

1 SARS-CoV-2 proteins bind heme and hemoglobin.

2 Guilherme Curty Lechuga^{1,2*}, Franklin Souza-Silva^{1,3*}, Carolina de Queiroz Sacramento^{1,4},
3 Monique Ramos de Oliveira Trugilho^{1,5}, Richard Hemmi Valente⁵, Paloma Napoleão-Pêgo¹,
4 Suelen da Silva Gomes Dias⁴, Natalia Fintelman-Rodrigues^{1,4}, Jairo Ramos Temerollo^{1,4},
5 Nicolas Carels^{1,3}, Carlos Roberto Alves⁶, Mirian Claudia de Souza Pereira², David William
6 Provance, Jr¹, Thiago Moreno Lopez Souza^{1,4}, Salvatore Giovanni De-Simone^{1,7,**}

7
8 ¹FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science
9 and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro, RJ,
10 Brazil;

11 ²FIOCRUZ, Oswaldo Cruz Institute, Celular Ultrastructure Laboratory, Rio de Janeiro, RJ, Brazil;

12 ³Iguacu University, Nova Iguacu, RJ, Brasil;

13 ⁴FIOCRUZ, Oswaldo Cruz Institute, Immunopharmacology Laboratory, Rio de Janeiro, RJ, Brazil.

14 ⁵FIOCRUZ, Oswaldo Cruz Institute, Laboratory of Toxinology, Rio de Janeiro, RJ, Brazil;

15 ⁶FIOCRUZ, Oswaldo Cruz Institute, Molecular Biology and Endemic Diseases Laboratory, Rio de
16 Janeiro, RJ, Brasil;

17 ⁷Federal Fluminense University, Biology Institute, Department of Cellular and Molecular Biology,
18 Niterói, RJ, Brazil.

19
20 ***These authors contributed equally to this work**

21 ****Corresponding author:** FIOCRUZ, CDTs, Pav. Leonidas Deane, room 309, Av. Brasil 4365, 21040-
22 900, Rio de Janeiro, RJ, Brazil. *E-mail.* dsimone@cdts.fiocruz.br (De-Simone SG)

23
24 **Keywords:** Sars-CoV-2, Covid-19, Heme, Hemoglobin, binding protein

25 **Abstract**

26 The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute
27 respiratory syndrome virus 2 (SARS-CoV-2), has led to a global crisis that included
28 collapsing healthcare systems and shut-down communities, producing
29 considerable economic burden. Despite the number of effective vaccines quickly
30 implemented, the emergence of new variants is a primary concern. The scientific
31 community undertook a rapid response to better study this new virus. However,
32 critical questions about viral protein-protein interactions and mechanisms of its
33 physiopathology are still unclear. Although severe COVID-19 was associated with
34 hematological dysfunctions, scarce experimental data were produced about iron
35 dysmetabolism and the viral proteins' possible interaction with hemoglobin (Hb)
36 chains. This work demonstrates the binding of SARS-CoV-2 proteins to hemin and
37 Hb using a multimethodological approach. *In silico* analysis indicated binding
38 motifs between a cavity in the viral nucleoprotein and hemoglobin's porphyrin
39 coordination region. Different hemin binding capacities of mock and SARS-CoV-2-
40 infected culture extracts were noticed using gel electrophoresis and TMB staining.
41 Hemin-binding proteins were isolated from SARS-CoV-2-infected cells by affinity
42 chromatography and identified by shotgun proteomics, indicating that structural
43 (nucleoprotein, spike, and membrane protein) and non-structural (Nsp3 and Nsp7)
44 viral proteins interact with hemin. *In vitro* analyses of virus adsorption to host cells
45

46 and viral replication studies in Vero cells demonstrated inhibitory activities - at
47 different levels - by hemin, protoporphyrin IX (PpIX) Hb. Strikingly, free Hb at 1 μ M
48 suppressed viral replication (99 %), and its interaction with SARS-CoV-2 was
49 localized to the RBD region of the Spike protein. The findings showed clear evidence
50 of new avenues to disrupt viral replication and understand virus physiopathology
51 that warrants further investigation.

52

53 **Introduction**

54 At the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
55 was first recognized in Wuhan (Hubei province, China). The disease rapidly spread
56 to many countries due to its high transmissibility and prolonged incubation, allied
57 to the existing highly connected global travel network [1]. This zoonotic virus
58 became the etiological agent of the 2019 coronavirus disease (COVID-19). As an
59 ongoing pandemic disease, COVID-19 has proven to be a significant economic and
60 public health challenge. The elderly and individuals with pre-existing comorbidities
61 are severely affected, but severe COVID-19 can impact the full range of age groups
62 [2]. The global scientific community has exerted tremendous efforts to understand
63 the viral structure and physiopathology to identify control measures that include
64 drug repurposing strategies, plasmapheresis, and vaccination [3]. Despite the
65 performance and increasing availability of the newly developed vaccines, the recent
66 detection of emerging variants that appear to escape from the immune responses
67 represents a significant concern to immunization strategies [4].

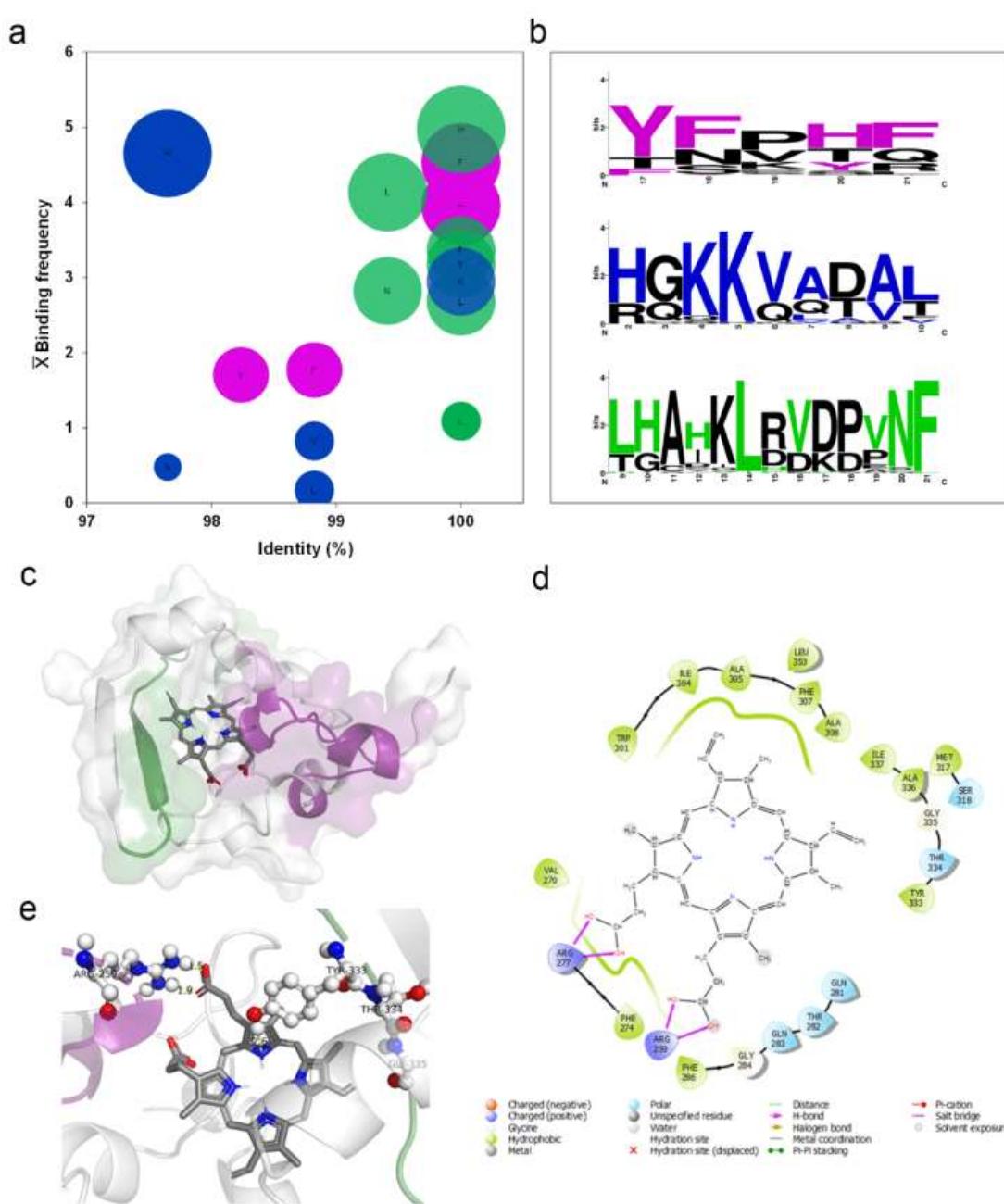
68 Although drug repurposing has not been proved to be unequivocally satisfactory
69 against SARS-CoV-2, this strategy could still be worth fighting COVID-19 when
70 appropriate biochemical interactions of viral proteins and small molecules are
71 determined. Possibly, biochemically-based evidence of effective treatments for
72 current and future variants can be accelerated by expanding the breadth of
73 knowledge on the activities of the individual SARS-CoV-2 proteins during infection,
74 avoiding further frustration in clinical trials with molecules with limited preclinical
75 effectiveness against SARS-CoV-2, such as lopinavir (targeting viral protease) in
76 combination with ritonavir (LPV/RTV), and hydroxychloroquine (HCQ) [5].
77 Hematological COVID-19 is a constitutive component in critically ill patients [6,7].
78 The heme-iron dysregulation has been observed in COVID-19, with binding
79 signatures including hyperferritinemia, low hemoglobin (Hb) levels, low serum
80 iron, anisocytosis, and increased variation of red blood cell distribution width
81 (RDW), and hypoxemia [8–10]. Unbalanced erythrocyte counts, Hb, and iron levels
82 were associated with poor clinical outcomes in COVID-19. An *in silico* analysis
83 pointed to a relevant role of SARS-CoV-2 proteins in viral physiopathology. The
84 predictions suggest that the capture of heme, resulting from a coordinated attack of
85 orf1ab, ORF10, and ORF3a to the 1- β chain of hemoglobin, could interfere with
86 heme metabolism and oxygen transport. This analysis also proposed the binding of

87 heme by structural and non-structural proteins of SARS-CoV-2 [6]. Although these
88 data bring interesting perspectives, experimental confirmation is still needed.

89 Heme, iron protoporphyrin IX (PpIX), is a ubiquitous molecule with importance
90 in numerous biological processes such as a cofactor for proteins (Hb),
91 transcriptional regulation [11], RNA processing [12], oxidative stress [13],
92 inflammation [14], and coagulation [15], which are all critical aspects of COVID-19
93 pathology. Heme and porphyrins can modulate viral infection by targeting both
94 viral structures and cellular pathways. Porphyrins have broad activities against
95 different viruses such as hepatitis B virus (HBV), hepatitis C virus (HCV), human
96 immunodeficiency virus (HIV), and Zika virus (ZIKV) [16,17]. Nonspecific heme
97 interactions, including hydrophobic binding to viral surface envelope proteins,
98 block viral cellular entry [18]. Potent antiviral activity of PpIX and verteporfin in the
99 nanomolar range has been recently reported in the inhibition of viral invasion by
100 blocking the virus-cell fusion mediated by SARS-CoV-2 Spike (S) protein and ACE2
101 [19]. When Vero cells were pretreated with both, there was an inhibition of viral
102 RNA production, suggesting that their interactions with ACE2 caused the viral
103 entry block.

104 Despite the concerted efforts to unveil key viral targets, experimental evidence is
105 still limited. Here, we focused on the capacity of SARS-CoV-2 proteins to capture
106 heme and Hb. Our findings demonstrate that SARS-CoV-2 structural and non-
107 structural proteins can bind to hemin. An *in silico* analysis identified heme-binding
108 motifs in nucleoprotein and *in vitro* assays showed that the approved drugs hemin
109 and PpIX precluded - at different levels - viral attachment to host cells, reducing
110 viral replication. Notably, free Hb suppressed viral entry by interaction with the
111 RBD region in the Spike protein and reduced viral replication. The results suggest
112 that these molecules could be promising candidates for the treatment of COVID-19
113 and highlight the need to investigate further the mechanisms involved with the iron
114 dysmetabolism observed in infected individuals.

115


116 **Results**

117 ***In silico* analysis**

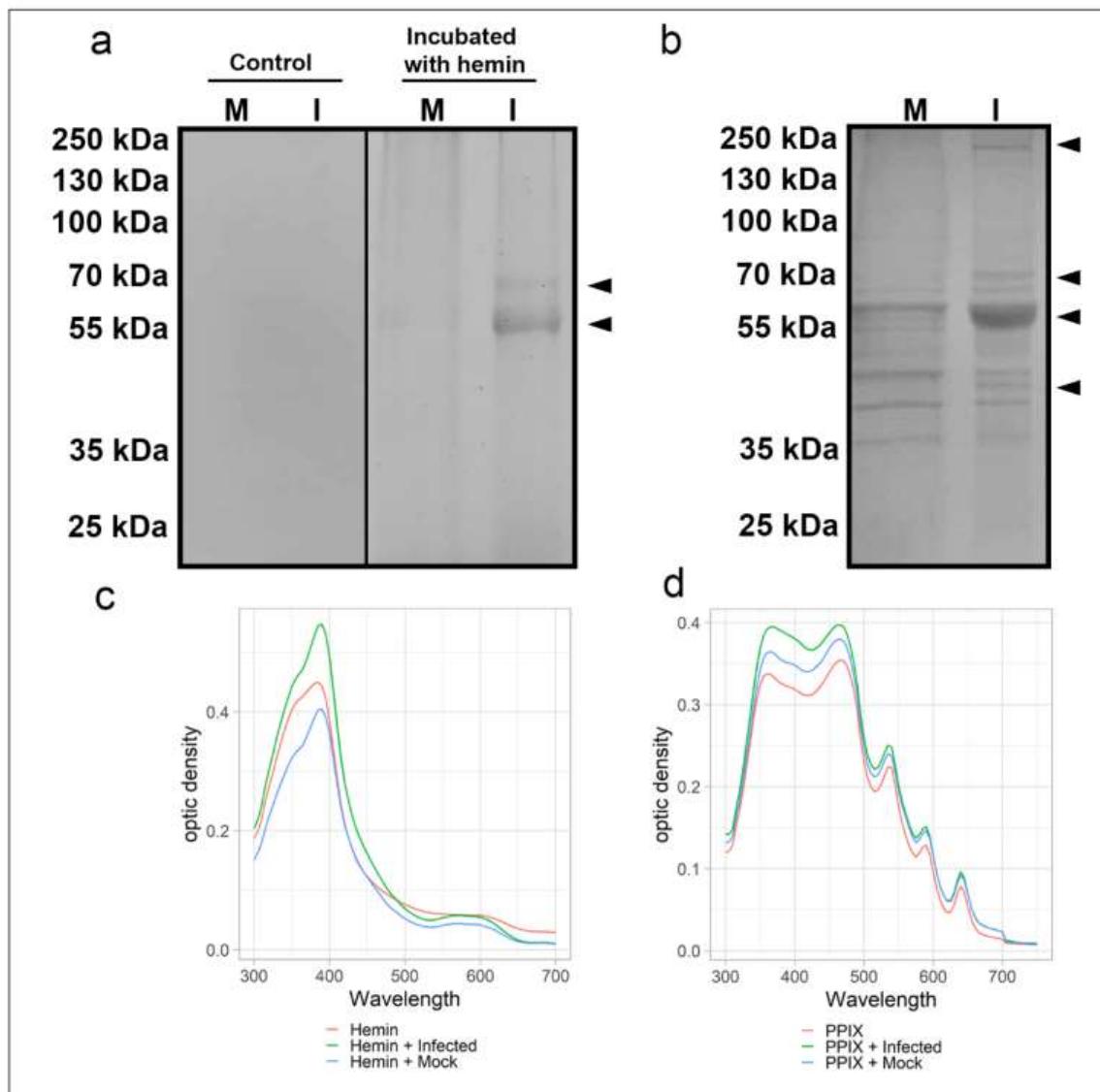
118 The mapping of the binding motifs to heme was the first step in this study's *silico*
119 approach. Analysis of 68 crystallized hemoglobin/heme complex structures
120 (**Supplementary Table 1**) identified conserved amino acid residues (identical in at
121 least 97 % of the analyzed structures in the same position) that interact with the
122 heme group. Furthermore, Histidine displayed the highest binding frequency to
123 heme, while Alanine had the lowest contribution (**Fig. 1a**). From the mapped motifs
124 in human hemoglobin (**Supplementary Figure 1**) three equivalent motifs in SARS-
125 CoV-2 nucleoprotein - presenting different E-values (**Supplementary Figure 2**):
126 motif 1 = 3.4×10^{-505} , motif 2 = 4.4×10^{-532} and motif 3 = 1.8×10^{-628} - were identified
127 (**Fig. 1b**). These analyses also indicate a correspondence regarding the residues Tyr

128 (in motif 1), Lys (in motif 2), and Leu and Phe (in motif 3) in heme-binding motif
129 composition between human Hb and the nucleoprotein of SARS-CoV-2 (Fig. 1b).

