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Abstract

Normative modelling is becoming more popular in neuroimaging due to its
ability to make predictions of deviation from a normal trajectory at the
level of individual participants. It allows the user to model the distribution
of several neuroimaging modalities, giving an estimation for the mean and
centiles of variation. With the increase in the availability of big data in
neuroimaging, there is a need to scale normative modelling to big data sets.
However, the scaling of normative models has come with several challenges.

So far, most normative modelling approaches used Gaussian process re-
gression, and although suitable for smaller datasets (up to a few thousand
participants) it does not scale well to the large cohorts currently available
and being acquired. Furthermore, most neuroimaging modelling methods
that are available assume the predictive distribution to be Gaussian in shape.
However, deviations from Gaussianity can be frequently found, which may
lead to incorrect inferences, particularly in the outer centiles of the distribu-
tion. In normative modelling, we use the centiles to give an estimation of
the deviation of a particular participant from the ‘normal’ trend. Therefore,
especially in normative modelling, the correct estimation of the outer centiles
is of utmost importance, which is also where data are sparsest.

Here, we present a novel framework based on Bayesian Linear Regression
with likelihood warping that allows us to address these problems, that is,
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to scale normative modelling elegantly to big data cohorts and to correctly
model non-Gaussian predictive distributions. In addition, this method pro-
vides also likelihood-based statistics, which are useful for model selection.

To evaluate this framework, we use a range of neuroimaging-derived
measures from the UK Biobank study, including image-derived phenotypes
(IDPs) and whole-brain voxel-wise measures derived from diffusion tensor
imaging. We show good computational scaling and improved accuracy of
the warped BLR for certain IDPs and voxels if there was a deviation from
normality of these parameters in their residuals.

The present results indicate the advantage of a warped BLR in terms of;
computational scalability and the flexibility to incorporate non-linearity and
non-Gaussianity of the data, giving a wider range of neuroimaging datasets
that can be correctly modelled.

Keywords: Machine learning, UK Biobank, Big Data, Bayesian Linear
Regression, Normative Modelling

1 1. Introduction

2 Big data has become more widely available in neuroimaging (UK Biobank,
s ENIGMA, ABCD study, PNC, among others) [I], [2], [3], [4]. This has ig-
+ nited a renewed interest in modelling normal brain development, to estimate
s quantitive brain-behaviour mappings and capture deviations from such mod-
s els to derive neurobiological markers of different psychiatric disorders. These
7 neurobiological markers could move us closer towards individualized and pre-
s cision medicine [5]. Until now, the neurobiological markers for psychiatric dis-
o orders have been mostly developed with studies that used classifiers trained
0 in a case-control setting. Counter-intuitively, an increase in sample size has
n  shown to reduce the accuracy of classifying cases from controls for psychi-
1> atric disorders [6]. One of the main reasons for this decrease in accuracy
13 has been posed to be the heterogeneity in the participants both biologically
11 and behaviorally, which can only fully be captured by a large data set [6].
15 Normative modelling is an emerging method used to understand this hetero-
16 geneity in the population. Similar to growth charts in pediatric medicine,
17 which describe the distribution of height or weight of children according to
18 their age and sex, normative models can be used to model the distribution of
19 neuroimaging derived phenotypes in a population, including the mean and
2 centiles of variation [7], according to age, gender, or other demographic or
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2 clinical variables [§]. The deviations from this normative range can be quan-
» tified statistically, for example as Z-scores, which have been linked to several
23 psychiatric disorders [7], [9], [10], [11], [12], [13].

2 Although promising, there are still certain challenges in performing nor-
»s  mative modelling on big neuroimaging data. First of all, Normative models
26 have been mainly developed using Gaussian process regression. [14]. Gaus-
27 sian process regression is flexible and accurate, but a drawback is its com-
s putational complexity, which is governed by the need to compute the exact
2 inverse of the covariance matrix. This inversion scales poorly with an in-
» crease in data points [I5]. Therefore, using these models on large datasets
a1 requires extensive computational power and is often not feasible (typically
» beyond a few thousand subjects). Furthermore, most normative models as-
53 sume the modelled distribution is Gaussian. However, distributions diverging
s from Gaussianity are frequently found in specific neuroimaging modalities.
55 These non-Gaussian signals cannot be accounted for using a standard nor-
s mative model based on Gaussian process regression. We argue that mod-
s elling non-Gaussianity is important in general and is frequently overlooked
;s by the neuroimaging community in that most regression methods used in
3 practice —often implicitly— assume Gaussian residuals. Thus, there is a need
» to develop methods that can flexibly handle the computational demand and
s non-Gaussianity of big data sets.

