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Abstract

The latest meta-analysis of genome wide association studies (GWAS) identified 90
independent single nucleotide polymorphisms (SNPs) across 78 genomic regions associated
with Parkinson’s disease (PD), yet the mechanisms by which these variants influence the
development of the disease remains largely elusive. To establish the functional gene
regulatory networks associated with PD-SNPs, we utilised an approach combining spatial
(chromosomal conformation capture) and functional (expression quantitative trait loci;
eQTL) data. We identified 518 genes subject to regulation by 76 PD-SNPs across 49 tissues,
that encompass 36 peripheral and 13 CNS tissues. Notably, one third of these genes were
regulated via trans- acting mechanisms (distal; risk locus-gene separated by > 1Mb, or on
different chromosomes). Of particular interest is the identification of a novel trans-eQTL-
gene connection between rs10847864 and SYNJ! in the adult brain cortex, highlighting a
convergence between familial studies and PD GWAS loci for SYNJI (PARK20) for the first
time. Furthermore, we identified 16 neuro-development specific eQTL-gene regulatory
connections within the foetal cortex, consistent with hypotheses suggesting a
neurodevelopmental involvement in the pathogenesis of PD. Through utilising Louvain
clustering we extracted nine significant and highly intra-connected clusters within the entire
gene regulatory network. The nine clusters are enriched for specific biological processes and
pathways, some of which have not previously been associated with PD. Together, our results
not only contribute to an overall understanding of the mechanisms and impact of specific
combinations of PD-SNPs, but also highlight the potential impact gene regulatory networks

may have when elucidating aetiological subtypes of PD.
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Introduction

Parkinson's disease (PD) is considered to be primarily an idiopathic neurodegenerative
disorder, with monogenic forms contributing to just 5-10% of all cases'. However, the
idiopathic nature of PD is being questioned, as evidence increasingly supports a complex
involvement of genetics in the development of the majority of cases®?. Genome-wide
association studies (GWAS) have identified >200 PD risk loci*, with 90 PD-associated Single
Nucleotide Polymorphisms (PD-SNPs) across 78 risk loci reported in the largest meta-
analysis to date®. As is typically observed with GWAS variants, the majority of the PD-SNPs
are located within non-coding regions of the genome, with no direct or obvious influence on
protein structure or function®’. Studies have shown that such non-coding disease-associated
variants are more likely to be located within regulatory regions®, and thus contribute to risk
through influencing gene regulation and expression, either locally or distally. These
regulatory interactions are likely to be tissue specific, adding a further layer of complexity.
Consequently, determining how these variants contribute to PD risk, both individually and in

combination, poses a major scientific challenge®!°.

Although PD is defined as a neurodegenerative disease, mounting evidence demonstrates the
role of non-central nervous system (CNS) tissues in the development and presentation of such
disorders (i.e. Huntington’s'! and PD'%!3). Both alpha-synuclein (0Syn) protein pathology
and modulation of PD-related genes have been identified in peripheral tissues (e.g. the

121419 The contribution of peripheral tissue in

gastrointestinal tract and heart) of PD patients
the origins of PD warrants further research, and thus the consideration of how PD-SNPs

mediate risk should not be confined to tissues of the CNS.

Spatial gene regulatory interactions are hypothesized to be drivers of complex trait

heritability?®, acting through both cis- (nearby) and trans- (distal; locus-gene separated by >
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1MD, or on different chromosomes) mechanisms (Figure 1)'*?!?2. These cis- and trans-acting
elements can regulate the transcription of one or more genes, in a tissue specific manner, and
are commonly detected in the form of expression quantitative trait loci (€QTL)?*. Genetic
variation within elements of gene regulatory networks likely confer risk at different
developmental stages, including during foetal neurodevelopment — a critical stage that has a

growing body of support in neurodegenerative diseases>*.

Here we performed correlational analyses of experimentally derived data to identify eQTLs
that physically connect PD-SNPs to the genes that they control, in three-dimensions, with the
goal of understanding the putative functional impacts of known PD-SNPs?!. The integration
of spatial and eQTL data allows for the identification of trans-eQTL-gene associations?>,
thereby nominating genes which have not previously been implicated in PD. Our analysis
identified 518 genes subject to regulation by 76 PD-SNPs across 49 tissues. Further,
clustering analysis of the entire gene network revealed nine significant, intra-connected
clusters, enriched for both novel and known PD biological pathways, highlighting putative

disease-causative molecular mechanisms and areas for future research.
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Methods

Data and reference files

The 90 PD-SNPs (across 78 genomic regions; Supplementary table 1) investigated in this
study were previously identified by a GWAS meta-analysis as being of genome wide
significance (p<5x107®)°. The human genome reference sequence used in this study was
GRCh38 (hg38).

