
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Figure 10: Model Class 1 responses correlate with hit trials A) Model beta event phases. Green
region depicts the approximate phase interval where Class 1 trials are predicted (phase interval 0.25
— 0.75; normalized) given the 25ms conduction delay from the periphery. B) Across-trial beta phase
coherence (18-24Hz) in the MEG evoked response is shown for hit (blue) and miss (red) trials.
Poststimulus beta coherence is higher in hit trials at precisely 25ms. Inset: Phase histogram of beta
phase at 25ms post-stimulus on hit and miss trials. Putative Class 1 hit trials are shown in green. C)
Example correlation between the model Class 1 response and empirical MEG evoked response
during a hit trial. D) Beta phase at 25ms poststimulus nearly completely separates the Class 1
correlates into hit and miss trials (18 highest correlation trials; 4 bins). Hit trials occurred within the
phase interval predicted by the model with one exception. E) The eighteen trials with highest
correlation to Class 1 response averaged separately over hit and miss trials, show that hit trials
exhibit an initial downward dipole slope. F) Direct inspection of all high correlation Class 1
responses shows that 10 of 10 hit trials were either in dipole troughs or in downward phases at 25ms
poststimulus, while 5 of 8 miss trials are in rising phases or plateaus; 3 outliers shaded pink. G)
Across-trial high frequency coherence (160-200Hz) in model Class 1 responses predicts a peak in
coherence near 40ms post-stimulus in hit trials. H) Across-trial 160—200Hz coherence distinguishes
hit from miss trials near 40ms poststimulus (1000 hit trials, 1000 miss trials) in precise agreement
with the model prediction. In all panels, yellow shading indicates p < 0.05 (pointwise permutation
test), and green shading indicates o = 0.05 (FWER-corrected; modified max-t test; see Methods).

Significance in panel B is preserved at o = 0.02, and significance in panel H is preserved at « = 0.01.

Discussion

Building from prior work showing prestimulus SI beta events predict nondetection for

~300-400ms after an event (Shin et al. 2017), we set out to understand the cellular and circuit level
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mechanisms by which this sensory suppression may occur. Biophysically principled neural modeling
combined with human MEG offered a precise explanation: Higher-order thalamic bursts that
generate beta events also indirectly activate supragranular pyramidal GABAg, receptors. This
suppresses spiking throughout the cortical circuit, inhibiting sensory perception after the beta event
for the timescale of GABAg, effects, ~400m:s.

The model also showed that when a “top-down” beta-generating thalamic burst and a tactile
stimulus arrive in SI at the same time (a concident or on-stimulus beta event), the coincidence generates
an eatly cascade of L.2/3 spiking, followed by L5 pyramidal spiking. This cascade created predicted
MEG features that were verified as correlates of perceived (hit) trials by three separate means of
testing (Figure 10). This result requires a reinterpretation of beta’s role beyond pure inhibition, as it
indicates a mechanism by which the thalamocortical activity underlying beta events can facilitate

perception when timed appropriately.

Consistency of the current findings with prior studies

It is well known that features of sensory-evoked responses can correlate with successful
perception, and that spontaneous dynamic brain states, often described in terms of prestimulus
“oscillations”, influence this correlation (Palva et al. 2005; Jones et al. 2007; Jones et al. 2009).
However, an understanding of the precise neural mechanisms that could provide a causal link
between prestimulus brain states and perception is lacking, particularly in humans where invasive
recordings are rare. Our modeling framework enabled interpretation of cellular and circuit-level
mechanisms underlying the effect of beta-event processes on tactile evoked response and perception
in humans via direct comparison of model and source-localized MEG data, in identical physical

units. We argue for a causal relationship between these transient beta-event processes (i.e. cortical
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excitation and inhibition induced by thalamic bursts) and tactile detection, by providing a detailed
model dissection of processes underlying the observed neural dynamics.

A critical model extension here was based on the novel hypothesis that higher-order
thalamic bursts recruit slow GABAgi,-mediated inhibition in the post-event, prestimulus time
period. Updating our prior model to reflect this hypothesis was crucial to our conclusions regarding
thalamic burst-mediated tactile suppression and did not significantly change the robustly observed
stereotypical beta event waveform shape (Sherman et al. 2016; Little et al. 2018; but see also
Supplementary Figures 1 and 2). Our findings are also in agreement with several studies that have
suggested slow inhibition in the supragranular layers — including through GABAg mechanisms —
is a key regulator of conscious perception (Craig and McBain 2014; Cone et al. 2019) and is
specifically involved in inhibiting somatosensory perception (Pluta et al. 2019). For example,
Larkum and colleagues have shown that dendrite-mediated suppression of rodent somatosensory
perception is regulated by GABAg receptor activation in the mid-apical dendrite of L5 pyramidal
cells, driven by a transcallosal inhibitory projection (Larkum et al. 1999; Takahashi et al. 2016). Our
results extend theirs by modeling a local circuit mechanism for this inhibition in humans,
noteworthy because long-range inhibitory projections are prevalent in rodents but have no known
analog in primates (Barbas et al. 2018).

