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Abstract

Normative modelling is becoming more popular in neuroimaging due to its
ability to make predictions of deviation from a normal trajectory at the
level of individual participants. It allows the user to model the distribution
of several neuroimaging modalities, giving an estimation for the mean and
centiles of variation. With the increase in the availability of big data in
neuroimaging, there is a need to scale normative modelling to big data sets.
However, the scaling of normative models has come with several challenges.

So far, most normative modelling approaches used Gaussian process re-
gression, and although suitable for smaller datasets (up to a few thousand
participants) it does not scale well to the large cohorts currently available
and being acquired. Furthermore, most neuroimaging modelling methods
that are available assume the predictive distribution to be Gaussian in shape.
However, deviations from Gaussianity can be frequently found, which may
lead to incorrect inferences, particularly in the outer centiles of the distribu-
tion. In normative modelling, we use the centiles to give an estimation of
the deviation of a particular participant from the ‘normal’ trend. Therefore,
especially in normative modelling, the correct estimation of the outer centiles
is of utmost importance, which is also where data are sparsest.

Here, we present a novel framework based on Bayesian Linear Regression
with likelihood warping that allows us to address these problems, that is,
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to scale normative modelling elegantly to big data cohorts and to correctly
model non-Gaussian predictive distributions. In addition, this method pro-
vides also likelihood-based statistics, which are useful for model selection.

To evaluate this framework, we use a range of neuroimaging-derived
measures from the UK Biobank study, including image-derived phenotypes
(IDPs) and whole-brain voxel-wise measures derived from diffusion tensor
imaging. We show good computational scaling and improved accuracy of
the warped BLR for certain IDPs and voxels if there was a deviation from
normality of these parameters in their residuals.

The present results indicate the advantage of a warped BLR in terms of;
computational scalability and the flexibility to incorporate non-linearity and
non-Gaussianity of the data, giving a wider range of neuroimaging datasets
that can be correctly modelled.

Keywords: Machine learning, UK Biobank, Big Data, Bayesian Linear
Regression, Normative Modelling

1. Introduction1

Big data has become more widely available in neuroimaging (UK Biobank,2

ENIGMA, ABCD study, PNC, among others) [1], [2], [3], [4]. This has ig-3

nited a renewed interest in modelling normal brain development, to estimate4

quantitive brain-behaviour mappings and capture deviations from such mod-5

els to derive neurobiological markers of different psychiatric disorders. These6

neurobiological markers could move us closer towards individualized and pre-7

cision medicine [5]. Until now, the neurobiological markers for psychiatric dis-8

orders have been mostly developed with studies that used classifiers trained9

in a case-control setting. Counter-intuitively, an increase in sample size has10

shown to reduce the accuracy of classifying cases from controls for psychi-11

atric disorders [6]. One of the main reasons for this decrease in accuracy12

has been posed to be the heterogeneity in the participants both biologically13

and behaviorally, which can only fully be captured by a large data set [6].14

Normative modelling is an emerging method used to understand this hetero-15

geneity in the population. Similar to growth charts in pediatric medicine,16

which describe the distribution of height or weight of children according to17

their age and sex, normative models can be used to model the distribution of18

neuroimaging derived phenotypes in a population, including the mean and19

centiles of variation [7], according to age, gender, or other demographic or20
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clinical variables [8]. The deviations from this normative range can be quan-21

tified statistically, for example as Z-scores, which have been linked to several22

psychiatric disorders [7], [9], [10], [11], [12], [13].23

Although promising, there are still certain challenges in performing nor-24

mative modelling on big neuroimaging data. First of all, Normative models25

have been mainly developed using Gaussian process regression. [14]. Gaus-26

sian process regression is flexible and accurate, but a drawback is its com-27

putational complexity, which is governed by the need to compute the exact28

inverse of the covariance matrix. This inversion scales poorly with an in-29

crease in data points [15]. Therefore, using these models on large datasets30

requires extensive computational power and is often not feasible (typically31

beyond a few thousand subjects). Furthermore, most normative models as-32

sume the modelled distribution is Gaussian. However, distributions diverging33

from Gaussianity are frequently found in specific neuroimaging modalities.34

These non-Gaussian signals cannot be accounted for using a standard nor-35

mative model based on Gaussian process regression. We argue that mod-36

elling non-Gaussianity is important in general and is frequently overlooked37

by the neuroimaging community in that most regression methods used in38

practice –often implicitly– assume Gaussian residuals. Thus, there is a need39

to develop methods that can flexibly handle the computational demand and40

non-Gaussianity of big data sets.41

In this paper, we propose a next-generation framework based on Bayesian42

linear regression (BLR) to address these challenges. We introduce an exten-43

sion of the BLR method for accurately modelling non-Gaussian distributions44

using a likelihood warping technique, giving a warped BLR model. The new45

framework has several benefits over previously used methods: (i) A BLR46

model can use a linear combination of non-linear basis functions (such as B-47

splines) which can be considered to provide a low-rank approximation of the48

Gaussian process regression models [16]. However, the BLR model has con-49

siderably better computational scaling, since the complexity of the model is50

fixed according to a set of basis-functions. Therefore, the model can be scaled51

much more easily to large datasets. Furthermore, a set of model coefficients52

can be estimated that can easily be shared without the need to share the data53

(e.g. to compute a cross-covariance matrix for new data points), thus mak-54

ing it easier to make predictions on new datasets. (ii) The non-Gaussianity55

of the residuals can be modelled by the flexible warping of the Gaussian56

function, which gives more options to model different types of neuroimaging57

data that cannot be accurately modelled using a standard BLR. (iii) Efficient58
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model selection criteria are naturally defined for the warped BLR through59

the marginal likelihood and can be calculated in closed form. The marginal60

likelihood gives a balance between model complexity and model fit. This can61

aid in choosing the optimal model for a specified imaging modality.62

We will demonstrate this model by testing it on different types of neu-63

roimaging data derived from the UK Biobank dataset. The UK Biobank64

dataset has several magnetic resonance imaging (MRI) imaging modalities,65

including structural and functional brain data. With over 40,000 partici-66

pants’ MRI data from 40 to 80 years old, this provides a rich set of differ-67

ent neuroimaging data and defines a benchmark for future population-based68

studies. In this work, we will present the warping function and recommend69

how to use it for several data modalities. First, we give an illustrative exam-70