Identification of eQTL-gene pairs

The contextualise developmental SNPs using 3D information (CoDeS3D)?! algorithm was
used to identify genes whose transcript levels are putatively regulated by the 90 PD-SNPs.
CoDeS3D integrates data on spatial interactions between genomic loci (Hi-C data;
Supplementary table 2) with expression data (genotype-tissue expression database version §;
GTEx v8%) to identify genes whose transcript levels are associated with a physical

connection to the SNP (i.e. spatial eQTL).

Hi-C captures regions of the genome that are physically interacting, and can be covalently
connected by a cross-linking agent?’. The hg38 reference genome was digitally digested with
Mbol, Dpnll and HindIII to obtain all possible Hi-C fragment locations for the 90 PD-SNP
loci. All identified SNP fragments (tagged by the PD-SNPs) were then queried against the
Hi-C databases (70 different cell lines from 12 studies; Supplementary table 2) to identify
distal fragments of DNA that spatially connect to the SNP loci. Spatial SNP-gene connections
are established when the SNP-containing fragment spatially connects to a fragment that
overlaps any region between the start and end of a gene as defined by GENCODE. There was
no binning or padding around restriction fragments to obtain gene overlap. The resulting

spatial SNP-gene pairs were subsequently used to query the GTEx v8 eQTL database?® to
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identify spatial SNP-gene pairs with significant eQTLs (both cis- and trans- acting eQTL;
false discovery rate (FDR) adjusted p < 0.05).

We performed a ‘brain specific’ analysis by interrogating only the subset of Hi-C libraries
derived from brain-specific cell lines (11 cell lines from 4 studies, highlighted in red in
Supplementary table 2)*®! and only expression data from the 13 brain-specific tissues in
GTEx v8.

Identification of neurodevelopmental-specific eQTL-gene pairs

We performed a neurodevelopmental stage specific analysis by interrogating Hi-C libraries
from foetal-specific brain cell lines (cortical plate neurons; germinal zone neurons;
Supplementary table 2; datasets no. 1 and 2) with expression data from a foetal cortex eQTL
dataset’?.

Functional analysis of eQTL SNPs

SNPnexus v4°>® (https://www.snp-nexus.org/v4/; accessed 22/06/2020) was used to obtain
known epigenomic annotations for the eQTL SNPs.

Probability of gene loss of function intolerance

The LOEUF (loss-of-function observed/expected upper bound fraction) ** score for the genes,
within the significant SNP-gene pairs, was obtained from gnomAD v2.1.13°
(https://gnomad.broadinstitute.org/; accessed 21/07/2020) to determine the level of constraint
on the identified genes.

Protein-protein interaction (PPI) and Modularity clustering

STRING?® (Search Tool for Retrieval of Interaction Genes/proteins; https://string-db.org,
accessed 22/07/2020) was queried to identify published information on interactions between
genes, or their respective proteins. Only PPIs with a high confidence level (>0.700, as

defined in STRING) were used for this analysis. A Louvain method was used to determine

the syntality of each node, following four different criteria: 1) immediate connection; 2)
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shortest path (i.e. the minimum number of edges connecting any two nodes); 3) node acting
as a bridge; 4) connections that nodes have in common. The proteins were then hierarchically
clustered using the Louvain algorithm?’, clusters were defined as significant if p < 0.05.
Pathway analyses & literature search

The g:Profiler’® database was used to identify enriched pathways. Queries were run on: 1) all
genes’ 2) the ‘cis’; and 3) the ‘trans’ subsets of genes (i.e. genes regulated only in cis, or only
in trans). PubMed was used to search (using “[gene name]” and Parkinson’s”) the published
literature for all identified genes and known PD associations.

Additional analyses of genes and variants identified by Makarious et al

Makarious et al recently utilised a multi-modality approach to identify genetic and
transcriptomic features that contribute to risk predictions of PD*°. They highlighted two SNPs
(rs10835060 and rs4238361), and 29 genes. We performed CoDeS3D analysis on the two
SNPs, across all Hi-C cell lines and GTEx tissues (as previously described). The resulting
eQTL gene pairs, along with the 29 genes highlighted through transcriptomic analysis, were
combined with our set of 523 genes. Louvain clustering and PPI analysis were re-run on this
combined list of genes to see how or if the subset of genes co-locate within the networks.

URLs
CoDeS3D pipeline: https://github.com/Genome3d/codes3d-v2

gnomAD: https://gnomad.broadinstitute.org/

gProfiler: https://biit.cs.ut.ee/gprofiler/

UCSC: https://genome.ucsc.edu/index.html

STRING: https://string-db.org/

SNPNexus: https://www.snp-nexus.org/

Louvain clustering analysis:_https://github.com/Genome3d/PPI-network-analysis

Data Availability
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All data generated during this study are included in the supplementary information. Datasets
analysed and tools used in this study were all derived from publicly available resources (See

URLSs).
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Results

PD GWAS SNPs regulate the expression of > 500 genes

Nalls et al.” identified 90 SNPs that were associated with PD at the level of genome-wide
significance (Supplementary table 1), yet the mechanisms by which these variants influence
the development of the disease remains largely elusive. We used the CoDeS3D algorithm?! to
identify SNPs that have evidence of physical interaction with the gene as captured by Hi-C
(Supplementary table 2) and also associate with changes in gene expression (hereafter

eQTLs) and the genes whose transcript levels were affected (Figure 1).

