

1

2 <Translational Research article>

3

4 **Evaluation of the Efficacy and Safety of a Clinical Grade Human**
5 **Induced Pluripotent Stem Cell-Derived Cardiomyocyte Patch: A**
6 **Pre-Clinical Study**

7

8

9 Shigeru Miyagawa, MD, Ph.D.¹, Takuji Kawamura, MD, Ph.D.¹, Emiko Ito, Ph.D.¹, Maki
10 Takeda, Ph.D.¹, Hiroko Iseoka, Ph.D.¹, Junya Yokoyama, MD, Ph.D.¹, Akima Harada, B.S.¹,
11 Noriko Mochizuki-Oda, Ph.D.¹, Yukiko Imanishi-Ochi, Ph.D.¹, Junjun Li, Ph.D.¹, Masao
12 Sasai, Ph.D.¹, Fumiyo Kitaoka, Ph.D.², Masaki Nomura, Ph.D.², Naoki Amano, M.S.,
13 Tomoko Takahashi, Ph.D.², Hiromi Dohi, Ph.D.², Eiichi Morii, MD, Ph.D.³, Yoshiki Sawa,
14 MD, Ph.D.¹

15

16 ¹Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine,

17 Suita, Osaka 565-0871, Japan

18 ²Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507,

19 Japan

1 ³Department of Histopathology, Osaka University Graduate School of Medicine, Suita,

2 Osaka 565-0871, Japan

3

4

5 Corresponding Author: Yoshiki Sawa, M.D., Ph.D.

6 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine

7 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

8 Tel: +81 668793154; Fax: +81 668793163

9 E-mail: sawakenkyu@surg1.med.osaka-u.ac.jp

1 **Abstract**

2 **Aims**

3 Cardiomyocyte-derived induced pluripotent stem cells (iPSCs) may represent a promising
4 therapeutic strategy for severely damaged myocardium. This study aimed to assess the
5 efficacy and safety of clinical grade human iPSC-derived cardiomyocyte (hiPSC-CM)
6 patches and conduct a pre-clinical proof-of-concept analysis.

7 **Methods and results**

8 A clinical grade hiPSC line was established from peripheral blood mononuclear cells
9 collected from a healthy volunteer homozygous for human leukocyte antigens and
10 differentiated into cardiomyocytes using cytokines and chemical compounds. hiPSC-CMs
11 were cultured on temperature-responsive culture dishes to fabricate the hiPSC-CM patch. The
12 hiPSC-CMs expressed cardiomyocyte-specific genes and proteins while electrophysiological
13 analyses revealed that hiPSC-CMs were similar to the human myocardium. *In vitro* safety
14 studies using cell growth, soft agar colony formation, and undifferentiated cell assays
15 indicated that tumourigenic cells were not present. Moreover, no genomic mutations were
16 discovered using whole genome and exome sequencing analysis. Tumour formation was not
17 detected in an *in vivo* tumourigenicity assay using NOG mice. General toxicity tests also
18 showed no adverse events due to hiPSC-CM patch transplantation. An efficacy study using a
19 porcine model of myocardial infarction demonstrated significantly improved cardiac function

1 with angiogenesis and a reduction in interstitial fibrosis, which was enhanced by cytokine
2 secretion from hiPSC-CM patches after transplantation. No lethal arrhythmias were observed.

3 **Conclusion**

4 hiPSC-CM patches show promise for future translational research and clinical trials for
5 ischaemic heart failure.

6

7 **Keywords:** Human induced pluripotent stem cell-derived cardiomyocyte patches, heart
8 failure, stem cell transplantation, clinical application, regeneration therapy

9

10 **One-sentence summary**

11 This pre-clinical study provides a proof-of-concept of the safety and efficacy of hiPSC-CM
12 patches for the treatment of heart failure.

13

1 **Translational Perspective**

2 Regenerative therapy using cells and tissues is attractive as a novel approach for treating
3 severe heart failure. We focused on human iPS cell-derived cardiomyocytes (hiPSC-CMs) as
4 a cell source. Using basic research, the characteristics of hiPSC, hiPSC-CMs, and hiPSC-CM
5 patches were determined *in vitro* and *in vivo*. We also conducted a pre-clinical study using a
6 porcine model of myocardial infarction that confirmed the safety and efficacy of the
7 hiPSC-CM patch, highlighting its potential for clinical application.

8

1 **Introduction**

2 In spite of advances in medical treatment, the fatality rate of heart failure remains high. The
3 treatment of heart failure would benefit from novel clinical equipment and techniques. In
4 recent years, research on human induced pluripotent stem cells (hiPSCs) has shown that they
5 may be a promising source of stem cells that can replace lost cells in diseased organs¹⁻³.
6 Moreover, basic research has proven that hiPSCs can also supply cardiomyocytes to the
7 failed heart through myocardial tissue such as a cardiomyocyte patch, indicating that these
8 cells may be introduced as clinical treatment for heart failure⁴⁻⁷. On the other hand, there are
9 major concerns regarding the safety of hiPSCs in clinical applications, especially concerning
10 tumourigenicity⁸⁻¹⁰. Adequate pre-clinical study concerning the safety and efficacy *in vitro*
11 and *in vivo* may show the promise of good clinical results for the eventual clinical trials of
12 this technique for heart failure patients.

13 In this study, we aimed to demonstrate whether a clinical grade hiPSC-derived
14 cardiomyocyte (hiPSC-CM) patch can act as functional myocardial tissue. We performed a
15 pre-clinical study to ensure safety and conducted a proof-of-concept analysis of hiPSC-CM
16 patches in clinical applications.

1 **Methods**

2 **Clinical grade hiPSCs**

3 A clinical grade hiPSC line (QHJI14s04) was established from the peripheral blood
4 mononuclear cells of a healthy volunteer donor homozygous for human leukocyte antigen
5 (HLA) and with the most frequent haplotype in the Japanese population¹¹ in the cell
6 processing centre of the Center for iPS Cell Research and Application (Kyoto University,
7 Kyoto, Japan). We obtained informed consent from the donor and all studies complies with
8 the Declaration of Helsinki. To ensure cell quality, we performed characterisation tests as
9 described in the online Supplementary material.

10

11 **Generation of the master cell bank (MCB)**

12 We received two cryovials of hiPSC passage (P) 10 from CiRA. One vial was used for
13 evaluation of the growth rate and optimisation of the culture conditions. The other cryovial
14 was used for producing the MCB. The MCB was prepared from cryopreserved P12 cells
15 using qualified reagents and raw materials in the Center for Gene and Cell Processing of
16 Takara Bio Inc. (Kusatsu, Japan), which complies with good manufacturing practice
17 (GMP)/GCTP standards. The cells and supernatants used for analysis were prepared by
18 sub-culturing P12 cells for two additional passages. In accordance with ICH Q5A and 5D, the
19 MCB was inspected by DNA fingerprinting and electron microscopy and evaluated for

1 sterility, reverse transcriptase activity, and the presence of mycoplasma, human viruses, or
2 infectious retroviruses (*in vitro* and *in vivo*).

3

4 **Cardiomyogenic differentiation, purification, and elimination of residual**
5 **undifferentiated hiPSCs**

6 The hiPSC line QHJI14s04 was cultured on iMatrix511 (Nippi, Tokyo, Japan)-coated dishes
7 in Stem Fit Ak03N (Ajinomoto, Tokyo, Japan), followed by cardiac differentiation,
8 purification, and elimination of residual undifferentiated hiPSCs. The cells were also frozen.
9 Methods are detailed in the online Supplementary material.

10

11 **hiPSC-CM patch preparation**

12 Prior to cell seeding, the surfaces of temperature-responsive dishes (UpCell; CellSeed, Tokyo,
13 Japan) were coated with Dulbecco's modified Eagle's medium (DMEM; Nacalai Tesque,
14 Kyoto, Japan) supplemented with 20% foetal bovine serum (FBS; Sigma-Aldrich, St. Louis,
15 MO) overnight. After freeze-thawing, the hiPSC-CMs were plated onto the UpCell dishes in
16 DMEM containing 20% FBS and cultured at 37 °C and 5% CO₂. After 72 h in culture, the
17 hiPSC-CM patches were harvested and washed gently with Hanks' balanced salt solution (+).

18

19 **Flow cytometry**

1 Cells were stained with antibodies for cTNT, α SMA, vimentin, and CD31, incubated with
2 fluorescently conjugated secondary antibodies, and assessed using the FACS Canto II system
3 (BD Biosciences, Franklin Lakes, NJ). Method is detailed in the online Supplementary
4 material.

5

6 **RNA isolation and quantitative polymerase chain reaction (qPCR)**

7 Total RNA was extracted from the cells and heart tissues, and then reverse-transcribed into
8 cDNA. qPCR was performed with the ViiA 7TM Real-Time PCR or ABI PRISM 7700
9 systems (Applied Biosystems, Foster City, CA). Methods are detailed in the online
10 Supplementary material.

11

12 **PCR arrays**

13 Total RNA was extracted from hiPSCs and hiPSC-CMs. Human adult and foetal heart total
14 RNA was purchased from Takara Bio. For the analysis of human stem cell-associated genes,
15 the ViiA 7TM Real-Time PCR system was used to run the Human Stem Cell RT² ProfilerTM
16 PCR Array (Qiagen, Hilden, Germany). For the analysis of cardiac differentiation-associated
17 genes, gene expression was analysed using the TaqManTM Array Human Cardiomyocyte
18 Differentiation by BMP Receptors (Thermo Fisher Scientific, Waltham, MA). Methods are
19 detailed in the online Supplementary material.

1

2 **Single-cell RNA sequencing**

3 The single-cell sequencing library was generated using the ICELL8 cx platform (Takara Bio)
4 and sequencing was performed using the HiSeq 3000 sequencer (Illumina, San Diego, CA).
5 Methods are detailed in the online Supplementary material.

6

7 **Whole genome/exome sequencing analysis**

8 Whole genome sequencing (WGS), whole exome sequencing (WES), and single nucleotide
9 polymorphism (SNP) array experiments were performed using peripheral blood mononuclear
10 cells from the donor (termed origin or control), the MCB, expansion cultures of the MCB,
11 hiPSC-CMs, and hiPSC-CM patches. WGS libraries were generated with the KAPA Hyper
12 Prep Kit (Kapa Biosystems, Wilmington, MA) from fragmented genomic DNA sheared by
13 Covaris LE220 (Covaris, Brighton, UK). For WES, adapter-ligated libraries were prepared
14 with the KAPA Hyper Prep Kit and sequencing libraries were constructed using SeqCap EZ
15 Human Exome Library v3.0 (Roche, Basel, Switzerland). Cluster generation was performed
16 with the HiSeq PE Cluster Kit v4 (Illumina) using Illumina cBot. Sequencing was performed
17 using the HiSeq2500 platform (Illumina) in the 126 paired-end mode. Methods are detailed in
18 the online Supplementary material.