ple using image-derived phenotypes (IDPs), which are convenient and widely71

used summary measures of brain function and structure [17]. Specifically, we72

will show a detailed example of estimating a normative model for white mat-73

ter hyperintensities (WMHs). WMHs have been shown before to demonstrate74

quite non-Gaussian behaviour [18], and are therefore a good example where75

the warped BLR could be preferred over the B-spline BLR. Second, we show76

the scalability of this method by performing a whole-brain analysis for cer-77

tain diffusion tensor imaging (DTI) measures. We use DTI measurements,78

as there are large associations with age and we expect certain non-linear and79

non-Gaussian trends in the data [19].80

Finally, we want to evaluate the link between brain imaging abnormality81

scores and behaviour. Therefore, deviations from normal brain functioning82

are associated with cognitive functioning. The deviations are captured by83

Z-scores, which are shown to correlate with measures of intelligence in the84

UK Biobank dataset, such as; numerical memory, reaction time and visual85

memory.86

In summary, the main contributions of the paper are to give: (i) a new87

comprehensive framework for big data normative modelling; (ii) the intro-88

duction of the novel methodological approach for modelling non-Gaussian89

response variables; (iii) an extensive and didactic evaluation of this frame-90

work on the UK Biobank cohort and (iv) a demonstration of the ‘Predictive91

Clinical Neuroscience software toolkit’ (PCNtoolkit) for big data normative92

modelling. Ultimately, we hope this paper will give deeper insight into the93

application of normative models on different types of neuroimaging modali-94

ties.95
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2. Materials and methods96

2.1. Sample97

All the data used came from the UK Biobank imaging dataset [1]. Full98

details on the design of the study and the preprocessing steps can be found99

in subsequent papers [17], [20]. Briefly, the data used contains around 10,000100

participants of the 2017 release and additional longitudinal data of around101

5,000 subjects of the 2020 release. The participants were between 40 and 80102

years of age, with around 47 % males.103

In this study, two types of analyses were performed using different datasets.104

For the first analysis, a dataset containing IDPs was used. For consistency105

with existing work, the IDPs were processed using FUNPACK [21], which106

is an automatic normalisation, parsing and cleaning kit, developed at the107

Wellcome Centre for Integrative Neuroimaging. The IDPs include three108

main imaging modalities: structural, functional and diffusion brain imag-109

ing. Among these IDPs, there are very gross measures, such as the total110

amount of brain volume, to more detailed measurements, such as the con-111

nectivity between two brain regions. In total 819 neuroimaging IDPs were112

used for subsequent analysis, see B.1 for the list of IDPs used. Furthermore,113

we also tested our model on another set of IDPs; 150 FreeSurfer measures,114

which were preprocessed with FreeSurfer v6.1.0, using a T2-weighted image115

where available, see B.1 for the list of the FreeSurfer measures used.116

For the second analysis, a whole-brain model was built, using voxel-wise117

fractional anisotropy (FA) and mean diffusivity (MD) measures. The data118

were processed using the UKB pipelines; including the DTI fitting tool DTI-119

FIT and a tract-based spatial statistics (TBSS) style analysis, which gave us120

the skeletonised DTI files. In total, around 10,000 participants with dMRI-121

scans passed the quality control applied by the UK Biobank [17]. Afterwards,122

we added two extra exclusion criteria. First, participants were removed if123

their Z-score of the discrepancy between the dMRI image and the struc-124

tural T1 image was higher than three, based on data-field 25731 in the UK125

Biobank. Second, participants were removed if their Z-score of the number126

of outlier slices was higher than three, which is a reflection of the movement127

of the participant during the scan, based on data-filed 25746-2.0 in the UK128

Biobank. For the covariates we used age, gender and dummy coded site129

variables.130
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2.2. Cognitive data131

We used the cognitive phenotypes that were extracted from the UK132

biobank using FUNPACK [21] to evaluate the cognitive associations with133

the deviations from the normative model. These measures are derived from134

the 13 cognitive tests present in the UK Biobank, see the UKB showcase. The135

tests were administered using a touchscreen questionnaire and included nu-136

merical memory, reaction time, fluid intelligence, visual memory and prospec-137

tive memory. Later other tests that measured executive function, declarative138

memory and non-verbal reasoning were added [22]. For full details on the139

different cognitive tests applied in UK Biobank see [23]. An overview of all140

the measures used in this study is presented in the supplementary E.6.141

2.3. Normative model formulation142

We use a flexible normative modelling framework to model different types143

of neuroimaging data. We have N subjects with brain data {yn}
N
n=1, each of144

dimension D (e.g. the number of voxels or IDPs) and acquired from one of145

S different scanning sites. We use Y to denote an N ×D matrix containing146

these variables, where ynd denotes the n-th subject and d-th neuroimaging147

variable. Since the neuroimaging variables are estimated separately here,148

we simplify the notation by using y to denote the vector of observations149

from a single variable and yn for a single observation. In general, we want150

to predict the distribution of the value for each voxel or brain region, the151

dependent variable (y), from a set of covariates {xn}
N
n=1 (e.g. age, gender or152

site), the independent variables. In this paper, we adopt a straightforward153

approach to model nonlinear relationships, by applying a basis expansion to154

the independent variables. A common approach is to use polynomials, but155

these can be a poor choice, as they can induce global curvature [24]. Here156

we apply a common B-spline basis expansion (specifically, cubic splines with157

5 evenly spaced knot points), although other approaches are also possible.158

We denote this expansion by φ(x), with Φ an N ×K matrix containing the159

basis expansion for all subjects. In the applied model, y is assumed to be the160

result of a linear combination of the B-spline basis function transformation161

plus a noise term:162

y = wTφ(x) + εs (1)

With w the estimated vector of weights and εs = N (0, β−1
s ) a Gaussian noise163

distribution for site s, with mean zero and a noise precision term βs (i.e. the164

inverse variance). All the noise precision terms from the different sites will165
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be combined in a vector βββ and the site precision matrix ΛβΛβΛβ, which has βββ166

along the leading diagonal and is the inverse of the site covariance matrix167

ΛβΛβΛβ = ΣβΣβΣβ
−1. Note that we allow the noise precision to vary across sites in168

order to accommodate inter-site variation along with site-specific intercepts169

(i.e. dummy coded site regressors in the design matrix). We have shown170

previously that this approach provides an efficient way to accommodate site171

effects in normative modelling [25].172

Following similar derivations as given by Huertas et al. [16], we consider173

a BLR model, placing a Gaussian prior over our model parameters p(w|ααα) =174

N (w|0,ΛαΛαΛα
−1), with ααα the hyper-parameters that the weights depend on. The175

