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Abstract  

The latest meta-analysis of genome wide association studies (GWAS) identified 90 

independent single nucleotide polymorphisms (SNPs) across 78 genomic regions associated 

with Parkinson’s disease (PD), yet the mechanisms by which these variants influence the 

development of the disease remains largely elusive. To establish the functional gene 

regulatory networks associated with PD-SNPs, we utilised an approach combining spatial 

(chromosomal conformation capture) and functional (expression quantitative trait loci; 

eQTL) data. We identified 518 genes subject to regulation by 76 PD-SNPs across 49 tissues, 

that encompass 36 peripheral and 13 CNS tissues. Notably, one third of these genes were 

regulated via trans- acting mechanisms (distal; risk locus-gene separated by > 1Mb, or on 

different chromosomes). Of particular interest is the identification of a novel trans-eQTL-

gene connection between rs10847864 and SYNJ1 in the adult brain cortex, highlighting a 

convergence between familial studies and PD GWAS loci for SYNJ1 (PARK20) for the first 

time. Furthermore, we identified 16 neuro-development specific eQTL-gene regulatory 

connections within the foetal cortex, consistent with hypotheses suggesting a 

neurodevelopmental involvement in the pathogenesis of PD. Through utilising Louvain 

clustering we extracted nine significant and highly intra-connected clusters within the entire 

gene regulatory network. The nine clusters are enriched for specific biological processes and 

pathways, some of which have not previously been associated with PD. Together, our results 

not only contribute to an overall understanding of the mechanisms and impact of specific 

combinations of PD-SNPs, but also highlight the potential impact gene regulatory networks 

may have when elucidating aetiological subtypes of PD. 
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Introduction  

Parkinson's disease (PD) is considered to be primarily an idiopathic neurodegenerative 

disorder, with monogenic forms contributing to just 5-10% of all cases1. However, the 

idiopathic nature of PD is being questioned, as evidence increasingly supports a complex 

involvement of genetics in the development of the majority of cases2,3.  Genome-wide 

association studies (GWAS) have identified >200 PD risk loci4, with 90 PD-associated Single 

Nucleotide Polymorphisms (PD-SNPs) across 78 risk loci reported in the largest meta-

analysis to date5. As is typically observed with GWAS variants, the majority of the PD-SNPs 

are located within non-coding regions of the genome, with no direct or obvious influence on 

protein structure or function6,7. Studies have shown that such non-coding disease-associated 

variants are more likely to be located within regulatory regions8, and thus contribute to risk 

through influencing gene regulation and expression, either locally or distally. These 

regulatory interactions are likely to be tissue specific, adding a further layer of complexity. 

Consequently, determining how these variants contribute to PD risk, both individually and in 

combination, poses a major scientific challenge9,10.   

Although PD is defined as a neurodegenerative disease, mounting evidence demonstrates the 

role of non-central nervous system (CNS) tissues in the development and presentation of such 

disorders (i.e. Huntington’s11 and PD12,13). Both alpha-synuclein (αSyn) protein pathology 

and modulation of PD-related genes have been identified in peripheral tissues (e.g. the 

gastrointestinal tract and heart) of PD patients12,14–19. The contribution of peripheral tissue in 

the origins of PD warrants further research, and thus the consideration of how PD-SNPs 

mediate risk should not be confined to tissues of the CNS.  

Spatial gene regulatory interactions are hypothesized to be drivers of complex trait 

heritability20, acting through both cis- (nearby) and trans- (distal; locus-gene separated by > 
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1Mb, or on different chromosomes) mechanisms (Figure 1)19,21,22. These cis- and trans-acting 

elements can regulate the transcription of one or more genes, in a tissue specific manner, and 

are commonly detected in the form of expression quantitative trait loci (eQTL)23. Genetic 

variation within elements of gene regulatory networks likely confer risk at different 

developmental stages, including during foetal neurodevelopment – a critical stage that has a 

growing body of support in neurodegenerative diseases24.  

Here we performed correlational analyses of experimentally derived data to identify eQTLs 

that physically connect PD-SNPs to the genes that they control, in three-dimensions, with the 

goal of understanding the putative functional impacts of known PD-SNPs21.  The integration 

of spatial and eQTL data allows for the identification of trans-eQTL-gene associations25, 

thereby nominating genes which have not previously been implicated in PD.  Our analysis 

identified 518 genes subject to regulation by 76 PD-SNPs across 49 tissues. Further, 

clustering analysis of the entire gene network revealed nine significant, intra-connected 

clusters, enriched for both novel and known PD biological pathways, highlighting putative 

disease-causative molecular mechanisms and areas for future research.    
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Methods  

Data and reference files 

The 90 PD-SNPs (across 78 genomic regions; Supplementary table 1) investigated in this 

study were previously identified by a GWAS meta-analysis as being of genome wide 

significance (p<5x10-8)5. The human genome reference sequence used in this study was 

GRCh38 (hg38).  