19

1 **SNP array analysis**

2 Copy number variations (CNVs) were called using the HumanOmniExpress24 v1.1
3 genotyping array (Illumina). We prepared 200 ng of genomic DNA, which was hybridised
4 using the HumanOmniExpress24 v1.1 DNA Analysis Kit (Illumina), and evaluated its
5 intensity using the iScan (Illumina). After exporting a final report using GenomeStudio
6 (v2011.1; Illumina), CNV analyses were performed using PennCNV (v1.0.3)¹², Mosaic
7 Alteration Detection-MAD (v1.0.1)¹³, and GWAS tools (v1.16.1)¹⁴; the test samples were
8 compared with the control sample and the called CNVs were curated manually.

9

10 **Measurement of cytokine levels**

11 The supernatants of cell patches were collected after culturing under normoxic or hypoxic
12 (5% O₂) conditions and analysed using a fluorescence-dyed microsphere-based immune assay
13 (Bio-Rad Laboratories, Hercules, CA) following the manufacturer's instructions. The
14 concentration of cytokines, such as angiogenin, angiopoietin-1, angiopoietin-2, hepatocyte
15 growth factor (HGF), and vascular endothelial growth factor (VEGF), was measured and
16 analysed using the Bio-plex suspension array system (Bio-Rad Laboratories).

17

18 **Transmission electron microscopy**

19 The samples were immersed in 0.5% uranyl acetate (Fujifilm Wako Pure Chemical

1 Corporation, Osaka, Japan), dehydrated in ethanol (Muto Pure Chemicals, Tokyo, Japan) and
2 propylene oxide (Sigma-Aldrich), and then embedded in epoxy resin. Ultrathin sections were
3 cut using an EM UC7 ultra-microtome (Leica Microsystems, Wetzlar, Germany). The
4 sections were imaged using an H-7500 transmission electron microscope (Hitachi
5 High-Technologies, Tokyo, Japan). Methods are detailed in the online Supplementary
6 material.

7

8 **Electrophysiological properties of the hiPSC-CM patches**

9 The hiPSC-CM patches were transferred onto a MED probe (Alpha MED Scientific, Osaka,
10 Japan) and incubated until they were attached. Extracellular field potentials were monitored
11 using a multi-electrode array (MEA) system (MED64; Alpha MED Scientific), recorded for
12 10 min, and analysed using Mobius software (Alpha MED Scientific).

13

14 **Mechanical properties of the hiPSC-CM patches**

15 Mechanical properties were assessed using the MicroTester G2 (CellScale, Waterloo, ON,
16 Canada). hiPSC-CM patches were transferred into a heated bath containing culture medium
17 at 37 °C. The two ends of each hiPSC-CM patch were hooked to a fixed wire and a
18 force-sensing probe. The force generated by the patch was calculated based on the
19 displacement of the probe. The probe was moved downward to stretch the patch to different

1 extents until the tissue broke. The force data were recorded at a sample rate of 5 Hz.

2

3 **Intracellular calcium activity and contraction properties of hiPSC-CMs**

4 hiPSC-CMs were seeded onto 96-well plates at $1-2 \times 10^5$ cells/well. Intracellular calcium

5 activity was analysed with FDSS/μCELL (Hamamatsu Photonics, Shizuoka, Japan) and

6 contraction properties were monitored with a Cell Motion Imaging System (SI8000; Sony

7 Biotechnology, Tokyo, Japan). Methods are detailed in the online Supplementary material.

8

9 **Generation of the porcine chronic myocardial infarction model and transplantation of**

10 **hiPSC-CM patches**

11 All experimental procedures were performed according to the national regulations and

12 guidelines, reviewed by the Committee for Animal Experiments, and finally approved by the

13 president of Osaka University. A chronic myocardial infarction model was constructed in

14 mini-pigs. Animals were randomly divided into hiPSC-CM patch transplantation group or a

15 sham operation group. Cardiac function was evaluated by echocardiography, selective

16 coronary angiography, cardiac magnetic resonance imaging (MRI), and telemetered Holter

17 electrocardiography. Methods, including experimental animal model generation, cardiac

18 function assessment, and histological, molecular biology, and statistical analyses are detailed

19 in the online Supplementary material.

1

2 **Cell growth assay**

3 hiPSC-CMs were cultured in DMEM supplemented with 10% FBS at 37 °C and 5% CO₂.

4 After reaching 80–90% confluence, the cells were harvested using 0.05% trypsin-EDTA

5 (Thermo Fisher Scientific) and passaged five times; the growth rate (R_n) at passage = n, i.e.

6 doubling per day, was calculated using the following formula:

7
$$R_n = [\log_2(N_{n+1}/N_n)]/D.$$

8 where N_n is the harvested cell number at passage n and D is the culture day.

9

10 **Soft agar colony formation assay**

11 The soft agar colony formation assay was conducted to rule out tumourigenicity. Methods are

12 detailed in the online Supplementary material.

13

14 **General toxicity tests and tumourigenicity assay**

15 The hiPS-CM patches were tested for general toxicity and tumourigenicity using

16 immunodeficient NOD/Shi-scid, IL-2R γ null mice (NOG mice; In-Vivo Science Inc.,

17 Kawasaki, Japan). For general toxicity testing, hiPSC-CM patches consisting of 1.9×10^6

18 hiPSC-CMs were directly transplanted onto the surface of the left anterior wall of the heart.

19 Mice were euthanised and dissected 28 days after transplantation. Gross abnormalities and

1 the weights of the major organs were recorded. Haematological and biochemical evaluations
2 were conducted using peripheral blood. For the tumourigenicity assay, hiPSC-CM patches
3 consisting of 1.9×10^6 hiPSC-CMs with or without purification and elimination of residual
4 undifferentiated hiPSCs were directly transplanted onto the surface of the left anterior wall of
5 the heart. Mice were euthanised and dissected 16 weeks after transplantation. The major
6 organs and tissues were carefully inspected, and any gross pathological findings were
7 collected and stored for further examination. Staining protocols are detailed in the online
8 Supplementary material.

9

10 **Histological analysis**

11 All autopsy tissue specimens of murine and porcine hearts transplanted with hiPSC-CM
12 patches were fixed in 10% buffered formalin (Fujifilm) and embedded in paraffin using a
13 Microm STP 120 Spin Tissue Processor (STP120-3; Thermo Fisher Scientific). Picosirius
14 red staining (Fujifilm) was performed on serial paraffin-embedded sections. Haematoxylin
15 and eosin staining was performed along with immunostaining using anti-Ki-67 and anti-lamin
16 antibodies (Table S1). The sections were assessed under a light microscope (Leica). Staining
17 protocols are detailed in the online Supplementary material.

18

19 **Immunofluorescent staining**

1 Cardiomyocyte aggregates, hiPSC-CM patches, and excised heart samples were fixed in 4%
2 paraformaldehyde, frozen in liquid nitrogen, and cryosectioned. Immunofluorescent staining
3 was performed with the primary and secondary antibodies listed in Table S1. Cell nuclei were
4 counterstained with Hoechst 33342 (1:100; Dojindo, Kumamoto, Japan) and the sections
5 imaged using a confocal laser scanning microscope (FV10i; Olympus, Tokyo, Japan). The
6 system was controlled with FV10-ASW 3.1 software (Olympus).

7

8 **Statistical analysis**

9 Statistical significance of *in vitro* experiments was determined by a two-tailed Student's *t*-test.
10 JMP Pro 13 software (SAS Institute Inc., Cary, NC) was used for statistical analysis of the *in*
11 *vivo* efficacy trial of porcine species. Continuous values are expressed as the mean \pm standard
12 deviation (SD). The analyses were performed using nonparametric methods because sample
13 sizes were too small to determine a normal or skewed distribution. Within-group differences
14 were compared using the Wilcoxon signed-rank test; between-group differences were
15 compared with the Wilcoxon-Mann-Whitney U test. *P* values < 0.05 were considered
16 statistically significant.

17

18 **Results**

19 **Establishing the MCB**

1 The human iPS cell line QHJI14s04 was established as clinical grade hiPSCs by transferring
2 multiple genes into peripheral blood mononuclear cells collected from a healthy volunteer
3 homozygous for HLA (Table S2). In the process of establishing hiPSCs and MCB, quality
4 checks were performed at each point (Figure S1). The quality of hiPSCs was assessed by
5 determining colony morphology; the residual plasmid vector used for iPS production;
6 karyotype; disappearance of the expression of pluripotent markers such as *POU5F1*, *NANOG*,
7 *TRA-1-60*, *TRA-2-49*, and *SSEA-4*; sterility, absence of mycoplasma, endotoxins, and
8 viruses; HLA typing, and short tandem repeat (STR) genotyping (Table S3). We generated the
9 MCB using culture-expanded hiPSCs produced under GMP conditions. The quality of the
10 MCB was confirmed as there was no contamination by foreign pollutants such as bacteria,
11 mycoplasma, or viruses, and the MCB was further analysed via STR genotyping (Table S4).

12

13 **Characterisation of hiPS-CMs and hiPS-CM patches**

14 In the process of producing hiPSC-CM, and hiPSC-CM patch quality checks were performed
15 at each point (Figure S1). The quality of the hiPSC-CM was confirmed by cell viability,
16 purity of cardiomyocytes, sterility, and absence of mycoplasma and endotoxins (Table S5).
17 During myocardial differentiation, the number of cells increased. qPCR and
18 immunohistochemistry demonstrated that the expression of markers for pluripotency, early
19 mesoderm, cardiac progenitor cells, and cardiomyocytes changed over time (Figure S2).

1 Analysis of undifferentiated stem cell-related genes revealed that their expression in
2 hiPSC-CMs was lower than in hiPSCs (Figure S3A). Moreover, analysis of cardiomyocyte
3 differentiation-related genes revealed that their expression in hiPSC-CMs was more similar to
4 that in the human adult or foetal heart than in undifferentiated hiPSCs (Figure S3B).

5 hiPSC-CMs were 60–80 % positive for the cardiac troponin T (cTNT) marker. Most
6 TNT-negative non-cardiomyocytes expressed the smooth muscle cell marker α SMA or the
7 fibroblast marker vimentin; however, few expressed the endothelial cell marker CD31, whose
8 positive cell rate was 1–5% (Figure 1A). Single-cell RNA-seq identified four cell populations,
9 three of which (clusters 0, 1, and 2) consisted of cardiomyocytes that expressed the cardiac
10 cell marker *TNNT2* and differed in their expression level of *ACTN2*. The population (cluster
11 3) expressed *POSTN* and *ACTA2*, which are highly expressed in fibroblasts and smooth
12 muscle, respectively (Figure 1B). In addition, immunohistochemistry of hiPSC-CMs showed
13 that they express ventricular muscle contractile proteins, such as myosin light chain 2v
14 (MLC2v), beta cardiac myosin heavy chain (β -MHC), gap junction protein, and connexin 43
15 (Figure 1C). Furthermore, the expression of cardiomyocyte ion channels in hiPSC-CMs was
16 similar to that of adult hearts (Figure S3C). The drug response of hiPSC-CMs was assessed
17 by measuring calcium transients and contractile properties, and the addition of isoproterenol
18 showed a marked positive inotropic effect. Moreover, the addition of proarrhythmic E-4031
19 showed a clear QT prolongation (Figure S4, S5).