Gaussian prior is assumed to have a mean zero and a precision matrix ΛαΛαΛα,176

with the precision matrix the inverse of the covariance matrix ΣαΣαΣα = ΛαΛαΛα
−1.177

As shown in Huertas et al. [16], ΛαΛαΛα can be quite general, but here we use a178

simple isotropic precision matrix ΛαΛαΛα = αI. The Gaussian prior choice allows179

us to compute the posterior distribution of w in a closed form:180

p(w|y,Φ,ααα,βββ) =
likelihood × prior

marginal likelihood
=

∏

n p(yn|Φ,βββ,w)p(w|ααα)

p(y|ΦΦΦ,ααα,βββ)
(2)

The posterior for each subject can then be found using the standard181

derivations of the posterior [26]:182

p(w|y,Φ,ααα,βββ) = N (w|w̄,A−1)

A = ΦTΛΛΛβββΦ + ΛαΛαΛα

w̄ = A−1ΦTΛΛΛβββy (3)

We use a Type II maximum likelihood approach (i.e. empirical Bayes),183

optimizing the denominator of the posterior to find the optimal hyper-parameters184

ααα and βββ. This gives an automatic trade-off between model fit and model com-185

plexity. The marginal likelihood is maximized by minimizing the negative186

log likelihood (NLL):187
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NLL = −log(p(y|ααα,βββ))

= −log(

∫

p(y|w,βββ)p(w|ααα)dw)

= −(
N

2
log|ΛΛΛβββ| −

ND

2
log2π −

N

2
log|ΛαΛαΛα| −

N

2
log|A|

−
1

2

N
∑

n=1

(y −Φw̄)TΛΛΛβββ(y −Φw̄) − w̄TΛαΛαΛαw̄) (4)

The optimal hyper-parameters ααα and βββ are often estimated using a conju-
gate gradient optimisation of the NLL, where the derivatives can be computed
directly. However, here we used Powell’s method to fit the hyper-parameters.
Powell’s method is a derivative-free method, which in this case is faster, be-
cause computing the derivatives of the marginal likelihood with respect to the
hyper-parameters is computationally very expensive. Finally, the predictive
distribution is given by:

ŷ = N (w̄Tφ(x), φ(x)TA−1φ(x) + β−1
s ) (5)

2.3.1. Likelihood warping188

In order to model non-Gaussian error distributions, we employed a ‘warped’189

likelihood [27]. This involves applying a non-linear monotonic warping func-190

tion ϕi to the input data during the model fit, with the index i indicating a191

different warping function (e.g. SinArcsinh, Box-Cox etc.). This is similar192

to the classical statistical technique of variable transformation, but has the193

advantage that the parameters of the transformation are optimised during194

model fitting, to provide the optimal mapping that ensures that model resid-195

uals have a Gaussian form. The warped functions are chosen such that they196

have a closed form inverse and are differentiable, which has several bene-197

fits: first, non-Gaussian data can be mapped (i.e. warped) exactly to better198

match Gaussian modelling assumptions or the predictions can be warped199

back to the original non-Gaussian space; second, it allows inference, predic-200

tion and computation of error measures all in closed form; finally, we can201

construct compositions of functions from the invertible monotonic warping202

functions that can greatly improve the expressivity of the model in transform-203

ing non-Gaussian distributed data y to a Gaussian form, z, where inference204

is straightforward [28]. This is done by applying a compositional warping205

function ϕ to the observations y:206
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ϕ(.) = ϕi(ϕi−1(...(ϕ2(ϕ1(.)))...))

z = ϕ(y;γγγ) (6)

With γγγ denoting the hyper-parameter(s) of different warping functions.207

The warping transformation allows us to compute error measures in the208

warped space and to describe the deviations of subjects under a Gaussian209

error distribution in the form of pseudo Z statistics, even if the original data210

distribution is non-Gaussian.211

The optimal hyper-parameters (ααα,βββ and γγγ) are calculated by minimizing212

the warped NLL. The warped NLL can be found by accounting for the change213

of variables in the probability density function [28]:214

py(y) = pz(ϕ(y))|∇ϕ(y)|

With ∇ϕ(.) the Jacobian of the transformation, which is diagonal and215

therefore we can simplify as a product of the individual terms:216

py(y) = pz(ϕ(y))
n
∏

i=1

dϕ(yn)

dy

If we take the negative log of this equation the warped NLL will remain217

the same as equation 4, except for replacing the y by the transformed ϕ(y)218

and the inclusion of the Jacobian term that takes the change of volume219

induced by the warping into account, thereby ensuring a valid probability220

measure, for details see [28]:221

Warped NLL = −log(p(y|ααα, β,γγγ))

= NLL −
N
∑

n=1

log
dϕ(yn)

dy
(7)

2.3.2. Computational complexity222

The optimization of the hyper-parameters is controlled by the minimiza-223

tion of the warped NLL. The warped NLL consists of the basic BLR NLL224
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term and the log-derivatives of the warping ϕi functions, which are known225

in closed-form by construction. The complexity of the warped BLR model226

is then roughly the same as the classic BLR. However, the warped NLL is227

optimized for an extra hyper-parameter γγγ, which could lead to the presence228

of more local minima, making the optimization process slightly slower [28].229

2.3.3. Warped composition function230

Different elementary functions can be used to create the warped compo-231

sition function ϕ. For this paper, we test affine, Box-Cox and SinhArcsinh232

transformations and compositions of these transformations:233

ϕAffine(y;γγγ) = a + by

ϕBox−Cox(y;γγγ) =
sgn(y)|y|λ − 1

λ

ϕSinhArcsinh(y;γγγ) = sinh(b ∗ arcsinh(y) − a) (8)

With γγγ the respective parameters of the different warping functions. For
the SinArcsinh warping we also applied a reparametrization [29], as this
empirically gave more stable results:

ϕSinhArcsinh(y;γγγ) = sinh(b ∗ arcsinh(y) + ε ∗ b)

a = −ε ∗ b

2.4. Model selection234

We evaluate the models using different model selection criteria. First, we
calculate the explained variance (EV) of the model. It is expected that the
gain in fit for the warped BLR will be highly dependent on the flexibility
of the model. Therefore, the Bayesian Information Criterion (BIC) is also
considered:

