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Abstract

With long-read sequencing we have entered an era where individual genomes are routinely
assembled to near-completion and where complex genetic variation can efficiently be resolved.
Here we demonstrate that long reads can be applied also to study the genomic architecture of
individual human cells. Clonally expanded CD8+ T-cells from a human donor were used as
starting material for a droplet-based multiple displacement amplification (AMDA) method
designed to ensure long molecule lengths and minimal amplification bias. Sequencing of two
single cells was performed on the PacBio Sequel II system, generating over 2.5 million reads
and ~20Gb HiFi data (>*QV20) per cell, achieving up to 40% genome coverage. This data
allowed for single nucleotide variant (SNV) detection, including in genomic regions
inaccessible by short reads. Over 1000 high-confidence structural variants (SVs) per cell were
discovered in the PacBio data, which is four times more than the number of SVs detected in
[llumina dMDA data from clonally related cells. In addition, several putative clone-specific
somatic SV events could be identified. Single-cell de novo assembly resulted in 454-598 Mb
assembly sizes and 35-42 kb contig N50 values. 1762 (12.8%) of expected gene models were
found to be complete in the best single-cell assembly. The de novo constructed mitochondrial
genomes were 100% identical for the two single cells subjected to PacBio sequencing, although
mitochondrial heteroplasmy was also observed. In summary, the work presented here
demonstrates the utility of long-read sequencing towards understanding the extent and

distribution of complex genetic variation at the single cell level.
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Background

During the last few years, long-read sequencing technologies have made remarkable progress
in terms of throughput and data quality. Due to their capability to read through repetitive and
high GC-content regions, these technologies are essential for the ambitious plans to generate
reference genomes for virtually all of Earth’s eukaryotic biodiversity!: 2, as well as complete
telomere-to-telomere maps of human chromosomes* #. A further advantage of long-read
sequencing is that it facilitates genotyping of complex structural variation (SVs) and repeat
elements, which can be difficult or impossible to identify with other genomic sequencing
approaches>’. Although clinical long-read sequencing is still in its infancy® ?, several studies
have already demonstrated the potential to discover novel disease-causing human genetic
variation. Long sequencing reads can also enable the detection of clinically relevant genetic
variation in ‘dark DNA’, representing regions of the human genome that cannot be analyzed

with standard short-read technologies!'?.

Long-read sequencing holds many promises, but one intriguing research area that remains

unexplored is single-cell genomics. Human single-cell whole genome sequencing (WGS)

11-15

emerged about a decade ago ', and has become an active field of research with potential to

answer fundamental questions in several areas of cell biology, such as somatic genetic
variation!®, tumor evolution!!, de novo mutation rates'*, meiotic recombination of germ cells'*
17" or neurogenetics!®-2, Until now, single-cell WGS projects have focused on characterizing

21-25

genetic variation detectable from short-read [llumina sequencing protocols*' =, including single

32-34 and

nucleotide variants (SNVs)!®- 21 2631° Jarge-scale copy number variation®®
retrotransposon elements!? 13:3%-36 " To our knowledge, there are today no published reports of

long-read WGS of individual human cells. In part, this can be explained by the throughput of

long-read instruments, which until recently has been relatively modest. In addition, single-cell
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genome sequencing is associated with technical challenges®’. In a diploid cell, only two DNA
molecules exist at each locus in the genome, and every molecule that is lost during sample
preparation, or fails to be sequenced, inevitably leads to allelic drop-out and missing data.
Moreover, the long-read sequencing protocols require large amounts, typically several
micrograms, of input DNA. This is about a million times more DNA than what is contained

within a single human cell, which implies that a substantial DNA amplification is required.

Whole genome amplification has a profound detrimental effect on the sequencing results and
should be avoided when possible, since it introduces amplification bias, chimeric molecules

d!5:38.39 and it

and allelic dropout. Several different amplification protocols have been develope
is crucial to choose a method that minimizes artefacts and biases, while at the same time being
compatible with the downstream sequencing technology. Multiple displacement amplification
(MDA)* has capacity to amplify kilobase-length molecules and could therefore a suitable
approach for long-read sequencing. With regards to amplification bias, it has been proposed
that a droplet-based MDA (dMDA) reaction, performed on DNA fragments contained within
nano- or picoliter droplets, can minimize differences in amplification gain among the
fragments*-*2. Such a droplet-based amplification could also be an efficient approach to remove

inter-molecular chimeras, since MDA chimeras only can be formed between molecules

contained within the same droplet.