The agreement between model and MEG data support a causal influence of the processes
underlying transient beta events on evoked correlates of perception, but it does not account for
other post-stimulus dynamics that may be independent of prestimulus beta events. For instance, in a
previous study (Jones et al. 2007), we showed that decreasing the arrival time and increasing the
strength of the post-stimulus ~70ms distal “feedback” and subsequent ~135ms “re-entrant”
thalamic inputs to SI (Figure 4) could also account for evoke correlates of perception, without

consideration of prestimulus influences. The present findings suggest the beta generating
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mechanisms alone could generate the observed differences in the evoked response, but we do not
rule out the possibility that a combination of pre-stimulus and post-stimulus influences contribute to

the results.

Abnticipatory beta events as a predictive signaling and learning mechanism

Our results suggest thalamic bursts generating SI beta events can both inhibit and enhance
threshold-level tactile perception in a corresponding somatotopic region. Specifically, our findings
suggest that if a beta event coincides precisely with tactile information, perception is enhanced, but
after this time window closes, information processing is suppressed by slow inhibitory currents.
Although on-stimulus beta events were rare in the MEG data, this dichotomy raises an important
conceptual debate: Are beta events (viz. thalamic bursts) actively engaged with task demands to
suppress perception? Or, does beta reflect a limited time window for enbancement of perception, with
sensory suppression a signature of mistimed (too-early) beta events? Is there an advantage to brief
enhancement of sensory stimuli followed by prolonged inhibition? Our study was not designed to
definitively address the cognitive strategy by which the beta process is temporally engaged, but we
shall discuss interpretations of beta in timing prediction, and suggest that regardless of the temporal
strategy by which beta is engaged, one role of the beta process may be to link detection with the
learning of timing.

Many studies have shown that beta (and therefore its underlying neural process) can be
deployed with temporal specificity in coordination with task and cognitive demands (van Ede et al.
2011; Fujioka et al. 2012; Sacchet et al. 2015; Spitzer and Haegens 2017; Fiebelkorn et al. 2018; Little
et al. 2018). In the sensorimotor domain, we and others have observed that beta power decreases in
localized somatotopic brain regions during the anticipatory period following a cue to attend to a

corresponding body location, and increases in somatotopic regions corresponding to non-attended
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body locations (Linkenkaer-Hansen et al. 2004; Jones et al. 2010; van Ede et al. 2011). Such beta
power modulation is also synchronized with frontal cortex (Sacchet et al. 2015), and peripheral
muscles with or without task-specific motor demands (van Ede and Maris 2013). Lower averaged
prestimulus/anticipatory beta power is associated with faster responses (van Ede et al. 2011), and
higher detection rates (Jones et al. 2010; Shin et al. 2017), phenomena that have also been observed
in visual-motion detection tasks where beta appears to track evidence accumulation (Donner et al.
2009). Moreover, it has been shown that beta power is actively decreased in a temporally specific
manner, when a tactile stimulus is expected but not delivered (van Ede et al. 2011). These and other
studies (see also studies of motor cortex beta oscillations, where decreased beta activity corresponds
with more certain responses and faster reaction times (Little et al. 2018)) suggest sensorimotor beta
is inhibitory to function and actively decreased to enhance somatosensory detection, and/or actively
increased to block irrelevant information.

The above results are compatible with the view that top-down processes underlying beta
event generated are recruited with temporal precision for attentional suppression of irrelevant
information, perhaps mediated by the effects of superior colliculus on higher-order thalamic nuclei
(Gharaei et al, 2020). In this case, the faciliatory Class 1 responses atising from stimulus/event
coincidence could be interpreted as an “error’” signal indicating that inhibition arrived too late, and
that the beta event timing should be adjusted. Alternatively, the brain may be trying to engage
thalamic bursts at the “predicted” time of the stimulus in order to facilitate perception of weak
stimuli, in which case prestimulus beta events represent premature timing predictions and the
suppressed Class 2 response could be interpreted as the “error” signal. It is worth noting here that
the aforementioned studies showing an inverse relation between beta power and

perceptibility/motor action do not report beta phase. It is possible that smaller-amplitude events,
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with the appropriate phase alignment, are sufficient to facilitate processing when a prediction can be
precisely made.

