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Malaria-causing parasites proliferate within 

erythrocytes through schizogony, forming 

multinucleated stages before cellularization. 

Nuclear multiplication does not follow a strict 

geometric 2n progression and each proliferative 

cycle produces a heterogeneous number of 

progeny. Here, by tracking nuclei and DNA 

replication, we show that individual nuclei 

replicate their DNA at different times, despite 

residing in a shared cytoplasm. Extrapolating 

from experimental data using mathematical 

modeling, we demonstrate that a limiting factor 

must exist that slows down the nuclear 

multiplication rate. Indeed, our data show that 

temporally overlapping DNA replication events 

were significantly slower than partially or non-

overlapping events. Our findings suggest an 

evolutionary pressure that selects for 

asynchronous DNA replication, balancing 

available resources with rapid pathogen 

proliferation.  
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Introduction 

Malaria is caused by unicellular eukaryotic parasites 

of the genus Plasmodium, with Plasmodium 

falciparum (P. falciparum) contributing the most to 

global malaria-associated morbidity and mortality 
(1). Disease severity is directly linked to asexual 

parasite proliferation inside erythrocytes during the 

blood-stage of infection, which can produce >1012 
parasites per patient (2). Each asexual proliferative 

cycle gives rise to approximately 20 daughter cells 

within 48 hours via a division process called 

schizogony (3). During early schizogony, nuclei are 

thought to divide asynchronously (436), while 

schizogony concludes with a relatively synchronous 
final round of nuclear division that coincides with 

daughter cell assembly (7, 8). Here, we reveal the 

reasons driving this unusual multiplication by 
combining different imaging modalities with 

computer simulations to understand how DNA 

replication and nuclear divisions are organized. 

 

Results 

Two distinct models have been proposed to describe 

the chronology of DNA replication and nuclear 
division events during P. falciparum proliferation in 

the blood stage (Fig. 1A). Model 1 assumes several 

rounds of DNA replication prior to nuclear divisions 
(9, 10), predicting that cells with a single nucleus can 

have a large distribution of DNA contents. Model 2 

proposes alternating rounds of DNA replication and 

nuclear divisions (6, 11), predicting a gradual 
increase of both number of nuclei per cell and total 

DNA content. In addition, this model also assumes 

that between divisions, nuclei are independent. To 
test the predictions of both models, we quantified the 

total DNA content (C) (12, 13) and the number of 

nuclei per parasite (Fig. 1B and Fig. S1A). This 
showed a positive correlation between DNA content 

and number of nuclei, supporting model 2. 

Additionally, the total DNA content never exceeded 

2C per nucleus, suggesting that the DNA content of 
individual nuclei alternates between 1C and 2C.  

 

To test if nuclei are separate compartments, we 
recorded three-dimensional electron tomographic 

views of cell parts containing several entire nuclei 
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(Fig. 1C, D and Fig. S1B, C). Although the 

nucleoplasm of adjacent nuclei was separated by as 

little as 75 nm (Fig. S1D, E), most nuclei appeared as 
independent compartments with clearly discernible 

nuclear envelopes and ribosomes filling the 

cytoplasmic gap. In only one out of eight analyzed 
cells, we recorded a narrow bridge interconnecting 

two nuclei, which appeared to be completing nuclear 

division (Fig. 1E). Together these data support a 

mode of P. falciparum proliferation that consists of 
alternating rounds of DNA replication and nuclear 

divisions before cellularization. Although nuclear 

divisions lack synchronization (436), it is unclear 
whether DNA replication in pairs of sister nuclei is 

synchronized. Employing time-lapse live-cell 

microscopy, we found that the DNA content 
increased at different times in sister nuclei, indicating 

that DNA replications can occur asynchronously, i.e., 

onset and end of S-phases are desynchronized (Fig. 

1F, G and Fig. S2A3D).  
 