Single-cell DNA fragments amplified by MDA methods are well-suited for PacBio high-
fidelity (HiFi) sequencing®, since this protocol enables to read molecules of at least 20kb
length. Moreover, the resulting PacBio HiFi reads have very high accuracy (>*QV20), and not
only allows identification of complex genetic variation such as SVs and repeat elements, but
also SNVs at an accuracy that matches the ability of short-read sequencing®. PacBio HiFi
4,44-46_

sequencing has also proven to be an excellent method for high-quality genome assembly

thereby raising the prospect of long-read de novo assembly of genomic DNA from individual
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cells. Taken together, a more detailed analysis of single cell genomes using highly accurate
long reads could allow detection of new classes of somatic variation, including for example
SVs and repeats, which have not been possible to study in single cells before. Eventually, this
could lead to a better understanding of somatic variation, mutation rates and the functional
impact of these elements. The potential applications are not limited to human cells. Long-read
WGS could also potentially generate improved genome assemblies also for other types of cells,

such as single cellular organisms that are difficult to culture.

In this study, we established a long-read based approach for single-cell whole genome
sequencing using a new automated dMDA technique for single-cell whole genome
amplification coupled with PacBio HiFi whole genome sequencing. The method was evaluated
on two clonally expanded CD8+ T-cells from a human donor, and in parallel other cells from
the same T-cell clones were sequenced with short-read Illumina WGS. Our data demonstrates
that SV discovery in single cells is substantially improved by long-read sequencing, and that
genetic variation can be discovered also in regions inaccessible by short reads. We further
performed de novo assembly of each of the two human single cells. Albeit fragmented due to
dropout, these assemblies represent the first step towards reference-free analysis of the genomes
in individual cells. Taken together, these findings open up new possibilities to characterize the

landscape of complex genetic variation and genome organization at unprecedented resolution.
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Results

Amplification of single-cell DNA in droplets

We first aimed to develop a DNA amplification method that preserves molecule lengths and
reduces amplification bias (Figure 1A). Briefly, one single cell is isolated by fluorescence-
activated cell sorting (FACS) and placed into a well containing lysis buffer, so that the DNA
fragments are released. The DNA molecules are then encapsulated in approximately 50,000
droplets, after which a dMDA reaction takes place within each droplet. The droplets have a
diameter of <100 um and are generated using the Xdrop system*’ (Figure 1B). Only one or a
few DNA fragments will be located in each droplet, and since the amplification takes place in
a small volume containing limited reagents this will prevent molecules from being heavily over-
amplified. Moreover, the risk of forming inter-molecular chimeras during the dMDA reaction
is greatly reduced, and completely eliminated in droplets harboring a single DNA fragment.
Once the dMDA reaction is complete, the amplified DNA can be used for preparation of short-
and long-read sequencing libraries. For our experiments, two individual CD8+ T-cells (A and
B) from the same human donor were clonally expanded in vitro, and the resulting cell
collections were used as starting material for whole genome amplification and sequencing
(Figure 1C). In addition, bulk DNA isolated from peripheral blood mononuclear cells (PBMC)

obtained from the same individual was analyzed by short-read WGS.

dMDA increases whole-genome sequencing coverage uniformity

Sixteen single-cell DNA samples from the two T-cell clones A and B were investigated using
[llumina WGS. Eight of the samples were amplified using dMDA, while the remaining eight
samples were subjected to regular MDA. The sequencing resulted in 100 to 200 million read
pairs per sample, and these were aligned to the GRCh38 human reference build. To facilitate

direct comparisons between the samples, all Illumina datasets were randomly subsampled to
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contain about 100 million read pairs. As expected, the eight AIMDA samples displayed a more
uniform coverage across the genome as compared to the eight MDA samples (Figure 2A-C).
The reduced bias in dMDA can also be seen in the mitochondrial genome, where dAMDA
resulted in more than 10-fold higher coverage as compared to regular MDA. Furthermore, our
results reveal that the uneven coverage in the MDA samples originates from a limited number
of fragments that are being amplified to extreme coverage (Figure 2D). For the MDA samples,
on average 68.9% of the reads align to regions with >200x coverage, while the corresponding
percentage for AMDA is only 16.0%. In these downsampled datasets, 33.8% of bases were
covered by at least one read in dMDA as compared to 23.4% for MDA (Figure 2E). Based on
these results, we conclude that dMDA gives increased sequencing coverage uniformity as
compared to regular MDA, thereby corroborating previous evaluations of droplet-based MDA