BIC = k ∗ log(N) + 2 ∗NLL

Which penalises for model complexity. Here N denotes the number of partic-235

ipants in the training set, NLL the negative log-likelihood. k is the number of236

free parameters. Note that we use the marginalized from of the NLL, which237

already takes into account the number of estimated coefficients. Therefore,238

the BIC only needs to be corrected for the added complexity of the degrees239
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of freedom of the model (i.e. the parameters that are not integrated out).240

For the standard BLR this is two, one for the precision over the weights and241

one for the precision over the noise (α and β respectively). For the warped242

SinArcsinh BLR two extra degrees of freedom are added for the shape param-243

eters (a and b). The BIC gives a good trade-off between the extra flexibility244

found in the warped BLR model and the better fit of the model. Finally, the245

mean standardized log-likelihood (MSLL) is used as a third model criterion.246

The MSLL takes into account the mean error and the estimated prediction247

variance.248

2.5. Deviance scores and correlation to cognitive phenotypes249

We want to find a statistical estimate of how much each participant de-
viates from the normal range. This is done by computing a Z-score for each
subject n, also denoting explicitly the dependence on each voxel or IDP d:

znd =
ynd − ŷnd

√

σ2
d + (σ2

∗
)
d

(9)

With, ŷnd the predicted mean and ynd the true response. Normalized250

by σ2
d = (β−1

s )d the estimated noise variance (i.e. reflecting variation in251

the data) and (σ2
∗
)d = φ(x)TA−1

d φ(x) the variance attributable to modelling252

uncertainty for the d-th voxel. For the warped statistic, we compute the253

Z-scores in the warped (i.e. Gaussian) space. The true response variables254

are warped to the Gaussian space to ensure the underlying assumption of255

normality is satisfied by the construction of the warping functions.256

Afterwards, to ensure our model can also be applied for behavioural and257

clinical estimations, we look at the correlations between the Z-scores from258

the IDPs and the whole brain analysis, and the cognitive scores of the UK259

Biobank. For the IDPs, we directly correlate the Z-scores and the cognitive260

phenotypes through a Spearman correlation. For the whole-brain analysis,261

we first make a summary statistic of the Z-scores by calculating the extreme262

value distribution. We model the extreme value distribution by looking at263

the mean of the top 1% of the deviations across the whole brain [10]. The264

extreme value statistics give the largest deviations per subject from the nor-265

mal pattern, which have shown to be strongly correlated to behaviour [10],266

[30]. Afterwards, we apply a principal component analysis (PCA) on the267

cognitive phenotypes to give a one-factor solution. This first component has268

been shown to be correlated to the ‘general’ factor of cognitive ability or the269
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‘g-factor’ [31]. Lastly, we compute the Spearman coefficient between the first270

principal component and the summary deviation score.271

3. Results272

3.1. Performance of the warped Bayesian linear regression model for IDPs273

All the statistical analyses were performed in Python version 3.8, using274

the PCNtoolkit. The BLR algorithm from the PCNtoolkit was chosen for275

all experiments. We considered age, binary gender and binary site ID within276

the covariance matrix. We used a standard BLR or we transformed the277

age covariate with a B-spline of order three with three knots. The Powell278

method was selected for the optimizer. We randomly split the dataset into279

50% training and 50% test and reported all the error metrics on the test280

set. In the PCNtoolbox, several warpings can be chosen depending on the281

imaging modality one wants to model. We tested several warping functions282

(affine, Box-Cox and SinhArcsinh) and compositions of these warping func-283

tions. Preliminary testing showed that the SinhArcsinh warping gave the284

best fit compared to the alternatives evaluated. Therefore, in this paper,285

only the results of the SinhArcsinh warping are presented.286

In figure 1, Bland-Altman plots are shown comparing the standard BLR287

and the B-spline BLR. The figure presents different model selection criteria:288

MSLL and BIC (EV can be seen in supplement figure A.8). The plots demon-289

strate that for most IDPs a non-linear B-spline BLR model performs better290

than a standard BLR. Indicating that non-linearity is a key component that291

should be accounted for in modelling neuroimaging data.292

In figure 2, Bland-Altman plots are shown that compare the B-spline293

BLR and the warped BLR models for all IDPs, using the MSLL and BIC294

(EV can be seen in supplement figure A.8). We also plotted the difference295

in absolute values of the skewness and kurtosis. In figure 3, the same plots296

are shown for the FreeSurfer measures. We included them separately, as297

they were preprocessed separately (i.e. we did not use the IDPs provided298

by UK Biobank and instead ran the Freesurfer reconstructions manually).299

The plots show that for specific IDPs the warped BLR performs better than300

the B-spline BLR. When we examined these IDPs more closely, it was noted301

that they demonstrated distinct non-Gaussian behaviour. An example of302

such behaviour is given down below with the WMHs (white matter hyper-303

intensities). In the supplementary table C.3, we provide a summary of some304

of the results for different IDPs that can help inform which neuroimaging305
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Figure 1: Bland-Altman plots comparing the standard and B-spline Bayesian Linear Re-
gression (BLR) models, using Image-Derived Phenotypes (IDPs). Each dot indicates one
IDP. The models are compared according to the following model selection criteria: the
Mean Standardized Log Loss (MSLL) (A) and the Bayesian Information Criteria (BIC)
(B). The green colour indicates a better fit for the non-linear B-spline model compared to
the linear model. We also plotted a zoomed-in view of the model fit for one of the IDPs.

modalities are best modelled with the warped BLR. For an indication of the306

effect sizes of the model selection criteria for the different model settings,307

see supplementary tables D.4 and D.5. Note also that the MSLL and EV308

do not clearly reflect differences in the shape of the predictive distribution.309

For example, for the IDPs, there is no average difference between the warped310

and non-warped model (Fig. 2 panel A and supp. fig. A.8 panel B), yet311

the warped model consistently yields a predictive distribution –and resultant312

Z-score distribution– that is less (or equivalently) skewed and kurtotic (Fig.313

2 panels C and D).314

In figure 4 and 5, we show the results of an illustrative analysis predicting315

WMH load across ageing to demonstrate how the performance of the warped316

BLR model compares to a B-spline BLR. The figures show the B-spline BLR317

and warped BLR results for WMHs at one-time point and the longitudinal318

data of two-time points. The results demonstrate that (i) the non-linearity319

of the data is sufficiently captured with a B-spline transformed BLR (ii)320

the WMHs show a distinctly non-Gaussian variance pattern, which is better321

predicted by the warped BLR. Thus, indicating that if the data has a non-322

Gaussian distribution for the residuals a warped BLR is preferred over a323

B-spline BLR.324
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Figure 2: Bland-Altman plots comparing the B-spline and warped Bayesian Linear Re-
gression (BLR) models, using Image-Derived Phenotypes (IDPs). The models are com-
pared according to the following model selection criteria: the Mean Standardized Log Loss
(MSLL) (A) and the Bayesian Information Criteria (BIC) (B). The green colour indicates
a better fit for the warped model compared to the B-spline model. We also plotted a
zoomed-in view of the model fit for two of the IDPs. On images C and D, we show the
difference in absolute values of the skewness and kurtosis between the B-spline and warped
model. A more positive value indicates that the B-spline model had a higher skewness or
kurtosis than the warped model.