1 Prior to transplantation surgery, hiPSC-CM patches were prepared using
2 temperature-responsive culture dishes (Figure 2A, B). Immunohistochemistry of the patches
3 revealed well organised sarcomeric structures and the expression of extracellular matrix
4 proteins (Figure 2C, D). Furthermore, the ultrastructure of hiPSC-CM patch showed
5 myofibrils with transverse Z-bands and a mitochondrial structure (Figure S6A). The
6 hiPSC-CM patch also expressed various cytokines, such as HGF and stromal cell-derived
7 factor (SDF), and was responsive to hypoxic stimulation (Figure 3A, S6B). In addition, the
8 hiPSC-CM patch showed synchronous, regular, and continuous beating, which indicates
9 electrical linkage throughout the patches (Figure 3B). The hiPSC-CM patch responded
10 according to the Frank-Starling mechanism, where the contraction force of the hiPSC-CM
11 patch increased as its stretch rate increased (Figure 3C).

12

13 **Efficacy study of iPSC-CM patches in an infarction porcine model**

14 An *in vivo* study of the efficacy of hiPSC-CM patches was performed using a porcine
15 infarction model (see details in Figure S7). Transthoracic echocardiography was performed
16 before and 4, 8, and 12 weeks after hiPSC-CM patch transplantation or sham surgery. The
17 baseline left ventricle ejection fraction (LVEF), LV end-diastolic diameter (LVDd), and LV
18 end-systolic diameter (LVDs) did not differ significantly between the two groups (Figure 4A).
19 LVEF was significantly greater in the hiPSC-CM patch group than in the sham group after 4

1 weeks ($61.1 \pm 5.7\%$ vs. $46.3 \pm 2.3\%$, $P < 0.01$), 8 weeks ($60.1 \pm 7.5\%$ vs. $48.6 \pm 6.1\%$, $P <$
2 0.05), and 12 weeks ($63.0 \pm 6.7\%$ vs. $39.6 \pm 9.8\%$, $P < 0.01$). LVDs was significantly smaller
3 in the hiPSC-CM patch group than in the sham group after 4 weeks (20.7 ± 2.6 mm vs. $28.3 \pm$
4 1.3 mm, $P < 0.01$), 8 weeks (21.0 ± 3.5 mm vs. 29.0 ± 5.8 mm, $P < 0.05$), and 12 weeks ($21.6 \pm$
5 4.7 mm vs. 31.0 ± 3.1 mm, $P < 0.05$), whereas LVDD did not differ significantly between
6 the two groups.

7 Cardiac MRI was performed to compare the LV circumferential strain (CS) values at
8 pre implantation baseline and 12 weeks after implantation (Figure 4B, 4C). In the sham group,
9 the CS of left anterior descending artery (LAD), left circumflex artery (LCx), and right
10 coronary artery (RCA) territories did not significantly change after 12 weeks relative to the
11 baseline values. In contrast, in the hiPSC-CM patch group, the CS of the LCx and RCA
12 territories were significantly greater after 12 weeks than at baseline (LCx: $-20.0 \pm 7.3\%$ vs.
13 $-25.5 \pm 7.3\%$, $P < 0.05$; RCA: $-18.4 \pm 2.4\%$ vs. $-20.8 \pm 2.1\%$, $P < 0.05$), whereas CS levels
14 in the LAD territory did not significantly change.

15 Next, pathological interstitial fibrosis 12 weeks after treatment was assessed by
16 Picosirius red staining (Figure 4D). The interstitial fibrosis area did not significantly differ
17 between the hiPSC-CM patch and sham groups ($P = 0.088$). An angiogram and pressure wire
18 study was also conducted to assess treatment-induced remodelling of the coronary artery
19 branch network (Figure 5A, 5B). The proximal LAD was completely occluded in all subjects.

1 We defined the delta index of microvascular resistance (Δ IMR) as IMR (post-implantation) -
2 IMR (pre-implantation). Δ IMR in the LCx territory (infarcted-border region), such as the
3 posterolateral branch (PL) (-20.0 ± 28.2 versus 38.4 ± 12.2 , $P < 0.05$) and obtuse marginal
4 branch (OM) (-17.0 ± 11.1 versus 34.3 ± 23.7 , $P < 0.05$) branches, was significantly lower in
5 the hiPSC-CM patch group than in the sham group. The IMR in the RCA territory
6 (infarcted-remote region) was not significantly different between the two groups.

7 Vascular density 12 weeks after treatment was assessed by immunohistochemistry
8 for CD31 and α SMA (Figure 5C). The density of CD31-positive capillaries and
9 CD31/ α SMA double-positive arterioles was significantly greater in the hiPSC-CM patch
10 group than in the sham group ($2542.2 \pm 465.3/\text{mm}^2$ vs. $1732.4 \pm 405.2/\text{mm}^2$, $P < 0.05$; 119.4
11 $\pm 28.5/\text{mm}^2$ vs. $87.2 \pm 5.5/\text{mm}^2$, $P < 0.05$, respectively; Figure 5C). Moreover, gene
12 expression of proangiogenic cytokines in the infarct-border region 4 weeks after treatment
13 was also assessed. VEGF and basic fibroblast growth factor (bFGF) expression levels were
14 significantly higher in the infarct-border region of the hiPSC-CM patch group than in the
15 sham group (VEGF: 4.00 ± 2.48 vs. 1.03 ± 0.28 , $P < 0.05$; bFGF: 2.23 ± 1.10 vs. 1.07 ± 0.53),
16 whereas SDF-1 and HGF expression did not significantly differ between the two groups
17 (Figure 5D).

18 To assess the effects of the hiPSC-CM patch on the electrophysiology of the
19 myocardium, the patch and sham groups were monitored via 24-hr Holter

1 electrocardiography 7 days before and 0, 1, 2, 3, 7, 14, 28, 42, 56, 70, and 84 days after
2 transplantation (Table S6). No lethal arrhythmias such as ventricular tachycardia and
3 ventricular fibrillation were observed during the study period. In addition, tumour formation
4 was not detected in the three months after implantation for both groups.

5

6 **Safety assessment for tumorigenicity and toxicity**

7 To evaluate the safety of hiPSC-CM patches, general toxicity and tumourigenicity tests were
8 performed. To assess general toxicity, a single hiPSC-CM patch was applied to the heart
9 surface of male and female NOG mice and observed for 4 weeks. The general condition,
10 body weight, results of haematology and blood biochemistry tests, and pathological
11 assessment were recorded. No significant toxic changes were observed following application
12 of the hiPSC-CM patch (Table S7).

13 To assess tumourigenicity, we monitored the animals for teratomas and malignant tumours
14 caused by residual undifferentiated hiPSCs and malignant transformed cells, respectively,
15 using *in vitro* and *in vivo* assays previously reported¹⁵ for the detection of potential
16 tumorigenic cells in hiPSC-CMs. *In vitro*, we performed assays for cell growth and soft agar
17 colony formation—a highly sensitive method for detecting malignant transformed cells—to
18 identify cells that have undergone malignant transformation during hiPSC culture and
19 cardiomyocyte differentiation. The growth rate of hiPSC-CMs during P5 was significantly

1 lower than during initial passage (-0.12 ± 0.04 vs. 0.14 ± 0.03 doubling/day, $P < 0.01$),
2 indicating that hiPSC-CMs contain no abnormal, overgrowing cells (Figure 6A). The soft
3 agar colony formation assay showed no growth of hiPSC-CMs (Figure 6B). To detect
4 teratoma-forming cells in the hiPSC-CM patch, the expression of Lin28A—a marker of
5 undifferentiated hiPSCs—, was examined *in vitro* (Figure S2C). Lin28A expression was
6 below the limit of determination in hiPSC-CMs 30 days after cardiac differentiation. Finally,
7 we assessed tumourigenicity *in vivo* and found that no teratomas or malignant tumours
8 formed in the heart for 16 weeks after transplantation of hiPSC-CM patches (Figure 6C,
9 Table S7).

10 In addition to residual undifferentiated cells or malignant transformed cells, critical
11 genomic changes and the survival of foreign genes in hiPSCs may lead to tumour formation
12 in hiPSC-CMs. We thus performed WGS and WES of hiPSCs, hiPSC-CMs, and hiPSC-CM
13 patches. No single nucleotide variants (SNV)/indels were found for the cancer-related genes
14 listed in the Catalogue of Somatic Mutations in Cancer (COSMIC)¹⁶, the Cancer Gene
15 Census (v79)¹⁷, and Shibata's list¹⁸. In addition, called mutations were not registered in the
16 Human Gene Mutation Database (HGMD) Pro database (2016.4)¹⁹. We calculated variant
17 allele frequencies (VAFs; Table 1) at SNV/indel positions found by Genomon²⁰ and
18 Genomon2²¹ in the context of WGS and WES data. We also investigated CNVs based on
19 WGS and SNP array data. No CNVs were found on exons. The genome analyses are

1 summarised in Table 2.

2

3 **Discussion**

4 In this paper, we reported the biological characterisation, efficacy, and safety of clinical grade

5 hiPSC-CM patches as part of a pre-clinical study. In hiPSC-CMs, the cTnT-positive rate

6 ranged from 60 to 80%, while Lin28A, which represents undifferentiated hiPSCs, was below

7 the limit of quantitation. The safety of hiPSC-CM patches for clinical applications was

8 confirmed through genomic analysis; *in vitro* cell growth, soft agar colony formation, and

9 undifferentiated cell assays; *in vivo* tumourigenicity and general toxicity tests using

10 immunodeficient mice; and an arrhythmia test using a porcine model. Finally, an efficacy

11 study using a porcine myocardial infarction (MI) model demonstrated that hiPSC-CM

12 patches ameliorated the distressed myocardium in terms of improved cardiac function and

13 angiogenesis.

14 Although the teratogenicity of undifferentiated hiPSCs can be adequately determined

15 through Lin28A expression and controlled by brentuximab vedotin, which induces apoptosis

16 of CD30-positive undifferentiated hiPSCs, the tumourigenicity of malignant transformed

17 cells in hiPSC-CMs is still a major obstacle to clinical translation^{15, 22}. Thus, we performed a

18 genomic analysis to confirm the tumourigenicity of hiPSC-CM patches, and although no

19 abnormal mutations were found, it remains undetermined which genomic mutations should

1 be checked to ensure safety other than those reported to be tumourigenic in oncogenomic
2 databases such as COSMIC¹⁶ and Shibata's list¹⁸. Various genetic mutations have been
3 identified in living cells, and it is difficult to determine whether all mutations of potentially
4 tumourigenic genes result in oncogenesis or whether some well-known
5 tumourigenicity-associated genes such as c-myc can be ignored. Consequently, the
6 relationship between genomic abnormalities and tumourigenicity in cell therapy has not been
7 fully elucidated, and further studies are thus warranted to confirm the safety of these cells in
8 terms of tumourigenicity. Nevertheless, in immunodeficient NOG mice, no malignant
9 transformed cells or tumourigenicity were observed.