methods** 4!,

Long-read whole-genome sequencing of two individual T-cells

Two dMDA single-cell samples, one from T-cell clone A and one from T-cell clone B, were
selected for PacBio long-read sequencing. The dMDA reactions generated 3160 ng (T-cell A)
and 1850 ng (T-cell B) amplified DNA and the fragment size distributions displayed peaks
around 9 kb. The PacBio HiFi sequencing protocol for the Sequel II instrument requires 10 pg
of input DNA, and to enable library preparation from smaller DNA amounts SMRT bell size
selection was performed using beads instead of using a gel-based system (see Methods). The
resulting SMRT bell libraries were run on two separate 8M cells with 30h movie time. Over
2.5 million reads and ~20Gb HiFi data (>*QV20) was obtained for each of the two samples
(Table 1). Virtually all reads could be aligned to GRCh38 and the average alignment
concordance was over 99%. More than 6 million alignments were produced per sample,

indicating that chimeric artifacts from the dMDA are found in many reads, since each read
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gives rise to between 2-3 separate alignments on average. The aligned read length is a good
indicator of the non-chimeric part of a read, since it corresponds to the longest subsequence that
can be continuously matched to the GRCh38 reference. The N50 aligned read length was 5.4
kb for T-cell A and 6.4 kb for T-cell B, and the maximum read alignment was 43.4 kb (T-cell
A) and 48.7 kb (T-cell B). An average of 6x coverage was obtained from both samples.
However, just like in the Illumina data there is a high level of allelic drop out. For T-cell A,

40% of the genome was covered, while T-cell B had an even lower genome coverage of 28%.

Single nucleotide variants can be detected in single-cell long read data

Having generated single-cell whole genome data both using short- and long-read technologies,
we were interested to analyze single nucleotide variants (SNVs) in the different datasets. More
than twice the amount of sequencing data was generated for the Illumina single-cell samples
(average 48.7 Gb) as compared to PacBio (average 20.0 Gb). (Figure 3A). In the [llumina data,
between 0.3 to 2.1 million SNVs were detected in each sample, and an average of 992k
SNVs/sample were found to be overlapping with SNVs called in the PBMC bulk sequencing
data. In the PacBio data, a total of 1.7M SNVs (T-cell A) and 1.2M SNVs (T-cell B) were
detected by the software DeepVariant*®. Of these, an average of 900k SNVs/sample were found
to be overlapping with SNVs called in the PBMC bulk DNA sample (Figure 3B). This means
that a similar number of germline SNVs were detected using PacBio as compared to Illumina,
despite the much lower total data amount for PacBio. 78,775 of the PacBio SNVs that failed to
be identified in the PBMC bulk sample sequenced on the Illumina platform were found to be
located within previously reported “dark™ genic regions of potential importance for human
health!®. One such region comprises introns and exons of NBPF8 (Figure 3C). Another example
is CDC73, where a repeat resolved in the PacBio single-cell data is represented as an alignment

gap in the Illumina bulk data (Figure 3D).
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Single-cell analysis of structural variation

We performed SV calling using Manta* and TIDDIT*? in the Illumina datasets, while the
PacBio SVs were called using PBSV?>!. To compare the number of detected true SVs called in
single cells, we focused on germline SVs that overlapped with SVs called in the PBMC bulk
sample. In the eight [llumina dMDA samples, an average of 326.5 SV events were overlapping
with SVs detected in the PBMC bulk sample (Figure 4A). The corresponding number for the
eight [llumina MDA samples was 46.4 SVs. By far, the highest numbers of SVs overlapping
with the PBMC bulk sample were found in the PacBio data; 1620 for T-cell A and 1126 for T-
cell B. This finding demonstrates that PacBio sequencing outperforms Illumina in SV detection
in single cells. As seen in Figure 4B, this pattern holds true for deletions, insertions and tandem
duplications. We further developed a computational strategy to screen for somatic SV
differences between the two T-cell clones A and B, which resulted in three candidate events.
One of these is a 50 bp deletion on chromosome 1, clearly visible in the PacBio data for T-cell
B (Figure 4C). The Illumina data for T-cell clone B also has support for a genomic aberration
in this region, even though the exact break points are difficult to see in the short-read
alignments. However, there is no visible support for this deletion either in the bulk sequencing
data or in the single cell data for T-cell clone A. Due to the presence of heterozygous SNVs a
few kb downstream of the 50bp deletion it is clear that both alleles have been sequenced in the
bulk sequencing data, and the allele harboring the deletion event can be determined through

phasing.