To understand how asynchronous DNA replications 

are orchestrated, we investigated the localization of 
the DNA replication machinery, using the P. 

falciparum proliferating cell nuclear antigen (PCNA) 

1 as a proxy. PCNA is a critical co-factor of DNA 

polymerases and serves as a hub for many other 

components of the replication fork (14). Using 

correlative light and electron microscopy, we found 

that, in contrast to previous reports (15, 16), 
ectopically expressed PCNA1::GFP localized 

unequally in nuclei of the same parasite, with only 

some nuclei showing distinct PCNA1::GFP foci (Fig. 
2A and Fig. S3, S4A, B). Additionally, time-lapse 

imaging revealed a dynamic localization and transient 

accumulation of PCNA1 in changing subsets of 

nuclei (Fig. 2B and Fig. S4C). An increasing nuclear 
PCNA1::GFP signal was accompanied by a 

decreasing cytosolic signal and vice versa (Fig. 2B, C 

and Fig. S4D), suggesting that nuclei access a 
common cytoplasmic pool of PCNA1. Moreover, 

nuclear accumulation of PCNA1::GFP coincided 

with a duplication of the DNA content in the same 
nuclei (Fig. 2D and Fig. S4E, F). This allowed us to 

track individual DNA replications and nuclear 

division events over time in a given cell (Fig. 2B, Fig. 

S5). We defined a nuclear cycle as the total time from 
the start of an S-phase (Si) until the start of the 

ensuing S-phases in the daughter nuclei (Si+1,1 or 

Si+1,2) (Fig. 2E). Additionally, we assigned branches 
of the nuclear lineages by the onset of S-phase, such 

that DSi,1 f DSi,2 etc. The timing of events varied 

markedly between individual parasites (Fig. S5) and 

all phases of the first nuclear cycle were longer on 

Fig. 1. P. falciparum proliferates through consecutive rounds of asynchronous DNA replications and nuclear 
divisions. (A) Schematic of two models proposing the mode of P. falciparum proliferation in the blood stage of infection. 
(B) Gradual increase of the total DNA content and the number of nuclei of P. falciparum supports model 2. The DNA content 
(C) was normalized to pre-S-phase ring-stage parasites (insert), defined as 1. Horizontal bars, standard deviation; gray 
lines, expected C-values for parasites with all nuclei pre- or post-S-phase; gray bands, propagated error (standard deviation) 
of ring-stage measurements. (C) Electron tomogram, overlayed with 3D-segmented inner nuclear membranes (blue); bar, 
1 µm, movie S1. (D) Side view of nuclear volumes showed no connection (90° rotation around the y axis); arrowhead, 
tomogram plane shown in C. (E) Electron tomogram of connected nuclei; bar, 1 µm; inset highlights the connection 
(arrowhead); bar, 250 nm. (F) Time-lapse microscopy of a reporter parasite stained with the DNA dye 5-SiR-Hoechst 
showed asynchronous DNA replication in sister nuclei; bar, 2 µm; movie S3. (G) Quantification of the DNA content of the 
nuclei shown in F. 
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average than the corresponding phases of the ensuing 

cycle (Fig. 2 F3H and Fig. S5). The durations of S-
phases and SD-phases were statistically 

indistinguishable between nuclei of the same 

generation (Fig. 2F, G) and S-phase duration in the 

third generation remained similar to those of the 
second generation (Fig. 2F). Thus, the asynchrony of 

DNA replications is largely introduced by the times 

between S-phase events. 
 

Later rounds of S-phase and nuclear division could 

not be confidently analyzed by live-cell microscopy 

due to the spatial proximity of nuclei (Fig. S1D, E). 
Hence, we aimed to extrapolate the dynamics of 

nuclear multiplication by mathematically modeling it 

as a branching process. Our computer simulations 
were parameterized using the observed distributions 

of the duration of S-phases and the intervals between 

S-phases of the first and second nuclear cycles (i.e., 
S1, SD1+DS2, S2, and SD2+DS3) (Fig. 2F3G and Fig. 

S6A3C). As the durations of the first and second 

nuclear cycles (i.e., start S1 to start S2 versus start S2 

to start S3) showed no significant correlation (Fig. 

3A), we did not include the inheritance of factors that 
facilitates nuclear multiplication in the model.  

Because independent branching leads to very diverse 

trees, it is important to consider by what mechanism 

nuclear multiplication is stopped to achieve a well-
defined endpoint that allows for cellularization. We 

examined two qualitatively different mechanisms, 

which have been proposed in the context of cell 
proliferation (17). A timer mechanism posits that a 

system is set to stop growth after an independently 

determined time period. This predicts that the overall 

duration from the start of first S-phase to end of last 
S-phase (i.e., end of last detected PCNA1 nuclear 

accumulation) (Fig. S6D) is independent of the length 

of the first nuclear cycle (i.e., start S1 to start S2) (Fig. 
3B). Conversely, a counter mechanism stops 

multiplication after a certain system size (e.g., 

number of nuclei) has been reached, independent of 
the time needed. This predicts that the duration of the 

first cycle should correlate positively with the overall 

duration, as, e.g., a slow first cycle would increase the 

Fig. 2. Heterogenous accumulation of PCNA1 among nuclei permits quantification of nuclear multiplication 
dynamics. (A) Correlative light and electron microscopy showed heterogeneous accumulation of PCNA1 among P. 