130

131

132 **Fig. 1: Heme-binding motifs identified by an *in silico* analysis.** (a) the heme-binding motifs for 68
133 Hb structures deposited in the PDB data bank were mapped to define the frequency of amino acid
134 occurrence (\bar{X} Binding frequency) and degree of identity (%). The balls' size is relative to the number
135 of connections (5 to 1), displayed from biggest to smallest in size. (b) three binding motifs were
136 identified in the nucleoprotein of SARS-CoV-2 by an analysis in the MEME-Suite server of Hb amino
137 acid sequence obtained from Uniprot sever. Colored amino acids related to residues in Hb that
138 interact with heme. Black residues form part of the motif without binding heme. The size of the
139 amino acid relates to the number of occurrences (bits). Molecular docking of SARS CoV-2
140 nucleoprotein with human PpIX. (c) Binding position of PpIX (sticks) indicating the orientation of
141 binding with nucleoprotein (surface) to predicted motifs: purple = motif 1 and green = motif 3. (d)


142 2D representation indicating types of bonds that occur in nucleoprotein pocket bounded with PpIX.
143 (e) 3D model showing nucleoprotein amino acid residues (ball and sticks) that compose motifs 1 and
144 3 coordinating the binding with the PpIX (bars).

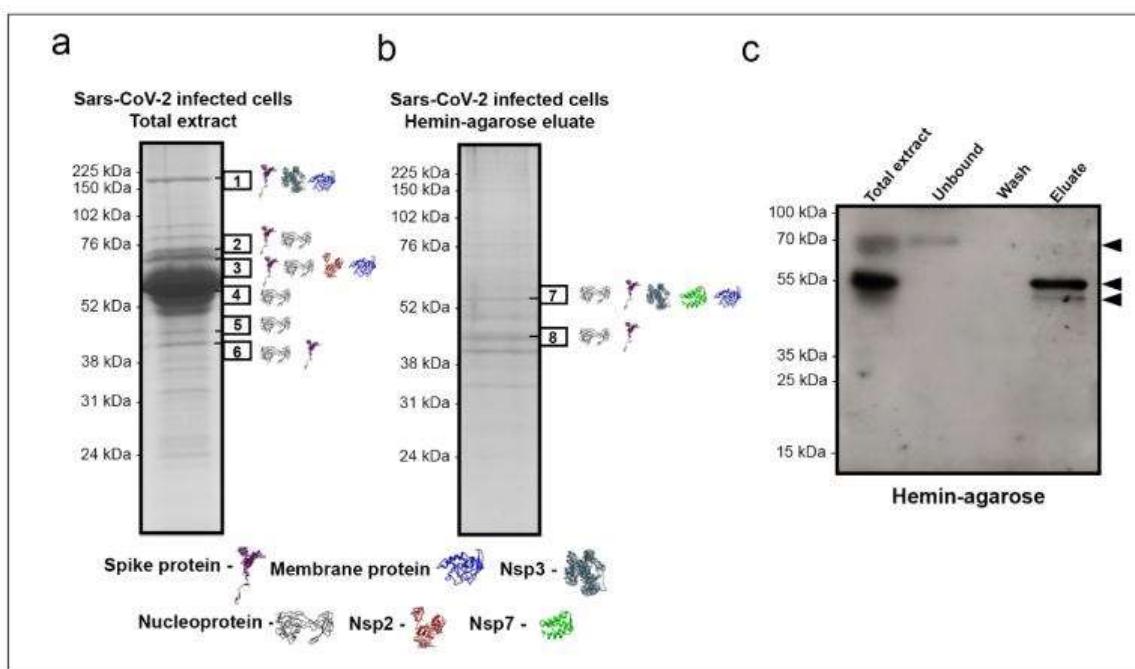
145 The molecular docking assay was initially necessary to identify possible binding
146 pockets in the SARS-CoV-2 nucleoprotein. A cavity with a -9.8 kcal/mol binding
147 energy and a 121 Å size was selected to be assayed. In this cavity, it was possible to
148 identify the bonds of PpIX with motifs 1 and 3 (Fig. 1c), with a predominance of
149 hydrophobic bonds followed by polar bonds and hydrogen bonds (Fig. 1d) with
150 porphyrin propionate groups. Both motifs' potential to contribute to the
151 coordination of protoporphyrin binding was related with Arg259 of motif 1
152 performing hydrogen bonding and Tyr333, Thr334, and Gly335 of motif 3
153 performing hydrophobic and polar bonds, respectively (Fig. 1e).

154

155 **Proteins from SARS-CoV-2-infected cells extract bind to hemin (heme)**

156 Two distinct approaches evaluated the cellular and viral proteins' interaction with
157 heme. In the first, 300 µM hemin was pre-incubated with protein extracts obtained
158 from Vero cell cultures, either infected with SARS-CoV-2 or mock-infected, as a
159 control, followed by SDS-PAGE separation, in-gel protein renaturation, and heme-
160 binding protein visualization using TMB reaction. Two protein bands (*ca.* 55 and 70
161 kDa) were revealed for SARS-CoV-2 infected Vero cells protein extract sample, with
162 only a very faint band stained at ~55 kDa in the mock protein extract sample (Fig.
163 2a; **right side**). As expected, no bands were visualized from the oxidation of TMB
164 oxidation for the negative control samples in the absence of hemin's addition (Fig.
165 2a; **left side**). The alternative approach separated protein extracts by SDS-PAGE
166 under denaturing and reducing conditions transferred to a nitrocellulose membrane
167 before incubation with 2 µM hemin. Bound hemin was revealed by its reaction with
168 DAB. This approach displayed a greater sensitivity for detecting protein-heme
169 complexes, as seen by the more significant number of visible protein bands. The
170 patterns showed differences between the proteins' profiles that can interact with
171 heme in uninfected and virus-infected cells. The bands previously observed by the
172 first approach were also detected, with the band at ~55 kDa being the most
173 prominent. Among the revealed bands, four (*ca.* 45, 55, 70, and 230 kDa) were
174 exclusively detected in the protein extract of SARS-CoV-2-infected cells (Fig. 2b).

175


176 **Fig. 2: Heme-binding proteins in extracts from SARS-CoV-2 infected and non-infected Vero cells**
177 **along with a spectroscopic binding analysis in solution.** Total protein extracts (20 μ g) from virus-
178 infected (I) and mock-infected (M) were: a) incubated with 300 μ M of hemin for 1 h at 25 $^{\circ}$ C,
179 separated by SDS-PAGE, renatured and exposed to TMB in-gel to reveal hemin or (b) resolved by
180 SDS-PAGE, transferred to nitrocellulose membrane and incubated with hemin (2 μ M) for 1 h before
181 revealing hemin-protein complexes by DAB. Arrowheads indicate bands of hemin-protein
182 complexes. UV-visible spectra of hemin (c) alone (10 μ M, red) or in total protein extracts (20 μ g) of
183 virus-infected Vero cells (green) and mock-infected cells (blue). UV-visible spectra of PpIX (d) alone
184 (5 μ M, red) or in total protein extracts (20 μ g) of virus-infected Vero cells (green) and mock-infected
185 cells (blue). Changes in the Soret peak and Q-bands are observable. Data are representative of two
186 independent experiments. Source data are provided as a Source Data file.
187

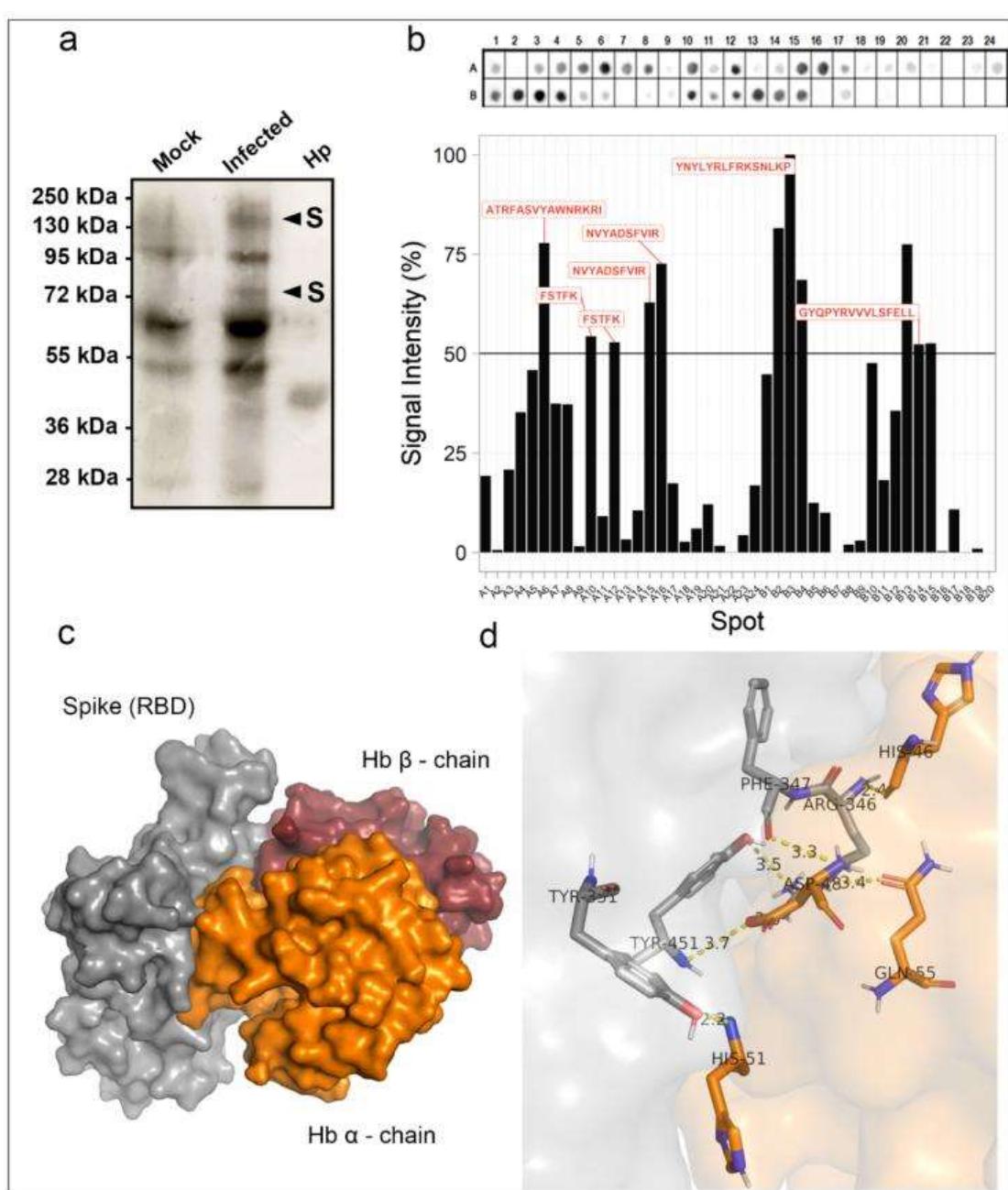
188 These observations of heme-binding protein in-gel and on membranes raised
189 questions about their binding properties in solution. UV-visible spectra of hemin
190 (10 μ M) diluted in PBS were recorded to analyze possible viral protein interactions
191 with heme, revealing a Soret peak with a lambda maximum at 385 nm. Changes in
192 hemin absorption spectra were observed after incubation with mock and virus-

193 infected protein extracts. A redshift was noticed in both cellular extracts (lambda
194 max. 390 nm) (**Fig. 2c**). Furthermore, the Soret band and protoporphyrin IX
195 absorbance in both the Soret region and the Q bands were increased in mock and
196 virus-infected cell extract (**Fig. 2d**).
197

198 **SARS-CoV-2 proteins identification and confirmation of binding to hemin and**
199 **hemoglobin**

200 Shotgun proteomics was used to identify which SARS-CoV-2 proteins were
201 interacting with heme. Initially, SARS-CoV-2-infected Vero cells total protein
202 extract was subjected to SDS-PAGE separation, followed by excision of all visible
203 bands and submission to processing for protein content identification
204 nanoelectrospray coupled to high-resolution tandem mass spectrometry (LC-
205 MS/MS). This approach yielded virus protein identifications in the six bands
206 indicated in figure 3a. Nucleoprotein was identified in almost all excised bands (2,
207 3, 4, 5, and 6). Spike protein was identified in bands 1, 2, 3, and 6, while membrane
208 protein was identified in bands 1 and 3. The non-structural proteins NSP3 and NSP2
209 were detected in bands 1 and 3, respectively (**Fig. 3a**). The most abundant protein
210 identified in band 4 was albumin, probably due to supplementation in the culture
211 medium. To reduce the amount of this contaminant protein that could interfere or
212 mask the signal of viral proteins, albumin was depleted using affinity
213 chromatography followed by hemin-agarose binding. Next, albumin-depleted
214 protein extract of SARS-CoV-2 infected Vero cells was incubated with hemin-
215 agarose beads to confirm that viral proteins can interact and bind heme. Finally, the
216 hemin-agarose eluate containing the hemin-binding proteins was subjected to SDS-
217 PAGE under denaturing and reducing conditions, revealing the presence of several
218 viral proteins, as identified by LC-MS/MS (**Fig. 3b**). In-band 7, nucleoprotein, Spike,
219 Nsp3, Nsp7, and membrane protein were placed. Nucleoprotein was also present
220 in band 8 with the highest spectral counts and Spike protein in lower abundance.
221 Additional information regarding cellular proteins and spectral counts obtained for
222 each band can be found in the supplemental material (**Supplementary Data 1**).
223 Additionally, after the interaction, western blot - with immunostaining using
224 convalescent patient serum - revealed two reactive bands at ~70 kDa and ~55 kDa
225 in the total extract, one at ~70 kDa in the unbound fraction, and two bands (one
226 intensely reactive at ~55 kDa and the other at ~45 kDa) in the bound fraction (**Fig.**
227 **3c**).

228


229 **Fig. 3: Heme affinity purification of proteins from total extracts of SARS-CoV-2 infected Vero**
230 **cells and their identification by mass spectrometry.** SDS-PAGE separated proteins stained by
231 Coomassie blue from (a) whole protein extract of virus-infected Vero cells and (b) eluate from a
232 hemin-agarose purification. Bands excised for protein identification by LC-MS/MS are indicated by
233 black boxes 1-8. The proteins identified were nucleoprotein (P0DTC9), membrane protein (P0DTC5),
234 Spike protein (P0DTC2), and Replicase polyprotein 1a/1ab (P0DTC1/P0DTD1). The peptides in the
235 replicase polyprotein 1a/1ab were identified as Nsp2, Nsp3, and Nsp7. The identified proteins in
236 each band are shown as 3D structures retrieved from the I-Tasser site
237 (<https://zhanglab.ccmr.med.umich.edu/I-TASSER/>). (c) Western blot with immunostaining - using
238 COVID-19 patient convalescence serum to detect reactivity - from hemin-agarose chromatography
239 fractions of protein lysate from SARS-CoV-2-infected Vero cells; arrowheads indicate two bands
240 revealed in the eluate.

241

242 The observation that viral proteins can bind to hemin suggested that this
243 interaction could extend to Hb. To test this hypothesis, an overlay assay was
244 performed with Hb on SARS-CoV-2 infected Vero cell extracts separated by SDS-
245 PAGE and transferred to a nitrocellulose membrane (Fig. 4a). Haptoglobin, used as
246 a positive control, displayed the predicted size for the β -chain at 40 kDa and showed
247 that this approach could detect Hb binding proteins; it revealed two protein bands
248 (~150 kDa and ~75 kDa) exclusively in SARS-CoV-2-infected cells, while the other
249 bands (~95 kDa, ~70 kDa, and ~50 kDa) were also found in the mock cell extract.
250 Based on the results from mass spectrometry, the bands' sizes suggested the Spike
251 protein presence (Fig. 4a). To confirm this conclusion and refine the region in Spike
252 glycoprotein that could interact with Hb, a protein-protein interaction assay was
253 performed using the Spot Synthesis technique. An array of 15-mer peptides with a
254 5 amino acid overlap representing the RBD region of the Spike protein synthesized
255 *in situ* on a cellulose membrane was constructed. Following Hb's incubation and its
256 subsequent detection by Hb-specific antibodies with corresponding secondary

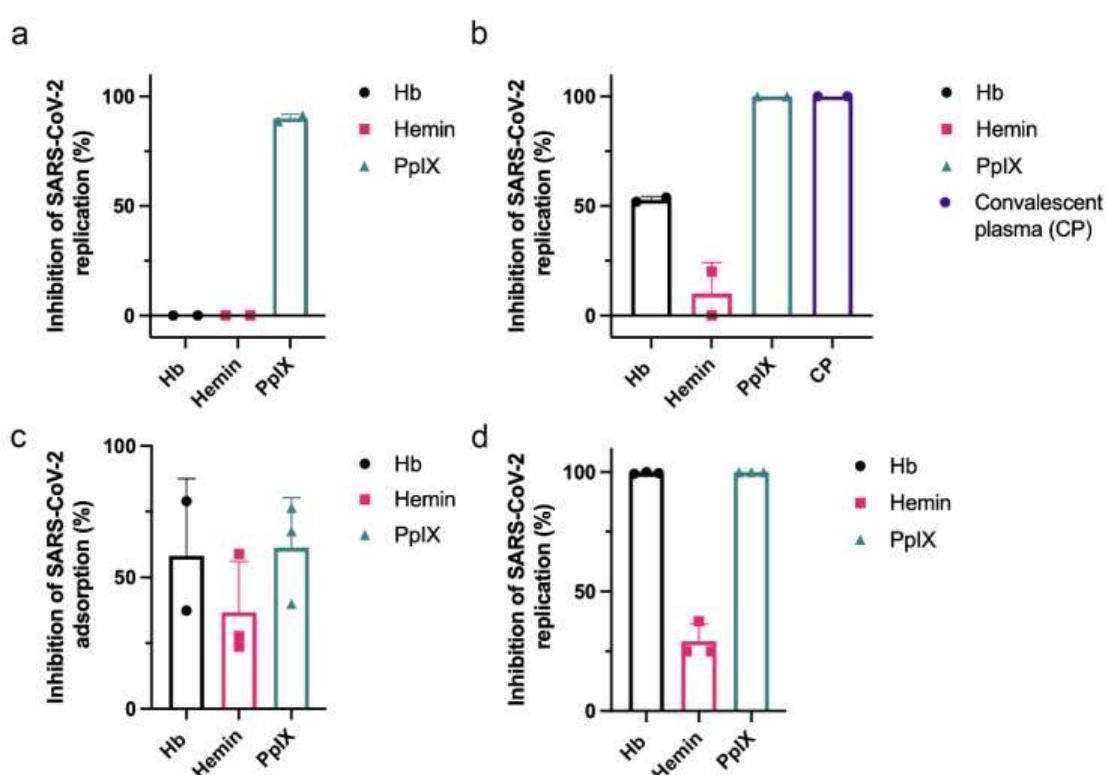
257 antibodies, several highly reactive spots were revealed that indicated the natural
258 motifs interaction between sequences in the RBD and Hb (Fig. 4b, top panel). The
259 relative intensity percentage was calculated, and individual peptide sequences were
260 identified; signal intensities above 50% were considered the cutoff for a positive
261 reaction. Five unique peptide sequences were defined that interacted with Hb (Fig.
262 4b, lower panel). Molecular docking assay of protein/protein interactions indicated
263 the possibility of binding the spike protein with the alpha and beta hemoglobin
264 domains (Fig. 4c), showing binding energy of -460 kcal/mol (Supplementary Figure
265 3). The data showed that this binding could be coordinated by four hot spot amino
266 acid residues (Supplementary Table 2) from both proteins: Spike (Tyr341, Tyr351,
267 Phe347, Arg346, Tyr451, and Leu452) and Hb (His46, His51, Gln55, and Asp48)
268 (Fig. 4d).