De novo assembly of single-cell long-read data

PacBio HiFi reads are ideal for generating high-quality assemblies of human genomes® 4346,

and we were interested to see whether some pieces of the single-cell genomes could be
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reconstructed de novo. Since assembly of single-cell PacBio data is challenging due to allelic
dropout and chimeric reads, we developed a filtering method to remove chimeric reads from
the dataset prior to assembly. Because of the dIMDA, chimeras are mainly formed within the
same molecule, and by screening each read for inverted or duplicated elements, chimeric reads
could be identified and removed ab initio (see Methods). For T-cells A and B, 44.2% and 46.6%
of PacBio reads, respectively, passed our filtering criteria. However, this filtering is very
stringent and does not only remove chimeras, but also many correct reads harboring repeat
elements. Hifiasm>? generated primary assemblies of size 598.3 Mb for T-cell A and 454.1 Mb
for T-cell B, corresponding to approximately 19% and 15% of the human reference (Table 2).
The contig N50 values were 35 kb (T-cell A) and 42 kb (T-cell B), and the largest contig of
578.3 kb was detected in the T-cell B assembly. In addition, approximately 40 Mb of alternative
contigs were found in each sample. These alternative contigs correspond to regions where
hifiasm reported two distinct haplotypes. We further performed an analysis of BUSCO gene
models> and could conclude that 12.8% of genes (n=1762) were completely assembled for T-
cell A, and 9.0% of genes (n=1236) for T-cell B. Complete mitochondrial genomes were
obtained and these were identical for T-cells A and B. Looking closer at the mtDNA data, there
is one location (chrM:16,218) where a C>T nucleotide substitution occurs in 42% of PacBio
reads for T-cell B, while being completely absent from PacBio reads for T-cell A as well as
from the Illumina bulk DNA sample. By further analyzing the Illumina dMDA data for the two
single cell clones, we validate that the nucleotide substitution is present in T-cell B, but not in

T-cell A, consistent with mitochondrial heteroplasmy in T-cell clone B.

10
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Discussion

By a combination of methods for single-cell isolation, whole-genome amplification and PacBio
HiFi sequencing, we were able to sequence long DNA fragments from two human T-cells. The
long sequencing reads give improved analyses of genetic variants as compared to short-read
technologies, including single nucleotide variation in “dark™ regions of the human genome,
larger structural variants, and even enables de novo assembly of single cell genomes. The single
cells used as starting point for this study were obtained through in vitro expansion of CD8+ T-
cells from a healthy human donor. These T-cells are more challenging to obtain as compared
to cells from an established cell line, but have the advantages of being representative of healthy
somatic cells from a human being, and additionally enable screening for somatic variation

between clones based on known lineage relationships.

By short-read sequencing we could demonstrate that AMDA of single-cell DNA results in more
uniform coverage and improved SV calling as compared to regular MDA. However, the best
performance is obtained when coupling dMDA with PacBio HiFi sequencing. Despite that the
HiFi sequencing yield was below 50% of the average data amount generated for the Illumina
single-cells, a similar number of SNVs and 3-5 times as many SVs could be detected. Most
likely, there are many additional true events among the remaining PacBio SNVs and SVs calls,
although only high-confidence events overlapping with variants called in an unamplified bulk
sample were considered in the current report. Furthermore, our data allowed us to identify

somatic SVs that distinguish the two expanded T cell clones.

A human cell contains about six picograms of DNA, and this is a major challenge for PacBio

HiFi sequencing which typically requires several micrograms of input material. Recently, an

ultra-low input HiFi protocol was released®*, but this still requires five nanograms DNA. Thus,

11
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we have ventured far beyond the limits of available protocols, with about 1000-fold less DNA,
and with a large (3 Gb) genome size. The single cell assemblies presented here represent a
reduced overall completeness relative to published human long-read studies**46- 53, This is not
surprising since HiFi sequencing has previously only been performed on bulk DNA isolated
from millions of cells, which typically yield reads of 15-20 kb length, uniformly distributed
across the genome, and without amplification errors and chimeras. It is, however, encouraging
that genome assembly can also be achieved at the single cell level, despite the errors and biases
present in single cell data that can be expected in all available technologies for whole genome
amplification. Taken together, the results presented here represent the very first benchmark for

reference-free analysis of single human cells.