Identification of eQTL-gene pairs 

The contextualise developmental SNPs using 3D information (CoDeS3D)21 algorithm was 

used to identify genes whose transcript levels are putatively regulated by the 90 PD-SNPs. 

CoDeS3D integrates data on spatial interactions between genomic loci (Hi-C data; 

Supplementary table 2) with expression data (genotype-tissue expression database version 8; 

GTEx v826) to identify genes whose transcript levels are associated with a physical 

connection to the SNP (i.e. spatial eQTL).  

 

Hi-C captures regions of the genome that are physically interacting, and can be covalently 

connected by a cross-linking agent27. The hg38 reference genome was digitally digested with 

MboI, DpnII and HindIII to obtain all possible Hi-C fragment locations for the 90 PD-SNP 

loci. All identified SNP fragments (tagged by the PD-SNPs) were then queried against the 

Hi-C databases (70 different cell lines from 12 studies; Supplementary table 2) to identify 

distal fragments of DNA that spatially connect to the SNP loci. Spatial SNP-gene connections 

are established when the SNP-containing fragment spatially connects to a fragment that 

overlaps any region between the start and end of a gene as defined by GENCODE. There was 

no binning or padding around restriction fragments to obtain gene overlap. The resulting 

spatial SNP-gene pairs were subsequently used to query the GTEx v8 eQTL database26 to 
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identify spatial SNP-gene pairs with significant eQTLs (both cis- and trans- acting eQTL; 

false discovery rate (FDR) adjusted p < 0.05).  

We performed a ‘brain specific’ analysis by interrogating only the subset of Hi-C libraries 

derived from brain-specific cell lines (11 cell lines from 4 studies, highlighted in red in 

Supplementary table 2)28–31 and only expression data from the 13 brain-specific tissues in 

GTEx v8. 

Identification of neurodevelopmental-specific eQTL-gene pairs 

We performed a neurodevelopmental stage specific analysis by interrogating Hi-C libraries 

from foetal-specific brain cell lines (cortical plate neurons; germinal zone neurons; 

Supplementary table 2; datasets no. 1 and 2) with expression data from a foetal cortex eQTL 

dataset32.  

Functional analysis of eQTL SNPs 

SNPnexus v433 (https://www.snp-nexus.org/v4/; accessed 22/06/2020) was used to obtain 

known epigenomic annotations for the eQTL SNPs.  

Probability of gene loss of function intolerance 

The LOEUF (loss-of-function observed/expected upper bound fraction) 34 score for the genes, 

within the significant SNP-gene pairs, was obtained from gnomAD v2.1.135 

(https://gnomad.broadinstitute.org/; accessed 21/07/2020) to determine the level of constraint 

on the identified genes.  

Protein-protein interaction (PPI) and Modularity clustering  

STRING36 (Search Tool for Retrieval of Interaction Genes/proteins; https://string-db.org, 

accessed 22/07/2020) was queried to identify published information on interactions between 

genes, or their respective proteins. Only PPIs with a high confidence level (>0.700, as 

defined in STRING) were used for this analysis. A Louvain method was used to determine 

the syntality of each node, following four different criteria: 1) immediate connection; 2) 
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shortest path (i.e. the minimum number of edges connecting any two nodes); 3) node acting 

as a bridge; 4) connections that nodes have in common. The proteins were then hierarchically 

clustered using the Louvain algorithm37, clusters were defined as significant if p < 0.05.  

Pathway analyses & literature search  

The g:Profiler38 database was used to identify enriched pathways. Queries were run on: 1) all 

genes’ 2) the ‘cis’; and 3) the ‘trans’ subsets of genes (i.e. genes regulated only in cis, or only 

in trans). PubMed was used to search (using “[gene name]” and Parkinson’s”) the published 

literature for all identified genes and known PD associations.  

Additional analyses of genes and variants identified by Makarious et al 

Makarious et al recently utilised a multi-modality approach to identify genetic and 

transcriptomic features that contribute to risk predictions of PD39. They highlighted two SNPs 

(rs10835060 and rs4238361), and 29 genes. We performed CoDeS3D analysis on the two 

SNPs, across all Hi-C cell lines and GTEx tissues (as previously described). The resulting 

eQTL gene pairs, along with the 29 genes highlighted through transcriptomic analysis, were 

combined with our set of 523 genes. Louvain clustering and PPI analysis were re-run on this 

combined list of genes to see how or if the subset of genes co-locate within the networks.  