10 We need to reveal both the tumourigenicity of residual undifferentiated hiPSCs and
11 verify the presence of tumourigenic cells by transformation of hiPSC-CM constructs. Lin28A
12 expression levels have been reported to correlate with the frequency of tumour formation in
13 NOG mice¹⁵. Quantifying Lin28A levels may thus be an alternative to tumourigenicity tests
14 of NOG mice when validating the safety of hiPSC-CMs in clinical applications.

15 In this study, no lethal arrhythmia was observed when hiPSC-CM patches were
16 transplanted on the heart surface of pigs. In contrast, Shiba *et al.*⁵ reported that arrhythmias
17 are markedly increased in the early phase after hiPSC-CM transplantation with a needle. Liu
18 *et al.*²³ created artificial myocardial tissue using hiPSC-CMs, and when the tissue was injured
19 with a needle, they observed a rotating electrical pulse reminiscent of lethal arrhythmia

1 around the injury site. This abnormal conduction was restored only after applying a
2 cardiomyocyte patch on the injured site. Menache *et al.*²⁴ also detected the occurrence of
3 lethal arrhythmia when myoblasts were injected into myocardial tissue with a needle. This
4 discrepancy between our results and previous studies may have resulted from the method by
5 which cells were introduced, such as needle injection. Thus, the hiPSC-CM patch avoids
6 tumourigenicity and arrhythmogenicity, indicating it may be a safe method of delivering cells.
7 A clinical study is necessary to guarantee the safety of this technique.

8 An important property of hiPSC-CM patches is whether the transplanted cardiac
9 patches can be electrically integrated with a recipient heart with a low number of
10 cardiomyocytes. Previous studies have shown that the transplanted cardiomyocyte patches
11 contract and relax in synchrony with the recipient's heart^{4,25}. It was also demonstrated that
12 cardiomyocyte patches exhibit excellent cardiogenic properties, cardiomyogenesis potential
13 in the failed heart, and angiogenic ability^{26,27,28,29}. Further studies are needed to elucidate how
14 many cardiomyocytes can directly provide contractile force to the diseased heart and the
15 fundamental mode of action of this treatment.

16 Functional recovery of the heart may also depend on angiogenesis, which may have
17 a positive impact on hibernating myocardium in the recipient myocardium^{26,27,28,29}.
18 Histological analysis suggests that it is characterised by the recognition of functional blood
19 vessels with smooth muscle cells lining vascular endothelial cells^{26,27,28,29}. In particular,

1 cytokines of the angiopoietin family may be enriched *in vitro*. Angiopoietins have been
2 reported to greatly contribute to the maturation of blood vessels. In general, ischaemic
3 cardiomyopathy is characterised by myocardial ischaemia arising from the disruption and
4 stenosis of the vasculature network in coronary arteries^{26,27,28,29}. Here, the heart failure animal
5 model transplanted with hiPSC-CM patches demonstrated low peripheral coronary vascular
6 resistance, which was likely due to the maturation of blood vessels and opening of the
7 occluded peripheral vascular network.

8 In conclusion, we conducted a proof-of-concept, pre-clinical study of hiPSC-CM
9 patches, which demonstrated promising feasibility, safety, and efficacy. We recommend
10 further translational research by conducting a clinical trial of allogenic hiPSC-CM patches for
11 patients with ischaemic heart failure.

12

1 **Funding**

2 This work was supported by the Japan Agency for Medical Research and Development [grant
3 numbers JP20bm0204003, JP17bk0104044, JP20bk0104110].

4

5 **Acknowledgements**

6 We appreciate the assistance of Professor Shinya Yamanaka at the Center for iPS Cell
7 Research and Application, Kyoto University, who kindly provided the hiPSCs. The authors
8 wish to thank Professor Tetsuya Shimizu and Associate Professor Katsuhisa Matsuura at
9 Tokyo Women's Medical University and Associate Professor Yoshinori Yoshida at Kyoto
10 University for their collaboration during the early stages of this work. We also thank Fumiya
11 Ohashi, Kenji Oyama, and Isamu Matsuda at Terumo. Co. and Kousuke Torigata at Daiichi
12 Sankyo. Co. for their technical assistance with the experiments.

13

14 **Data availability statement**

15 The data underlying this article cannot be shared publicly due to the privacy of individuals
16 that participated in the study. The data will be shared on reasonable request to the
17 corresponding author.

18

1 **References**

2 1. Yoshida Y, Yamanaka S. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac
3 Applications. *Circ Res* 2017;120(12):1958–1968.

4 2. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M,
5 Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M,
6 Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata
7 KI, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y,
8 Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S,
9 Yamanaka S, Takahashi M. Autologous Induced Stem-Cell-Derived Retinal Cells for
10 Macular Degeneration. *N Engl J Med* 2017;376(11):1038–1046.

11 3. Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, Amano N, Nomura
12 M, Umekage M, Morizane A, Takahashi J. Pre-clinical Study of Induced Pluripotent
13 Stem Cell-Derived Dopaminergic Progenitor Cells for Parkinson's Disease. *Nat
14 Commun* 2020;11(1):3369.

15 4. Higuchi T, Miyagawa S, Pearson JT, Fukushima S, Saito A, Tsuchimochi H, Sonobe T,
16 Fujii Y, Yagi N, Astolfo A, Shirai M, Sawa Y. Functional and Electrical Integration of
17 Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a Myocardial Infarction Rat
18 Heart. *Cell Transplant* 2015;24(12):2479–2489.

- 1 5. Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada
- 2 K, Shiba N, Sakamoto K, Ido D, Shiina T, Ohkura M, Nakai J, Uno N, Kazuki Y,
- 3 Oshima M, Minami I, Ikeda U. Allogeneic Transplantation of Ips Cell-Derived
- 4 Cardiomyocytes Regenerates Primate Hearts. *Nature* 2016;538(7625):388–391.
- 5 6. Tabei R, Kawaguchi S, Kanazawa H, Tohyama S, Hirano A, Handa N, Hishikawa S,
- 6 Teratani T, Kunita S, Fukuda J, Mugishima Y, Suzuki T, Nakajima K, Seki T, Kishino
- 7 Y, Okada M, Yamazaki M, Okamoto K, Shimizu H, Kobayashi E, Tabata Y, Fujita J,
- 8 Fukuda K. Development of a Transplant Injection Device for Optimal Distribution and
- 9 Retention of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. *J Heart*
- 10 *Lung Transplant* 2019;38(2):203–214.
- 11 7. Memon IA, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Taketani S, Sakakida
- 12 SK, Kondoh H, Aleshin AN, Shimizu T, Okano T, Matsuda H. Repair of Impaired
- 13 Myocardium by Means of Implantation of Engineered Autologous Myoblast Sheets. *J*
- 14 *Thorac Cardiovasc Surg* 2005;130(5):1333–1341.
- 15 8. Cunningham JJ, Ulbright TM, Pera MF, Looijenga LH. Lessons from Human
- 16 Teratomas to Guide Development of Safe Stem Cell Therapies. *Nat Biotechnol*
- 17 2012;30(9):849–857.
- 18 9. Yasuda S, Kusakawa S, Kuroda T, Miura T, Tano K, Takada N, Matsuyama S,
- 19 Matsuyama A, Nasu M, Umezawa A, Hayakawa T, Tsutsumi H, Sato Y.

1 Tumorigenicity-associated Characteristics of Human iPS Cell Lines. PLoS One
2 2018;13(10):e0205022.

3 10. Yamanaka S. Pluripotent Stem Cell-based Cell Therapy—Promise and Challenges.
4 Cell Stem Cell 2020;27(4):523–531.

5 11. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H,
6 Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J,
7 Saji H, Yamanaka S. A More Efficient Method to Generate Integration-Free Human
8 Ips Cells. Nat Methods 2011;8(5):409–412.

9 12. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M.
10 PennCNV: An Integrated Hidden Markov Model Designed for High-resolution Copy
11 Number Variation Detection in Whole-genome SNP Genotyping Data. Genome Res
12 2007;17(11):1665–1674.

13 13. González JR, Rodríguez-Santiago B, Cáceres A, Pique-Regi R, Rothman N, Chanock
14 SJ, Armengol L, Pérez-Jurado LA. A Fast and Accurate Method to Detect Allelic
15 Genomic Imbalances Underlying Mosaic Rearrangements Using SNP Array Data.
16 BMC Bioinformatics 2011;12:166.

17 14. Gogarten SM, Bhangale T, Conomos MP, Laurie CA, McHugh CP, Painter I, Zheng X,
18 Crosslin DR, Levine D, Lumley T, Nelson SC, Rice K, Shen J, Swarnkar R, Weir BS,
19 Laurie CC. GWASTools: An R/Bioconductor Package for Quality Control and

1 Analysis of Genome-Wide Association Studies. Bioinformatics
2 2012;28(24):3329–3331.

3 15. Ito E, Miyagawa S, Takeda M, Kawamura A, Harada A, Iseoka H, Yajima S, Sougawa
4 N, Mochizuki-Oda N, Yasuda S, Sato Y, Sawa Y. Tumorigenicity Assay Essential for
5 Facilitating Safety Studies of hiPSC-derived Cardiomyocytes for Clinical Application.
6 Sci Rep 2019;9(1)1881.

7 16. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole
8 CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble
9 K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang
10 S, Ward S, Campbell PJ, Forbes SA. COSMIC: The Catalogue Of Somatic Mutations
11 in Cancer. Nucleic Acids Res 2019;47(D1):D941–D947.

12 17. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC
13 Cancer Gene Census: Describing Genetic Dysfunction Across all Human Cancers. Nat
14 Rev Cancer 2018;18(11):696–705.