Allelic dropout is always a challenge for single-cell WGS, and our results could be improved
by having a higher proportion of DNA fragments encapsulated and amplified in the droplets.
Several factors could lead to allelic dropout, such as DNA molecules that gets stuck in plastic,
problems with getting sufficient reagents into all droplets, or DNA fragments that are either are
too short or too long to be efficiently encapsulated. Another important issue is that the whole
genome amplification introduces chimeras and errors. To some extent this might be helped by
alternative amplification methods or modified experimental conditions, but regardless of such
optimizations, there will likely remain a significant proportion of amplification errors in the
resulting reads. This opens up for new bioinformatics tools, specifically designed for single-
cell long-read WGS data, which are able to resolve amplification errors and maximize the utility

of the data.

In this project, we opted for PacBio HiFi sequencing since it currently offers the highest per-

read accuracy®®. Although nanopore WGS* could be an alternative, it would likely be more
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challenging to study SNVs and identify chimeric artefacts from nanopore reads because of their
higher error rate. However, it is still an open question which platform would be best suited for
this application in the future. This will depend on factors such as the sequencing yield, quality,
and cost per sample, for coming versions of instruments. Due to the rapid developments of the
long-read technologies, we anticipate that several of these parameters can be radically improved

over the coming years.

In conclusion, we demonstrate that long-read genome analysis can be performed not only at a
species, population, or individual-level, but also for a single human cell. Ultimately, new
innovations and technical advances may in the future enable near-complete genome assemblies
and full haplotype reconstructions from individual cells. Our work presented here is a first step

in that direction.
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Methods

Single-cell samples

T cell samples were isolated from peripheral blood mononuclear cells taken from a living
healthy human donor. The donor was previously vaccinated with the live, attenuated Yellow
Fever Virus (YFV) vaccine (YFV-17D) as part of an ongoing study to investigate the dynamics
of adaptive immunity to YFV vaccination (approved by the Regional Ethical Review Board in
Stockholm, Sweden: 2008/1881-31/4, 2013/216-32, and 2104/1890-32). To expand CD8+ T
cell clones from single YFV-specific memory CD8+ T-cells, mononuclear cells were isolated
from peripheral blood by density centrifugation, and were first stained with HLA-
A2/YFV(LLWNGPMAYV)-dextramer FITC (Immudex, Denmark) for 15min at 4°C, followed
by staining with anti-CD8a-BV570 (clone RPA-T8, Biolegend), anti-CD3-PE/Cy5 (clone
UCHT1), anti-CD14-V500 (clone M@P9), anti-CD19-V500 (clone HIB19) (all from BD
Biosciences), and LIVE/DEAD™ Fixable Aqua Dead Cell Stain (ThermoFisher) for 20 min at
4°C. After washing, single live CD14.CD19-CD8 CD3 "HLA-A2/YFV-dextramer™ cells were
sorted directly into 96 well U-bottom plates containing 500ng/ml HLA-A2/YFV peptide
(LLWNGPMAYV), 40U/ml human recombinant IL-2, and 40.000 irradiated (25Gy) CD3-
depleted autologous PBMCs in T-cell media (RPMI1640 with 10% heat inactivated human AB
sera, ImM sodium pyruvate, 10mM Hepes, S0uM 2-mercaptoethanol, ImM L-glutamine,
100U/ml penicillin and 50pg/ml streptomycin) and were cultured for 20 days. Every 7 days
half of the media was replaced with fresh T-cell media containing 50U/ml IL-2, 500ng/ml
peptide and 40.000 irradiated CD3-depleted autologous PBMCs, and the wells were visually
inspected for proliferation. Clonal expansions of single HLA-A2/YFV-specific CD8" T-cells
clones was confirmed by flow cytometry by using the same staining protocol as described
above. Clones with sufficient number of clonal progeny were subsequently cryopreserved in

fetal bovine serum with 10% DMSO and stored in liquid nitrogen until sorting for DNA/RNA
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sequencing analysis. To isolate single cells from two selected YFV-specific CD8+ T cell clones
(A and B), the clones were thawed, washed twice in RPMI1640 supplemented with 10% fetal
bovine serum, and stained with as described above for initial sort and index-sorted into 96 well
PCR plates (Thermo Fisher) or dAMDA cartridge containing lysis buffer as described in the

following sections.