URLs  

CoDeS3D pipeline: https://github.com/Genome3d/codes3d-v2 

gnomAD: https://gnomad.broadinstitute.org/ 

gProfiler: https://biit.cs.ut.ee/gprofiler/ 

UCSC: https://genome.ucsc.edu/index.html 

STRING: https://string-db.org/ 

SNPNexus: https://www.snp-nexus.org/ 

Louvain clustering analysis: https://github.com/Genome3d/PPI-network-analysis 

Data Availability 
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All data generated during this study are included in the supplementary information. Datasets 

analysed and tools used in this study were all derived from publicly available resources (See 

URLs).  
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Results  

PD GWAS SNPs regulate the expression of > 500 genes  

Nalls et al.5 identified 90 SNPs that were associated with PD at the level of genome-wide 

significance (Supplementary table 1), yet the mechanisms by which these variants influence 

the development of the disease remains largely elusive. We used the CoDeS3D algorithm21 to 

identify SNPs that have evidence of physical interaction with the gene as captured by Hi-C 

(Supplementary table 2) and also associate with changes in gene expression (hereafter 

eQTLs) and the genes whose transcript levels were affected (Figure 1).  

 

76 (84%) of the 90 PD risk SNPs were identified as eQTLs associated with the regulation of 

518 genes through 542 unique eQTL-gene pairs, across the 49 tissues (Table 1, 

Supplementary table 3). The 76 eQTLs were individually associated with the regulatory 

impacts of as few as one, or as many as 39 genes in cis and trans (Supplementary figure 1). 

We identified 178 of the 542 genes as being associated with PD through trans-eQTL-gene 

connections. We did not identify eQTL interactions for 14 of the 90 SNPs. Conversely, 8 of 

these 14 SNPs are annotated as being eQTLs in the IPDGC GWAS Locus Browser40, and a 

further four are eQTLs in GTEx (Supplementary table 1). However, in these 12 instances, the 

eQTLs occur in cis- (i.e. within 1Mb) and are not supported by Hi-C data.  

  PD SNPs 

  Brain specific* All tissues* 

No. SNPs 90 90 

No. eQTL SNPs # 55 76 

No. Genes ¶ 165 518 

No. eQTL-Gene pairs ¥ 167 542 

No. trans eQTL-Gene pairs 30 178 

Table 1: Summary statistics for the spatial eQTL-gene regulatory network for the 90 PD- 

SNPs. SNPs were downloaded from Nalls et al 2019 GWAS paper (download date: 

18.06.2020). #eQTL SNPs were defined as having significant spatial interactions (FDR 
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≤0.05) with at least one gene. ¶genes were those whose expression was shown to be affected 

by an eQTL SNP. ¥ The total number of SNP-gene pairs reflects interactions with FDR ≤0.05 

in at least one GTEx tissue. * For full list of tissues see Supplementary tables 3 and 4.  

 

Consistent with observations for SNPs associated with other traits41, at least one trans-

regulatory interaction was identified for 81.6% (62 of 76) of the eQTLs.  Moreover, 92.7% 

(165 of 178) of these trans-eQTL-gene interactions were identified in only one tissue. By 

contrast, the cis- interactions were identified in eight tissues on average (range of 1 to 49 

tissues). 11.8% of the eQTLs (9 of 76; Supplementary table 1) were exclusively involved in 

trans-regulatory interactions. Trans-eQTL interactions regulated 18.1% of the genes 

identified in the brain (30 out of 166; Supplementary table 4), and 32.8% of the genes 

amongst all 49 tissues (178 out of 518; Table 2; Supplementary table 3). Collectively, these 

results highlight the importance of looking beyond the nearest gene to identify the regulatory 

effects of disease-associated variants. 

  Genes subject to cis- or trans- regulation 

  Brain specific* All tissues* 

Cis eQTL-gene pairs 136 (82.0%) 364 (67.2%) 

Trans-intrachromosomal 

eQTL-gene pairs 

10 (6.0%) 56 (10.3%) 

Trans-interchromosomal 

eQTL-gene pairs 

20 (12.0%) 122 (22.5%) 

Table 2: Proportion of genes subject to cis- and trans- regulation. The proportion of eQTL-

gene pairs that are either cis-, trans-intrachromosomal or trans-interchromosomal in (a) 13 

GTEx brain-specific tissues and (b) all 49 GTEx tissues. Brain-specific indicates the eQTL 

dataset obtained through analysing Hi-C cell lines only from the brain, and eQTLs only from 

the brain tissues in GTEx. All-tissues indicates the eQTL dataset obtained through analysing 

all Hi-C cell lines, and eQTLs from all tissues in GTEx. There is a significant difference (Chi 
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square test p.value < 0.01) between brain tissues and all tissues for the proportions of the cis 

vs. trans eQTLs. 