269

270

271 **Fig. 4: Hemoglobin (Hb) binding to Spike protein and its RBD.** (a) Total protein extracts (20 μ g) of
272 SARS-CoV-2-infected Vero E6 cells (Infected) or mock-infected cells (Mock; 20 μ g) were separated
273 by SDS-PAGE (10%) along with haptoglobin (Hp; 2 μ g), transferred to a nitrocellulose membrane,
274 and serially incubated with Hb (10 μ g/mL), anti-Hb antibody, and peroxidase-conjugated secondary
275 antibodies. After substrate, two 72 and 150 kDa bands were exclusively found in SARS-CoV-2
276 infected extract (arrowheads). (b) Spot synthesis analysis with a library of 15-mer peptides offset by
277 five amino acids to represent the RBD region of the Spike protein synthesized directly onto a
278 cellulose membrane followed by probing with Hb (5 μ g/mL) and revealed by anti-human Hb
279 antibodies. The top panel shows the chemiluminescent image of signals from peptides bound to Hb.
280 The bottom panel shows a graph of the signal intensities normalized to the maximum signal. An
281 intensity level above 50% defined Hb-reactive peptides. Molecular docking of SARS CoV-2 spike
282 protein with human hemoglobin (n=1). (c) Interaction of spike protein (gray) with α -chain Hb
283 (orange) and β -chain (red). (d) Representation of amino acid residues binding to spike protein (sticks
284 and gray) with α -chain of hemoglobin (orange). Source data are provided as a Source Data file.

285


286 **Hemin, hemoglobin, and PpIX affect SARS-CoV-2 adsorption and replication.**

287 The intense interaction between peptides in the RBD of the Spike and localization
288 of Hb in the molecular model suggested that the presence of free Hb could
289 competitively interfere with the binding of SARS-CoV-2 to ACE2, its receptor on
290 host cells. As such, we hypothesized that the addition of Hb could impair virus
291 replication in an *in vitro* assay. To test this hypothesis, Vero cells were pretreated
292 with a sub-optimal Hb concentration (1 μ M) for 1 h at 37 °C before their exposure
293 to the virus and then infected SARS-CoV-2 at MOI of 0.01. Alternatively, the virus
294 was preincubated with 1 μ M of Hb for 1 h before its addition to Vero cells for
295 another hour at 37 °C. After 24 h, culture supernatants were collected, and the
296 production of infectious virus particles was quantified by plaque assay. The
297 pretreatment of Vero cells with Hb did not affect virus production (**Fig. 5a, left**
298 **column**); however, the virus's preincubation with Hb reduced approximately 52.0
299 \pm 1.3 % of virus replication. Convalescent plasma was used as a positive control for viral
300 neutralization and inhibited viral replication (100 %) (**Fig. 5b, left column**). Hemin and
301 PpIX were also tested to evaluate if porphyrin-protein interactions could affect virus
302 replication. Hemin displayed no or little effect in virus replication when used as a
303 pretreatment of Vero cells or SARS-CoV-2, respectively (**Fig. 5a and 5b, center**
304 **columns**). PpIX inhibited SARS-CoV-2 replication by 90.0 \pm 1.8 and 100 % when
305 used as a pretreatment of the cells or virus, respectively (**Fig. 5a and b, right**
306 **columns**).

307 Next, we analyzed if viral replication reduction was related to Hb binding
308 interference with a receptor-mediated virus attachment. An adsorption inhibition
309 assay was performed. The incubation of the virus with cells was performed at 4 °C
310 for 1 h to minimize internalization, and then viral RNA was purified for
311 quantification by RT-PCR. When SARS-CoV-2 was pre-incubated with Hb (1 μ M)
312 for 1 h at 37 °C and then applied to Vero cells at an MOI of 0.01, a reduction of 58.1
313 \pm 29.6 % was measured in the virus adsorption (**Fig. 5c**). Hemin (1 μ M) reduced
314 virus attachment by approximately 40 %, and PpIX reduced virus attachment by
315 61.3 \pm 18.0 %. When cells were treated with 1 μ M of either Hb, hemin, or PpIX, after

316 the initiation of infection by SARS-CoV-2, virus replication was inhibited 99.5 ± 0.4
317 % by Hb, 100 % by PpIX, and 29.1 ± 7.2 % by hemin (Fig. 5d).

318

319

320 **Fig. 5: Inhibition of SARS-CoV-2 replication and attachment by porphyrins and Hb.** (a-b) Vero E6
321 cells (a) or SARS-CoV-2 (b) were pre-incubated with 1 μM of Hb, hemin, or PpIX for 1 h at 37 °C
322 before the start of infection with an MOI of 0.01 for an additional hour at 37 °C. Culture supernatants
323 were collected after 24 h, and the virus titer was determined by plaque assay (n=2). A convalescent
324 plasma of an infected patient (1:3 dilution) was used as the positive control. (c) SARS-CoV-2 was
325 incubated at 1 μM Hb, hemin, or PpIX for 1 h at 37 °C before introducing Vero E6 cells at an MOI of
326 0.01 for 1 h at 4 °C. Rinsed cell monolayers were lysed, and RT-PCR quantified the virus content.
327 Cumulative data (Hb: n=2, Hemin: n=3, PpIX: n=3). (d) Vero E6 was infected with SARS-CoV-2 at an
328 MOI of 0.01 for 1 h at 37 °C and then treated with 1 mM of hemin, PpIX, or Hb. After 24 h,
329 supernatants were collected, and the virus titer was quantified by PFU/mL (Hb, Hemin, PpIX: n=3).
330 Data represented the percentage of inhibition compared to control (infected and untreated) and
331 expressed as mean with standard deviation. Source data are provided as a Source Data file.

332

333 Discussion

334 Severe COVID-19, caused by SARS-CoV-2, typically leads to pneumonia and acute
335 respiratory distress syndrome (ARDS). However, the growing list of evidence
336 indicates a systemic impairment that leads to multiorgan failure. During an
337 infection, an imbalance in the immunological response can produce a "cytokine
338 storm" and numerous other pathophysiological processes such as hypoxemia,
339 thrombosis, pulmonary embolism, encephalopathy, myocardial injury, heart
340 failure, and acute kidney injury²⁰. Hematological dysfunction in severe COVID-19
341 includes low levels of erythrocytes and an increased variation in the red blood cell

342 distribution width (RDW)^{8,9}. Recent reports on the immune effects of COVID-19
343 have highlighted immune thrombocytopenia and autoimmune hemolytic
344 anemia²¹. Other evidence suggests an increase in hemophagocytosis that could be
345 related to elevated levels of ferritin in COVID-19²². In hemolytic disorders, the
346 release of high amounts of Hb and heme trigger proinflammatory response,
347 complement activation, and procoagulant and pro-oxidative environment [23,24].

348 Recently, an *in silico* analysis hypothesized that viral proteins could bind Hb
349 beta-chains that would be expected to interfere with O₂ transport and heme
350 metabolism⁶. Another finding suggested that the sequence similarity between
351 SARS-CoV-2 Spike protein and hepcidin, a peptide hormone involved in iron
352 metabolism, could lead to an imbalance of iron metabolism⁷. Yet, in the absence of
353 experimental data, it is not clear if SARS-CoV-2 proteins actually can interact with
354 Hb and displace iron from heme.

355 To decipher these possible interactions, *in silico* analysis was performed to
356 identify heme-binding motifs in viral proteins. Commonly, heme coordination can
357 occur by hydrogen bonds via propionate groups, π-π stacking, electrostatic and
358 hydrophobic interactions. The critical heme-coordinating amino acids are histidine,
359 cysteine, and tyrosine; methionine and lysine occur at a lower frequency [25,26].
360 Here, *in silico* analysis supported the potential interaction of porphyrin ring with
361 Tyr333 of the N protein in addition to hydrophobic and hydrogen bonds via
362 propionate side chains. An open question is whether heme is a necessary
363 endogenous cofactor recruited by viral proteins during replication and translation.
364 The primary function of the N protein is to bind RNA. This protein comprises an N-
365 terminal domain containing the RNA-binding site, a C-terminal dimerization
366 domain, and a central linker region rich in serine and arginine [27]. The heme-
367 binding motifs identified in the N protein suggest another function for this protein.
368 The analyses of other N protein motifs identified a nuclear localization signal and a
369 nuclear export signal that offer dynamic nuclear-cytoplasmic trafficking that can be
370 involved in transcription regulation [27].

371 N protein binding to heme might have an important implication in viral and
372 cellular transcriptional regulation since heme regulates multiple transcription
373 factors in the nucleus, modulating the expression of various genes [28].
374 Interestingly, high-confidence protein-protein interactions between SARS-CoV-2
375 and human proteins identified N protein associated mainly with components of
376 cellular translational machinery [29]. N protein was reported to interact with two
377 subunits of casein kinase 2 (CK2), a protein involved in activation of heme regulator
378 inhibitor (HRI) kinase that phosphorylates eukaryotic initiation factor 2 (eIF-2),
379 inhibiting translation [30]. N protein could be involved in dissociation or recycling
380 of heme from HRI, modulating the phosphorylation of eIF2-α [31]. Some viruses do
381 not require eIF-2 and even induce host translation shutdown [32]; possibly, these
382 events consist of a manipulation route for viral protein synthesis.

383 Electrophoresis of mock and SARS-CoV-2 infected cells revealed different heme-
384 binding profiles. The electrophoretic mobility in the TMB in-gel staining assay

385 suggests that Spike fragment (S1 and S2, ~70kDa) and nucleoprotein (55 kDa) could
386 bind hemin and retained its peroxidase activity. Also, heme-binding interactions in
387 solution were changed by viral infection. Due to their hydrophobicity, heme and
388 PpIX have low solubility in an aqueous solution and tend to aggregate. Binding
389 complex with proteins can cause redshift and increase the Soret band's intensity,
390 and change spectra profile of Q band [33]. However, these results could also indicate
391 a viral modulation of cellular hemeproteins or heme-binding proteins.

392 To refine the analysis, shotgun proteomics was performed to identify SARS-CoV-
393 2 heme-binding proteins. Identification of proteins in SARS-CoV-2-infected Vero
394 cells total extract revealed structural and non-structural proteins. Spike holoprotein
395 was placed in the expected gel migration range (Band 1), but also cleavage products
396 S1 and S2 produced by proteases (TMPRSS2, furin, cathepsin) were observed at ~70
397 kDa bands (Band 2 and 3). Interestingly, SARS-CoV's mass spectrometry analysis
398 also identified Spike protein in bands of relative molecular masses divergent from
399 their theoretical sizes, suggesting glycosylation and cleavage [34]. As expected,
400 nucleoprotein was frequently identified and found in bands at 55 kDa, 45 kDa, and
401 40 kDa. The 55 kDa band in the TMB in-gel staining assay firmly retained hemin.
402 The N protein presence in bands with different predicted molecular masses has
403 been previously noted in SARS-CoV but attributed to protein degradation [35].

404 Interestingly, N protein was identified in a 46 kDa band of nucleus fraction of
405 infected cells [35]. The transition to a higher molecular mass has been observed for
406 nucleoprotein protein using mass spectrometry [34]. It can be indicative of the
407 complexity of protein-protein binding dynamics in the replication of SARS-CoV-
408 2. Since albumin in culture medium masks low abundance proteins identification
409 [36], we performed a serum depletion followed by affinity chromatography using
410 hemin-agarose beads. This approach increased the overall identification of proteins,
411 and after purification, the N protein was the most abundant protein identified by
412 mass spectrometry in the 45 kDa band. A variety of protein-protein interactions are
413 essential for SARS-CoV-2 replication and viral assembly, such as its structural
414 proteins that have been reported to interact with each other [37]. In the hemin-
415 agarose eluate, the M protein was identified in band 7 at a higher relative molecular
416 mass position than its predicted molecular mass of 25 kDa. It is a transmembrane
417 glycoprotein that comigrated with the other structural proteins Spike and N. While
418 the interaction of the M protein with the N protein has been observed previously
419 and appears to be necessary to viral assembly [38], this comigration was not
420 observed in the total extract of proteins from virally infected Vero cells before the
421 inclusion of the heme-agarose beads. N and S protein are highly immunogenic,
422 unlike M protein [39]. Spike protein appears to bind weakly to hemin beads since
423 no 70 kDa immunoreactive bands were noticed in the eluate fraction.

424 The heme-binding capacity of viral proteins leads us to question if this could
425 extend to Hb. In the overlay assay, the bands of approximately 150 kDa and 70 kDa,
426 which were exclusively found in the virus-infected cell extract, matched the Spike
427 holoprotein's predicted size and fragments S1 and S2. The identification of Spike as

428 a significant viral protein in these bands opens Hb's question and could bind and
429 interact with the RBD region. The Spot-synthesis analysis demonstrated several
430 areas of the RBD of the Spike protein bind Hb, corroborating the molecular docking
431 analysis. The apparent strength of binding according to the strong signals and Hb's
432 positioning on the Spike protein suggests that its interaction with Spike could
433 hinder viral entry and subsequent replication. In fact, the highest spot signal
434 (448YNYLYRLFRKSNLKP463) was observed within the receptor-binding motif
435 region (RBM; 437-508). This region is responsible for binding to ACE2 and includes
436 hot spot residues that bind Hb (Tyr451 and Leu452). It is essential to highlight that,
437 so far, the most frequent mutations in the RBD region of new variants are located in
438 RBM (Tyr453, Gly476, Phe486, Thr500, and Asn501) but are not present in hot spot
439 amino acids that interact with Hb [40].

440 Additionally, binding of Spike with hemoglobin may have a role in COVID-19
441 pathophysiology. Meta-analysis revealed that severe COVID-19 patients had
442 decreased hemoglobin levels, lower RBC count, and higher RDW than moderate
443 COVID-19 cases [41]. Although a combination of events plays a role in COVID-19
444 hypoxemia [42], the decrease in Hb levels contributes to hypoxia and is related to
445 complications, ultimately leading to multiorgan failure⁴¹. Low hemoglobin levels
446 were attributed to hemolytic anemia driven by inflammation and iron
447 dysmetabolism, interfering with erythropoiesis [21,41]; our results demonstrated
448 that viral particles' binding could also be implicated. In the scenario of hemolytic
449 anemia, an excess of heme/Hb increases ROS levels and tissue damage leading to
450 vascular injury and ferritin overexpression [43]. High ferritin levels are a hallmark
451 of COVID-19, eventually contributing directly to inflammation and lung injury
452 since ferritin is proinflammatory and leads to ferroptosis [7,44]. A recent report
453 found that even after two months from the onset of disease, 30% of patients still
454 presented iron deficiency, hyperferritinemia (38%), and anemia (9.2%) correlated
455 with disease severity [44].

456 Additionally, free heme and hemoglobin are involved in hemostasis and
457 thrombosis. Hb enhances platelet activation by scavaging nitric oxide²³ and also
458 induces platelet aggregation contributing to prothrombotic events [45]. The
459 assembly of viral particles and hemoglobin capping of Spike could contribute to
460 COVID-19 thromboembolic events and aggravate lung injury in critically ill
461 patients. Hemolysis in the intravascular and alveolar spaces results in hemoglobin
462 release that can contribute to organ dysfunction [46]; in ARDS, it is proposed that
463 hemoglobin-mediated damage by cell surface receptor binding on the alveolar
464 epithelium is independent of oxidative stress [47].

465 The ability of porphyrins to interfere in receptor binding was observed through
466 *in vitro* assays. Hemin alone had little effect on viral attachment and replication,
467 suggesting that hemin has little to no direct interactions with the Spike protein or
468 ACE-2. As intracellular concentrations of hemin are highly regulated, and hemin
469 can be exported or degraded by heme-oxygenase¹¹, the absence of an effect is
470 consistent with its physiology. In contrast, exposure of either cell or virus to PpIX

471 dramatically reduced viral load. Similar outcomes for PpIX and verteporfin have
472 been recognized against SARS-CoV-2 since treatment with porphyrins interferes
473 with the ACE2 and Spike that would impair viral entry. Also, these drugs were able
474 to inhibit viral RNA production, suggesting other potential mechanisms of action¹⁹.
475 Likewise, our results showed that PpIX at 1 μ M could inhibit viral replication after
476 24 h¹⁹. PpIX is hydrophobic and could interact with membranes; thus, porphyrin
477 interaction with viral envelope can induce destabilization and oxidation [48].