In either case, according to our model, on-stimulus detected beta events represent a
coincidence of “top-down” subthreshold excitatory input to apical dendrites and “bottom-up” drive
to basal dendrites in 1.2/3 pyramidal neurons, aligning with a matching principle posed as a
necessary component of conscious perception (Grossberg 1980). Our results suggest an explicit
mechanism for this abstract principle, specifying that a dendritic coincident match should be
followed by a time-locked increase in spiking activity in 1.2/3, which later initiates L5 bursts, which
themselves have been argued to link a percept globally across the cortex (Takahashi et al. 2016; see
also Aru, Suzuki and Larkum, 2020). Indeed, I.2/3 to L5 propagation was recently directly observed
in a visual discrimination task, which suggests this process may be a global requisite for perception
(Marshel et al, 2019; but see also Takahashi et al, 2020).

Theoretical considerations based in part on our model results further suggest that such a
temporal matching mechanism could appear in concert with a learning mechanism that processes
timing “errors” — supporting a role beyond pure sensory suppression for inhibition recruited in the
post-event period. Specifically, recall that during suppressed Class 2 responses remarkably large
dipole cutrents remain, due to layer 2/3 dendritic spikes that propagate toward the soma but are
extinguished by perisomatic inhibition (Figure 8), consistent with prior findings suggesting inhibition
can generate large field signals (Telenczuk et al, 2017). Several lines of evidence suggest that this
process may provide a substrate for engaging “one-shot” postsynaptic learning, as discussed further
in the next section, in line with recent work indicating a causal relationship between beta events and
plasticity (Zanos et al. 2018). Either or both of the facilitated (Class 1) or suppressive (Class 2)
phases could be associated with learning mechanisms, although we shall focus on a putative

mechanism for learning from the Class 2 response in the section to follow.
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Further studies are needed to show if and how the beta-event process is actively modulated
to suppress, amplify, and/or to learn the timing of sensory and/or internally-generated signals. Our
present work extends and refines a variety of previous studies showing that this process is
dynamically engaged to meet task demands. The upstream sources responsible for beta events — in
particular higher-order thalamic bursts — can modulate cortical activity to gate the perceptual
process at threshold and help regulate learning. The work here points to new and precise cortical

circuit mechanisms that can mediate this gating.

Mechanisms of learning during the inhibitory phase of the beta-event process

A natural pathway for thalamic bursts to induce postsynaptic learning as proposed above is
through the VIP+ interneuron system, known to be activated by higher-order thalamus (Audette et
al. 2017) and recently shown to mediate NMDA-based long term potentiation (LTP) in pyramidal
cells (Williams and Holtmaat 2018). Though not explicitly modeled, we hypothesized that the
aforementioned VIP networks, when synchronized, also recruit neurogliaform cells via electrical
synapses, which could cause beta event suppression in our model (see discussion in results and
Figure 5). In rodent somatosensory 1.2/3 pyramidal cells, NMDA spike-mediated L'TP, also with a
thalamic source, had been found in the absence of somatic spiking activity (Gambino et al. 2014). This
parallels our model (which does not include long-term plasticity), where 1.2/3 inhibition with a
thalamic source results in a large dipole signal in the absence of somatic spiking (Figure 8).

Along these lines, it is interesting to note that increased somatic calcium flow has been
reported under strong somatic inhibition during slow-wave sleep, where it was hypothesized to
optimize learning (Niethard et al. 2018). In that study, GABAx-ergic parvalbumin positive
interneurons were found responsible for the effect — however, GABAg activation tends to follow

hyperactivation of GABA, interneurons as GABA overflows the synaptic cleft (Scanziani 2000).
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Therefore, in addition to this VIP-NMDA mechanism, it is possible that the collision between
dendritic spikes and perisomatic suppression may lead to calcium transfer to the soma (cf. Chiu et al,
2020); such signaling cation fluxes are well-known to play fundamental and general roles in structural
plasticity (Berridge 1998; Augustine et al. 2003).

In summary, together with our modeling results, the literature appears to support two beta-
event associated learning mechanisms — one short-term process via VIP - NMDA at the dendrite,
and one long-term process via calcium at the soma — both of which might be linked through the
Class 2 mechanism. It is possible that VIP-coupled NMDA may act as a short-term tag on a synaptic
site, which could later be converted to permanent memory after dendritic spike suppression and
subsequent somatic calcium influx, mediated by neurogliaform cells and/or soma-targeting GABAs-

ergic populations.