Whole-genome amplification by droplet MDA (dMDA)

The single T-cells were sorted in a FACS instrument equipped with a custom 3D printed adapter
holding a dMDA cartridge (cat# CA20100-16, Samplix ApS, Herlev, Denmark) and deposited
directly into 2.8 pL lysis buffer (200 mM KOH, 5 mM EDTA (pH 8) and 40 mM 1.4 DTT)
positioned at the IMDA cartridge’s Inlet site. Single cells were lysed, and DNA denatured for
5 minutes at room temperature followed by addition of 1.4 puL neutralization buffer (400 mM
HCI and 600 mM Tris HCI (pH 7.5)) and incubated for 5 min at room temperature. Then, 15.8
pL MDA amplification mixture including polymerase, primers, dNTP and reaction buffer
(Samplix dMDA kit item# RE20300, Samplix ApS, Herlev, Denmark), was added, by injecting
it into the dMDA cartridge Inlet site using a wide bore pipette. Finally, 75 uL dMDA oil
(Samplix AMDA kit item# RE20300, Samplix ApS, Herlev, Denmark) was added into the inlet
well (general cavity). The dMDA cartridge was moved into the Xdrop™ droplet generator
(item# INO0100-SF002 Samplix ApS, Herlev, Denmark) to create single emulsion dAMDA
droplets. Droplets were collected into low bind 0.2 ml PCR vials from the Collection container
of the AMDA cartridge and excess oil was removed from the bottom. The MDA droplets were
incubated in a thermal block at 30°C for 16 hours and then heat inactivated at 65°C for 10
minutes and then cooled down to 4°C. Droplets were broken by adding 20 pL Break solution
(Samplix dMDA kit item# RE20300, Samplix ApS, Herlev, Denmark) and the aqueous phase

collected containing the amplified DNA. DNA material from Xdrop™ droplet MDA reactions
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were quantified using Qubit ™ Fluorometer (ThermoFisher Inc., Waltham, MA, USA) and the
DNA integrity investigated using Fragment Analyzer (Agilent Inc., Santa Clara, CA, USA)

according to the manufacturer’s instructions.

Whole-genome amplification by regular MDA

For comparison to the Xdrop™ droplet MDA process, single T-cells were sorted in the FACS
and singly deposited directly into 2.8 pL lysis buffer (200 mM KOH, 5 mM EDTA (pH 8) and
40 mM 1.4 DTT) at the bottom of a 0.2 ml PCR vial or 96 well plate. Single cells were lysed,
and DNA denatured for 5 minutes at room temperature followed by addition of 1.4 pL
neutralization buffer (400 mM HCIl and 600 mM Tris HCI (pH 7.5)) and incubation for 5 min
at room temperature. The MDA reactions were prepared using RepliPHI Phi29 DNA
polymerase and Reagent set (Epicentre, Illumina, Madison, WI, USA) according to the
manufacturer’s instructions. The reactions were carried out at 30°C for 8-16 hours and then

heat inactivated at 65°C for 10 minutes.

Illumina whole genome sequencing

[llumina libraries were prepared using an automated version of the TruSeq DNA PCR-Free kit.
Briefly, DNA was quantified using Qubit HS DNA and lug of DNA was used as input. The
samples were then fragmented using Covaris E220 system, aiming for a fragment size of 350bp.
Fragmented DNA was end-repaired, followed by size selection using Dynabeads MyOne
Carboxylic Acid beads. Illumina TruSeq DNA CD Indexes with sample-specific barcode
sequences were ligated and the final product was cleaned up using AMPure XP beads. Finished
libraries were normalized based on their concentration and pooled for clustering. Clustering
was done by 'cBot' and samples were sequenced on NovaSeq6000 (NovaSeq Control Software

1.6.0/RTA v3.4.4) with a 2x151 setup using 'NovaSeqXp' workflow in 'S4' mode flowcell. Bcl
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to FastQ conversion was performed using bcl2fastq v2.20.0.422 from the CASAVA software

suite.

Mapping and variant detection in Illumina data

[llumina data was aligned to GRCh38 using BWA mem (0.7.17-r1188)*’. The aligned data was
sorted using Samtools sort (1.10)°%, and deduplicated using Picard MarkDuplicates (2.20.4-
SNAPSHOT) (https://broadinstitute.github.io/picard/). Quality control was performed using
Picard CollectGCMetrics and Picard WGSMetrics, as well as Samtools flagstats. The analysis
was performed on the PCR-free bulk WGS and on each of the single cell samples. The
subsequent bam files were searched for SNV and SV. The SNV calling was performed using
Beftools call (1.10+htslib-1.10) and the resulting SNV were decomposed and normalized using
V3%, SV detection was performed using TIDDIT (2.11.0)°° and Manta (1.6.0)*. Briefly, the
TIDDIT calls were filtered based on the Filter column — keeping only PASS variants. Next, the
SV calls were combined using SVDB merge (2.4.0), combining calls positioned within 200 bp

form each other, and sharing an overlap of at least 10% bases.