15 18. Nakahata T, Okano H. Current Perspective on Evaluation of Tumorigenicity of
16 Cellular and Tissue-based Products Derived from Induced Pluripotent Stem Cells
17 (iPSCs) and iPSCs as Their Starting Materials (provisional translation).
18 Pharmaceuticals and Medical Devices Agency.
19 <http://www.pmda.go.jp/files/000152599.pdf>

- 1 19. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips
- 2 AD, Cooper DN. The Human Gene Mutation Database: Towards a Comprehensive
- 3 Repository of Inherited Mutation Data For Medical Research, Genetic Diagnosis and
- 4 Next-generation Sequencing Studies. *Hum Genet* 2017;136(6):665–677.
- 5 20. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y,
- 6 Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G. Frequent Pathway Mutations of
- 7 Splicing Machinery in Myelodysplasia. *Nature* 2011;478(7367):64–69.
- 8 21. Shiraishi Y, Sato Y, Chiba K, Okuno Y, Nagata Y, Yoshida K, Shiba N, Hayashi Y,
- 9 Kume H, Homma Y, Sanada M, Ogawa S, Miyano S. An Empirical Bayesian
- 10 Framework for Somatic Mutation Detection from Cancer Genome Sequencing Data.
- 11 *Nucleic Acids Res* 2013;41(7):e89.
- 12 22. Sougawa N, Miyagawa S, Fukushima S, Kawamura A, Yokoyama J, Ito E, Harada A,
- 13 Okimoto K, Mochizuki-Oda N, Saito A, Sawa Y. Immunologic Targeting of CD30
- 14 Eliminates Tumourigenic Human Pluripotent Stem Cells, Allowing Safer Clinical
- 15 Application of Hipsc-Based Cell Therapy. *Sci Rep* 2018;8(1):3726.
- 16 23. Li J, Minami I, Shiozaki M, Yu L, Yajima S, Miyagawa S, Shiba Y, Morone N,
- 17 Fukushima S, Yoshioka M, Li S, Qiao J, Li X, Wang L, Kotera H, Nakatsuji N, Sawa
- 18 Y, Chen Y, Liu L. Human Pluripotent Stem Cell-Derived Cardiac Tissue-like

1 Constructs for Repairing the Infarcted Myocardium. Stem Cell Reports
2 2017;9(5):1546–1559.

3 24. Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquet L,
4 Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S,
5 Desnos M, Hagège AA. The Myoblast Autologous Grafting in Ischemic
6 Cardiomyopathy (MAGIC) Trial: First Randomized Placebo-controlled Study Of
7 Myoblast Transplantation. Circulation 2008;117(9):1189–1200.

8 25. Iseoka H, Miyagawa S, Fukushima S, Saito A, Masuda S, Yajima S, Ito E, Sougawa N,
9 Takeda M, Harada A, Lee JK, Sawa Y. Pivotal Role of Non-cardiomyocytes in
10 Electromechanical and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived
11 Engineered Cardiac Tissue. Tissue Eng Part A 2018;24(3-4):287–300.

12 26. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T,
13 Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y. Feasibility, Safety, and
14 Therapeutic Efficacy of Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte
15 Sheets in a Porcine Ischemic Cardiomyopathy Model. Circulation 2012;126(11:Suppl
16 1):S29–S39.

17 27. Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Ito E, Sougawa N,
18 Kawamura T, Daimon T, Shimizu T, Okano T, Toda K, Sawa Y. Enhanced Survival of
19 Transplanted Human Induced Pluripotent Stem Cell-derived Cardiomyocytes by the

1 Combination of Cell Sheets with the Pedicled Omental Flap Technique in a Porcine
2 Heart. Circulation 2013;128(11 Suppl 1):S87–S94.

3 28. Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Funakoshi S, Yoshida Y,
4 Yamanaka S, Shimizu T, Okano T, Daimon T, Toda K, Sawa Y. Enhanced Therapeutic
5 Effects of Human iPS Cell Derived-Cardiomyocyte by Combined Cell-Sheets with
6 Omental Flap Technique in Porcine Ischemic Cardiomyopathy Model. Sci Rep
7 2017;7(1):8824.

8 29. Ishida M, Miyagawa S, Saito A, Fukushima S, Harada A, Ito E, Ohashi F, Watabe T,
9 Hatazawa J, Matsuura K, Sawa Y. Transplantation of Human-induced Pluripotent Stem
10 Cell-derived Cardiomyocytes is Superior to Somatic Stem Cell Therapy for Restoring
11 Cardiac Function and Oxygen Consumption in a Porcine Model of Myocardial
12 Infarction. Transplantation 2019;103(2):291–298.

13

1 **Figure legends**

2 **Figure 1. Characterisation of hiPSC-CMs.**

3 A: The populations within hiPSC-CMs were assessed via flow cytometry. The histograms of

4 vimentin, α SMA, and CD31 show the data in the cTNT-negative cell population.

5 B: Four cell populations determined by single-cell RNA-seq.

6 C–F: The structure and morphology of hiPSC-CM. Immunofluorescence of cardiac-specific

7 proteins: (C) cTNT (green) and α -actinin (red), (D) connexin-43 (green) and α -actinin (red),

8 (E) MLC2v (green) and MLC2a (red), and (F) β -MHC (green) and α -MHC (red). Scale bar: 20

9 μ m.

10

11 **Figure 2. Characteristic properties of the hiPSC-CM patch.**

12 A: Image of a hiPSC-CM patch in a 6 cm diameter dish.

13 B: Haematoxylin and eosin (H&E) staining of a hiPSC-CM patch. Scale bars: 50 μ m (B).

14 C, D: Representative image of an immunostained hiPSC-CM cell patch. (C) TnT (green) and

15 actinin (red); (D) TnT (red) and α MHC, β MHC, MLC2v, MLC2a, connexin43 (cx43),

16 N-cadherin, collagen I, and collagen III (green). Scale bars: 20 μ m.

17

18 **Figure 3. Characterisation of the hiPSC-CM patch.**

19 A: *In vitro* quantification of cytokines and growth factors.

1 B: Electrophysiological properties of the hiPSC-CM patch. Extracellular field potentials were
2 recorded using a multi-electrode array system. A representative extracellular potential
3 waveform and a propagation map are shown.
4 C: The contractile force of the hiPSC-CM patch was assessed using the MicroTester G2. The
5 relationship between the contraction force and the stretch rate is shown.
6

7 **Figure 4. Efficacy of hiPSC-CM patch transplantation into a porcine MI model: a
8 pre-clinical trial.**

9 A: Change in cardiac function after transplantation of the hiPSC-CM patch into a porcine MI
10 model. LVEF: left ventricular ejection fraction; LVDd: left ventricular end-diastolic diameter;
11 LVDs: left ventricular end-systolic diameter.
12 B: Cardiac MRI was performed to compare the LV CS values at baseline and 12 weeks after
13 treatment.
14 C: Representative images of endocardial systolic cardiac wall motion at the papillary muscle
15 level 12 weeks after the implantation.
16 D: Pathological interstitial fibrosis 12 weeks after treatment. Left: Picrosirius red staining of a
17 porcine heart. Scale bar: 1 cm. right: % area of fibrosis
18 Data are presented as the mean \pm SD. * P < 0.05, ** P < 0.01; ns, not significant.

19

1 **Figure 5. Change in IMR and cytokine expression after transplantation of the hiPSC-CM
2 patch into a porcine MI model.**

3 A, B: Schematic representation of IMR. Δ IMP was defined as IMR (post-implantation) - IMR
4 (pre-implantation).

5 C: upper panel, representative image of capillaries and arterioles immunostained with CD31
6 (red) and α SMA (green); lower panel, quantification of the number of CD31- and
7 α SMA-positive cells. Scale bar: 100 μ m.

8 D: Gene expression of proangiogenic factors in the infarct-border region 4 weeks after
9 treatment.

10 Data are presented as the mean \pm SD. * P < 0.05; ns, not significant.

11

12

13 **Figure 6. Detection of tumourigenic cells *in vitro* and *in vivo*.**

14 A: Cell growth assay of each passage.

15 B: Soft agar colony formation assay. Phase contrast micrographs of MRC-5 cells, HeLa cells,
16 HeLa cells spiked into MRC-5 cells, and hiPSCs-CMs cultured on soft agar medium for 21
17 days. Arrows indicate colonies. Scale bar: 200 μ m.

18 C, D: Tumourigenicity was evaluated through transplantation of non-purified or purified
19 hiPSC-CM patches into the left ventricular surface of immunodeficient NOG mice. (C)

1 Representative H&E staining of teratoma. Scale bar: 1000 μ m (left panel) and 2000 μ m (right
2 panel). (D) Quantification of the rate of teratoma formation (no purification group: hiPSC-CM
3 patches without purification and elimination of residual undifferentiated hiPSCs, n = 10;
4 purification group: hiPSC-CM patches with purification and elimination of residual
5 undifferentiated hiPSCs, n = 10).

1 **Text tables**

2 **Table 1. Whole genome sequencing results for hiPSCs (MCB), hiPSC-CMs, and**

3 **hiPSC-CM patches**

Sample	# of SNVs/indels on CDS/splicing sites		# of SNVs/indels on CDS/splicing sites (Census/Shibata's list)	# of CNVs on exons	# of CNVs on exons (Census/Shibata's list)
	WGS	WES	WGS/WES	WGS/SNP array	WGS/SNP array
MCB	15	11	0	0	0
MCB (expansion culture)	14	11	0	0	0
hiPSC-CMs	14	12	0	0	0
hiPSC-CM patch	14	11	0	0	0

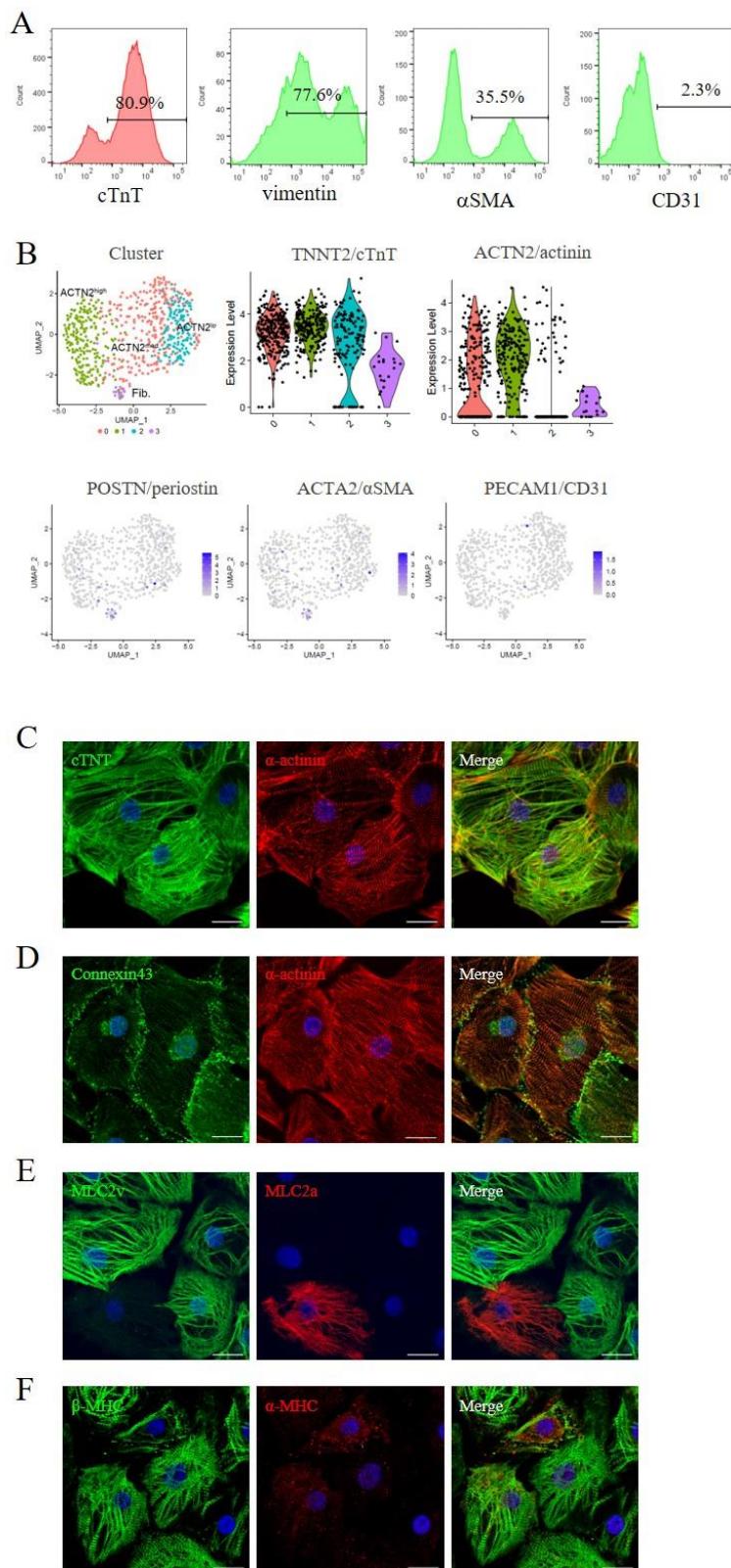
4 hiPSC-CM, human induced pluripotent stem cell-derived cardiomyocyte; SNV, single nucleotide variant; Indels,