GABAg may govern beta event durations and inter event intervals

Beta-associated recruitment of GABAg inhibition may be used to set the lifetimes of beta events
themselves. That is, if beta events involve a recurrent circuit between cortex and thalamus, the
timescale of recurrent activation in that circuit may be limited by GABAg activation. Remarkably,
this timescale accords approximately with both the mean event duration (~150ms latency to peak
GABA3 conductance vs. ~150ms event duration) and inter-event intervals (~250ms; approximately
the GABAg fall time constant) reported in (Shin, et al, 2017). Further, extended recurrent
oscillations in the beta band -- in 1.2/3 -- were found to be caused by stimulation of rodent thalamic
homolog POm (see Figure 5 in Zhang and Bruno, 2019). These extended oscillations were
discovered under anesthesia with fentanyl, an opioid. As opioids cause NGF populations to cease
firing (Krook-Magnusen, et al 2011), their use could turn off the suppressive effect of beta events

yielding longer thalamocortical recurrences, and hence repeated beta-events under our framework.
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Modeling Assumptions, Limitations and Independence

This study builds from a body of prior MEG and modeling work, where we first showed
that post-stimulus features of the tactile-evoked response in SI (i.e. the M70 amplitude and slope)
alone could, in principle, account for correlates of tactile detection without considering prestimulus
state (Jones et al. 2007). Later, we established that prestimulus low-frequency rhythms (i.e. the SI mu
rhythm, comprised of 7-14 Hz alpha and 15-29 Hz beta rhythms) influence components of the
evoked response through specific network mechanisms, including a strong inhibitory influence
mediated by sensory evoked inhibition (Jones et al. 2009). However, in the latter study, we reported
only on averaged data, and did not separate the effects of the alpha and beta components of the SI
mu rhythm, nor did we investigate the relation of these effects to perception. Further studies
showed alpha and beta have separable effects on perception and attention (Jones et al. 2010; Sacchet
et al. 2015). The current study is the first to look at circuit mechanism mediated perceptual effects
specifically in the beta band.

The chosen SI model configuration is grounded in generalizable principles of cortical
circuitry and known somatosensory cortical architecture. Some of the model assumptions create
limitations in our conclusions, while many of the findings are independent of specific model choices.
One potential limitation is that we simulate only one type of GABAg receptor. We found that even
at low densities, simulated GABAg1, channels in middle-apical dendrites of L5 pyramidal cells
induced by beta-generating mechanisms can prevent these cells from firing during sensory
stimulation. However, the primary target of 1.2/3 NGF activation on L5b apical dendrites is
presumably the GABAg1;, receptor, which inactivates calcium channels while admitting sodium spike
propagation (Pérez-Garci et al. 2000). As such, it is possible that L5 pyramidal spikes can be

recruited by weak sensory stimuli in the absence of 1.2/3 recruitment when they are close to their
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firing threshold. Our model, and the assumed higher-order thalamic origin of burst events, also does
not account for the higher-order thalamic recruitment of I.5a pyramidal spikes observed in rodent
slices (Audette et al. 2017). Despite these assumptions, it is crucial to note that one of our main
results, while dependent on our proposed beta-generating mechanism — namely, the ~50ms burst of
subthreshold excitatory synaptic input to pyramidal neuron distal dendrites -- are essentially
independent of free parameters in the model. That is, the non-detected Class 2 waveforms should
occur in any model that contains dendritic geometry, dendritic spikes, and strong perisomatic
inhibition.

We have assumed beta events are mediated by higher-order thalamus, but it is possible that
“top-down” corticocortical connections play a role in generating beta events as well. The source of
the distal (cf. modulatory) input does not change the fundamental findings of our study, which
identifies neural circuit mechanisms generating beta-mediated evoked response correlates of
perception within a canonical cortical unit. Finally, while there is close agreement between the model
results and the MEG data, all model results are still “predictions” on the circuit dynamics generating
that data. Validation of these predictions requites both out-of-sample confirmation and/or testing
with invasive recordings (e.g, laminar recordings as in Sherman et al 2016), or with other imaging
modalities (e.g. laminar MEG, fMRI spectroscopy, tractography, etc). Our modeling framework
provides targeted network features to guide future research on the role of beta rhythms, and their

underlying sources, in sensory perception.
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Tables

See Supplementary Materials and Methods, Supplementary Table 1
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