 

We reasoned that SNPs that are involved in eQTLs likely mark enhancer or promoter sites42. 

We queried SNPnexus33 to identify those eQTLs that were marked by histone modifications 

or fell within open chromatin regions, as indicated by DNAse accessibility. Consistent with 

our hypothesis, 91% (69 of 76) of the SNPs were marked by histone modifications associated 

with either enhancers (58) and/or promoters (27). 27.6% of the SNPs were within accessible 

chromatin(Supplementary table 5). Collectively, these results are consistent with the 

hypothesis that the loci marked by these eQTLs may be involved in the regulation of gene 

expression.    

Pathway analysis was conducted on the complete set of 518 genes that were impacted by the 

eQTLs (Supplementary table 6). g:Profiler38 identified significant (adj.p < 0.05) enrichment 

within 10 known biological pathways (g:GOSt), including response to interferon-gamma, 

synaptic vesicle recycling and endocytosis.  

 

The regulatory impact of PD-SNPs extends beyond the CNS  

Although PD is considered a degenerative disease of the brain, it has become apparent that 

dysfunction and or alpha-synuclein pathology is observed in non-CNS tissues of PD 

patients13–15. Our spatial eQTL analysis included an assessment of the tissue distribution of 

the effects of the identified eQTLs within 13 CNS and 36 peripheral tissues. We identified 

peripheral tissue-specific eQTLs for 28% of the PD-SNPs (21 of 76). Only 2 of the 76 PD-

SNPs (i.e. rs10756907 – SH3GL2, brain cortex; rs873786 – SLC26A1, brain cerebellum) had 

eQTLs that impacted gene expression levels exclusively in the brain. This supports a possible 

role for peripheral tissues in PD risk (Supplementary figure 3). 
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The ability to detect eQTLs in specific tissues is known to correlate with tissue sample size 

within GTEx43. Consistent with this, we identified highly significant correlations between 

tissue sample numbers and a) all-eQTLs in the brain tissues (Figure 2a; identified using brain 

specific Hi-C and eQTL data; Supplementary Table 4); and b) all tissues (i.e. the 49 tissues 

included within GTEx; Figure 2e). These highly significant correlations remained when 

analysing the cis-eQTL subsets in the brain (R = 0.93, p = 3.6e-06; Figure 2b), and all tissues 

(R = 0.9, p < 2.2e-16; Figure 2f). Similarly, the correlation was evident for trans-

intrachromosomal eQTLs detected in all tissues (R = 0.67, p < 1.8e-06; Figure 2g). By 

contrast, there was no observable correlation between the number of trans-interchromosomal 

interactions and tissue sample number (Figure 2d,h). The substantia nigra and brain cerebellar 

hemisphere exhibited more trans-interchromosomal-eQTLs (Figure 2d), while the thyroid 

exhibited more eQTLs than expected across all three categories (Figure 2e-h).  

 

Genes subject to trans-regulation by PD-SNPs are more likely to be intolerant to 

loss-of-function mutations 

Genes that are intolerant to inactivation by loss-of-function variants are deemed essential for 

healthy development44. Intolerance to loss of function variants leaves changes to regulation as 

one of the few mechanisms that can be modified to introduce variation at a population level. 

The 117 trans-interchromosomal-eQTL regulated genes were significantly (p < 0.01, 

Kruskal-Wallis test) more intolerant to loss-of-function mutations (LOEUF 0.42 [median]; a 

low LOEUF score is indicative of evolutionary constraint) than those regulated by cis- or 

trans-intrachromosomal acting eQTLs (LOEUF 0.83 and 0.85 respectively [median]; Figure 

3; Supplementary table 7). This result is consistent with earlier observations that trans-eQTLs 

are enriched in regulating constrained genes with low LOEUF scores19.  
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PD GWAS SNPs regulate expression of a subset of genes within the foetal cortex  

Emerging evidence suggests PD has a neuro-developmental aspect48, similar to recent 

observations in Huntington’s disease24. Therefore, we analysed the regulatory impacts of the 

PD-SNPs using foetal cell line Hi-C  (i.e. cortical plate neurons and germinal zone neurons29) 

and foetal cortex eQTL datasets32 (Supplementary table 8). 33 genes were found to be 

regulated by 22 PD-SNPs in the foetal cortex. Of these, sixteen genes were regulated by 

eQTLs involving PD-SNPs in the foetal cortex, without evidence of any eQTLs in adult brain 

tissues (Figure 4; Supplementary table 4). Ten genes were affected by eQTLs involving PD-

SNPs in both the foetal and adult cortex, with effect sizes that were similar in both (Figure 4). 