5 insertions/deletions; CNV, copy number variation; MCB, master cell bank; WGS, whole genome sequencing;

6 WES, whole exome sequencing; SNP, single-nucleotide polymorphism.

1 **Table 2. Variant allele frequencies as per the called SNVs/indels**

Chr	Start	End	Ref	Alt	Func. refGene	Gene. refGene	MCB		(expansion culture)		hiPSC-CM		hiPSC-CM patch	
							MCB cov	alt_ ratio	alt_ cov	alt_ ratio	cov	alt_ratio	cov	alt_ratio
chr3	78708860	78708860	T	A	exonic	<i>ROBO1</i>	59	64.4%	61	54.1%	39	56.4%	60	56.7%
chr5	83356228	83356228	G	A	exonic	<i>EDIL3</i>	96	45.8%	98	37.8%	58	55.2%	82	46.3%
chr5	175837271	175837271	C	G	exonic	<i>CLTB</i>	81	46.9%	77	46.8%	58	39.7%	68	41.2%
chr7	100175865	100175865	A	G	exonic	<i>LRCH4</i>	65	46.2%	97	45.4%	63	58.7%	87	39.1%
chr8	4851937	4851937	A	T	exonic	<i>CSMD1</i>	52	53.8%	34	41.2%	59	47.5%	50	50.0%
chr9	103340555	103340555	G	A	exonic	<i>MURC</i>	66	54.5%	93	48.4%	75	50.7%	78	50.0%
chr11	48286119	48286119	C	T	exonic	<i>OR4X1</i>	82	50.0%	93	54.8%	68	55.9%	76	57.9%
chr20	1300304	1300304	C	T	splicing	<i>SDCBP2</i>	66	43.9%	63	46.0%	49	46.9%	48	43.8%
chr12	6675434	6675434	C	T	exonic	<i>NOP2</i>	83	21.7%	77	53.2%	53	56.6%	65	56.9%
chr12	50746672	50746672	A	G	exonic	<i>FAM186A</i>	98	30.6%	83	21.7%	58	17.2%	91	29.7%
chr15	42511798	42511798	T	A	exonic	<i>TMEM87A</i>	146	24.0%	145	1.4%	67	0.0%	110	0.9%
chr18	14852387	14852387	G	T	exonic	<i>ANKRD30B</i>	87	25.3%	100	2.0%	68	1.5%	116	2.6%
chr1	201180485	201180485	A	G	exonic	<i>IGFN1</i>	119	33.6%	139	26.6%	96	30.2%	117	40.2%
chr11	65480401	65480401	C	T	exonic	<i>KAT5</i>	61	24.6%	62	0.0%	59	1.7%	49	0.0%
chr8	23115566	23115566	G	A	exonic	<i>CHMP7</i>	87	12.6%	80	3.8%	63	1.6%	63	0.0%
chr10	114182146	114182146	G	T	exonic	<i>ACSL5</i>	93	1.1%	84	51.2%	53	47.2%	71	47.9%
chr17	33749201	33749203	TCT	-	exonic	<i>SLFN12</i>	105	0.0%	100	44.0%	70	37.1%	67	44.8%
chr1	152883009	152883009	T	C	exonic	<i>IVL</i>	49	12.2%	53	15.1%	72	11.1%	55	9.1%
chr16	15711240	15711240	G	A	exonic	<i>KIAA0430</i>	85	1.2%	102	12.7%	64	10.9%	68	7.4%
chr12	50746414	50746414	T	G	exonic	<i>FAM186A</i>	97	28.9%	82	29.3%	58	25.9%	82	36.6%
chr1	186276394	186276394	T	G	exonic	<i>PRG4</i>	46	17.4%	34	11.8%	52	28.8%	55	23.6%
chr3	195512734	195512734	T	G	exonic	<i>MUC4</i>	188	13.8%	175	13.1%	106	22.6%	151	15.9%
chr1	238048745	238048745	G	T	exonic	<i>ZP4</i>	92	0.0%	68	4.4%	51	5.9%	77	3.9%

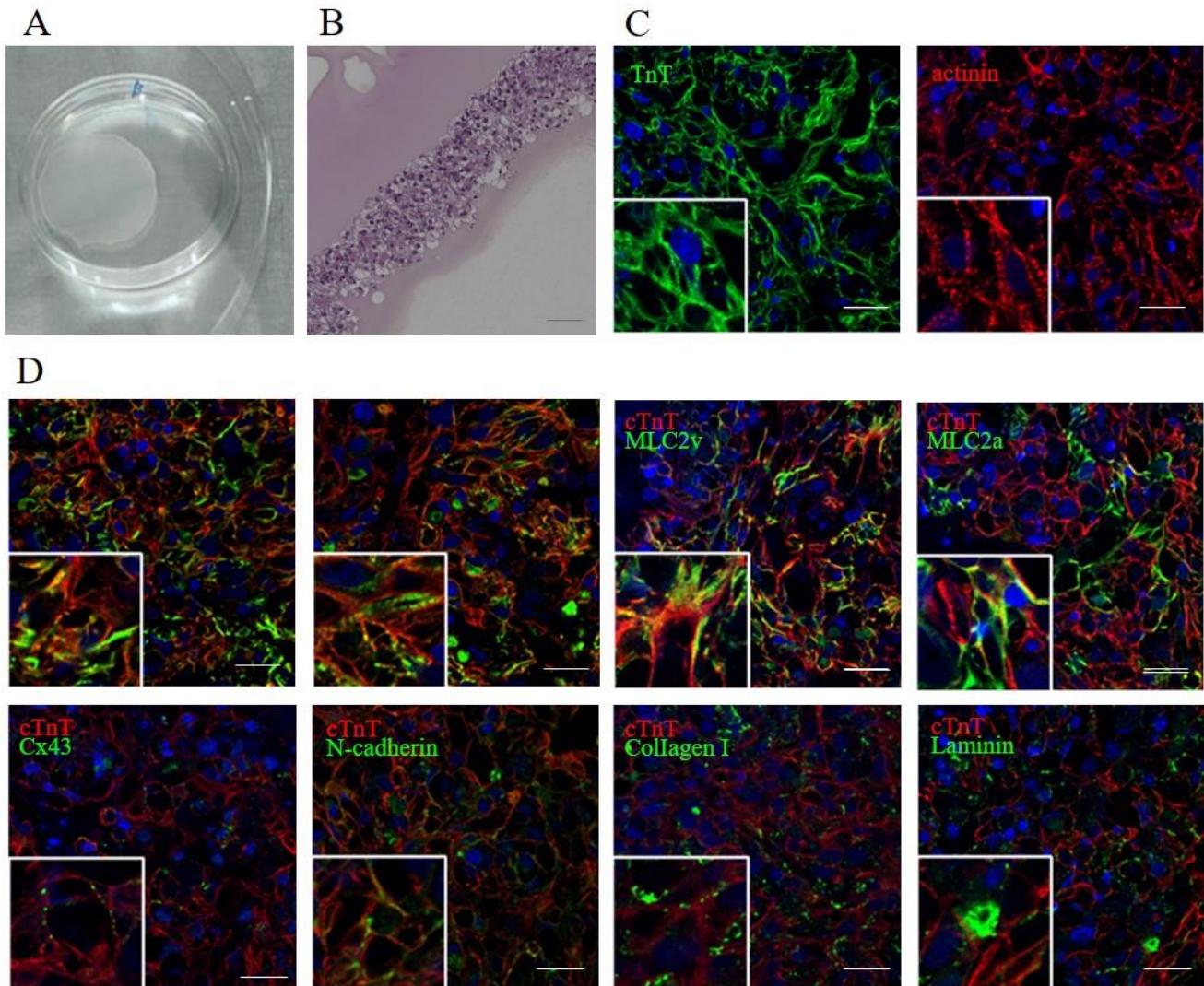

2 MCB, master cell bank; SNV, single-nucleotide variant; Indels, insertions/deletions; Chr, chromosome; cov,

3 depth of coverage; alt_ratio, alternative ratio.