478 Pretreatment of viral particles with Hb reduced approximately 50% of both viral
479 replication and adsorption, demonstrating Spike/RBD-ACE-2 fusion impairment.
480 Furthermore, Hb treatment's effect after viral infection was higher, reducing 99% of
481 viral replication. Modulation of viral replication by extracellular free Hb can occur
482 via prooxidant activity, direct interactions of globin or heme to cell components and
483 signaling pathways, and induction of heme oxygenase [49]. Down-regulating HO-
484 1 is a strategy for the optimization of virus replication and to evade host antiviral
485 mechanisms for hepatitis C virus (HCV), hepatitis B virus (HBV), and Pseudorabies
486 virus (PRV) infection [50–52]. HO-1 is a critical stress-induced enzyme that
487 promotes antioxidant, antiapoptotic, and anti-inflammatory activities via
488 downstream metabolites such as biliverdin and bilirubin [53]. Biliverdin impairs
489 HCV replication by inducing an interferon response [52]. Induction or
490 overexpression of HO-1 inhibits some virus-like influenza [54], HIV [55], human
491 respiratory syncytial virus (RSV) [56], and Zika [57].

492 Overall, our demonstration that SARS-CoV-2 proteins can bind to heme or Hb
493 may have clinical implications. Mainly, Hb's interaction with Spike opens new
494 therapeutic perspectives due to significant virus attachment and replication
495 inhibition. Also, this binding could potentially increase or drive hematological
496 disorders and thrombosis observed in severe COVID-19. There are still knowledge
497 gaps on viral-host cell complex interplay and disease pathophysiology, the data
498 presented here will contribute to scientific discussion. More research will be needed
499 to confirm the relevant implications of these heme-protein interactions and
500 correlations with COVID-19 physiopathology.

501

502 **Material and methods**

503 **Motifs identification**

504 The MEME Suite server identified the motifs for binding to the heme group on the
505 SARS-CoV-2 nucleoprotein [58]. Protein sequences from 68 crystallized structures
506 with a heme group. Then, 36 Hb sequences deposited in the Uniprot database
507 (www.uniprot.org) were used against 13 nucleoprotein sequences from SARS-CoV-
508 2.

509

510 **Molecular docking**

511 *Receptor-Ligand:* Molecular docking assays were employed to predict the binding
512 modes of the Sars-CoV-2 nucleoproteins (PDB code - 6zco; accessed day September

513 08, 2020 - <https://www.rcsb.org/>) and ligand heme prosthetic group (Fe-
514 protoporphyrin) complexes by using the DockThor server ([https://dockthor.lncc.br
515 /v2/](https://dockthor.lncc.br/v2/)). Structures with positional root mean square deviation (RMSD) $\leq 2 \text{ \AA}$ were
516 clustered, and results with the most favorable free energy of binding were selected.

517 *Protein-Protein:* This assay was performed with human hemoglobin (PDB code -
518 4x0i) and spike protein (PDB code -7kn5), both accessed day September 20, 2020, by
519 using RosettaDock server (<http://rosettadock.graylab.jhu.edu>). The alpha and beta
520 chains of hemoglobin were assessed in the protein interaction assays and evaluated
521 using the HOTREGION database (<http://prism.cccb.ku.edu.tr/hotregion/index.php>).
522

523

524 **Cell culture, virus expansion, and virus tittering**

525 African green monkey kidney (Vero, subtype E6, ATCC®CRL-1586™) cells were
526 cultured in media consisting of high glucose DMEM complemented with 10% fetal
527 bovine serum (FBS; HyClone, Logan, Utah), 100 U/mL penicillin, and 100 $\mu\text{g}/\text{mL}$
528 streptomycin (Pen/Strep; Thermo Fisher Scientific). Cells were maintained in a
529 humidified atmosphere with 5% CO_2 at 37 °C. The SARS-CoV-2 used in these
530 studies (GenBank #MT710714) was isolated from a nasopharyngeal swab obtained
531 from a consenting patient with COVID-19, as confirmed by RT-PCR. The virus was
532 expanded in Vero E6 cells at a multiplicity of infection (MOI) of 0.01 according to
533 WHO guidelines that mandate all procedures related to virus cultures be performed
534 in a biosafety level 3 (BSL3) facility.

535 Virus titer was defined as plaque-forming units (PFU)/mL. Briefly, Vero E6 cells
536 were seeded into 96-well plates at 2×10^4 cells/well for 24 h before exposure to a
537 serial dilution of expanded SARS-CoV-2 for 1 h at 37 °C. A semi-solid high glucose
538 DMEM medium containing 2 % FSB and 2.4 % carboxymethylcellulose was added,
539 and cultures were incubated for 3 days at 37 °C. Then, the cells were fixed with 10
540 % formalin for 2 h at room temperature. The cell monolayer was stained with 0.04
541 % solution of crystal violet in 20% ethanol for 1h. Virus stocks were stored at -80 °C
542 until use.

543

544 **Yield reduction assays and virus titration**

545 Vero cells were seeded into 96-well plates at a density of 2×10^4 cells/well for 24 h
546 at 37 °C before exposure to SARS-CoV-2 at an MOI of 0.01. After a 1 h incubation,
547 the inoculum was removed, and cells were incubated in a medium containing 1 μM
548 of the experimental compounds diluted in DMEM with 2 % FBS. Alternatively, two
549 experimental conditions were performed: i) preincubation of the virus with the
550 compounds (1 μM) for 1 h at 37 °C before their addition to Vero E6 cells (MOI of
551 0.01) for an additional hour, or ii) preincubation of Vero cells with the compounds
552 (1 μM) for 1 h at 37 °C before their exposure to the virus (MOI 0.01). After 24 h,
553 supernatants were collected for virus titration (PFU/mL) as described above. For
554 virus titration, Vero E6 in 96-well plates (2×10^4 cells/well) were infected with serial
555 dilutions of yield reduction assays' supernatants containing SARS-CoV-2 for 1 h at

556 37 °C. A semi-solid high glucose DMEM medium containing 2 % FSB and 2.4 %
557 carboxymethylcellulose was added, and cultures were incubated for 3 days at 37 °C.
558 Then, the cells were fixed with 10% formalin for 2 h at room temperature. The cell
559 monolayer was stained with 0.04 % solution of crystal violet in 20% ethanol for 1 h.
560 The virus titers were determined by plaque-forming units (PFU) per milliliter.
561

562 **Adsorption inhibition assays**

563 The virus was incubated with compound (1 μ M) for 1 h and then added to
564 monolayers of Vero E6 cells in 48-well plates (5 \times 105 cells/well) at an MOI of 0.01
565 for 1 h at 4 °C. The medium with the virus was removed, and cells washed three
566 times with medium before lysis buffer addition. Total viral RNA was extracted
567 using QIAamp Viral RNA (Qiagen®) according to the manufacturer's instructions.
568 Quantitative RT-PCR was performed using GoTaq® Probe qPCR and RT-qPCR
569 Systems (Promega) in a StepOne™ Real-Time PCR System (Thermo Fisher).
570 Amplifications were performed as 25 μ L reactions containing 1x reaction mix
571 buffer, 50 μ M of each primer, 10 μ M of the probe, and 5 μ L of RNA template.
572 Primers, probes, and cycling conditions followed the recommendations of the
573 Centers for Disease Control and Prevention (CDC) protocol for the detection of the
574 SARS-CoV-2 [59]. A standard curve was included for virus quantification [60].
575

576 **SDS-PAGE and hemin-binding blots**

577 Vero E6 cells were infected with SARS-CoV-2 at a multiplicity of infection (MOI)
578 0.01 for 1 h at 37 °C. The inoculum was removed, and a fresh culture medium was
579 added. Protein extracts (20 μ g) were obtained 24 h post-infection by lysing the cell
580 monolayer with lysis buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 % glycerol,
581 0.6 % Triton X100). Protein extracts were electrophoretically separated on a 10 %
582 SDS-PAGE using Laemmli's buffer [61]. For hemin-binding blots, proteins were
583 transferred to nitrocellulose membrane and then rinsed with Tris-buffered saline
584 [TBS (10 mM Tris-HCl pH 8.0 containing 150 mM NaCl)] plus 0.1% Tween 20 (TBST)
585 followed by 1 h incubation with TBS containing hemin (2 μ M). Membranes were
586 subsequently washed three times for 30 min with TBST and revealed with a solution
587 containing 0.1 mg/mL 3,3' diaminobenzidine (DAB), 0.1 % H₂O₂, 10 mM HEPES,
588 pH 6.2, and 100 μ M CaCl₂ overnight at 4 °C in the dark [62]. Alternatively, heme-
589 binding proteins were evaluated by 1 h room temperature incubation of the protein
590 extracts (20 μ g) with hemin (300 μ M) in 250 mM Tris-HCl, pH 8.0, 5 mM EDTA, and
591 10% glycerol, followed by SDS-PAGE [63]. Then, gels were washed for 1 h with PBS
592 containing Triton X-100 (2.5 %) and equilibrated for 30 min with sodium acetate 0.5
593 M (pH 5.0). Heme binding proteins were revealed with 2 mg/mL 3,3',5,5'-
594 tetramethylbenzidine (TMB) dissolved in 15 mL of methanol and 35 mL of 0.5 M
595 sodium acetate (pH 5.0). Then, 300 μ L of 30 % H₂O₂ solution was added, and the
596 reaction was carried out for 30 min in the dark. After a blue-colored band
597 developing, indicative of a heme-protein complex, the gels were washed with

598 sodium acetate (pH 5.0) and isopropanol (30 %) solution. Protein extract without
599 preincubation with hemin was used as a negative control.

600

601 **Hemin and PPIX binding assay**

602 Hemin chloride (10 μ M) diluted in NaOH (0.1 M) was added to a quartz cuvette
603 containing 20 μ g of protein extract from Vero cells and SARS-CoV-2 infected Vero
604 cells. The absorbance of samples was evaluated at 300–700 nm. Spectroscopic
605 analysis was performed using a SpectraMaxM2e (Molecular Devices). For
606 protoporphyrin IX (PPIX) binding assays, 20 μ g of each protein extract was
607 incubated with PPIX solution (1mM in DMSO followed by dilution to 1 μ M in
608 phosphate buffer saline pH 7.4) followed by absorbance spectra analysis.

609

610 **Protein purification and hemin-agarose binding assay**

611 Protein extract, obtained from infected Vero E6 monolayers 24 h post-infection lysed
612 with 100 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 % glycerol, 0.6 % Triton X-100, was
613 initially subjected to affinity chromatography using a protein-A/anti-BSA mAB
614 matrix (Sigma-Aldrich) to remove excess albumin (a heme-binding protein
615 contaminant). Then, hemin-agarose was used to isolate heme-binding proteins.
616 Briefly, 200 mL of hemin-agarose (Sigma-Aldrich) was washed three times in 1 mL
617 of 100 mM NaCl, 25 mM Tris-HCl (pH 7.4) 5 min, and centrifugated at 700 g. Next,
618 hemin-agarose was incubated for 1 h at 37 °C, under agitation, with SARS-CoV-2
619 protein extracts (800 μ g). The unbound proteins were removed by washing three
620 times with equilibration buffer, and beads incubated for 2 min with elution solution
621 (2 %, SDS, 1 % β -mercaptoethanol in 500 mM Tris HCl, pH 6.8) followed by boiling
622 at 100 °C for 5 min [64]. Total extract, unbound (supernatant) fraction, washing
623 fraction, and hemin-agarose bound proteins were separated by 10 % SDS-PAGE
624 gels and stained with Coomassie Blue R-250 or transferred to a nitrocellulose
625 membrane (subsequently blocked with TBS-T (Tris-buffer saline, 0.1% Tween 20,
626 pH 7.5) and 5% defatted milk. Immunostaining was later performed by incubating
627 membranes overnight at 4 °C with a pool of COVID-19 convalescent serum (1:200).
628 Then, membranes were washed and incubated with HRP-conjugated anti-human
629 IgG antibody (Sigma-Aldrich; 1:10.000) followed by chemiluminescence detection.

630

631 **Overlay assay**

632 Protein extracts (20 μ g), obtained as described above, were separated by 10 % SDS–
633 PAGE and transferred to a nitrocellulose membrane (Bio-Rad). Haptoglobin
634 (Sigma-Aldrich) was used as a control. The membrane was blocked with 2 % BSA
635 in TBS-T buffer, then incubated overnight at 4 °C after adding 10 μ g/mL of human
636 hemoglobin (Hb). After washing with TBS-T, the membrane was incubated with an
637 anti-Hb antibody (1:5.000) (Sigma-Aldrich). The antigen-antibody complex was
638 revealed by chemiluminescence.

639

640 **Spot-Synthesis**

641 The DNA sequence of the Spike protein (P0DTC2) receptor-binding domain was
642 retrieved from Uniprot. A library of 15 amino acid peptides with a 5-amino acid
643 overlap was designed to represent the entire coding region (319-541 aa) of RBD and
644 automatically synthesized onto cellulose membranes using an Auto-Spot Robot
645 ASP222 (Intavis, Koeln, Germany) according to the SPOT synthesis protocol [65,66].
646 Briefly, membranes containing the synthetic peptides were washed with TBST (and
647 then blocked with TBS-T containing 1.5 % BSA under agitation for 2 h at room
648 temperature. After extensive washing with TBS-T (Tris-buffer saline, 0.1 % Tween
649 20, pH 7.0), membranes were incubated overnight with Hb (5 µg/mL) dissolved in
650 TBST + BSA (0.75 %). After incubation, membranes were washed with TBS-T,
651 followed by additional incubation with anti-human Hb antibody for 90 min.
652 Subsequently, the membrane was washed with TBS-T and incubated for 90 min
653 with anti-rabbit IgG antibody conjugated to alkaline phosphatase (Sigma Alrich),
654 diluted 1:5.000 in TBS-T solution containing 0.75 % BSA. Washes were performed
655 with TBS-T followed by the addition of substrate for chemiluminescent alkaline
656 phosphatase Tropix® was added. Next, membranes were washed three times with
657 TBS-T, and then the buffer was exchanged to CBS (50 mM citrate-buffer saline)
658 before the addition of the chemiluminescent enhancer Nitro-Block II. The
659 chemiluminescent substrate Super Signal R West Pico was applied, and signals were
660 immediately detected. A digital image file was generated, and the signal intensities
661 quantified using TotalLab (Nonlinear Dynamics, USA) software⁶⁶. The spots with
662 signal intensity greater than or equal to 50% of the highest signal value obtained in
663 all membrane spots were considered to identify possible binding motifs.
664

665 **In-Gel Trypsin Digestion of Proteins.**

666 Protein spots were excised from gels using sterile stainless steel scalpels, transferred
667 to 0.5 mL tubes, and cut into smaller pieces. In-gel digestion with trypsin (Promega
668 V511A) was performed according to the literature [67] with modifications described
669 elsewhere [68]. Protein reduction was performed by the addition of 100 µL of 65
670 mM DTT for 30 min at room temperature, followed by alkylation with 100 µL of a
671 200 mM iodoacetamide solution for 30 min, in the dark, at room temperature. After
672 washes and trypsinization, the final 80 µL peptide-containing samples were
673 concentrated by vacuum centrifugation to approximately 20 µL and stored at -20
674 °C until mass spectrometric analysis. Gel pieces from a “blank” region and the BSA
675 molecular mass marker were negative and positive controls, respectively.
676

677 **Identification of proteins by mass spectrometry**

678 The tryptic digests were analyzed in three technical replicates by reversed-phase
679 nanochromatography coupled to high-resolution nanoelectrospray ionization mass
680 spectrometry. Chromatography was performed using a Dionex Ultimate 3000
681 RSLCnano system coupled to the HF-X Orbitrap mass spectrometer (Thermo
682 Fischer Scientific). Samples (4 µL per run) were initially applied to a 2 cm guard
683 column, followed by fractionation on a 25.5 cm PicoFritTM Self-Pack column (New

684 Objective) packed with 1.9 μ m silica, ReproSil-Pur 120 \AA C18-AQ (Dr.Maisch/
685 Germany). Samples were loaded in 0.1 % (v/v) formic acid (FA) and 2 % acetonitrile
686 (ACN) onto the trap column at 2 μ L/min, while chromatographic separation
687 occurred at 200 nL/min. Mobile phase A consisted of 0.1% (v/v) FA in water, while
688 mobile phase B consisted of 0.1% (v/v) FA in ACN. Peptides were eluted with a
689 linear gradient from 2 to 40% eluent B over 32 min, followed by up to 80% B in 4
690 min. Lens voltage was set to 60 V. Full scan MS mode was acquired with a resolution
691 of 60,000 (FWHM for m/z 200 and AGC set to 3×10^6). Up to 20 most abundant
692 precursor ions from each scan (m/z 350-1,400) were sequentially subjected to
693 fragmentation by HCD. Fragment ions were analyzed at a resolution of 15,000 using
694 an AGC set to 1×10^5 . Data were acquired using Xcalibur software (version 3.0.63).
695

696 **Peptide identification and protein inference**

697 All MS/MS spectra were analyzed using PEAKS Studio X Plus (Bioinformatics
698 Solutions, Canada). Peptide identification was performed against *Chlorocebus*
699 *sabaeus* reference proteome at the UNIPROT database under ID UP000029965, plus
700 the SARS-CoV-2 reference proteome at the same database UP000464024
701 (downloaded July 03, 2020). Data refinement applied the precursor correction (mass
702 only). Next, PEAKS *de novo* analysis was run assuming trypsin digestion, with a
703 fragment ion mass tolerance of 0.02 Da and a parent ion tolerance of 10 ppm.
704 Cysteine carbamidomethylation (+57.02 Da) was set as fixed modification; a
705 maximum of 2 variable shifts per peptide was allowed. PEAKS DB analysis was
706 performed using these same parameters, plus the possibility of up to two missed
707 enzyme cleavages and nonspecific cleavage at both sides of the peptides. Finally,
708 post-translational and other possible modifications were searched using the PEAKS
709 PTM algorithm, with the same parameters described above, against a protein
710 subdatabase composed only by protein entries found by the previous PEAKS De
711 Novo and PEAKS DB searches. False discovery rates (FDR) were estimated through
712 the PEAKS decoy fusion approach. A peptide-spectrum match FDR of 0.1 % and
713 protein identifications with at least 2 unique peptides were the criteria used to
714 establish FDR values at peptide and protein levels smaller than 1 %.
715

716 **Data analysis**

717 Graphs were prepared, and statistics were performed using R software 4.0.0 and
718 GraphPad Prism version 9.

719 **Conflict of interest**

720 The authors declare no conflict of interest.

721 **Author Contributions**

722 GCL, FSS, SGS, and TMLS conceived and designed the proposal. GCL, MCSP, RHV,
723 TMLS, SGS, and DWP wrote the paper. GCL, FSS, CQS, SSGD, NFR, JRT, and PNP
724 performed *in vitro* experiments and processed the data. FSS, CRA, and NC
725 performed *in silico* and docking analysis. MROT and RHV performed mass

726 spectrometry and data analysis. Contributed with reagents/materials/analysis: SGS,
727 TMLS, MCSP, MROT, and RHV. All authors have read and agreed to the published
728 version of the manuscript.