3.1.1. Correlation deviance scores WMHs and cognitive phenotypes325

We also wanted to correlate the warped BLR model output of the WMHs326

to behavioural variables to ensure that the model can be used for behavioural327

predictions. We loaded all cognitive phenotypes available in UK Biobank ac-328

cording to the FUNPACK categorization, including: reaction time, numeric329

memory, prospective memory etc. (for a full list of the cognitive phenotypes330

used, see the supplementary table E.6). We calculated the deviance Z-scores331

according to formula 9. Afterwards, we calculated the Spearman correlation332

between the cognitive phenotypes and the Z-scores. Numeric memory (ID:333

4259, ‘Digits entered correctly’) was modestly but significantly correlated334

with the warped Z-scores: ρ = −0.0331, p = 0.0262. In other words, if a par-335

ticipant’s WMH deviation from normal development increases the number of336
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Figure 3: Bland-Altman plots comparing the B-spline and warped Bayesian Linear Re-
gression (BLR) models, using the FreeSurfer measurements. The models are compared ac-
cording to the following model selection criteria: the Mean Standardized Log Loss (MSLL)
(A) and the Bayesian Information Criteria (BIC) (B). We also plotted a zoomed-in view
of the model fit for one of the IDPs. On images C and D, we show the difference in
absolute values of the skewness and kurtosis between the B-spline and warped model. A
more positive number means a better fit for the warped model compared to the B-spline
model.

correctly remembered digits drops.337

Lastly, to illustrate the value of normative models in a longitudinal con-338

text, we tested for an association between change in WMHs and change in339

cognitive phenotypes of the longitudinal data to see if WMH load is corre-340

lated to cognitive decline. We performed a statistical Wilcoxon rank-sum341

test on the participants’ cognitive phenotypes contrasting subjects that have342

a difference in the Z-scores > 0.5, which corresponds to a difference in half343

a standard deviation, versus the participants that do not. Intuitively, this344

contrasts individuals who are following an expected trajectory of ageing with345

those who deviate from such a trajectory. Highly significant associations were346

found with the reaction time (ID: 404, ‘Duration to first press of snap-button347

in each round’) W = 5.5641, p < 0.001 and with the Trail Making Test (ID:348
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Figure 4: White matter hyperintensities (WMHs) modelled as a function of age using a
Bayesian Linear Regression (BLR) model. Images A and C demonstrate the model fit
using a regular Gaussian B-spline BLR, for the female and male cohorts respectively, both
visualizing the mean prediction and the centiles of variation for the WMHs. Images B and
D show comparable fits for a SinArcsinh warped BLR, for the female and male cohorts
respectively. In images E and F quantile-quantile (QQ) plots of the two models are shown,
demonstrating a better fit for the data using a warped BLR model.

6771, ‘Errors before selecting correct item in alphanumeric path (trail #2)’)349

W = 8.3105, p < 0.001. The results show an association between the change350

in cognition and the change in WMH deviance scores.351
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Figure 5: Here the longitudinal follow-up data of the WMHs is plotted for females (A)
and males (B), using a SinhArcsinh warped BLR model.

3.2. Scalability to a whole brain voxelwise based analysis352

For the follow-up analysis, we evaluated the warped BLR approach on a353

whole-brain level for two DTI imaging modalities (FA and MD). The results354

of these two modalities were very similar and therefore we will only present355

the results for FA here. We separated the entire dataset into 80% training356

data and 20% testing data. First, we computed the time complexity per357

model fit (e.g. for one voxel) with varying number of subjects using the B-358

spline BLR model setting and compared it to the Gaussian process regression359

setting (Figure 6). This demonstrates the clear computational advantage of360

the BLR setting for the whole brain analysis.361

Afterwards, we tested different model settings for the imaging modalities362

including a standard BLR, B-spline BLR and a SinhArcsinh warped BLR.363

Figure 7 shows the comparative results in a Bland-Altman plot for the FA364

dataset (which were similar for the MD dataset). The figure presents the365

EV, MSLL and the BIC for the B-spline BLR and the warped BLR. These366

results are consistent with the IDPs in that according to the EV and MSLL,367

the models perform quite similarly for most voxels. Although, we would368

argue that these measures are not necessarily sensitive for the added benefit369

of the warping of the likelihood, which will mostly affect the predictions in370

the outer centiles. For the BIC the results demonstrate that the warped BLR371

is preferred for certain voxels. The voxels where a warped model is favoured372

generally showed more non-Gaussian behaviour.373

Finally, We used a paired-sample t-test, pairing the whole brain results374

(EV, MSLL and BIC) of the different models to estimate the difference be-375

tween performance measures of the warped and non-warped BLR. For MD376
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the following effect sizes were found: EV : d = 0.33, MSLL : d = 0.003377

and BIC : d = −0.79. For FA the following effect sizes were found: EV :378

d = 0.028, MSLL : d = 0.017 and BIC : d = 0.55. We can see that the379

difference between the methods is small. Indicating that the B-spline BLR380

and the warped BLR model are quite similar in their model fit for MD and381

FA.382

3.2.1. Correlation deviance scores DTI and cognitive phenotypes383

Finally, we correlated the Z-scores of the whole brain warped BLR model384

for the MD dataset to the cognitive phenotypes. First, we scaled the cognitive385

data and performed a principal component analysis. We selected the first386

component, which explained 29% of the variance in the data. Afterwards,387

we made a summary score of the Z-scores for each participant by looking388

at the largest deviations, which in the limit should follow an extreme value389

distribution [32]. We fitted a generalized extreme value distribution to the390

top 1% of the absolute Z-scores of each subject. Subsequently, we computed391

a Spearman correlation between the extreme values and the first principal392

component of the cognitive phenotypes, which gave ρ = 0.158, p < 0.001.393

The results demonstrate a clear correlation between the warped deviations394

from normal development and the cognitive phenotypes. This relationship395

will be explored further in future studies.396

Figure 6: Computational complexity comparison between the Bayesian linear regression
(BLR) model setting and the Gaussian process regression (GPR) model setting, giving
the mean and the standard error (SE) over ten runs.
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Figure 7: Bland-Altman plots comparing the warped Bayesian Linear Regression (BLR)
model to the B-spline BLR model, using Fractional Anisotropy (FA) data. The comparison
is done according to the following model selection criteria: The Bayesian Information
Criteria (BIC) (A), the Explained Variance (EV) (B), and the Mean Standardized Log
Loss (MSLL) (C). The green colour indicates a better fit for the warped BLR.