76 (84%) of the 90 PD risk SNPs were identified as eQTLs associated with the regulation of
518 genes through 542 unique eQTL-gene pairs, across the 49 tissues (Table 1,
Supplementary table 3). The 76 eQTLs were individually associated with the regulatory
impacts of as few as one, or as many as 39 genes in cis and trans (Supplementary figure 1).
We identified 178 of the 542 genes as being associated with PD through frans-eQTL-gene
connections. We did not identify eQTL interactions for 14 of the 90 SNPs. Conversely, 8 of
these 14 SNPs are annotated as being eQTLs in the IPDGC GWAS Locus Browser*’, and a
further four are eQTLs in GTEx (Supplementary table 1). However, in these 12 instances, the

eQTLs occur in cis- (i.e. within 1Mb) and are not supported by Hi-C data.

PD SNPs

Brain specific* All tissues*

No. SNPs 90 90
No. eQTL SNPs # 55 76
No. Genes ¥ 165 518
No. eQTL-Gene pairs ¥ 167 542
No. trans eQTL-Gene pairs 30 178

Table 1: Summary statistics for the spatial eQTL-gene regulatory network for the 90 PD-
SNPs. SNPs were downloaded from Nalls et al 2019 GWAS paper (download date:

18.06.2020). *eQTL SNPs were defined as having significant spatial interactions (FDR
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<0.05) with at least one gene. "genes were those whose expression was shown to be affected
by an eQTL SNP. * The total number of SNP-gene pairs reflects interactions with FDR <0.05

in at least one GTEXx tissue. * For full list of tissues see Supplementary tables 3 and 4.

Consistent with observations for SNPs associated with other traits*', at least one trans-
regulatory interaction was identified for 81.6% (62 of 76) of the eQTLs. Moreover, 92.7%
(165 of 178) of these trans-eQTL-gene interactions were identified in only one tissue. By
contrast, the cis- interactions were identified in eight tissues on average (range of 1 to 49
tissues). 11.8% of the eQTLs (9 of 76; Supplementary table 1) were exclusively involved in
trans-regulatory interactions. Trans-eQTL interactions regulated 18.1% of the genes
identified in the brain (30 out of 166; Supplementary table 4), and 32.8% of the genes
amongst all 49 tissues (178 out of 518; Table 2; Supplementary table 3). Collectively, these
results highlight the importance of looking beyond the nearest gene to identify the regulatory

effects of disease-associated variants.

Genes subject to cis- or trans- regulation

Brain specific* All tissues*
Cis eQTL-gene pairs 136 (82.0%) 364 (67.2%)
Trans-intrachromosomal 10 (6.0%) 56 (10.3%)
eQTL-gene pairs
Trans-interchromosomal 20 (12.0%) 122 (22.5%)

eQTL-gene pairs
Table 2: Proportion of genes subject to cis- and trans- regulation. The proportion of eQTL-

gene pairs that are either cis-, trans-intrachromosomal or trans-interchromosomal in (a) 13
GTEx brain-specific tissues and (b) all 49 GTEXx tissues. Brain-specific indicates the eQTL
dataset obtained through analysing Hi-C cell lines only from the brain, and eQTLs only from
the brain tissues in GTEx. All-tissues indicates the eQTL dataset obtained through analysing

all Hi-C cell lines, and eQTLs from all tissues in GTEx. There is a significant difference (Chi
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square test p.value < 0.01) between brain tissues and all tissues for the proportions of the cis

vs. trans eQTLs.

We reasoned that SNPs that are involved in eQTLs likely mark enhancer or promoter sites*.
We queried SNPnexus* to identify those eQTLs that were marked by histone modifications
or fell within open chromatin regions, as indicated by DN Ase accessibility. Consistent with
our hypothesis, 91% (69 of 76) of the SNPs were marked by histone modifications associated
with either enhancers (58) and/or promoters (27). 27.6% of the SNPs were within accessible
chromatin(Supplementary table 5). Collectively, these results are consistent with the
hypothesis that the loci marked by these eQTLs may be involved in the regulation of gene
expression.

Pathway analysis was conducted on the complete set of 518 genes that were impacted by the
eQTLs (Supplementary table 6). g:Profiler*® identified significant (adj.p < 0.05) enrichment
within 10 known biological pathways (g:GOSt), including response to interferon-gamma,

synaptic vesicle recycling and endocytosis.