Finally, seven genes were regulated by cis-eQTLs in the foetal cortex and adult non-cortical 

brain tissues (Figure 4). These findings are consistent with the hypothesis that development-

stage specific eQTL patterns impact on disease-relevant mechanisms and thus may contribute 

to the proposed temporal phases of PD pathogenesis47. 

 

Louvain clustering highlights nine intra-connected protein clusters, enriched for 

disease-relevant, biological pathways  

Network representations of complex datasets can aid the identification of biological 

relationships that are often not identified by enrichment analyses48. We used a Louvain 

clustering algorithm to identify clusters of interacting genes and proteins from within a 

Protein-Protein Interaction Network (PPIN) generated from the 523 eQTL regulated genes 

(518 adult tissue eQTLs and the 5 unique foetal cortex eQTLs; Supplementary table 9). Nine 

significant (p<0.05) clusters consisting of 122 genes were identified within the high-

confidence PPIN (Figure 5). The genes within each cluster were regulated by between 5 and 

18 PD-SNPs (Supplementary table 9) and every cluster contained at least two genes that were 
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co-regulated by a single SNP (Supplementary figure 4). Notably, genes that were subject to 

trans-acting eQTLs were central to the definition and identification of several clusters (Figure 

5). Pathway analysis (g:Profiler) of the genes within the individual clusters revealed 

enrichment in categories that included immunological surveillance (cluster 7), synaptic 

vesicle recycling (cluster 5) and microtubule polymerisation (cluster 3) (Supplementary table 

10).  

 

Makarious et al recently used a multi-modal machine learning approach, incorporating multi-

omics datasets, to inform and improve predictions of PD39. Beyond the 90 GWAS SNP 

signals (which collectively were the top genetic feature), they also identified rs10835060 and 

rs4238361 as two SNPs that impact on PD biology. CoDeS3D analysis identified eQTLs for 

both rs10835060 (KRTAP5-AS1, CCDC88A, KRTAP5-5, BRSK2) and rs4238361 (USP47; 

and RP11-507B12.2 and RP11-259A24.1) (Supplementary table 11). Notably, BRSK2 co-

locates with cluster 2 through an established interaction with the Tau encoding MAPT gene49. 

The model also highlighted 29 genes through transcriptomic analysis. Three of these genes 

(MMP9, TRIM4 and SYS1) integrate into clusters 1, 4 and 5, respectively (Supplementary 

figure 5). The co-location of genes and eQTLs, identified as being important for PD 

diagnosis39, within the nine clusters supports the potential importance of the gene-gene 

interactions and enriched pathways in PD.  

 

402 genes did not segregate in the nine clusters. Of note, 211 of the 402 genes (52.5%) had 

not previously been associated with PD GWAS loci (iPDGC PD browser40). Of the 211, 123 

genes were regulated by trans-eQTL-gene connections. Notably, iPDGC identified five genes 

(DNAI1, EYA4, LYVE1, MYO5B, PDZRN4) as being regulated by cis-eQTLs yet. These five 

genes were exclusively identified through trans-eQTL regulatory connections in our analysis.  
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Discussion  

Assigning functionality to PD-SNPs is a critical step towards determining how they 

contribute to the risk of PD development. In this study, we identified 518 genes whose 

expression was regulated in cis or trans by PD-SNPs, and the tissues where this regulation 

occurs. We also demonstrated that 22 PD-SNPs impact the regulation of a subset of 16 genes 

solely in the foetal cortex, and a further 10 genes in both the foetal and adult cortex. Of all 

523 identified genes, a subset of 122 cis- and trans- regulated genes formed nine clusters 

within a protein:protein interaction network that were enriched for specific biological 

pathways, some of which have not been previously associated with PD. Our findings support 

the hypothesis that both cis- and trans- dysregulation of gene expression contributes to the 

risk of PD and provide insight into possible disease-causing mechanisms.  

 

SYNJ1 encodes synaptojanin-1, a presynaptic phosphoinositide phosphatase that 

dephosphorylates PI(4,5)P2 to trigger the removal of the clathrin coat during synaptic vesicle 

recycling50. SYNJ1 is a highly constrained gene (LOEUF score = 0.33) and rare missense 

mutations in SYNJ1 have been linked to early-onset Parkinsonism51. Despite this, GWA 

studies have not identified any SNPs proximal to SYNJ1 as being significantly associated 

with PD, nor have they attributed any significant PD SNP (near or far) to SYNJ1. Critically, 

we identified that the PD-associated SNP rs10847864 acts as a trans-acting eQTL for SYNJ1 

expression. rs10847864 is intronic to, and also acts as a cis-eQTL with, HIP1R, another gene 

that is involved in clathrin mediated endocytosis52–54. Our discovery of the trans-eQTL-