4. Discussion397

In this paper, we presented a next-generation framework to scale norma-398

tive models for large population-sized datasets based on warped Bayesian399

linear regression (BLR). Normative models can capture the heterogeneity400

in the population and model individual deviations from normal brain de-401

velopment. We demonstrated that the shift in normative modelling to a402

B-spline BLR with a likelihood warping gives several benefits. In this study403

we showed that: (i) Compared to Gaussian process regression, it is compu-404

tationally much less demanding and is therefore scalable to big datasets. (ii)405

The non-linearity of the model, incorporated by the B-spline, improves the406

fit and out of sample predictions for most variables. (iii) Non-Gaussianity407

of the data can be naturally included due to the incorporation of the likeli-408

hood warping in the algorithm, which allows for a wider range of datasets to409

be accurately modelled. (iv) Model selection criteria based on the marginal410
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likelihood, such as the BIC, can be calculated in closed form and therefore411

a trade-off between model fit and model complexity can be chosen opti-412

mally from the training data, without cross-validation. (v) The deviations413

scores from normal brain development can be meaningfully related to be-414

haviour. Furthermore, we demonstrated the use of the normative model415

with the warped BLR on different datasets from the UK Biobank, including416

image-derived phenotypes (IDPs); focusing on white matter hyperintensities417

(WMHs) as an example of non-Gaussianity and a diffusion tensor imaging418

(DTI) modality for a whole-brain model.419

Our proposed method makes it possible to apply normative modelling to420

considerably larger samples than was feasible before [7], [8]. The results from421

the computational experiments on the whole brain model showed that the422

BLR method is scalable to population-sized data sets and fine-grained voxel-423

level data. In comparison, most normative models used Gaussian process424

regression, which due to its high computational complexity could only be425

used in studies with a relatively low sample size. This improvement is mainly426

because the approximation of the covariance matrix by a set of basis functions427

allowed us to account for non-linearity in a computationally less demanding428

way than the Gaussian process regression method, therefore making the B-429

spline BLR scalable for big datasets. Computationally scalable modelling430

of nonlinear effects is important since our experiments showed that a cubic431

B-spline transformation of the age covariate improved model fit compared to432

linear models for most neuroimaging modalities.433

Another major benefit of our method is the possibility of modelling non-434

Gaussian distribution by the use of the likelihood warping technique. This435

is important in general, as the aim of normative modelling is to accurately436

model the centiles of variation in addition to modelling the mean and is437

especially important for normative modelling of variables that are not ap-438

proximately Gaussian distributed. For example, we showed that the WMHs439

show non-Gaussian behaviour that is well suited to uncover the benefits of440

the warped model over the standard model. We demonstrated the improved441

fit of the WMHs by including a B-spline transformation and a SinhArcsinh442

likelihood warping in the normative model, which was also exemplified for443

the longitudinal data. The same improvement in fit for other data modalities444

that showed more non-Gaussianity in their residuals was also demonstrated445

by comparing the warped BLR to the B-spline BLR for all the IDPs. Fur-446

thermore, it was shown on a whole-brain model of a DTI modality that for447

several voxels the warped BLR gives a better model performance than a448
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B-spline BLR.449

We emphasize that the addition of non-linear effects and non-gaussianity450

makes the model more flexible which increase the need for model selection451

in order to avoid possible overfitting. We presented several model selection452

criteria that can be used to choose the optimal model settings for different453

neuroimaging modalities. It should be recognized that for some IDPs and454

voxels the B-spline BLR gives a better fit, showing that a more flexible455

model is not always needed. Therefore, we recommend carefully examining456

the type of data one wants to model and based on the data trends found457

for the residuals (Gaussian or non-Gaussian) to decide if a more flexible458

model is preferred. This can easily be checked by looking at the skewness459

and kurtosis of the distribution or making a QQ-plot. Additionally, different460

model selection criteria can sometimes contradict each other, as they are461

sensitive to different parts of the data. As we showed above, classical metrics462

such as EV and MSLL are not very sensitive to the shape of the predictive463

distribution. The consequence is that per task, we have to decide if we464

want a better EV, most sensitive to the mean fit and dependent on the465

flexibility of the model, or a better MSLL/BIC, which is more sensitive to466

the variance and penalizes the flexibility of the model. The variability in467

model selection criteria demonstrates that for different imaging modalities,468

different normative modelling settings are preferred and the added flexibility469

is confirmed to only give an advantage for response variables that show non-470

Gaussianity in their residuals.471

We confirmed that the deviations from the normative modelling frame-472

work can be meaningfully related to behaviour. We established a significant473

correlation between the warped deviance scores from the IDPs and several474

dimensions of the intelligence phenotype. These tests give a first indication475

of the possible relationships between the deviations and behaviour. For the476

whole brain model, the relationship with behaviour was shown with a sig-477

nificant correlation between an approximation to the g-factor in the form of478

the first principal component of the cognitive phenotypes and the warped479

deviance scores. This study demonstrates that the model could be extended480

to make predictive scores not only in the brain domain, but also for the be-481

havioural phenotype. In the future, the neurobiological markers of deviation482

from normal development can be extended to become markers of psychiatric483

disorders. This has already been done on a smaller scale, using normative484

modelling [9], [10], [13], [30], [33], [34], but we would like to extend these485

studies to bigger data models, which include a wide variety of neuroimaging486
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Figure A.8: Bland-Altman plots of the Explained Variance (EV): Figure A shows the com-
parison of the linear and B-spline model, using the IDPs. Figure B shows the comparison
of the warped and B-spline model, using the IDPs. Figure C shows the comparison of the
warped and B-spline model, using the FreeSurfer measurements.