The regulatory impact of PD-SNPs extends beyond the CNS

Although PD is considered a degenerative disease of the brain, it has become apparent that
dysfunction and or alpha-synuclein pathology is observed in non-CNS tissues of PD
patients'3"!°, Our spatial eQTL analysis included an assessment of the tissue distribution of
the effects of the identified eQTLs within 13 CNS and 36 peripheral tissues. We identified
peripheral tissue-specific eQTLs for 28% of the PD-SNPs (21 of 76). Only 2 of the 76 PD-
SNPs (i.e. rs10756907 — SH3GL2, brain cortex; rs873786 — SLC26A 1, brain cerebellum) had
eQTLs that impacted gene expression levels exclusively in the brain. This supports a possible

role for peripheral tissues in PD risk (Supplementary figure 3).
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The ability to detect eQTLs in specific tissues is known to correlate with tissue sample size
within GTEx*. Consistent with this, we identified highly significant correlations between
tissue sample numbers and a) all-eQTLs in the brain tissues (Figure 2a; identified using brain
specific Hi-C and eQTL data; Supplementary Table 4); and b) all tissues (i.e. the 49 tissues
included within GTEx; Figure 2e). These highly significant correlations remained when
analysing the cis-eQTL subsets in the brain (R = 0.93, p = 3.6e%; Figure 2b), and all tissues
(R=0.9, p <2.2¢'%; Figure 2f). Similarly, the correlation was evident for trans-
intrachromosomal eQTLs detected in all tissues (R = 0.67, p < 1.8¢%; Figure 2g). By
contrast, there was no observable correlation between the number of trans-interchromosomal
interactions and tissue sample number (Figure 2d,h). The substantia nigra and brain cerebellar
hemisphere exhibited more trans-interchromosomal-eQTLs (Figure 2d), while the thyroid

exhibited more eQTLs than expected across all three categories (Figure 2e-h).

Genes subject to trans-regulation by PD-SNPs are more likely to be intolerant to
loss-of-function mutations

Genes that are intolerant to inactivation by loss-of-function variants are deemed essential for
healthy development**. Intolerance to loss of function variants leaves changes to regulation as
one of the few mechanisms that can be modified to introduce variation at a population level.
The 117 trans-interchromosomal-eQTL regulated genes were significantly (p <0.01,
Kruskal-Wallis test) more intolerant to loss-of-function mutations (LOEUF 0.42 [median]; a
low LOEUF score is indicative of evolutionary constraint) than those regulated by cis- or
trans-intrachromosomal acting eQTLs (LOEUF 0.83 and 0.85 respectively [median]; Figure
3; Supplementary table 7). This result is consistent with earlier observations that trans-eQTLs

are enriched in regulating constrained genes with low LOEUF scores'®.
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PD GWAS SNPs regulate expression of a subset of genes within the foetal cortex
Emerging evidence suggests PD has a neuro-developmental aspect*®, similar to recent
observations in Huntington’s disease?*. Therefore, we analysed the regulatory impacts of the
PD-SNPs using foetal cell line Hi-C (i.e. cortical plate neurons and germinal zone neurons??)
and foetal cortex eQTL datasets*? (Supplementary table 8). 33 genes were found to be
regulated by 22 PD-SNPs in the foetal cortex. Of these, sixteen genes were regulated by
eQTLs involving PD-SNPs in the foetal cortex, without evidence of any eQTLs in adult brain
tissues (Figure 4; Supplementary table 4). Ten genes were affected by eQTLs involving PD-
SNPs in both the foetal and adult cortex, with effect sizes that were similar in both (Figure 4).
Finally, seven genes were regulated by cis-eQTLs in the foetal cortex and adult non-cortical
brain tissues (Figure 4). These findings are consistent with the hypothesis that development-
stage specific eQTL patterns impact on disease-relevant mechanisms and thus may contribute

to the proposed temporal phases of PD pathogenesis*’.

Louvain clustering highlights nine intra-connected protein clusters, enriched for
disease-relevant, biological pathways

Network representations of complex datasets can aid the identification of biological
relationships that are often not identified by enrichment analyses*®. We used a Louvain
clustering algorithm to identify clusters of interacting genes and proteins from within a
Protein-Protein Interaction Network (PPIN) generated from the 523 eQTL regulated genes
(518 adult tissue eQTLs and the 5 unique foetal cortex eQTLs; Supplementary table 9). Nine
significant (p<0.05) clusters consisting of 122 genes were identified within the high-
confidence PPIN (Figure 5). The genes within each cluster were regulated by between 5 and

18 PD-SNPs (Supplementary table 9) and every cluster contained at least two genes that were
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co-regulated by a single SNP (Supplementary figure 4). Notably, genes that were subject to
trans-acting eQTLs were central to the definition and identification of several clusters (Figure
5). Pathway analysis (g:Profiler) of the genes within the individual clusters revealed
enrichment in categories that included immunological surveillance (cluster 7), synaptic
vesicle recycling (cluster 5) and microtubule polymerisation (cluster 3) (Supplementary table

10).