4

1 Figures

2 Figure 1. Characterisation of hiPSC-CMs

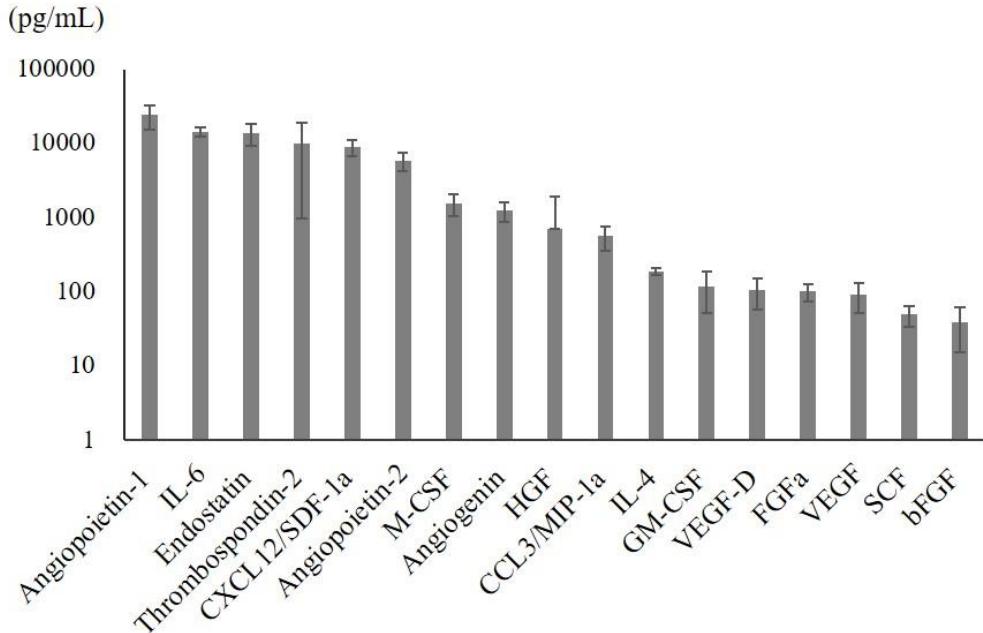


3

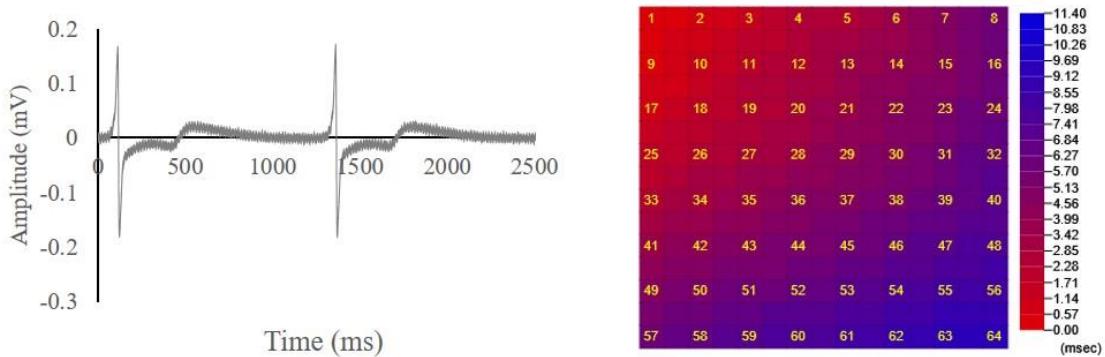
4

42

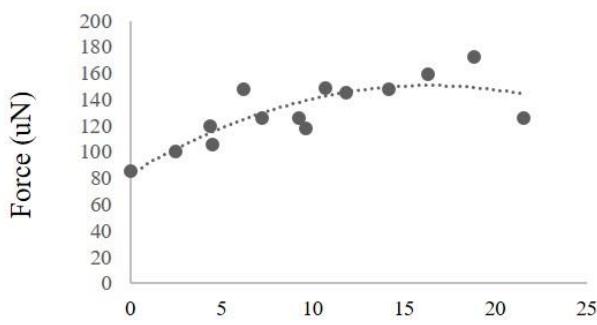
1 **Figure 2. Characteristic properties of the hiPSC-CM patch**



2

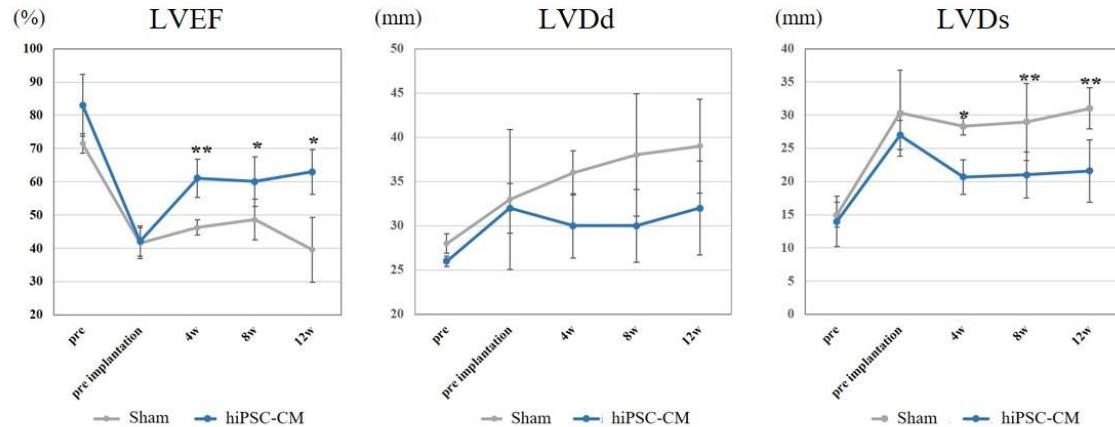

3

1 **Figure 3. Characterisation of the hiPSC-CM patch**

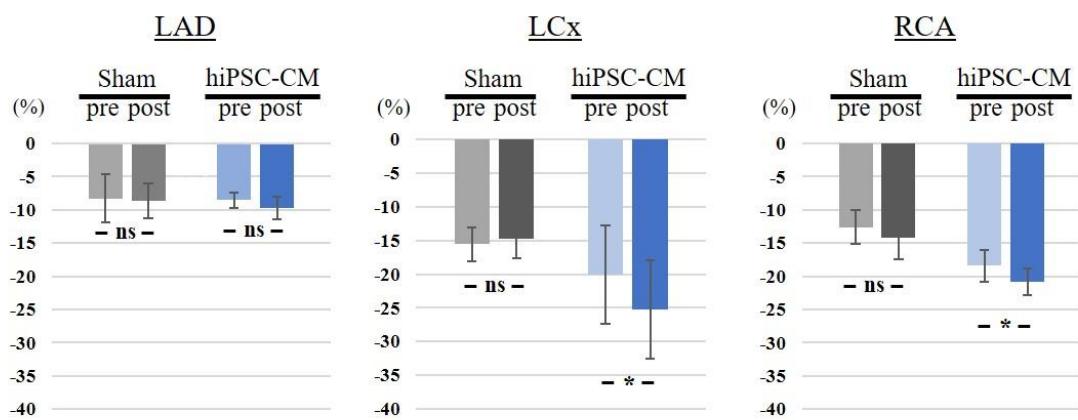

A

B

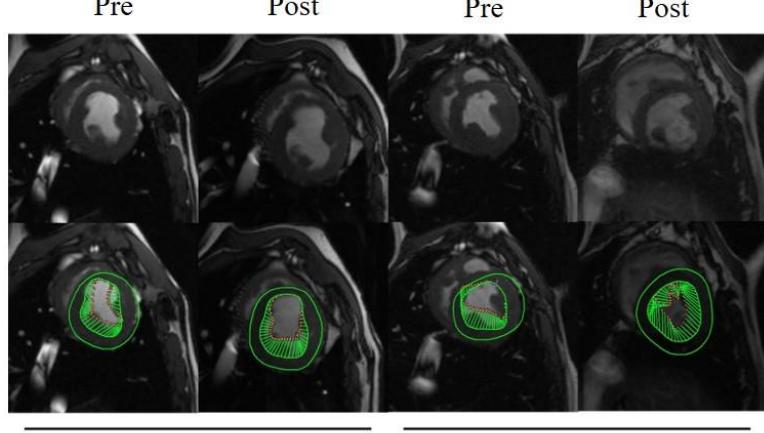
C



2


3

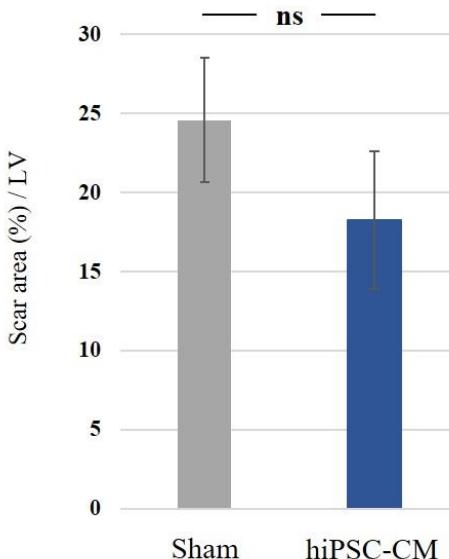
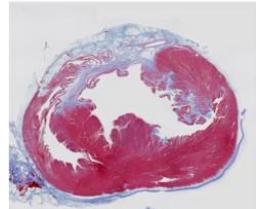
1 **Figure 4. Efficacy of hiPSC-CM patch transplantation into a porcine MI model: a**
2 **pre-clinical trial.**