SYNJ1 connection merges observations from population level (i.e. GWAS) and familial 

studies, reinforcing the potential importance of SYNJ1 in PD.  
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Our analysis identified trans-eQTLs for approximately two-thirds of the known PD-SNPs. Of 

note, RAI14 (retinoic acid induced 14) is regulated by two trans-eQTLs, involving two 

independent PD-SNPs (rs2251086, chr.15 and rs55818311, chr.19). Although not yet directly 

linked to PD, RAI14 (and its encoded protein ankycorbin) has been shown to play a role in 

the inflammatory response in glial cells55, and in the establishment of neuronal morphology56; 

both of which are pathways of known importance in PD pathogenesis57. Retinoic acid, a 

regulator of RAI14 (one of multiple roles of retinoic acid), is being explored as a potential 

therapeutic target for PD58.  

 

Our results provide support for the role of peripheral tissues in PD, notably the oesophagus 

and thyroid. Firstly, the oesophagus is enriched for cis and trans regulatory eQTLs. 

rs76904798 (PD odds ratio (OR) = 1.155) is an eQTL that upregulates LRRK2 expression in 

19 peripheral tissues, including in the oesophagus. Notably, this cis-eQTL with LRRK2 is not 

identified in any CNS tissues. Secondly, we identified the thyroid tissue as being enriched for 

eQTLs, many of which were not represented in CNS tissues. The thyroid is a component of 

the dopaminergic system and hypothalamic–pituitary–thyroid axis network61. A potential link 

between thyroid hormone disorders, PD risk, and symptom severity has been suggested62. 

Specifically, one study identified patients with hypothyroidism to have a two-fold elevated 

risk of developing PD63. Collectively, these findings support the growing body of evidence 

for the importance of the oesophagus64,65 and thyroid62 in PD.  

  

We hypothesised that genes regulated by PD-SNPs in foetal cortical tissue may contribute to 

potential neurodevelopmental aspects of PD24,45,46. Sixteen genes were regulated by PD-SNP 

eQTLs within the foetal cortex. Two of these genes, CNTNAP1 and GALC are particularly 

notable. CNTNAP1 encodes Caspr1, a Neurexin family membrane protein. Reductions in 
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Caspr1 concentrations delay cortical neuron and astrocyte formation in the mouse developing 

cerebral cortex66. GALC encodes a lysosomal galactosylceramidase that ensures normal 

turnover of myelin67 and has been linked to neuronal vulnerability68. While connections 

between the remaining 14 genes and PD development are less clear, we speculate that SNP 

mediated regulation of these genes specific to the foetal cortex may contribute to early neuro-

developmental disturbances that render an individual more susceptible to PD.  

 

Our analyses identified nine clusters that are enriched for specific biological processes and 

pathways, some of which have not previously been associated with PD. Dysregulated 

expression of the components within these pathways is potentially the basis of the risk 

conferred by the PD-SNPs. The clusters aid in understanding how PD SNPs mechanistically 

contribute to disease risk, and some interesting points can be drawn from these. For example, 

genes within cluster 6 are enriched for functions in DNA replication and repair, a pathway 

previously associated with the development of other neurodegenerative diseases69. Notably, 

BRCA1 and RPA2 (both previously linked to DNA damage response and repair70,71) are 

regulated in trans by PD-SNPs (rs11950533; rs9568188; rs62053943) and are central to 

cluster 6. It is notable that cluster 6 contains several factors associated with PARP1 activity 

(e.g. the PARP1 binding protein (PARPBP) and BRCA1) that link this cluster to the repair of 

SSBs which are enriched at neuronal enhancers in post-mitotic neurons72. A further example 

is the regulation of autophagy initiation by PD-SNPs, highlighted in cluster 8. Three 

interacting proteins within cluster 8, encoded by VMP1, BECN1, and ATG14 are each 

regulated by a different PD-SNP (rs12951632 chr. 17; rs11158026 chr. 14;  rs10748818 chr. 

10; Supplementary table 3), including a trans-eQTL connection regulating VMP1. 

rs12951632 (OR= 0.93) and rs11158026 (OR= 0.919) are protective PD-SNPs that 

respectively increase BECN1 and ATG14 expression, two interacting core components of the 
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PI3-kinase complex, required for autophagosome formation73. Individuals with both of these 

variants would potentially have increased autophagic capacity relative to individuals with one 

variant.  

 

The genes in cluster 7 are strongly enriched for antigen processing and presentation – which 

is increasingly being implicated in the progression of PD74. Both rs504594 and rs9261484 are 

associated with a reduced risk of developing PD (OR = 0.8457 and OR = 0.9385 

respectively). We identified a spatial eQTL between rs504594 and HLA-DRB1 in both the 

foetal cortex and adult brain (including cortex and SN), implicating this regulatory eQTL-

gene connection in both the neurodevelopment and neurodegenerative stages of PD. 