729 **Funnding**

730 SGS received support from FIOCRUZ (INOVA VPPCB-007FIO-18-2-21 and VPPIS-005FIO-20-2-51),
731 Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro/FAPERJ #(grant
732 E-26 110.198-13), and the Brazilian Council for Scientific Research/CNPq #(grant 467.488.2014-2 and
733 #301744/2019-0).

734 DWP received support from FIOCRUZ (INOVA VPPCB-005-FIO-20).)

735 TMLS received support from FIOCRUZ (INOVA B3-Bovespa)

736

737 **Acknowledgments**

738 SGS, CRA, MCSP and RHV are Post Doctorate fellows from CNPq.

739 GCL is Post Doctorate fellow from CINCT-IDPN/FAPERJ (E-26/201.848/2020)

740 FSS is Post Doctorate fellows from CAPES.

741 CQS, NFR and JTR are postdoctoral fellows from CAPES/CDTS and Inova Program.

742 SSGD is a PhD student from Oswaldo Cruz Institute/Fiocruz.

743

744 **References**

- 745 1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in
746 Wuhan, China, of novel coronavirus–infected pneumonia. *N Engl J Med* 2020; 382: 1199-
747 07.
- 748 2. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of
749 viral load in posterior oropharyngeal saliva samples and serum antibody responses
750 during infection by SARS-CoV-2: an observational cohort study. *Lancet Infect Dis* 2020;
751 20: 565-74.
- 752 3. Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K COVID-19 (Novel Coronavirus
753 2019) - recent trends. *Eur Rev Med Pharmacol Sci* 2020; 24: 2006-11.
- 754 4. Ho D, Wang P, Liu L, Iketani S, Luo Y, Guo Y, et al. Increased resistance of SARS-
755 CoV-2 variants B.1.351 and B.1.1.7 to antibody neutralization. *Res Sq* 2021; rs.3.rs-155394.
- 756 5. WHO Solidarity Trial Consortium, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP,
757 Sathiyamoorthy V, et al. Repurposed antiviral drugs for Covid-19 — Interim WHO
758 solidarity trial results. *N. Engl. J. Med.* 2021; 384: 497-511
- 759 6. Liu W, Li H COVID-19: Attacks the 1-beta chain of hemoglobin and captures the
760 porphyrin to inhibit human heme metabolism. *ChemRxiv* 2020. doi: 10.26434/chem
761 rxiv.11938173.v6
- 762 7. Cavezzi A, Troiani E, Corrao S COVID-19: hemoglobin, iron, and hypoxia beyond
763 inflammation. A narrative review. *Clin Pract* 2020;10: 1271.
- 764 8. Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz
765 J, et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. *Nature*
766 2020; 585: 268-72.
- 767 9. Foy BH, Carlson JCT, Reinertsen E, Valls RPI, Lopez RP, Palanques-Tost E, et al.
768 Association of red blood cell distribution width with mortality risk in hospitalized adults
769 with SARS-CoV-2 infection. *JAMA Netw.* 2020; 3: e2022058.

770 10. Shah A, Frost JN, Aaron L, Donovan K, Drakesmith H, Collaborators, et al. Systemic
771 hypoferremia and severity of hypoxic respiratory failure in COVID-19. *Critical Care*
772 2020; 24: 320.

773 11. Ponka P Cell biology of heme. *Am J Med Sci* 1999;318: 241-56.

774 12. Faller M, Matsunaga M, Yin S, Loo JA, Guo F Heme is involved in microRNA processing.
775 *Nat Struct Mol Biol* 2007; 14: 23-9.

776 13. Kumar S, Bandyopadhyay U Free heme toxicity and its detoxification systems in human.
777 *Toxicol Lett* 2005; 157: 175-88.

778 14. Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, et al. Different
779 faces of the heme-heme oxygenase system in inflammation. *Pharmacol Rev* 2003; 55:
780 551-71.

781 15. de Souza GR, Hounkpe BW, Fiusa MML, Colella MP, Annichino-Bizzacchi JM,
782 Traina F et al. Tissue factor-dependent coagulation activation by heme: A
783 thromboelastometry study. *PLoS One* 2017; 12: e0176505.

784 16. Guo H, Pan X, Mao R, Zhang X, Wang L, Lu X, et al. Alkylated porphyrins have broad
785 antiviral activity against hepadnaviruses, flaviviruses, filoviruses, and arenaviruses.
786 *Antimicrob Agents Chemother* 2011; 55, 478-86.

787 17. Neris RLS, Figueiredo CM, Higa LM, Araujo DF, Carvalho CAM, Verçoza BRF, et al. Co-
788 protoporphyrin IX and Sn-protoporphyrin IX inactivate Zika, Chikungunya and other
789 arboviruses by targeting the viral envelope. *Sci Rep* 2018; 8: 9805.

790 18. Vzorov AN, Dixon DW, Trommel JS, Marzilli LG, Compans, RW Inactivation of
791 human immunodeficiency virus type 1 by porphyrins. *Antimicrob. Agents Chemother*
792 2002; 46: 3917-25.

793 19. Gu C, Wu Y, Guo H, Zhu Y, Xu W, Wang Y, et al. Protoporphyrin IX and verteporfin
794 potently inhibit SARS-CoV-2 infection in vitro and in a mouse model expressing human
795 ACE2. *Sci Bull (Beijing)* 2020; Dec 9 doi: 10.1016/j.scib.2020.12.005.

796 20. Yuki K, Fujiogi M, Koutsogiannaki S COVID-19 pathophysiology: A review. *Clin*
797 *Immunol* 2020; 215: 108427.

798 21. Lazarian G, Quinquenel A, Bellal M, Siavellis J, Jacquy C, Re D, et al. Autoimmune
799 haemolytic anaemia associated with COVID-19 infection. *British J Haematol* 2020; 190:
800 29-31.

801 22. Prieto-Pérez L, Fortes J, Soto C, Vidal-González Á, Alonso-Riaño M, Lafarga M, et al.
802 Histiocytic hyperplasia with hemophagocytosis and acute alveolar damage in COVID-
803 19 infection. *Mod Pathol* 2020; 33: 2139-46.

804 23. Litvinov RI, Weisel JW Role of red blood cells in haemostasis and thrombosis. *ISBT Sci*
805 *Ser* 2017; 12: 176-183.

806 24. Dutra FF, Bozza, MT Heme on innate immunity and inflammation. *Front Pharmacol*
807 2014; 5, 115.

808 25. Li T, Bonkovsky HL, Guo J Structural analysis of heme proteins: implications for design
809 and prediction. *BMC Struct Biol* 2011; 11: 13.

810 26. Wißbrock A, George AAP, Brewitz HH, Kühl T, Imhof D The molecular basis of transient
811 heme-protein interactions: Analysis, concept and implementation. *Biosci Rep* 2019; 39:
812 BSR20181940.

813 27. Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. *Biochem Biophys*
814 *Res Commun* 2020; 527: 618-23.

816 28. Mense SM, Zhang L Heme: A versatile signaling molecule controlling the activities
817 of diverse regulators ranging from transcription factors to MAP kinases. *Cell Res* 2006;
818 16: 681-92.

819 29. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2
820 protein interaction map reveals targets for drug repurposing. *Nature* 2020; 583: 459-68.

821 30. Méndez R, De Haro C Casein kinase II is implicated in the regulation of heme-
822 controlled translational inhibitor of reticulocyte lysates. *J Biol Chem* 1994; 269: 617 0-6.

823 31. Han AP, Yu C, Lu L, Fujiwara Y, Browne C, Chin G, et al. Heme-regulated eIF2 α kinase
824 (HRI) is required for translational regulation and survival of erythroid precursors in iron
825 deficiency. *EMBO J* 2001; 20: 6909-18.

826 32. Liu Y, Rutardottir S, Rajabi M, Wester Rosenlöf L, Alayash AI, Åkerström B, et al. The
827 role of host eIF2 α in viral infection. *Virology J* 2020; 17: 112.

828 33. Karnaughova E, Rutardottir S, Rajabi M, Wester Rosenlöf L, Alayash AI, Åkerström B
829 Characterization of heme binding to recombinant α 1-microglobulin. *Front Physiol* 2014;
830 5: 465.

831 34. Ying W, Hao Y, Zhang Y, Peng W, Qin E, Cai Y, et al. Proteomic analysis on structural
832 proteins of severe acute respiratory syndrome coronavirus. *Proteomics* 2004; 4: 492-504.

833 35. Zeng R, Ruan HQ, Jiang XS, Zhou H, Shi L, Zhang L, et al. Proteomic analysis of SARS
834 associated coronavirus using two-dimensional liquid chromatography mass
835 spectrometry and one-dimensional sodium dodecyl sulfate-polyacrylamide gel
836 electrophoresis followed by mass spectrometric analysis. *J Proteome Res* 2004; 3: 549-55.

837 36. Pellitteri-Hahn MC, Warren MC, Didier DN, Winkler EL, Mirza SP, Greene AS et al.
838 Improved mass spectrometric proteomic profiling of the secretome of rat vascular
839 endothelial cells. *J. Proteome Res.* 2006; 5: 2861-4.

840 37. Kumar A, Kumar P, Garg N, Giri R An insight into SARS-CoV-2 membrane protein
841 interaction with spike, envelope, and nucleocapsid proteins. Preprint 2020 at:
842 <https://www.biorxiv.org/content/10.1101/2020.10.30.363002v1>.

843 38. He R, Leeson A, Ballantine M, Andonov A, Baker L, Dobie F, et al. Characterization of
844 protein-protein interactions between the nucleocapsid protein and membrane protein of
845 the SARS coronavirus. *Virus Res* 2004; 105: 121-5.

846 39. Dai L, Gao GF Viral targets for vaccines against COVID-19. *Nat Rev Immunol* 2021; 21:
847 73-82.

848 40. Guruprasad L Human SARS CoV-2 spike protein mutations. *Proteins* 2021; 89: 569-76.

849 41. Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, et al.
850 Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. *Eur
851 J Epidemiol* 2020; 35: 763-73.

852 42. Prayag S, Sarangi B, Shankar GH, Reddy VS, Walimbe A, Sharma V, et al. Mechanisms
853 of hypoxia in COVID-19 patients: A pathophysiologic reflection. *Indian J Crit Care Med*
854 2020; 24: 967-70.

855 43. Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM Ferritin and the response to
856 oxidative stress. *Biochem J* 2001; 357: 241-7.

857 44. Sonnweber T, Boehm A, Sahanic S, Pizzini A, Aichner M, Sonnweber B, et al. Persisting
858 alterations of iron homeostasis in COVID-19 are associated with non-resolving lung
859 pathologies and poor patients' performance: a prospective observational cohort study.
860 *Respir Res* 2020; 21: 276.

861 45. Weisel JW, Litvinov RI Red blood cells: the forgotten player in hemostasis and
862 thrombosis. *J Thromb Haemost* 2019; 17: 271-82.

863 46.Janz DR, Ware LB The role of red blood cells and cell-free hemoglobin in the
864 pathogenesis of ARDS. *J Intensive Care* 2015; 3: 20.

865 47.Mumby S, Ramakrishnan L, Evans TW, Griffiths MJD, Quinlan GJ Methemoglobin-
866 induced signaling and chemokine responses in human alveolar epithelial cells. *Am J*
867 *Physiol Lung Cell Mol Physiol* 2014; 306: L88-100.

868 48.Stojiljkovic I, Evavold BD, Kumar V Antimicrobial properties of porphyrins. *Exp. Op.*
869 *Inv. Drugs* 2001; 10: 309-20.

870 49. Simoni J, Simoni G, Moeller, JF (Intrinsic toxicity of hemoglobin: How to counteract
871 it. *Artif Organs*. 2009; 33: 100-9.

872 50.Zhang A, Wan B, Jiang D, Wu Y, Ji P, Du Y, et al. The cytoprotective enzyme heme
873 oxygenase-1 suppresses pseudorabies virus replication in vitro. *Front Microbiol* 2020;
874 11: 412.

875 51. Protzer U, Seyfried S, Quasdorff M, Sass G, Svorcova M, Webb D, et al. Antiviral
876 activity and hepatoprotection by heme oxygenase-1 in Hepatitis B virus infection.
877 *Gastroenterology* 2007; 133: 1156-65.

878 52. Lehmann E, El-Tantawy WH, Ocker M, Bartenschlager R, Lohmann
879 V, Hashemolhosseini S, et al. The heme oxygenase 1 product biliverdin interferes with
880 hepatitis C virus replication by increasing antiviral interferon response. *Hepatology*
881 2010; 51: 398-404.

882 53. Sass G, Seyfried S, Soares MP, Yamashita K, Kaczmarek E, Neuhuber WL, et al.
883 Cooperative effect of biliverdin and carbon monoxide on survival of mice in immune-
884 mediated liver injury. *Hepatology* 2004; 40: 1128-35.

885 54.Hashiba, T. et al. Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates
886 severe lung injury induced by the influenza virus in mice. *Gene Ther* 2001; 8: 1499-507

887 55.Milburn D, Laskowski RA, Thornton JM Sequences annotated by structure: A tool to
888 facilitate the use of structural information in sequence analysis. *Protein Eng* 1998; 11 855-
889 9.

890 56.Espinoza JA, León MA, Céspedes PF, Gómez RS, Canedo-Marroquín G, Riquelme SA,
891 et al. Heme oxygenase-1 modulates human respiratory syncytial virus replication and
892 lung pathogenesis during infection. *J Immunol* 2017; 199: 212-23.

893 57.El Kalamouni C, Frumence E, Bos S, Turpin J, Nativel B, Harrabi W, et al. Subversion of
894 the heme oxygenase-1 antiviral activity by zika virus. *Viruses* 2019; 11: 2

895 58.Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: Tools
896 for motif discovery and searching. *Nucleic Acids Res* 2009; 37: W202-8.