falciparum nuclei; bar, 1 µm; arrowhead, PCNA1::GFP focus. (B) Time-lapse microscopy showed dynamic and transient 
accumulation of PCNA1; bar 2 µm; arrowheads, nuclear PCNA1::GFP accumulation; movies S4, S5. (C) Nuclear 
accumulation of PCNA1 coincided with a depletion of the cytosolic pool; lines, average (n = 4); bands, standard deviation. 
(D) Nuclear PCNA1::GFP accumulation caused a peak in signal intensity, coinciding with DNA content duplication; solid 
lines, average; bands, standard deviation. (E) Schematic illustrating the nuclear cycle phases quantified in F, G, H; S, S-
phase; SD, end of S-phase to nuclear division; D, nuclear division; DS, nuclear division to start of S-phase; subscripts (i;j) 
nuclei within generation i, ordered by their DS phase duration, such that DS2,1<DS2,2; DS3,1<DS3,2; and DS3,3<DS3,4. (F-
H) Duration of nuclear cycle phases: S (F), SD (G) and DS (H); solid lines, median; dashed lines, quartiles. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.15.440016doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440016
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

 

total time needed to produce a desired number of 

nuclei (Fig. 3C). Comparing the duration of first 
nuclear cycles to the overall duration showed a 

positive correlation (Fig. 3D and Fig. S6E3G), which 

is incompatible with a timer mechanism but 
consistent with a counter mechanism. We therefore 

adopted the counter mechanism and adjusted the 

simulation to reproduce the measured distribution of 
times from onset of S1 to the end of last S-phase (Fig. 

S6H, I). 

 

To test the model, we asked how many progeny it 
generated overall and compared this to our 

experimentally determined values (Fig. 3E). When 

cycling dynamics were kept unchanged from nuclear 
cycle two onwards, simulations overestimated the 

total progeny. Gradually slowing nuclear cycles by 

17% per generation after cycle two fitted our data best 
and recovered both the average and distribution in the 

number of progeny (Fig. 3E and Fig. S6H, I). As 

nuclear multiplication proceeds, the number of nuclei 

sharing the same cellular resources increases. 
Additionally, the probability that several nuclei are in 

the same stage of the nuclear cycle increases. Thus, 

the incremental decrease in nuclear cycling speed 
could be explained by a factor that becomes 

increasingly limiting as nuclei multiply. If a limiting 

resource needed for DNA replication was shared 

between nuclei, then simultaneously replicating 
nuclei should experience a stronger limitation than 

nuclei that replicated their DNA sequentially. To test 

this prediction, we compared pairs of nuclei were S-
phases were either none, partial or completely 

overlapping (Fig. 4A, B). While the intervals between 

S-phases did not change, the duration of S-phases 

increased slightly from non-overlapping to partially 

overlapping S-phases, and strongly from partially 
overlapping to completely overlapping S-phases (Fig. 

4C and Fig. S7A3D). This increase supports the 

notion that the speed of DNA replication is affected 
by a limiting factor. Testing if the increased duration 

of S-phases translated into a longer nuclear cycle, we 

found that partially overlapping S-phases had no 
effect. By contrast, a sizeable fraction of sister nuclei 

with synchronous S-phases displayed an increased 

nuclear cycle duration (Fig. 4D and Fig. S7E), 

suggesting that delays caused by synchronous S-
phases cannot be fully compensated.  

 

Conclusions 

Our results show that P. falciparum proliferates 

through alternating, consecutive rounds of DNA 

replication and nuclear division. Although nuclei 
reside in a shared cytoplasm, DNA replications and 

nuclear divisions occurred asynchronously. 

Heterogeneous and transient accumulation of PCNA1 

indicates that DNA replication is regulated at the 
level of individual nuclei. The speed of DNA 

replication correlated with the degree of asynchrony, 

implying the existence of a limiting factor. This factor 
may exert an evolutionary pressure, which selects for 

asynchronous nuclear cycles. Our findings support a 

model where asynchrony enables blood-stage 

parasites to balance available resources with rapid 
proliferation, which is the main driver of virulence 

and critical for life cycle progression. 
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