Makarious et al recently used a multi-modal machine learning approach, incorporating multi-
omics datasets, to inform and improve predictions of PD*. Beyond the 90 GWAS SNP
signals (which collectively were the top genetic feature), they also identified rs10835060 and
rs4238361 as two SNPs that impact on PD biology. CoDeS3D analysis identified eQTLs for
both rs10835060 (KRTAPS5-AS1, CCDC88A4, KRTAPS-5, BRSK?2) and 1s4238361 (USP47;
and RP11-507B12.2 and RP11-259424.1) (Supplementary table 11). Notably, BRSK?2 co-
locates with cluster 2 through an established interaction with the Tau encoding MAPT gene®.
The model also highlighted 29 genes through transcriptomic analysis. Three of these genes
(MMPY9, TRIM4 and SYS1) integrate into clusters 1, 4 and 5, respectively (Supplementary
figure 5). The co-location of genes and eQTLs, identified as being important for PD
diagnosis*®, within the nine clusters supports the potential importance of the gene-gene

interactions and enriched pathways in PD.

402 genes did not segregate in the nine clusters. Of note, 211 of the 402 genes (52.5%) had
not previously been associated with PD GWAS loci (iPDGC PD browser*’). Of the 211, 123
genes were regulated by trans-eQTL-gene connections. Notably, iPDGC identified five genes
(DNAII, EYA4, LYVEI, MYO5B, PDZRN4) as being regulated by cis-eQTLs yet. These five

genes were exclusively identified through trans-eQTL regulatory connections in our analysis.
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Discussion

Assigning functionality to PD-SNPs is a critical step towards determining how they
contribute to the risk of PD development. In this study, we identified 518 genes whose
expression was regulated in cis or trans by PD-SNPs, and the tissues where this regulation
occurs. We also demonstrated that 22 PD-SNPs impact the regulation of a subset of 16 genes
solely in the foetal cortex, and a further 10 genes in both the foetal and adult cortex. Of all
523 identified genes, a subset of 122 cis- and trans- regulated genes formed nine clusters
within a protein:protein interaction network that were enriched for specific biological
pathways, some of which have not been previously associated with PD. Our findings support
the hypothesis that both cis- and trans- dysregulation of gene expression contributes to the

risk of PD and provide insight into possible disease-causing mechanisms.

SYNJI encodes synaptojanin-1, a presynaptic phosphoinositide phosphatase that
dephosphorylates P1(4,5)P> to trigger the removal of the clathrin coat during synaptic vesicle
recycling™. SYNJI is a highly constrained gene (LOEUF score = 0.33) and rare missense
mutations in SYNJI have been linked to early-onset Parkinsonism>!. Despite this, GWA
studies have not identified any SNPs proximal to SYNJI as being significantly associated
with PD, nor have they attributed any significant PD SNP (near or far) to SYNJI. Critically,
we identified that the PD-associated SNP rs10847864 acts as a trans-acting eQTL for SYNJ1
expression. r1s10847864 is intronic to, and also acts as a cis-eQTL with, HIPIR, another gene
that is involved in clathrin mediated endocytosis®*~>*. Our discovery of the trans-eQTL-
SYNJI connection merges observations from population level (i.e. GWAS) and familial

studies, reinforcing the potential importance of SYNJI in PD.
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Our analysis identified trans-eQTLs for approximately two-thirds of the known PD-SNPs. Of
note, RAI14 (retinoic acid induced 14) is regulated by two trans-eQTLs, involving two
independent PD-SNPs (rs2251086, chr.15 and rs55818311, chr.19). Although not yet directly
linked to PD, RAI14 (and its encoded protein ankycorbin) has been shown to play a role in
the inflammatory response in glial cells®>, and in the establishment of neuronal morphology’®;
both of which are pathways of known importance in PD pathogenesis®’. Retinoic acid, a
regulator of RAI/14 (one of multiple roles of retinoic acid), is being explored as a potential

therapeutic target for PD3,

Our results provide support for the role of peripheral tissues in PD, notably the oesophagus
and thyroid. Firstly, the oesophagus is enriched for cis and trans regulatory eQTLs.
rs76904798 (PD odds ratio (OR) = 1.155) is an eQTL that upregulates LRRK?2 expression in
19 peripheral tissues, including in the oesophagus. Notably, this cis-eQTL with LRRK? is not
identified in any CNS tissues. Secondly, we identified the thyroid tissue as being enriched for
eQTLs, many of which were not represented in CNS tissues. The thyroid is a component of
the dopaminergic system and hypothalamic—pituitary—thyroid axis network®!. A potential link
between thyroid hormone disorders, PD risk, and symptom severity has been suggested®?.
Specifically, one study identified patients with hypothyroidism to have a two-fold elevated
risk of developing PD%. Collectively, these findings support the growing body of evidence

for the importance of the oesophagus®*®® and thyroid®? in PD.