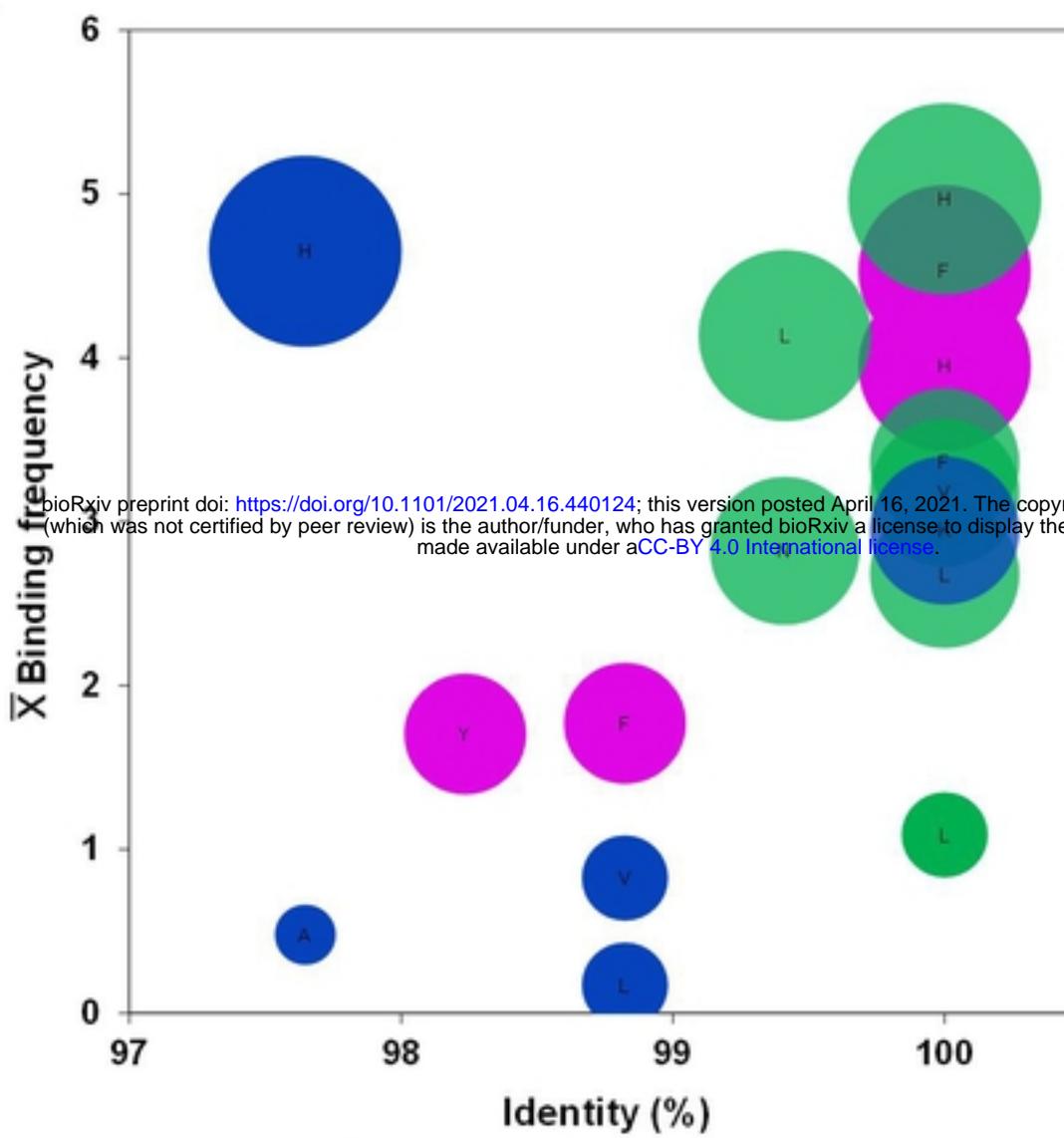
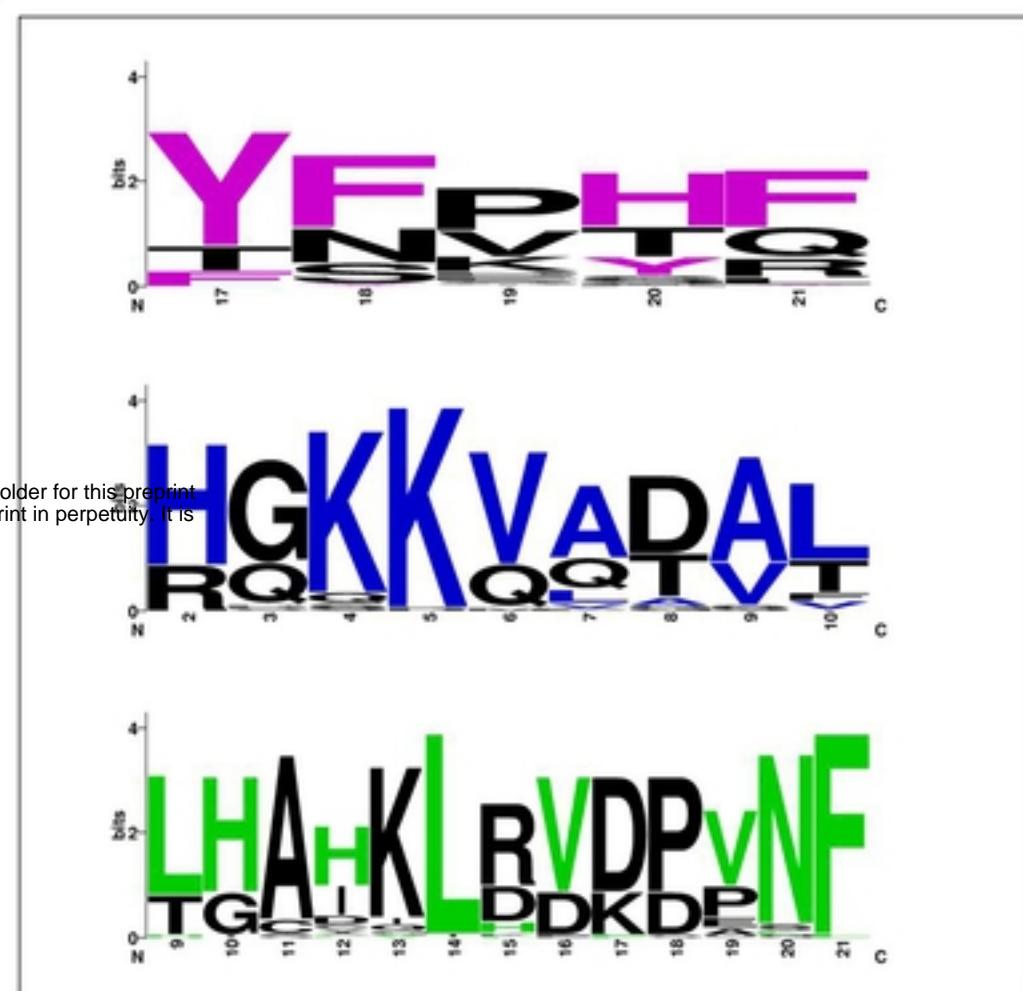
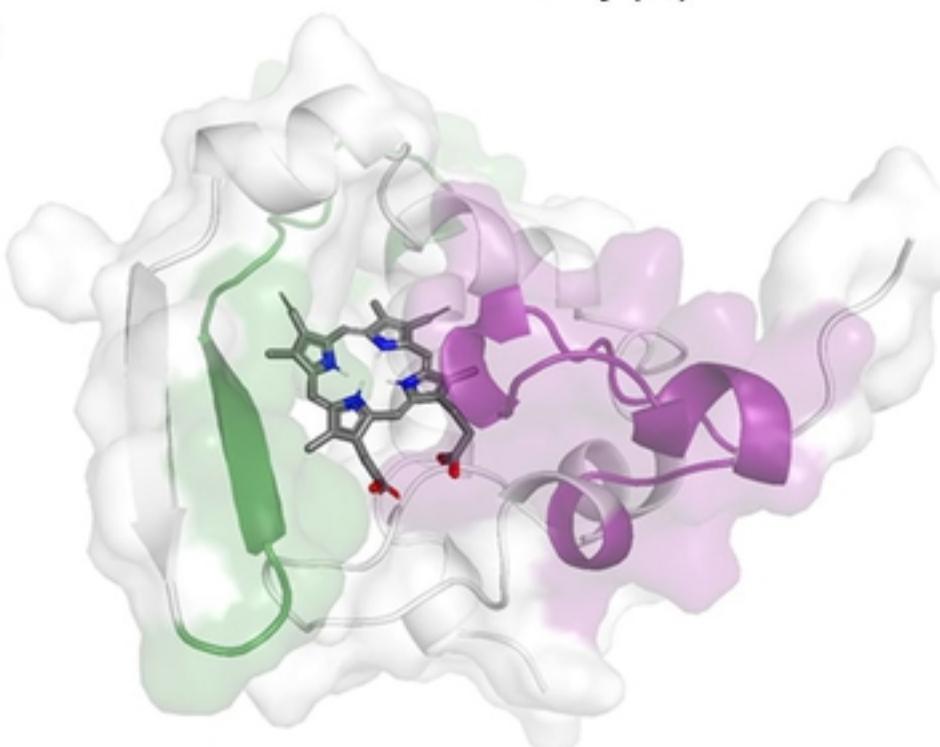
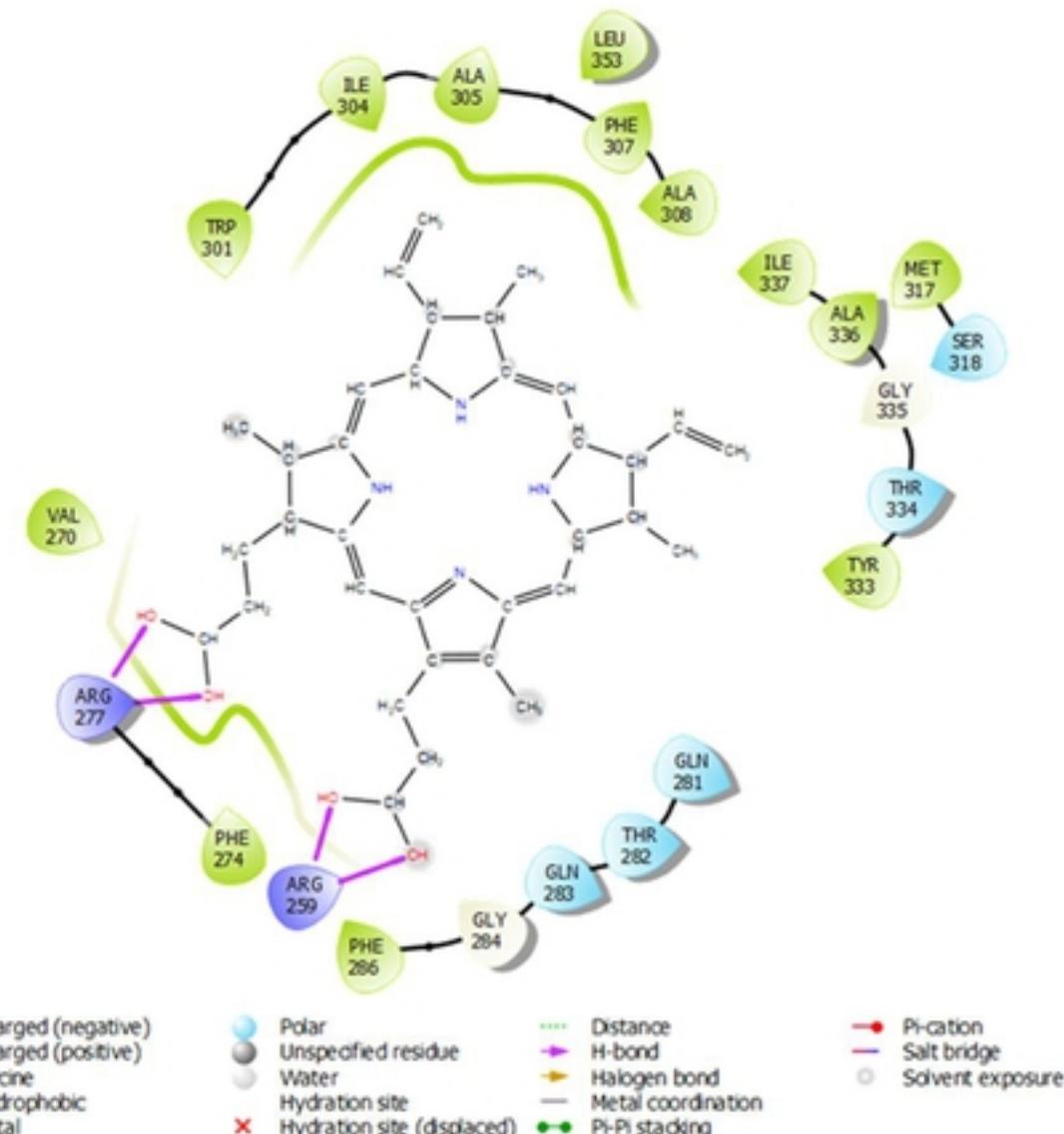
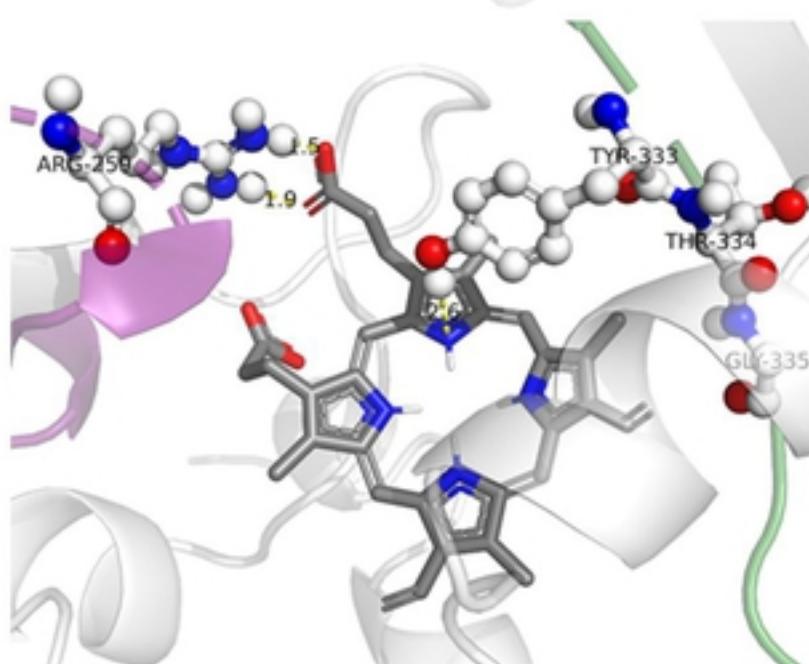
897 59. CDC. Real-time RT-PCR Primers and Probes for COVID-19|CDC. Available
898 at:https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-pro_bes.html. (Accessed: March 25 2021)

900 60.Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N, Temerozo
901 JR, et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory
902 mediators. *PLoS Pathog.* 2020; 16: e1009127.

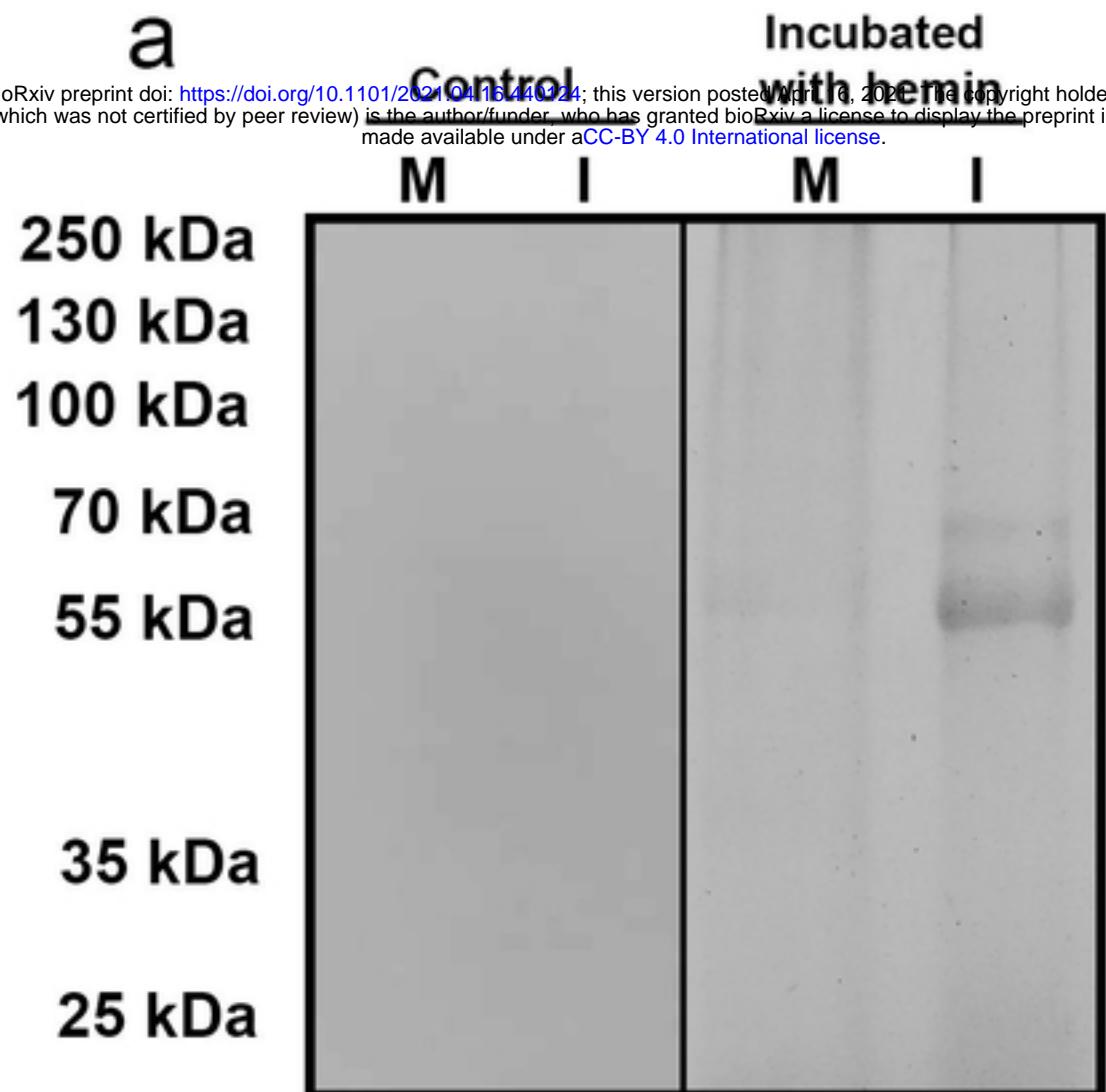
903 61.Laemmli UK Cleavage of structural proteins during the assembly of the head of
904 bacteriophage T4. *Nature* 1970; 227: 680-5.

905 62.Yuan X, Rietzschel N, Kwon H, Nuno ABW, Hanna DA, Phillips JD, et al. Regulation
906 of intracellular heme trafficking revealed by subcellular reporters. *Proc Natl Acad Sci*
907 USA 2016; 113: E5144-52.