Interestingly, rs504594 (previous ID: rs112485776) was recently validated in a SNP-level 

meta-analysis (OR = 0.87), with results displaying no residual HLA effect in adults after 

adjusting for the SNP75. Instead, three amino acid polymorphisms within the HLA-DRB1 

gene were identified as drivers of the association between the HLA region and PD risk75. We 

agree that the impacts of rs504594 are contingent upon the HLA-DRB1 allele - both in terms 

of regulation and protein sequence. We contend that the effects of the rs504594 eQTL are 

developmental. Future studies must untangle these developmental effects and identify the 

neurodevelopmental stages that may prime certain individuals to be more vulnerable to later 

triggering mechanisms. We note that such interpretation should be taken with caution given 

the highly polymorphic nature of the HLA-region.  

 

We acknowledge several limitations to our analysis. Firstly, the Hi-C cohort and GTEx 

libraries were generated from unrelated samples that were not age or gender matched. 

Secondly, the sampled donors in GTEx are predominantly of European descent, limiting the 

significance of our findings to this ethnicity. However, the GWAS cohort also used 
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individuals of European ancestry, meaning for this analysis the datasets were congruent. 

Thirdly, our eQTL analysis assumes that mRNA concentration correlates directly with 

protein levels. While it is true that protein levels are to some extent determined by their 

mRNA concentration, there are many post-transcriptional processes that can lead to a 

deviation from the expected correlation76. The fourth limitation is that eQTL data represent 

composite datasets across developmental periods (e.g. foetal samples were aged from 14-21 

weeks post-conception and the adult samples were from individuals aged 21-70 years). 

Despite such limitations, the identification of trans-eQTLs is a particular strength of our 

methodology, relying on captured contacts within the genome organisation to reduce the 

impact of multiple testing correction. As such, we contend that these limitations do not 

invalidate the significance of our findings of trans-acting eQTLs and the genes that they 

impact.  

 

Conclusions  

Understanding the functional impact of PD-SNPs is critical to our understanding of how 

these variants contribute to the development and clinical presentation of PD. Our functional 

interpretation of PD-associated SNPs integrates individual loci into a gene regulatory 

network, which includes genes with and without prior PD associations. The regulatory 

network includes clusters, and within them genes, that are enriched for biological functions 

that have known, putative or previously unknown roles in PD. Development-specific changes 

to this network (within the foetal cortex) are suggestive of roles for neurodevelopmental 

changes being early contributors to PD disease risk. Similarly, enrichments for regulatory 

changes within peripheral tissues may indicate a greater role for these tissues in PD than is 

currently appreciated. Collectively, our findings not only contribute to an overall 

understanding of the multiple biological pathways associated with PD risk loci, but also 
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highlight the potential utility of gene regulatory networks when considering etiological 

subtypes of PD.  
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Figures 

 

Figure 1: Methods workflow. 90 PD-SNPs were obtained from Nalls et al5. Spatial 

interactions between the 90 PD-SNPs and genes were identified from Hi-C libraries 

(Supplementary table 2). The resulting spatial SNP-gene pairs were then used to query GTEx 

v8 to identify significant eQTLs. The resulting SNP-gene pairs were then analysed for 

functional relevance using multiple tools and databases (methods). Figure adapted from 

Schierding et al.19 
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Figure 2: Correlation between genotype samples per tissue and number of 

eQTLs present in the tissue (a) Correlation between the number of genotyped samples 

per tissue (in GTEx) and the number of eQTLs (including cis, trans-intrachromosomal and 

trans-interchromosomal) per tissue, in 13 brain-specific tissues (b) Correlation between the 

number of genotyped samples per tissue (in GTEx) and the number of cis-eQTLs per tissue, 

in 13 brain-specific tissues (c) Correlation between the number of genotyped samples per 

tissue (in GTEx) and the number of trans-intrachromosomal-eQTLs per tissue, in 13 brain-

specific tissues (d) Correlation between the number of genotyped samples per tissue (in 

GTEx) and the number of trans-interchromosomal-eQTLs per tissue, in 13 brain-specific 

tissues (e) Correlation between the number of genotyped samples per tissue (in GTEx) and 

the number of eQTLs (including cis, trans-intrachromosomal and trans-interchromosomal)  

per tissue, in all 49 tissues (f) Correlation between the number of genotyped samples per 

tissue (in GTEx) and the number of cis-eQTLs per tissue, in all 49 tissues (g) Correlation 

between the number of genotyped samples per tissue (in GTEx) and the number of trans-

intrachromosomal-eQTLs per tissue, in all 49 tissues (h) Correlation between the number of 

genotyped samples per tissue (in GTEx) and the number of trans-interchromosomal-eQTLs 

per tissue, in all 49 tissues. The tissues that fall furthest from the confidence interval are 

annotated. The grey dots show the correlation for all GTEx tissues. The 13 brain tissues 

(from GTEx) are indicated by the coloured dots, as shown in the legend. For information on 

all tissues outside of the 95% CI see Supplementary table 12. 
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Figure 3: Genes subjected to trans-regulation by PD-SNPs are enriched for Loss-

of-Function Intolerance. Genes that are loss of function intolerant, as measured by a 

continuous LOEUF score, are enriched in trans-regulatory interactions involving PD-SNPs. 