We hypothesised that genes regulated by PD-SNPs in foetal cortical tissue may contribute to
potential neurodevelopmental aspects of PD?*434¢_ Sixteen genes were regulated by PD-SNP
eQTLs within the foetal cortex. Two of these genes, CNTNAPI and GALC are particularly

notable. CNTNAPI encodes Casprl, a Neurexin family membrane protein. Reductions in
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Casprl concentrations delay cortical neuron and astrocyte formation in the mouse developing
cerebral cortex®®. GALC encodes a lysosomal galactosylceramidase that ensures normal
turnover of myelin®” and has been linked to neuronal vulnerability®s. While connections
between the remaining 14 genes and PD development are less clear, we speculate that SNP
mediated regulation of these genes specific to the foetal cortex may contribute to early neuro-

developmental disturbances that render an individual more susceptible to PD.

Our analyses identified nine clusters that are enriched for specific biological processes and
pathways, some of which have not previously been associated with PD. Dysregulated
expression of the components within these pathways is potentially the basis of the risk
conferred by the PD-SNPs. The clusters aid in understanding how PD SNPs mechanistically
contribute to disease risk, and some interesting points can be drawn from these. For example,
genes within cluster 6 are enriched for functions in DNA replication and repair, a pathway
previously associated with the development of other neurodegenerative diseases®®. Notably,
BRCAI and RPA2 (both previously linked to DNA damage response and repair’®’!) are
regulated in trans by PD-SNPs (rs11950533; rs9568188; rs62053943) and are central to
cluster 6. It is notable that cluster 6 contains several factors associated with PARP1 activity
(e.g. the PARP1 binding protein (PARPBP) and BRCA1) that link this cluster to the repair of
SSBs which are enriched at neuronal enhancers in post-mitotic neurons’?. A further example
is the regulation of autophagy initiation by PD-SNPs, highlighted in cluster 8. Three
interacting proteins within cluster 8, encoded by VMPI, BECNI, and ATG14 are each
regulated by a different PD-SNP (rs12951632 chr. 17; rs11158026 chr. 14; rs10748818 chr.
10; Supplementary table 3), including a trans-eQTL connection regulating VMP1.
rs12951632 (OR=0.93) and rs11158026 (OR= 0.919) are protective PD-SNPs that

respectively increase BECNI and ATG 14 expression, two interacting core components of the
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PI3-kinase complex, required for autophagosome formation’*. Individuals with both of these
variants would potentially have increased autophagic capacity relative to individuals with one

variant.

The genes in cluster 7 are strongly enriched for antigen processing and presentation — which
is increasingly being implicated in the progression of PD7*. Both 15504594 and rs9261484 are
associated with a reduced risk of developing PD (OR = 0.8457 and OR = 0.9385
respectively). We identified a spatial eQTL between 1rs504594 and HLA-DRB]I in both the
foetal cortex and adult brain (including cortex and SN), implicating this regulatory eQTL-
gene connection in both the neurodevelopment and neurodegenerative stages of PD.
Interestingly, rs504594 (previous ID: rs112485776) was recently validated in a SNP-level
meta-analysis (OR = 0.87), with results displaying no residual HLA effect in adults after
adjusting for the SNP’>. Instead, three amino acid polymorphisms within the HLA-DRB1
gene were identified as drivers of the association between the HLA region and PD risk”>. We
agree that the impacts of r1s504594 are contingent upon the HLA-DRB] allele - both in terms
of regulation and protein sequence. We contend that the effects of the rs504594 eQTL are
developmental. Future studies must untangle these developmental effects and identify the
neurodevelopmental stages that may prime certain individuals to be more vulnerable to later
triggering mechanisms. We note that such interpretation should be taken with caution given

the highly polymorphic nature of the HLA-region.

We acknowledge several limitations to our analysis. Firstly, the Hi-C cohort and GTEx
libraries were generated from unrelated samples that were not age or gender matched.
Secondly, the sampled donors in GTEx are predominantly of European descent, limiting the

significance of our findings to this ethnicity. However, the GWAS cohort also used
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individuals of European ancestry, meaning for this analysis the datasets were congruent.
Thirdly, our eQTL analysis assumes that mRNA concentration correlates directly with
protein levels. While it is true that protein levels are to some extent determined by their
mRNA concentration, there are many post-transcriptional processes that can lead to a
deviation from the expected correlation’®. The fourth limitation is that eQTL data represent
composite datasets across developmental periods (e.g. foetal samples were aged from 14-21
weeks post-conception and the adult samples were from individuals aged 21-70 years).
Despite such limitations, the identification of trans-eQTLs is a particular strength of our
methodology, relying on captured contacts within the genome organisation to reduce the
impact of multiple testing correction. As such, we contend that these limitations do not
invalidate the significance of our findings of trans-acting eQTLs and the genes that they

impact.