Downsampling and quality control of lllumina data

Downsampling to 100M read pairs was performed for each Illumina dataset using Samtools
view. Thereafter, the coverage was analysed using TIDDIT cov, computing the coverage in
bins sized 5 kbp and 500 kbp across the entire genome. The 500 kbp analysis was visualized
using Circos®, displaying coverage levels as a heatmap. The 5 kbp analysis was used to
estimate the fraction of reads within high (>200X) coverage regions; the fraction of reads in
such regions were computed using Samtools view, searching for reads overlapping high

coverage regions as reported by TIDDIT cov.
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PacBio whole genome sequencing

Two MDA samples, one from clone A and one from clone B, were chosen for sequencing based
on input fragment length and DNA amount. The samples were fragmented to 10 kb using
Megaruptor 2 (Diagenode). For each fragmented sample, SMRTbell construction was
performed using the Express Template prep kit 2.0 and incomplete SMRTbells were removed
using the SMRTbell Enzyme Clean up Kit. SMRTbells were size selected using AMPure beads
to remove fragments shorter than 3kb. The library preparation procedure is described in the
protocol “Preparing HiFi Libraries from Low DNA Input Using SMRTbell Express Template
Prep Kit 2.0” from PacBio. The SMRTbell library sizes and profiles were evaluated using the
Agilent DNA 12000 kit on the Bioanalyzer system. PacBio sequencing was performed on the

Sequel II instrument with 30h movie time.

Mapping and variant detection in PacBio data

The PacBio data was analyzed using tools available in the SMRTLink v8 GUI. HiFi reads were
generated using the circular consensus sequencing (CCS) tool. The HiFi reads were aligned to
hg38 using Minimap2%!. Structural variants were detected using PBSV. DeepVariant*® (v 1.0.0)

was used for PacBio SNVs calling.

Detection of somatic SV events

Somatic SV were found by removing the previously mentioned germline SVs from the single-
cell sequencing WGS data. Candidate somatic SV were discovered in a variety of settings:
through the previously mentioned PacBio analysis, through Illumina WGS analysis, or through
the combination of I[llumina and PacBio data. The combined analysis was initiated by removing
any germline calls from the Illumina single-cell WGS lists. Next the remaining calls were

merged with the quality controlled PacBio calls, and the intersection was considered potential
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somatic SV. The Illumina-only somatic analysis focused on the intersection between Manta and
TIDDIT, searching for shared calls not present in the Germline SV list. In all these cases, the
intersection of callers/technologies, were found through SVDB merge. Somatic SV of interest

were manually inspected using®?.

Assembly of PacBio single-cell data

The PacBio HiFi reads were first filtered to remove intramolecular chimeras. This filtering was
done by aligning each read to its own sequence using BLAST® and removing all reads that
have a secondary blast hit against themselves, at an identity higher than 90%. In this way, reads
containing intramolecular chimeras such as inversions and duplications are efficiently removed.
The HiFi reads that pass the chimera filtering were then assembled using hifiasm>? (v. 0.7-dirty-

1255).
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Tables

Table 1. PacBio Sequel II run statistics and alignment results for two human single T-cells

Single-cell A

Single-cell B

> Q20 reads 2,750,802 2,547,184

> Q20 yield (bp) 19,880,131,345 20,169,954,798
> Q20 read length (mean, bp) 7,227 7,918

> Q20 read quality (median) Q36 Q36

Number aligned reads

2,739,035 (99.57%)

2,517,588 (98.83%)

Number of alignments 6,508,237 6,235,924
Aligned read mean concordance | 99.18% 99.11%
Aligned read length (mean) 2,994 3,149
Aligned read length N50 5,429 6,476
Aligned read length 95% 8,691 9,739
Aligned read length Max 43,386 48,731
Mean coverage 6 6
Covered bases 39.60% 27.71%

Table 2: De novo assembly results for the two T-cells A and B

Single-cell A

Single-cell B

Assembly statistics:

Filtered CCS reads (bp)

8,794,585,174 (44.2%)

9,405,139,162 (46.6%)

Assembly size, primary (bp) 598,293,718 454,096,399
Assembly completeness 19.4% 14.7%
Contig N50 34,883 41,528

Max contig size 206,875 578,275
Assembly size, alternative (bp) 44,706,740 36,132,542
Contig N50, alternative 18,969 20,976