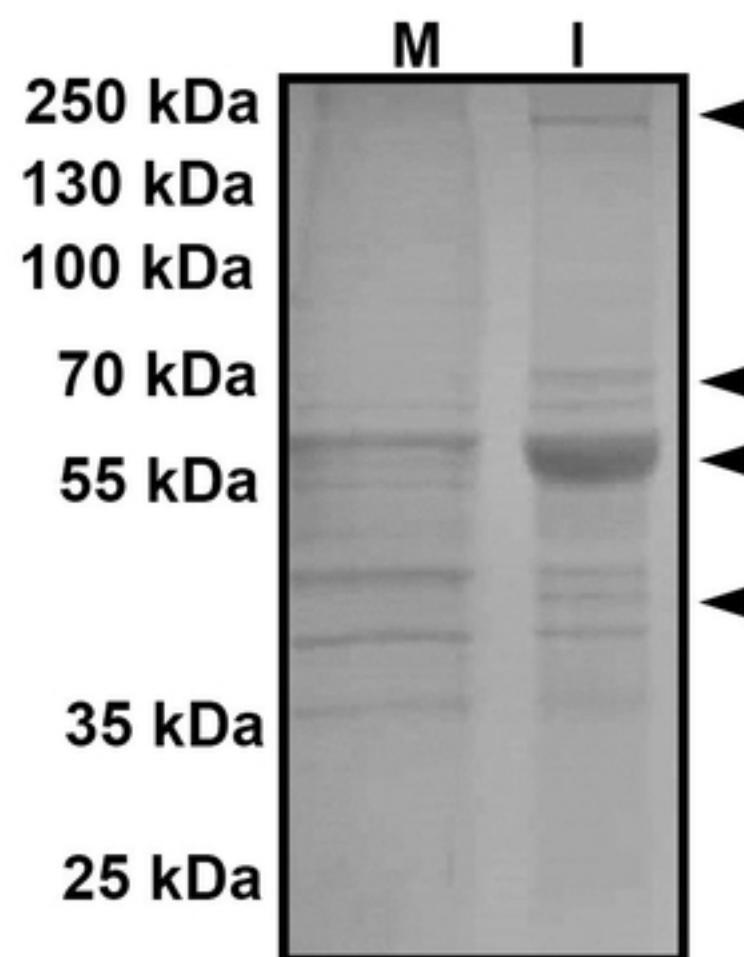
908 63.Zhou JR, Bu DR, Zhao XF , Wu F, Chen XQ, Shi HZ, et al. Hc-hrg-2, a glutathione
909 transferase gene, regulates heme homeostasis in the blood-feeding parasitic nematode
910 *Haemonchus contortus*. *Parasit Vectors* 2020; 13: 40.






911 64.Mbanefo EC, Kikuchi M, Huy NT , Shuaibu MN, Cherif MS, Yu C et al. Characterization
912 of a gene family encoding sea (sea-urchin sperm protein, enterokinase and agrin)-
913 domain proteins with lectin-like and heme-binding properties from *Schistosoma*
914 *japonicum*. *PLoS Negl Trop Dis* 2014; 8: e2644.

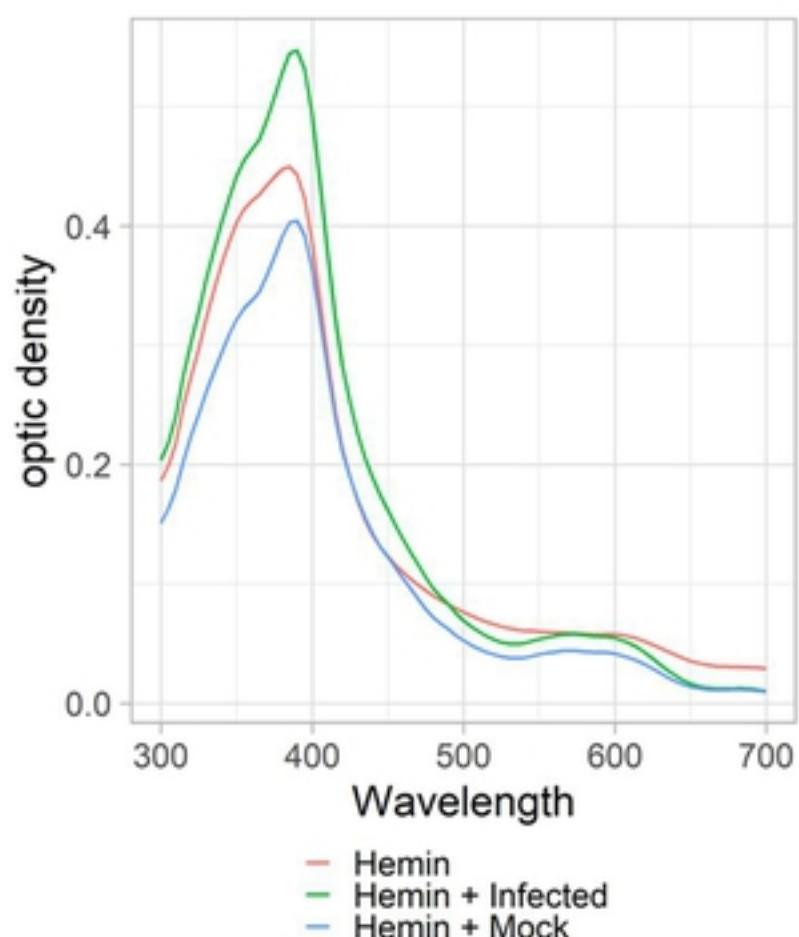
915 65.De-Simone SG, Napoleão-Pêgo P, De-Simone TS Spot Synthesis: An optimized
916 microarray to detect IgE epitopes. *Methods Mol. Biol.* 2016;1352: 263-77.

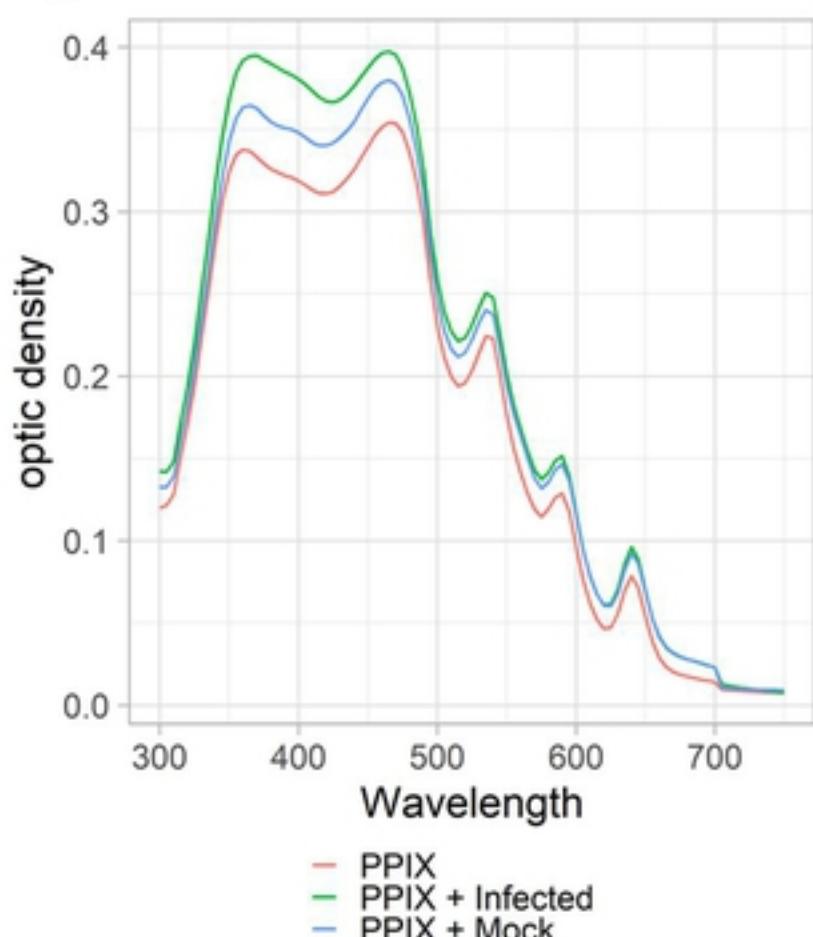

917 66. De-Simone SG, Gomes LR, Napoleão-Pêgo P, Lechuga GC. Pina JC, Silva FR
918 Identification of linear B epitopes liable for the protective immunity of diphtheria toxin.
919 *Vaccines* 2021; 9: 313.

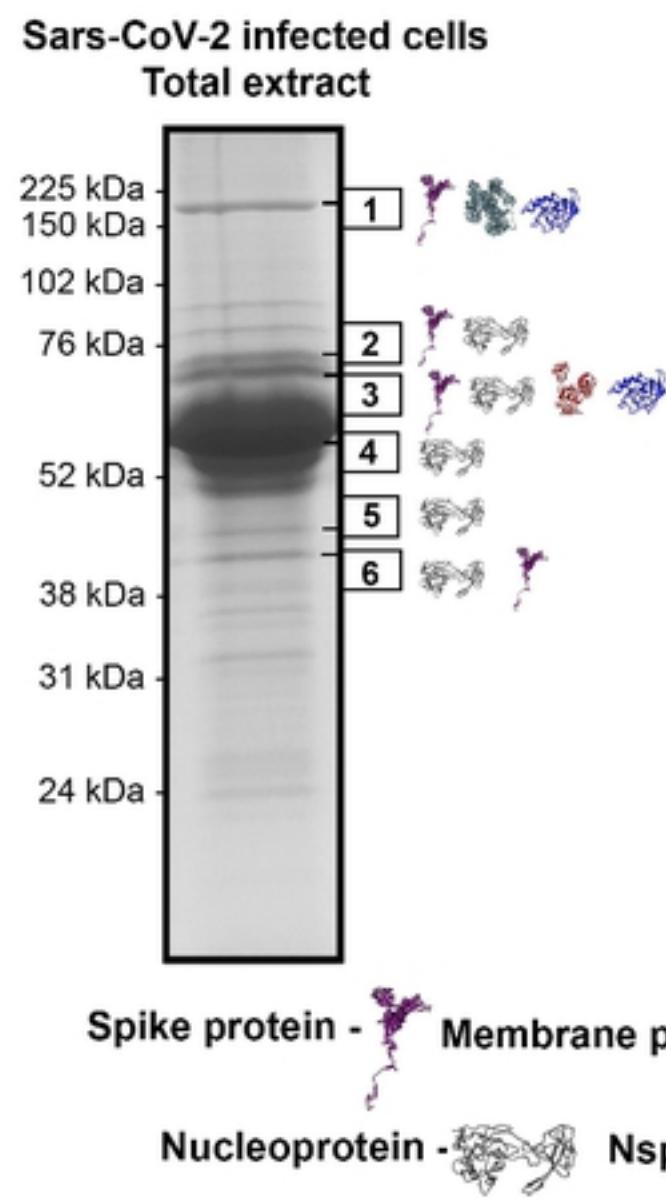
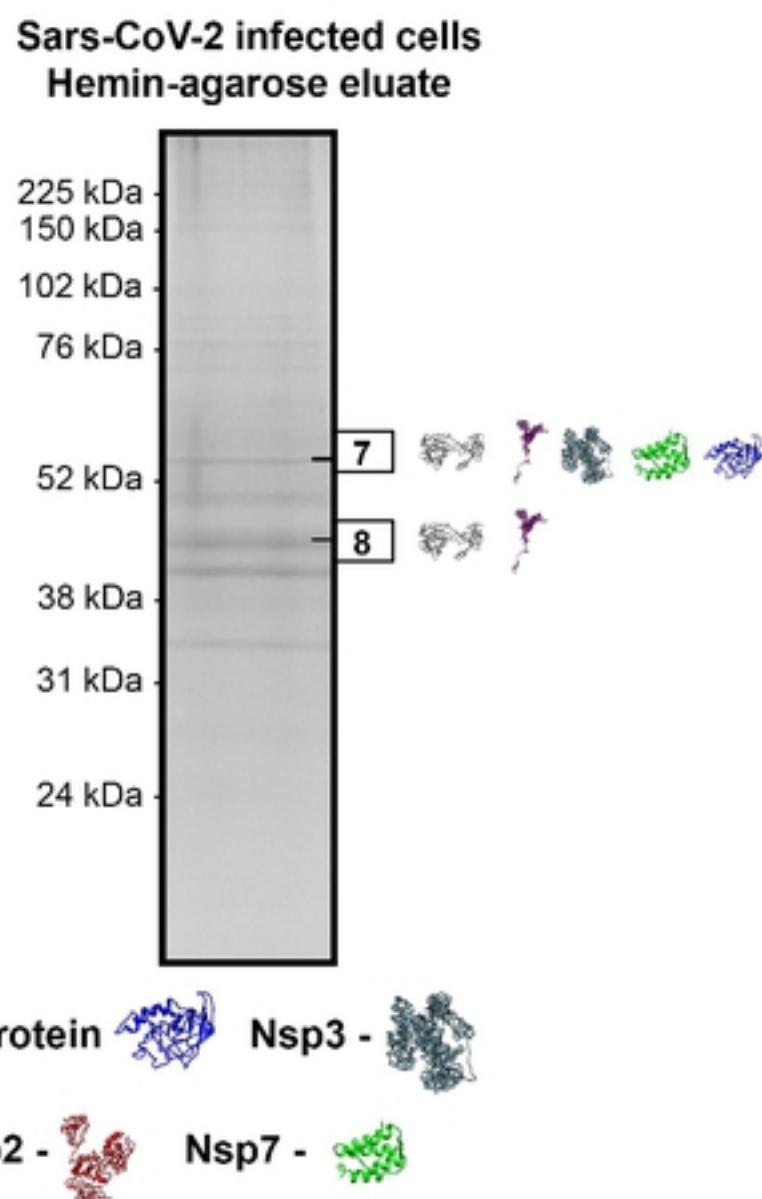
920 67.Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, et al. Femtomole
921 sequencing of proteins from polyacrylamide gels by nano electrospray mass
922 spectrometry. *Nature* 1996; 379: 466-9.

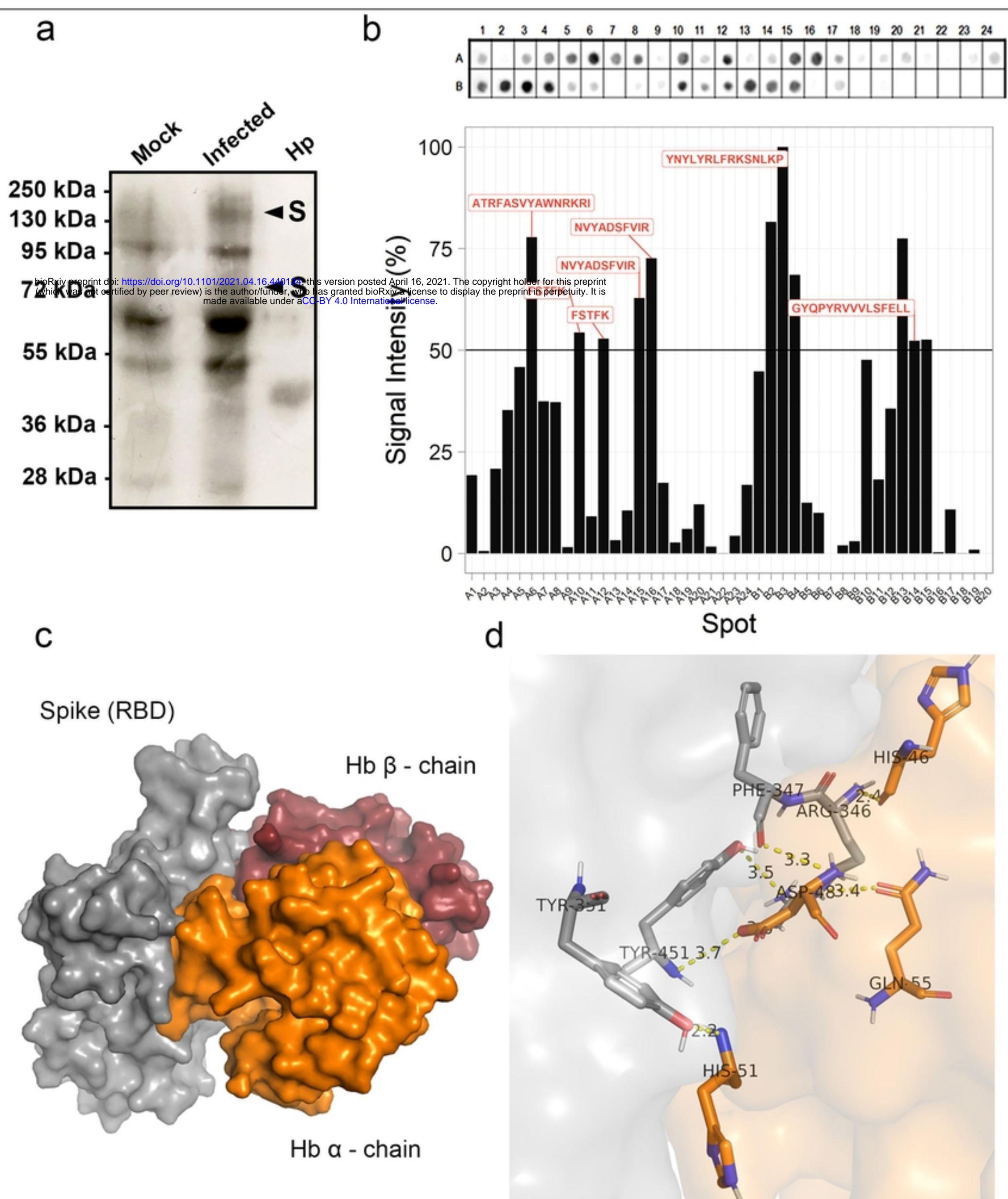

923 68.Basto VLFC, Salles JB, Valente RH, León IR, Perales J, Dantas RF, et al. Cytosolic
924 glutathione peroxidase from liver of pacu (*Piaractus mesopotamicus*), a hypoxia-tolerant
925 fish of the Pantanal. *Biochimie* 2007; 89: 1332-42.