A

B

C

3



4

D

Sham

hiPSC-CM

1

2

3

4

5

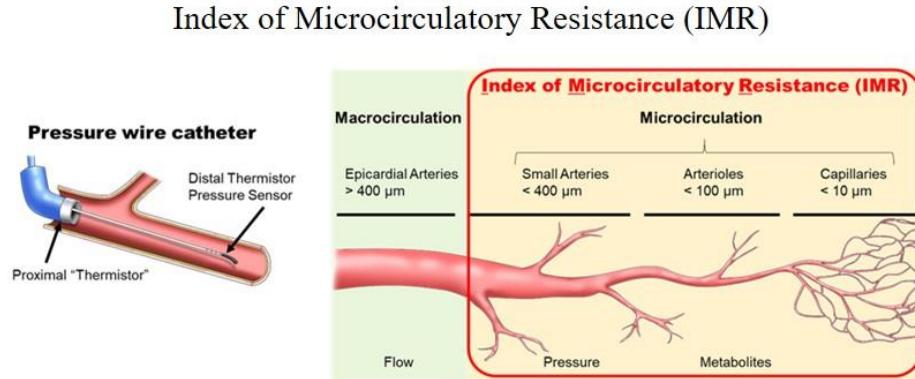
6

7

8

9

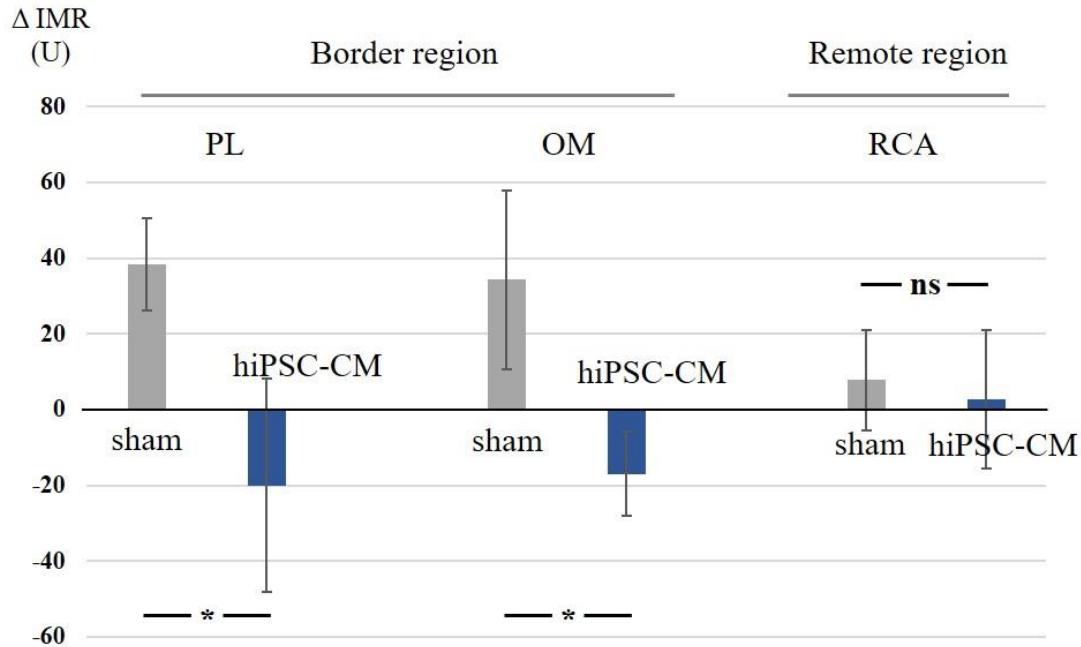
10

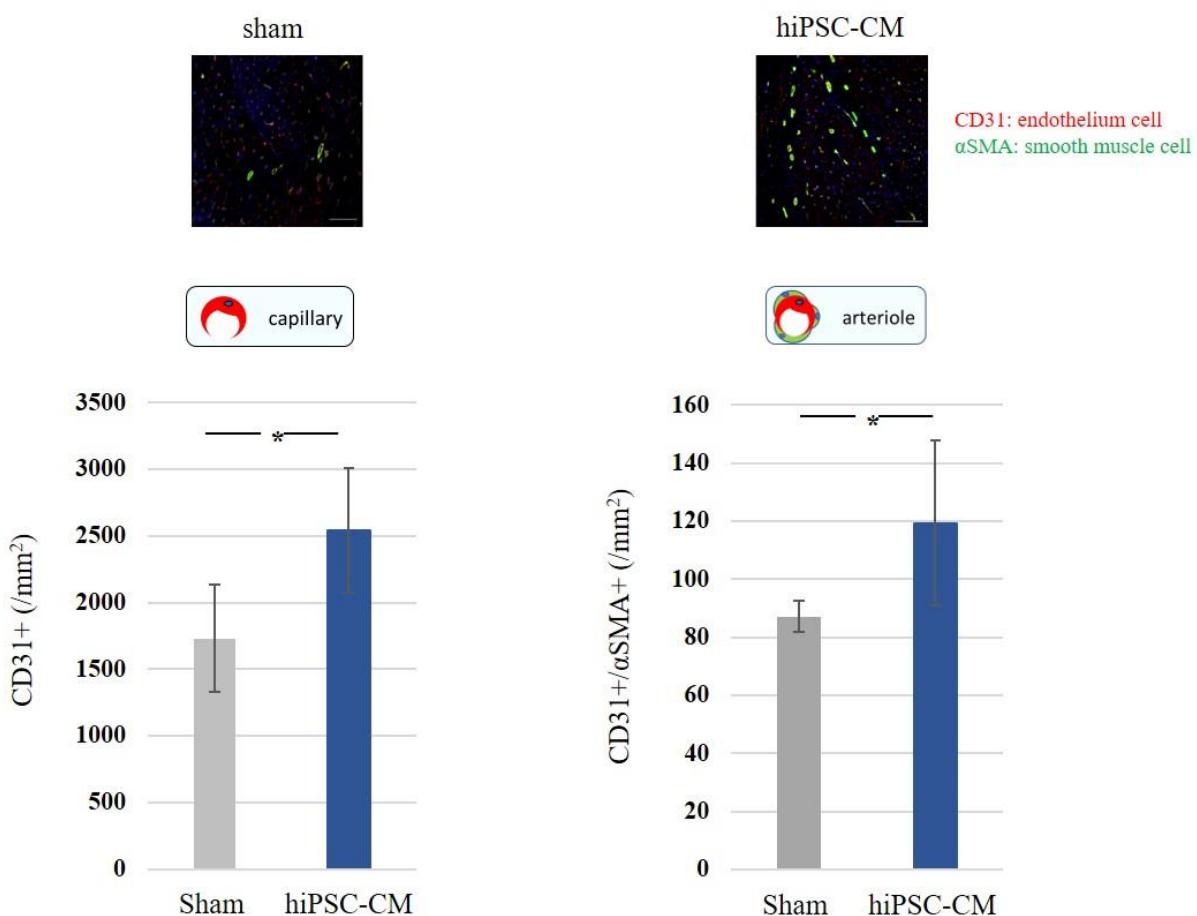

11

12

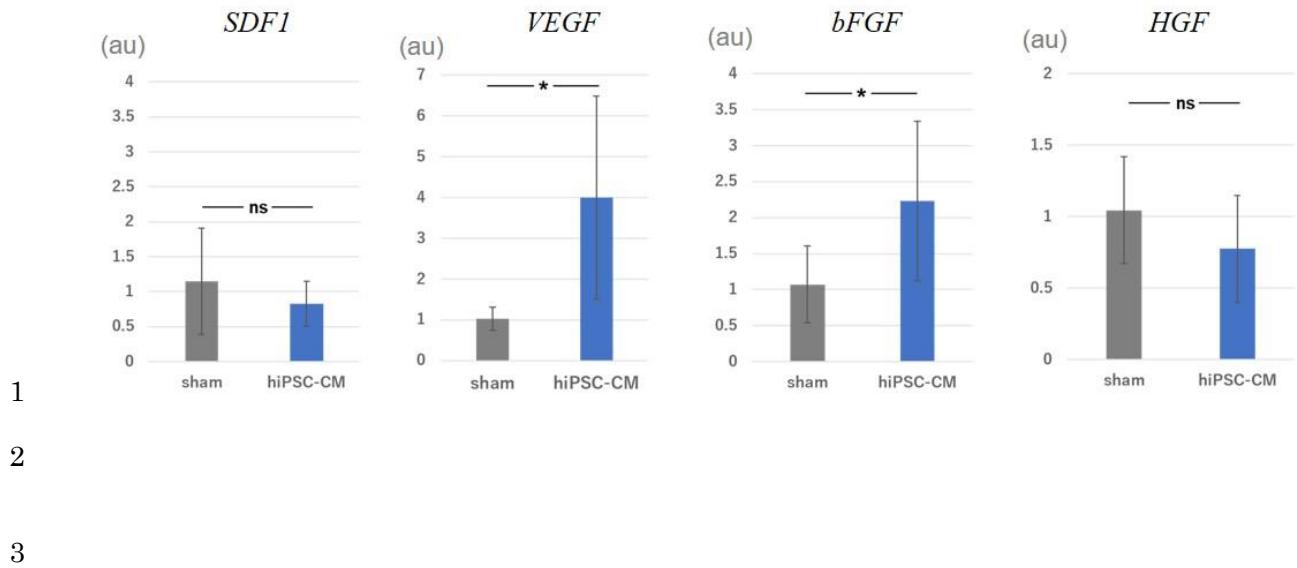
13

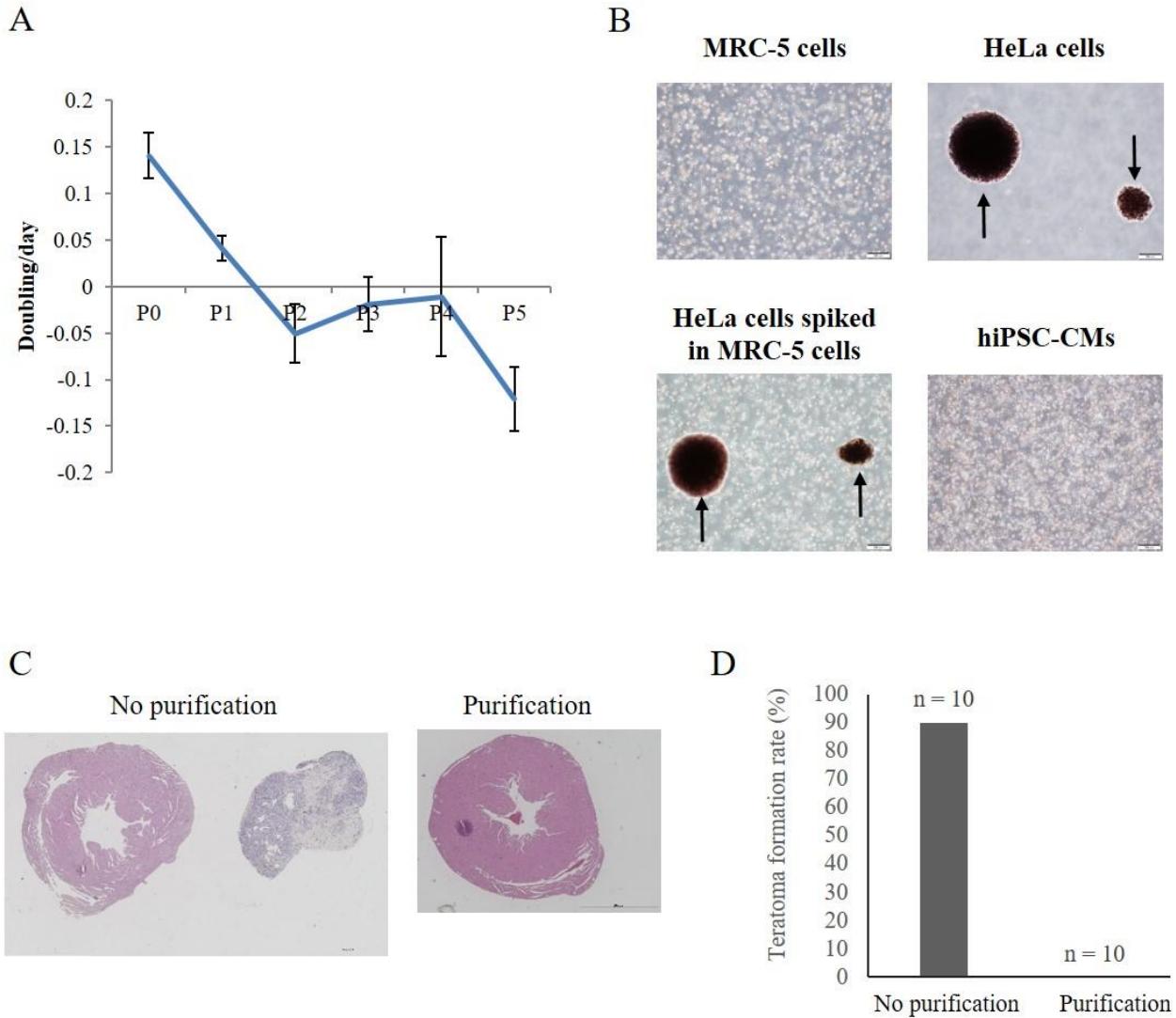
1 **Figure 5. Change in IMR and cytokine expression after transplantation of the**
2 **hiPSC-CM patch into a porcine MI model**


A


Δ IMR = post IMR - pre IMR

Δ IMR < 0 : improvement of microvascular resistance


B


C

D

1 **Figure 6. Detection of tumourigenic cells *in vitro* and *in vivo*.**

2

3