data modalities.487

In conclusion, the current study suggests that non-linearity and non-488

Gaussianity are two parameters of big neuroimaging datasets that need to489

be captured to make accurate predictions for normal brain development. In490

this paper, we have done that through a warped BLR normative model.491

We have shown using several neuroimaging modalities the benefit of this492

model over more conservative models. Caution is essential when applying493

non-Gaussian models, as they can overfit and should mainly be used in the494

presence of non-normally distributed residuals. We recommend carefully495

assessing the distribution of residuals and the model selection parameters496

using the different model selection criteria mentioned in this paper that give497

a balance between model complexity and model fit.498

Appendix A.499

Figure A.8 shows the Bland-Altman plots of the explained variance for the500

IDPs and FreeSurfer measurements comparing the different model settings.501

Appendix B.502

An example list of the IDPs, processed using FUNPACK (the FMRIB503

UKBiobank Normalisation, Parsing And Cleaning Kit), used in this study504

is given in B.1. The IDPs contained the following neuroimaging modalities505

[17]:506

1. T1, from which the total brain volumes are calculated.507
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Table B.1: Example list of the IDP field names, processed using FUNPACK (the FMRIB
UKBiobank Normalisation, Parsing And Cleaning Kit).

Volumetric scaling from T1 head image to standard space
Volume of white matter

Median T2star in thalamus (left)
Mean FA in middle cerebellar peduncle on FA skeleton
Mean MD in middle cerebellar peduncle on FA skeleton

Mean MO in fornix on FA skeleton
Mean L1 in body of corpus callosum on FA skeleton
Mean L2 in cerebral peduncle on FA skeleton (right)
Mean L2 in cerebral peduncle on FA skeleton (right)

Mean OD in posterior limb of internal capsule on FA skeleton (right)
Mean ISOVF in splenium of corpus callosum on FA skeleton

Weighted-mean FA in tract acoustic radiation (left)
Weighted-mean MD in tract corticospinal tract (right)
Weighted-mean MO in tract acoustic radiation (right)

Weighted-mean L1 in tract acoustic radiation (left)
Weighted-mean L2 in tract acoustic radiation (left)

Discrepancy between T2 FLAIR brain image and T1 brain image
Volume of grey matter in Frontal Pole (left)

2. Resting-state fMRI, from which the apparent connectivity between cer-508

tain brain regions is estimated.509

3. Task fMRI, from which the strength of response to certain tasks is510

given, which can be related to higher cognitive functioning.511

4. T2 Flair, from which the white matter lesions are estimated.512

5. DMRI, from which the DTI measures such as FA and MD are calcu-513

lated.514

6. Susceptibility-weighted imaging (SWI), from which venous vasculature,515

microbleed and other aspects of microstructure are estimated.516

Appendix C.517

We computed the differences between the BICs of a B-spline BLR and518

a warped BLR. Afterwards, we selected the top 30 IDPs where the B-spline519

model had the lowest BIC comparatively to the warped score or the other520
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way around. In table C.2 the model selection criteria of the top 30 best-fitted521

IDPs with the B-spline BLR compared to the warped BLR are shown. In522

table C.3 the model selection criteria of the top 30 best-fitted IDPs with the523

warped BLR compared to the B-spline BLR shown. These tables demon-524

strate that every neuroimaging modality has its optimal model settings and525

that one should carefully examine the model selection criteria and shape of526

the response distribution, before choosing a model.527

Appendix D.528

We used a paired-sample t-test, pairing the IDP results (EV, MSLL and529

BIC) of the different models to estimate the difference between performance530

measures of the warped and non-warped BLR. In table D.4 and D.5 the531

Cohen’s d effect sizes and p-values are reported. The results show that there532

is a large difference between the standard BLR and the B-spline BLR, which533

confirms that one should take into account the non-linearity of the data.534

For the warped BLR and the B-spline BLR model, there is only a significant535

difference in the BIC score. We argue that this is because the model selection536

criteria are not necessarily sensitive to the deviations in the residuals from537

normality. Therefore, we also recommend to, alongside the model selection538

criteria, look at the skewness and kurtosis values together with the QQ-plot539

to choose the optimal model settings for each modality.540

Appendix E.541

In table E.6 we listed the cognitive variables from the UK Biobank that542

were used in this study with their IDs.543
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EV MSLL BIC Field

0.206 -0.115 -166562.002 Mean MD in superior fronto-occipital fasciculus on FA skeleton (right)
0.134 -0.072 -46220.575 Mean ISOVF in genu of corpus callosum on FA skeleton
0.025 -0.013 -12455.567 Mean MO in superior fronto-occipital fasciculus on FA skeleton (left)
0.159 -0.087 -163761.463 Mean L2 in superior fronto-occipital fasciculus on FA skeleton (right)
0.148 -0.08 -176269.475 Mean MD in external capsule on FA skeleton (right)
0.17 -0.093 -40955.602 Discrepancy between T1 brain image and standard-space brain template (linearly-aligned)
0.074 -0.039 -52218.319 Mean ISOVF in anterior limb of internal capsule on FA skeleton (left)
0.066 -0.034 -50151.283 Mean ISOVF in anterior limb of internal capsule on FA skeleton (right)
0.135 -0.072 -175704.326 Mean L3 in external capsule on FA skeleton (right)
0.202 -0.113 -32491.645 Mean ICVF in superior fronto-occipital fasciculus on FA skeleton (right)
0.077 -0.04 -99708.396 Inverted temporal signal-to-noise ratio in pre-processed tfMRI
0.188 -0.104 -171678.769 Mean MD in anterior corona radiata on FA skeleton (left)
0.265 -0.154 -176057.846 Weighted-mean MD in tract anterior thalamic radiation (left)
0.078 -0.041 -44211.387 Mean ISOVF in superior fronto-occipital fasciculus on FA skeleton (left)
0.143 -0.077 -59646.162 Weighted-mean ISOVF in tract anterior thalamic radiation (right)
0.177 -0.098 -172620.769 Mean MD in anterior corona radiata on FA skeleton (right)
0.273 -0.16 -176331.153 Weighted-mean MD in tract anterior thalamic radiation (right)
0.174 -0.096 -170432.707 Mean L2 in anterior corona radiata on FA skeleton (right)
0.054 -0.028 101219.506 Volume of grey matter in Pallidum (right)
0.175 -0.096 -169471.163 Mean MD in genu of corpus callosum on FA skeleton
0.229 -0.13 -175866.701 Weighted-mean L2 in tract anterior thalamic radiation (right)
0.163 -0.089 -177074.476 Mean MD in anterior limb of internal capsule on FA skeleton (left)
0.079 -0.041 -53234.386 Mean ISOVF in posterior corona radiata on FA skeleton (left)
0.159 -0.087 -58912.836 Weighted-mean ISOVF in tract anterior thalamic radiation (left)
0.04 -0.02 -25966.018 Mean ICVF in fornix on FA skeleton
0.076 -0.04 -56374.466 Mean ISOVF in anterior corona radiata on FA skeleton (left)
0.14 -0.075 -55319.609 Weighted-mean OD in tract superior thalamic radiation (left)
0.076 -0.039 -57122.197 Weighted-mean ISOVF in tract superior longitudinal fasciculus (left)
0.039 -0.02 -57205.686 Mean ISOVF in anterior corona radiata on FA skeleton (right)
0.103 -0.054 -51036.79 Mean ISOVF in posterior corona radiata on FA skeleton (right)