a**b****c****d****e****Figure**

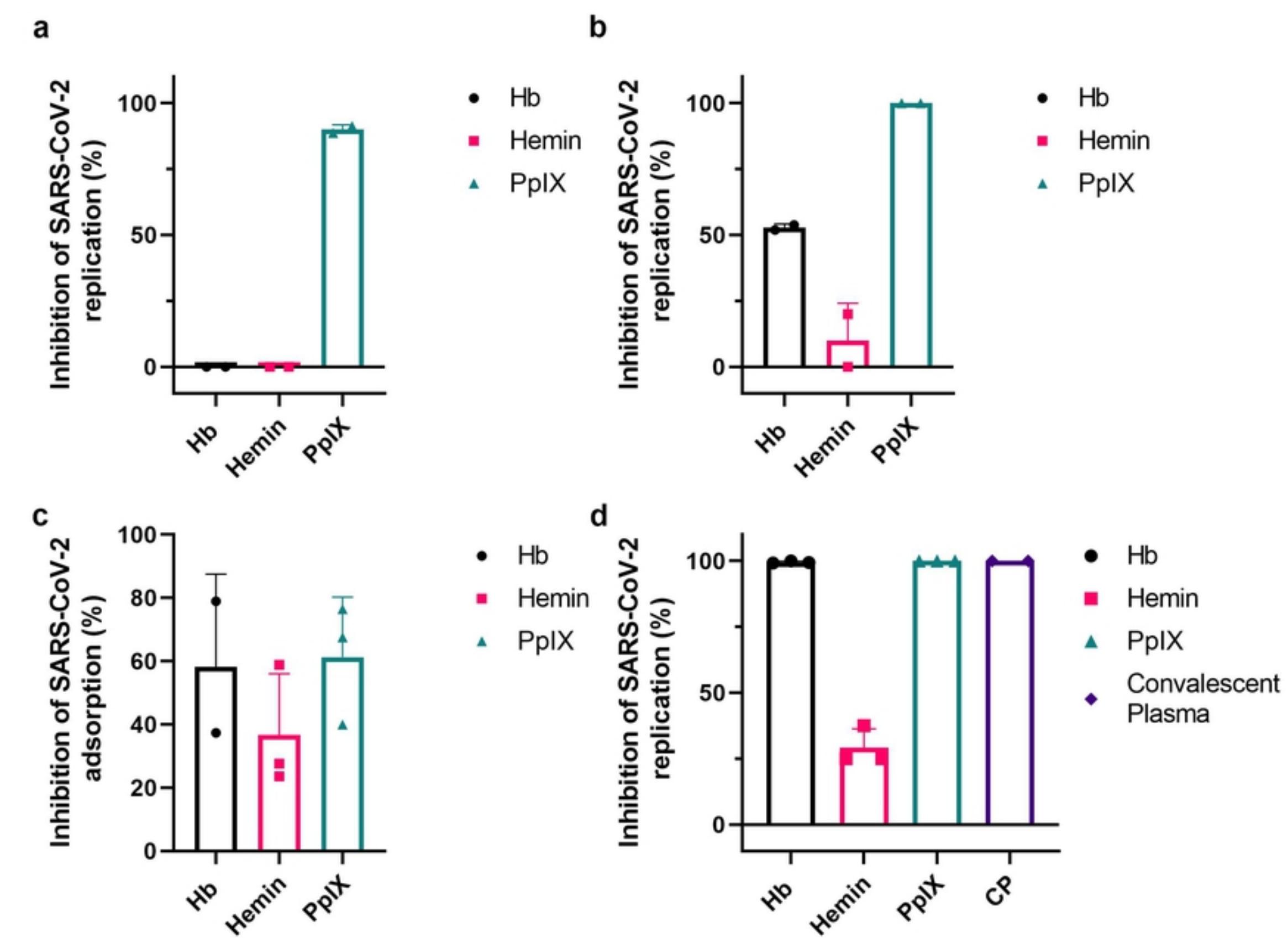

a


b




c



d



Figure

a**b****c****Figure**

Figure

Figure

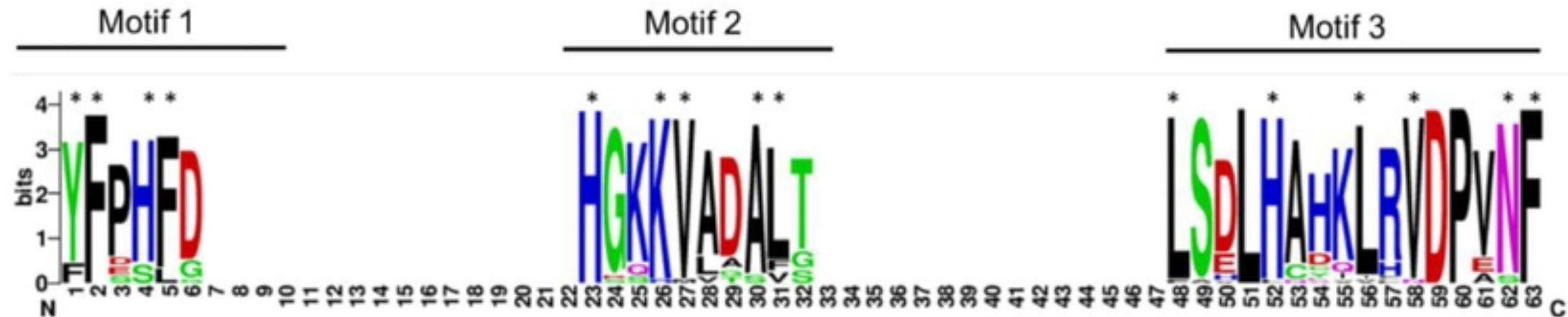
HEME binding proteins (PDB Code)	Hemoglobin human (Uniprot Code)	Nucleoprotein Sars-CoV (Uniprot Code)
1a00:A	P02008	NCAP_SARS
1a3o:A	P02042	A0A679GC99_SARS2
1bz1:A	P02100	A0A6H2EFU6_SARS2
1bzz:A	P69892	A0A6G8I2S4_SARS2
1c0h:A	P68871	A0A6H1PLH4_SARS2
1c7d:A	P69905	NCAP_SARS2
1dhb:A	Q9NZD4	A0A6C0T6Z7_SARS2
1dsh:A	P09105	A0A6C0N5E8_SARS2
1fhj:A	Q6B0K9	A0A6H2L5M8_SARS2
1hbr:A	Q1W6G9	A0A6B9VLF5_SARS2
1hda:A	A0A1K0GXZ1	A0A6C0WXA2_SARS2
1hda:A	Q1HMGQ2	A0A6H0MAP2_SARS2
1ibe:A	A0A1K0GU5	A0A6H1PIQ7_SARS2
1j7s:A	U6A216	
1mhb:A	A0A2R8Y7C0	
1ns6:A	A0A1S5UZ39	
1o1k:A	A0A385HVZ2	
1o1l:A	A0A385HW21	
1o1m:A	A0A385HW02	
1o1n:A	Q6J1Z9	
1o1o:A	Q86YQ1	
1o1p:A	A0A385HVY8	
1pgh:A	A0A385HW00	
1s0h:A	A0A0K2BMD8	
1v75:A	Q86YL2	
1xy0:A	I1VZV6	
1xye:A	Q9BX83	
1xz5:A	E9M4D4	
1xz7:A	Q9NQT3	
1xzu:A	Q96T46	
1xzv:A	E1B2D1	
1y09:A	Q86YQ4	
1y0a:A	E9LUX2	
1y0c:A	V9H1D9	
1z8u:B	P78461	
2dhb:A	Q4ZGM8	
2mhb:A		
2pgh:A		
2qls:A		
2qsp:A		
2qu0:A		
2ri4:A		
2zfb:A		
2zlt:A		
2zlu:A		
3a59:A		
3at5:A		
3cy5:A		
3d4x:A		
3dht:A		
3eok:A		

bioRxiv preprint doi: <https://doi.org/10.1101/2021.04.16.440124>; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

3gdj:A
3gou:A
3gys:A

The search returned 399 sequences with motifs HEME binding, but only 68 structures present complexes only with the HEME group.

bioRxiv preprint doi: <https://doi.org/10.1101/2021.04.16.440124>; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Protein	Residue	Complex ASA ^b	Monomer ASA ^b	Pair Potential	Hotspot Status ^a	Hotregion Status	Complex ASA ^b	Monomer ASA ^b
HB_A	LEU35	26.04	73.04	17.36	NH		46.51	130.4
HB_A	PRO38	42.98	61.77	2.43	NH		58.51	84.09
HB_A	LYS41	0	0	13.92	NH		0	0
HB_A	THR42	0	0	0	NH		0	0
HB_A	PRO45	0	0	4.99	NH		0	0
HB_A	HIS46	0	0	9.17	NH		0	0
HB_A	PHE47	0	0	14.04	NH		0	0
HB_A	ASP48	0	0	19.97	H	2	0	0
HB_A	SER50	0	0	17.74	NH		0	0
HB_A	HIS51	0	0	19.4	H	-	0	0
HB_A	GLY52	0	0	11.09	NH		0	0
HB_A	SER53	0	0	7.25	NH		0	0
HB_A	ALA54	0	0	7.56	NH		0	0
HB_A	GLN55	0	0	12.46	NH		0	0
RBD_C	GLU340	47.25	67.63	7.68	NH		81.38	116.5
RBD_C	ALA344	0	0	7.56	NH		0	0
RBD_C	THR345	0	0	6.17	NH		0	0
RBD_C	ARG346	0	0	27.67	H	2	0	0
RBD_C	PHE347	0	0	22.7	H	2	0	0
RBD_C	ALA348	0	0	17.73	NH		0	0
RBD_C	SER349	0	0	12.03	NH		0	0
RBD_C	TYR351	0	0	24.76	H	-	0	0
RBD_C	ALA352	0	0	16.19	NH		0	0

bioRxiv preprint doi: <https://doi.org/10.1101/2021.04.16.440124>; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

RBD_C	TRP353	0	0	16.59	NH	0	0
RBD_C	ASN354	0	0	10.77	NH	0	0
RBD_C	ARG355	0	0	15.53	NH	0	0
RBD_C	ASN450	0	0	13.12	NH	0	0
RBD_C	TYR451	0	0	31.74	H	1	0
RBD_C	LEU452	0	0	33.83	H	1	0
RBD_C	ARG466	26.46	58.18	12.34	NH	63.18	138.9
RBD_C	ILE468	22.99	56.32	10.14	NH	39.11	98.82
RBD_C	LEU492	0	0	22.69	H	1	0

^a NH denotes non hot spot and H denotes hot spot and ^b Solvent Accessible Surface Area (ASA)

bioRxiv preprint doi: <https://doi.org/10.1101/2021.04.16.440124>; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Motifs	p-value	q-value
YFPFHFD	1.2×10^{-12}	3.7×10^{-6}
HGKKVADALT	4.2×10^{-13}	1.3×10^{-6}
LSDLHAHKLRVDPVNF	8.4×10^{-21}	2.5×10^{-14}

Figure Supplementary

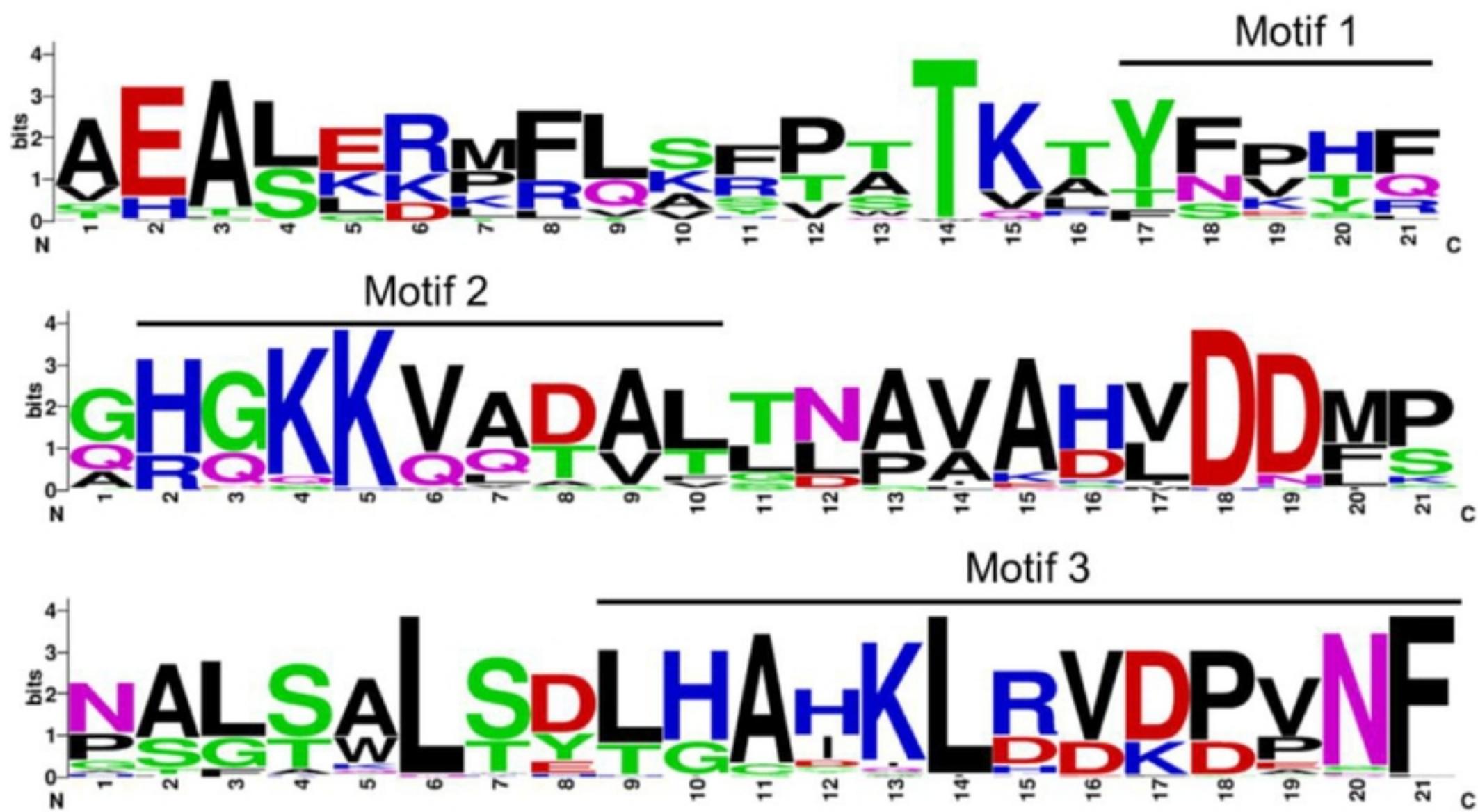


Figure Supplementary

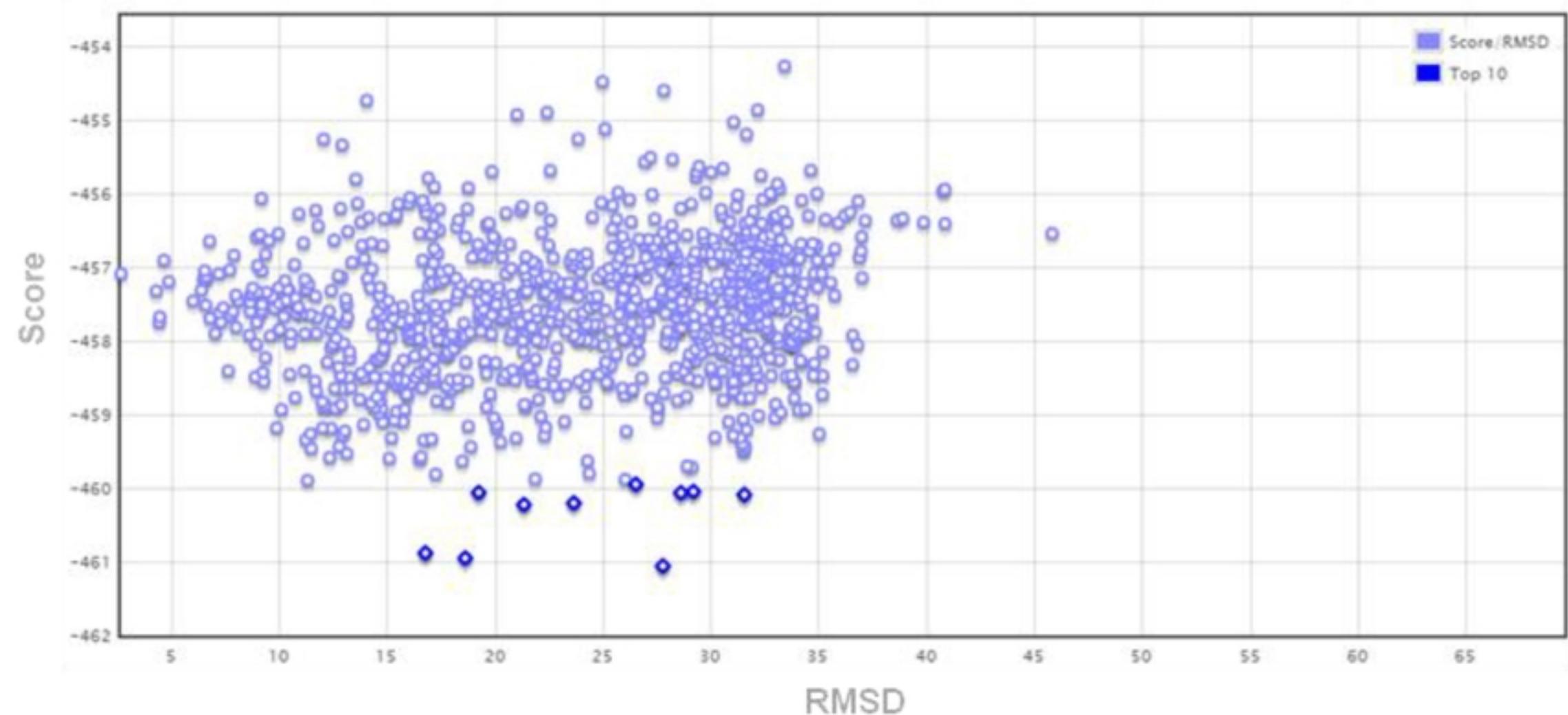


Figure Supplementary