Conclusions

Understanding the functional impact of PD-SNPs is critical to our understanding of how
these variants contribute to the development and clinical presentation of PD. Our functional
interpretation of PD-associated SNPs integrates individual loci into a gene regulatory
network, which includes genes with and without prior PD associations. The regulatory
network includes clusters, and within them genes, that are enriched for biological functions
that have known, putative or previously unknown roles in PD. Development-specific changes
to this network (within the foetal cortex) are suggestive of roles for neurodevelopmental
changes being early contributors to PD disease risk. Similarly, enrichments for regulatory
changes within peripheral tissues may indicate a greater role for these tissues in PD than is
currently appreciated. Collectively, our findings not only contribute to an overall

understanding of the multiple biological pathways associated with PD risk loci, but also
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highlight the potential utility of gene regulatory networks when considering etiological

subtypes of PD.
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Figures

Nalls et al. Parkinson’s disease GWAS meta-analysis 2019
37,688 cases; 18,618 UK Biobank proxy-cases; 1.4mil controls
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Figure 1: Methods workflow. 90 PD-SNPs were obtained from Nalls et al®. Spatial
interactions between the 90 PD-SNPs and genes were identified from Hi-C libraries
(Supplementary table 2). The resulting spatial SNP-gene pairs were then used to query GTEx
v8 to identify significant eQTLs. The resulting SNP-gene pairs were then analysed for
functional relevance using multiple tools and databases (methods). Figure adapted from

Schierding et al.'?
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Figure 2: Correlation between genotype samples per tissue and number of
eQTLs present in the tissue (a) Correlation between the number of genotyped samples
per tissue (in GTEx) and the number of eQTLs (including cis, trans-intrachromosomal and
trans-interchromosomal) per tissue, in 13 brain-specific tissues (b) Correlation between the
number of genotyped samples per tissue (in GTEX) and the number of cis-eQTLs per tissue,
in 13 brain-specific tissues (c¢) Correlation between the number of genotyped samples per
tissue (in GTEx) and the number of trans-intrachromosomal-eQTLs per tissue, in 13 brain-
specific tissues (d) Correlation between the number of genotyped samples per tissue (in
GTEXx) and the number of trans-interchromosomal-eQTLs per tissue, in 13 brain-specific
tissues (e) Correlation between the number of genotyped samples per tissue (in GTEx) and
the number of eQTLs (including cis, trans-intrachromosomal and trans-interchromosomal)
per tissue, in all 49 tissues (f) Correlation between the number of genotyped samples per
tissue (in GTEx) and the number of cis-eQTLs per tissue, in all 49 tissues (g) Correlation
between the number of genotyped samples per tissue (in GTEx) and the number of trans-
intrachromosomal-eQTLs per tissue, in all 49 tissues (h) Correlation between the number of
genotyped samples per tissue (in GTEx) and the number of trans-interchromosomal-eQTLs
per tissue, in all 49 tissues. The tissues that fall furthest from the confidence interval are
annotated. The grey dots show the correlation for all GTEx tissues. The 13 brain tissues
(from GTEX) are indicated by the coloured dots, as shown in the legend. For information on

all tissues outside of the 95% CI see Supplementary table 12.
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Figure 3: Genes subjected to trans-regulation by PD-SNPs are enriched for Loss-
of-Function Intolerance. Genes that are loss of function intolerant, as measured by a
continuous LOEUF score, are enriched in trans-regulatory interactions involving PD-SNPs.
The LOEUF score is a continuous value that indicates the tolerance of a given gene to
inactivation. Low LOEUF scores indicate stronger selection against loss-of-function
variation. The distribution is shown as a violin plot with the median (LOEUF) values for each
eQTL group (black text). The groups were compared using a Kruskal-Wallis test (** = P
value < 0.01); the absence of a significance value indicates the LOEUF values of the two
groups were not significantly different. No eQTL = all genes in gnomAD with an assigned
pLI or LOEUF for which an eQTL was not identified in this study (~18,500 genes). Not all

genes had LOEUF scores (Supplementary figure 2; Supplementary table 7)
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Figure 4: Gene regulation in the foetal cortex compared to the adult cortex. The
leftmost section shows genes that are regulated only in the foetal cortex, with no eQTLs seen
in any of the 13 adult brain tissues. The middle section shows genes that are regulated in both
the foetal and adult cortex. The black dots show the regulation effect size of the gene in the
adult cortex, and the grey dots show the regulation effect size of the gene across the different
brain tissues (where an eQTL is seen). The rightmost section shows genes that are regulated

in both the foetal cortex and adult non-cortical brain tissue.


https://doi.org/10.1101/2021.04.08.439080
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439080; this version posted April 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