Table C.2: Model selection criteria of the top 30 IDPs, ranked according to difference between the BIC of a B-spline BLR and
a SinhArcsinh warped BLR, where the B-spline BLR had a lower BIC score.

25

.
C

C
-B

Y
 4.0 International license

available under a
w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade 
T

he copyright holder for this preprint (w
hich

this version posted A
pril 6, 2021. 

; 
https://doi.org/10.1101/2021.04.05.438429

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2021.04.05.438429
http://creativecommons.org/licenses/by/4.0/


EV MSLL BIC Field

0.249 -0.143 184900.524 Total volume of white matter hyperintensities (from T1 and T2-FLAIR images)
0.147 -0.079 -29710.013 Mean OD in fornix on FA skeleton
0.285 -0.164 -137192.133 Mean MD in fornix on FA skeleton
0.276 -0.153 -136161.29 Mean L3 in fornix on FA skeleton
0.275 -0.151 -134595.545 Mean L2 in fornix on FA skeleton
0.153 -0.083 -87376.141 Inverted temporal signal-to-noise ratio in pre-processed rfMRI
0.27 -0.157 -24636.152 Mean FA in fornix on FA skeleton
0.171 -0.093 -32985.173 Mean MO in anterior limb of internal capsule on FA skeleton (right)
0.094 -0.049 -22330.216 Mean MO in tapetum on FA skeleton (left)
0.043 -0.022 -26681.768 Mean MO in tapetum on FA skeleton (right)
0.141 -0.076 -33305.028 Mean MO in anterior limb of internal capsule on FA skeleton (left)
0.054 -0.027 -42459.737 Weighted-mean ISOVF in tract parahippocampal part of cingulum (left)
0.117 -0.062 -71451.215 Mean OD in splenium of corpus callosum on FA skeleton
0.064 -0.033 -40476.534 Weighted-mean FA in tract parahippocampal part of cingulum (right)
0.307 -0.183 -15506.712 Mean ISOVF in fornix on FA skeleton
0.182 -0.1 -34039.973 Discrepancy between T2 FLAIR brain image and T1 brain image
0.047 -0.024 -41660.315 Weighted-mean FA in tract parahippocampal part of cingulum (left)
0.058 -0.03 -51125.932 Mean OD in tapetum on FA skeleton (left)
0.199 -0.111 -172072.977 Weighted-mean MD in tract posterior thalamic radiation (left)
0.311 -0.186 -26746.982 Discrepancy between tfMRI brain image and T1 brain image
0.131 -0.071 -169248.259 Mean MD in posterior thalamic radiation on FA skeleton (left)
0.089 -0.046 -181090.417 Mean MD in inferior cerebellar peduncle on FA skeleton (left)
0.07 -0.036 -41654.584 Weighted-mean ISOVF in tract parahippocampal part of cingulum (right)
0.028 -0.014 -35788.551 Mean MO in posterior limb of internal capsule on FA skeleton (right)
0.069 -0.036 -62423.772 Weighted-mean OD in tract forceps major
0.027 -0.014 -52538.461 Mean ISOVF in middle cerebellar peduncle on FA skeleton
0.314 -0.188 -27837.003 Discrepancy between rfMRI brain image and T1 brain image
0.085 -0.044 -170720.346 Weighted-mean MD in tract medial lemniscus (right)

Table C.3: Model selection criteria of the top 30 IDPs, ranked according to the difference between the BIC of a B-spline BLR
and a SinhArcsinh warped BLR, where the SinArcsinh warped BLR had a lower BIC score.
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Criteria t p d

EV 27.511 p < 0.001 0.922
MSLL -26.538 p < 0.001 -0.889
BIC -15.95 p < 0.001 -0.534

Table D.4: Table presenting a paired-sample t-test between the B-spline and standard BLR
models, using the IDP data, showing a significant difference between the model selection
criteria of the B-spline BLR and the standard BLR, with a large effect size.

Criteria t p d

EV -0.897 0.37 -0.03
MSLL 0.026 0.979 0.001
BIC 9.279 p < 0.001 0.311

Table D.5: Table presenting a paired-sample t-test between the B-spline and warped
BLR models, using the IDP data, showing only a significant difference between the model
selection criteria of the B-spline BLR and the B-spline SinhArcsinh warped BLR using
the BIC score, with a small effect size.
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Table E.6: Cognitive variables of the UK Biobank that were used in this study.

Field FieldID

Number of times snap-button pressed 403
Duration to first press of snap-button in each round 404

Mean time to correctly identify matches 20023
Time elapsed 4256

Digits entered correctly 4259
Number of rounds of numeric memory test performed 4283

Time to complete test 4285
Duration screen displayed 4290

Number of attempts 4291
Prospective memory result 20018

Fluid intelligence score 20016
Number of fluid intelligence questions attempted within time limit 20128

Duration to complete numeric path (trail 1) 6348
Total errors traversing numeric path (trail 1) 6349

Duration to complete alphanumeric path (trail 2) 6350
Total errors traversing alphanumeric path (trail 2) 6351

Errors before selecting correct item in numeric path (trail 1) 6770
Errors before selecting correct item in alphanumeric path (trail 2) 6771

Interval between previous point and current one in numeric path (trail 1) 6772
Interval between previous point and current one in alphanumeric path (trail 2) 6773

Number of puzzles correctly solved 6373
Number of puzzles viewed 6374
Number of puzzles correct 6382

Number of puzzles attempted 6383
Number of puzzles correct 21004

Number of symbol digit matches attempted 23323
Number of symbol digit matches made correctly 23324
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