The LOEUF score is a continuous value that indicates the tolerance of a given gene to 

inactivation. Low LOEUF scores indicate stronger selection against loss-of-function 

variation. The distribution is shown as a violin plot with the median (LOEUF) values for each 

eQTL group (black text). The groups were compared using a Kruskal-Wallis test (** = P 

value < 0.01); the absence of a significance value indicates the LOEUF values of the two 

groups were not significantly different. No eQTL = all genes in gnomAD with an assigned 

pLI or LOEUF for which an eQTL was not identified in this study (~18,500 genes). Not all 

genes had LOEUF scores (Supplementary figure 2; Supplementary table 7) 
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Figure 4: Gene regulation in the foetal cortex compared to the adult cortex. The 

leftmost section shows genes that are regulated only in the foetal cortex, with no eQTLs seen 

in any of the 13 adult brain tissues. The middle section shows genes that are regulated in both 

the foetal and adult cortex. The black dots show the regulation effect size of the gene in the 

adult cortex, and the grey dots show the regulation effect size of the gene across the different 

brain tissues (where an eQTL is seen). The rightmost section shows genes that are regulated 

in both the foetal cortex and adult non-cortical brain tissue. 
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Figure 5: Louvain Clustering analysis highlights nine significant clusters, 

indicative of biological connectivity. The grey and orange shading of the nodes is 

indicative of whether the gene is subject to regulation via cis- or trans- mechanisms. The pink 

and turquoise shaded circles indicate genes that are regulated in adult brain tissue and foetal 

cortex respectively. STRING PPI confidence level = high (0.700); text-mining connections 

removed. The clusters were also analysed in STRING with an increased stringency (including 

only experimentally determined and curated database connections, confidence level: 0.700); 

however, this led to very few changes, with cluster 6 the only cluster to lose any connectivity 

within the cluster (WDHD1, NCAPG and PARPBP no longer connect). Experimentally 

determined: imported from experimental repositories; Gene neighbourhood: similar genomic 

context in different species suggest a similar function of the proteins; Gene fusions: fused 

proteins are recognised by orthology of the fused parts to other, non-fused proteins; Gene co-

occurrence: indicates the presence of a specific gene pair is in agreement in all species – must 

be expressed together; Co-expression: predicted association between genes/proteins based on 

RNA and/or protein expression.  
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Supplementary Figures 

 

 

 

 

 

 

 

 

Supplementary figure 1: Number of genes regulated per SNP. Each of the 76 SNPs 

has an eQTL with between 1 and 39 genes. The boxplot represents the median and 

interquartile range.  
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Supplementary figure 2: The proportion of genes that are loss of function 

intolerant increases as the eQTL distance increases. Not all genes have an assigned 

LOEUF score. The plot shows the percentage of genes that have no assigned score for each 

of the eQTL categories.  

 

 

 

Supplementary figure 3: Genes subject to regulation in non-CNS tissues only. Our 

analysis identified a subset of 21 PD GWAS SNPs that regulate genes only within non-CNS 

tissues (i.e. these SNPs had no regulatory connections within brain tissues).  
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Supplementary figure 4: SNPs co-regulate multiple genes within individual 

clusters. For each of the seven clusters there is at least one SNP that co-regulates more than 

one of the genes within that cluster. The SNPs do not co-regulate the genes in the same 

direction in most instances.  In some cases where the SNP regulates the expression of one 

gene in multiple tissues, the regulation may be positive in some tissues, but negative in 

others. For example expression of STBD1 is down-regulated in 7 tissues but up-regulated in 

the testis and lung. 

Supplementary figure 5: Genes and variants identified by Makarious et al 

connect into clusters 1, 2, 4 and 5. Makarious et al identified a set of genes and variants 

that affect the polygenic risk score for diagnosis of PD. A subset of these genes connect into 

the clusters identified through our analysis, showing a convergence between the two datasets, 

and further confirming the importance of the enriched pathways to PD biology. Adapted from 

main figure 5. The green shading of the nodes indicates genes that are identified from the 

Makarious et al dataset.  
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