From curated databases
Experimentally determined
Gene neighborhood

Gene fusions

Gene co-occurrence
Co-expression (RNA
and/or protein)

J L8LLLE

Protein homology

eSNP-eGene interaction
O Cis (< 1Mb)
. Trans-intrachromosomal

‘ Trans-interchromosomal

Cluster 2 (13 SNPs)
Notch signalling pathway
WNT Signalosome

i GRN

RBPJ

ATP2A1

NOTCH1

FAM171A2

PSEN2
MECOM

i DYRK1A

Cluster 3 (6 SNPs)

Microtubule polymerisation

TUBGCP3

UBAP1

PTPN23

eGene regulated in adult
brain tissue

eGene regulated in foetal
cortex

} GPNMB

BLK
SNCA
i MAPT

LRRK2

WNT3

CLASP2

<

PARPY

MYLK

MMRN1
Cluster 1 (18 SNPs)

Vesicle mediated transport

STBD1

ACTN1

KIF16B

RHOA ART3

ARFGAP1

ANK3 OPCML

ARHGAP27

i ABR

FLOT1

NFASC e
NTNAPi

Cluster 5
(12 SNPs)

Synaptic vesicle
recycling

Cluster 4 (13 SNPs)

Protein modification process

i TNFSF13

SMURF2

ARIH2
CDC25A

PSMD11

TNFSF12

Cluster 6 PSMC3IP Cluster 7 (8 SNPs) PPIPSK2
(14 SNPs) Antigen processing and RNF39
DNA replication presentation ﬂ
ATRIP TRIM31 1P6K2
6|.00RL -
FAM184B
vl
CEH ERCC8
WDHD1
TRIM27
e DCAF8
NCAPG
DCAF16
PARPBP
VMP1
SLC41A1
e RAB29 Cluster 9 (6 SNPS) GRM7
Cluster 8 e G protein-coupled receptor
signaling pathwa OXGR1

(5 SNPs) gnaling p y P2RY12

Autophagasome

assembly

e NUCKS1 HCAR3

o

SLC45A3

o



https://doi.org/10.1101/2021.04.08.439080
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439080; this version posted April 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 5: Louvain Clustering analysis highlights nine significant clusters,
indicative of biological connectivity. The grey and orange shading of the nodes is
indicative of whether the gene is subject to regulation via cis- or trans- mechanisms. The pink
and turquoise shaded circles indicate genes that are regulated in adult brain tissue and foetal
cortex respectively. STRING PPI confidence level = high (0.700); text-mining connections
removed. The clusters were also analysed in STRING with an increased stringency (including
only experimentally determined and curated database connections, confidence level: 0.700);
however, this led to very few changes, with cluster 6 the only cluster to lose any connectivity
within the cluster (WDHDI1, NCAPG and PARPBP no longer connect). Experimentally
determined: imported from experimental repositories; Gene neighbourhood: similar genomic
context in different species suggest a similar function of the proteins; Gene fusions: fused
proteins are recognised by orthology of the fused parts to other, non-fused proteins; Gene co-
occurrence: indicates the presence of a specific gene pair is in agreement in all species — must
be expressed together; Co-expression: predicted association between genes/proteins based on

RNA and/or protein expression.
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Supplementary Figures
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Supplementary figure 1: Number of genes regulated per SNP. Each of the 76 SNPs

has an eQTL with between 1 and 39 genes. The boxplot represents the median and

interquartile range.
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Supplementary figure 2: The proportion of genes that are loss of function
intolerant increases as the eQTL distance increases. Not all genes have an assigned
LOEUF score. The plot shows the percentage of genes that have no assigned score for each

of the eQTL categories.
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Supplementary figure 3: Genes subject to regulation in non-CNS tissues only. Our
analysis identified a subset of 21 PD GWAS SNPs that regulate genes only within non-CNS

tissues (i.e. these SNPs had no regulatory connections within brain tissues).
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Supplementary figure 4: SNPs co-regulate multiple genes within individual

clusters. For each of the seven clusters there is at least one SNP that co-regulates more than

one of the genes within that cluster. The SNPs do not co-regulate the genes in the same

direction in most instances. In some cases where the SNP regulates the expression of one

gene in multiple tissues, the regulation may be positive in some tissues, but negative in

others. For example expression of STBD1 is down-regulated in 7 tissues but up-regulated in

the testis and lung.
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Supplementary figure 5: Genes and variants identified by Makarious et al
connect into clusters 1, 2, 4 and 5. Makarious et al identified a set of genes and variants
that affect the polygenic risk score for diagnosis of PD. A subset of these genes connect into
the clusters identified through our analysis, showing a convergence between the two datasets,
and further confirming the importance of the enriched pathways to PD biology. Adapted from
main figure 5. The green shading of the nodes indicates genes that are identified from the

Makarious et al dataset.
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