Max contig size, alternative 79,718 94,865
BUSCO gene models:

complete 1762 (12.8%) 1236 (9.0%)
duplicated 17 (0.1%) 14 (0.1%)
fragmented 58 (0.4%) 250 (1.8%)
missing 11960 (86.8%) 12294 (89.2%)
Mitochondrion: Complete Complete
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Figure 1. Overview of the single-cell DNA amplification and sequencing experiment. A)
An individual cell is isolated by fluorescence activated cell sorting (FACS) and placed into a
well containing lysis buffer. DNA molecules from the lysed single cell are then encapsulated
in picoliter droplets using the Xdrop microfluidic system, after which dMDA whole genome
amplification takes place inside each droplet. After amplification, the droplets are broken and
DNA is released, followed by library preparation and whole genome sequencing using short-
(Illumina) and long-read (PacBio) technologies. B) Image showing how droplets are formed in
the Xdrop microfluidic system. An aqueous phase containing lysed DNA and dMDA reagents
encounters an oil layer, resulting in <100 um diameter droplets where single DNA fragments
are captured. The Xdrop system has capacity to produce around 50,000 droplets in 45 seconds.
C) Two human memory T-cells from the same individual (A and B) were used as starting point
for the experiments. Collections of daughter cells were obtained by in vitro expansion, and
individual cells from clones A and B were analyzed using [llumina and PacBio whole genome
sequencing.
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Figure 2. Comparison of MDA and dMDA for whole genome amplification. These results
are based on Illumina MDA, dMDA and bulk sequencing where the datasets that have been
randomly downsampled to contain the same number of reads. A) The figure displays the
average sequencing depth across the human chromosomes. The dMDA single-cell samples
display good uniformity of coverage, whereas the MDA data show high spikes due to
amplification bias. B) Plot showing the percentage of bases in the reference genome (y-axis)
having a minimal coverage (x-axis). On average the dMDA samples have more bases covered
at a range 10x-30x, as compared to the single-cell samples subjected to regular MDA. C) Circle
plots showing sequencing coverage in 500kb bins for all of the Illumina single-cell samples,
color coded from Ox coverage (white) to over 200x coverage (black). Four replicate samples
are included in each of the circle plots, and the chromosomal coordinates are displayed in the
outermost circle. The IMDA samples at the top row display more even coverage than the MDA
samples below, with more of the bins having average coverage in 4x-15x coverage range
(green). D) Box plot showing the percentage of reads aligning to regions of extreme (>200x)
coverage. E) Box plot showing the percentage of reference bases that are covered by at least
one read.
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Figure 3. Results of SNV analyses in single-cell samples. A) Total amount of data generated
for the single cell samples. On average, 48.7 Gb was generated for the sixteen [llumina samples,
and 20.0 Gb for the two PacBio samples. B) Number of SNV overlapping in the single cells
that were found to be overlapping with SNVs identified in the Illumina bulk sample. 992,338
such SNVs/sample were found in the sixteen Illumina samples, 899,827 SNVs/sample for the
two PacBio samples. C) Example of a “dark” genic region (NBPF8) where Illumina data fails
to align uniquely, while SNVs can be identified and phased in the PacBio single cell data. D)
Another example of a “dark” genic region (CDC73), where PacBio reads from the two single
cells span across a repetitive region that lacks coverage in the Illumina bulk sequencing data.
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Figure 4. Structural variants detected in single-cell whole genome sequencing data. A) The
box plots show the number of SVs that were found in a single cell, while also being detected
by SV analysis of the Illumina bulk sample. A higher number of bulk-supported SVs are found
in the MDA samples (average 326.5 SVs) as compared to the regular MDA samples (average
46.4 SVs), and a Welsh t-test resulted in rejection of the null hypothesis that there is no
difference between the two distributions (p-value 0.021). However, by far the highest numbers
of bulk-supported SVs was found in the PacBio single-cell data; 1620 for T-cell A and 1126
for T-cell B. B) The boxplots show the same SVs as in panel A), divided into deletion (top
panel), insertion (middle panel) and tandem duplication events (bottom panel). C) IGV plot
showing one example of a candidate somatic 50 bp deletion, indicated by a red arrow at the top.
This event was detected both in the PacBio and Illumina single cell data for T-cell B. However,
it is not visible in the bulk sequencing or in the single-cell data from T-cell A. The two black
arrows to the right indicate positions with heterozygous SNV that can be used for phasing of
the deletion in the PacBio data for T-cell B.
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