P In this paper, we propose a next-generation framework based on Bayesian
s linear regression (BLR) to address these challenges. We introduce an exten-
s sion of the BLR method for accurately modelling non-Gaussian distributions
s using a likelihood warping technique, giving a warped BLR model. The new
s framework has several benefits over previously used methods: (i) A BLR
« model can use a linear combination of non-linear basis functions (such as B-
s splines) which can be considered to provide a low-rank approximation of the
» Gaussian process regression models [16]. However, the BLR model has con-
so siderably better computational scaling, since the complexity of the model is
s1 fixed according to a set of basis-functions. Therefore, the model can be scaled
s2 much more easily to large datasets. Furthermore, a set of model coefficients
53 can be estimated that can easily be shared without the need to share the data
s+ (e.g. to compute a cross-covariance matrix for new data points), thus mak-
s ing it easier to make predictions on new datasets. (ii) The non-Gaussianity
s of the residuals can be modelled by the flexible warping of the Gaussian
sz function, which gives more options to model different types of neuroimaging
s data that cannot be accurately modelled using a standard BLR. (iii) Efficient
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so  model selection criteria are naturally defined for the warped BLR through
o0 the marginal likelihood and can be calculated in closed form. The marginal
a1 likelihood gives a balance between model complexity and model fit. This can
2 aid in choosing the optimal model for a specified imaging modality.

63 We will demonstrate this model by testing it on different types of neu-
s roimaging data derived from the UK Biobank dataset. The UK Biobank
s dataset has several magnetic resonance imaging (MRI) imaging modalities,
s including structural and functional brain data. With over 40,000 partici-
s pants’ MRI data from 40 to 80 years old, this provides a rich set of differ-
s ent neuroimaging data and defines a benchmark for future population-based
s studies. In this work, we will present the warping function and recommend
70 how to use it for several data modalities. First, we give an illustrative exam-
7 ple using image-derived phenotypes (IDPs), which are convenient and widely
72 used summary measures of brain function and structure [I7]. Specifically, we
7z will show a detailed example of estimating a normative model for white mat-
74 ter hyperintensities (WMHs). WMHs have been shown before to demonstrate
75 quite non-Gaussian behaviour [18], and are therefore a good example where
7 the warped BLR could be preferred over the B-spline BLR. Second, we show
77 the scalability of this method by performing a whole-brain analysis for cer-
7 tain diffusion tensor imaging (DTI) measures. We use DTI measurements,
7 as there are large associations with age and we expect certain non-linear and
so non-Gaussian trends in the data [19].

81 Finally, we want to evaluate the link between brain imaging abnormality
&2 scores and behaviour. Therefore, deviations from normal brain functioning
g3 are associated with cognitive functioning. The deviations are captured by
s Z-scores, which are shown to correlate with measures of intelligence in the
ss UK Biobank dataset, such as; numerical memory, reaction time and visual
86 INEINOory.

87 In summary, the main contributions of the paper are to give: (i) a new
s comprehensive framework for big data normative modelling; (ii) the intro-
so duction of the novel methodological approach for modelling non-Gaussian
o response variables; (iii) an extensive and didactic evaluation of this frame-
o work on the UK Biobank cohort and (iv) a demonstration of the ‘Predictive
e Clinical Neuroscience software toolkit’ (PCNtoolkit) for big data normative
o3 modelling. Ultimately, we hope this paper will give deeper insight into the
o application of normative models on different types of neuroimaging modali-
o5 ties.
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6 2. Materials and methods

o 2.1. Sample

% All the data used came from the UK Biobank imaging dataset [I]. Full
o details on the design of the study and the preprocessing steps can be found
o in subsequent papers [I7], [20]. Briefly, the data used contains around 10,000
w1 participants of the 2017 release and additional longitudinal data of around
102 5,000 subjects of the 2020 release. The participants were between 40 and 80
03 years of age, with around 47 % males.

104 In this study, two types of analyses were performed using different datasets.
s For the first analysis, a dataset containing IDPs was used. For consistency
s with existing work, the IDPs were processed using FUNPACK [21], which
w7 1S an automatic normalisation, parsing and cleaning kit, developed at the
w8  Wellcome Centre for Integrative Neuroimaging. The IDPs include three
100 main imaging modalities: structural, functional and diffusion brain imag-
wo ing. Among these IDPs, there are very gross measures, such as the total
1 amount of brain volume, to more detailed measurements, such as the con-
2 nectivity between two brain regions. In total 819 neuroimaging IDPs were
uz  used for subsequent analysis, see for the list of IDPs used. Furthermore,
ms we also tested our model on another set of IDPs; 150 FreeSurfer measures,
us  which were preprocessed with FreeSurfer| v6.1.0, using a T'2-weighted image
s where available, see for the list of the FreeSurfer measures used.

17 For the second analysis, a whole-brain model was built, using voxel-wise
us fractional anisotropy (FA) and mean diffusivity (MD) measures. The data
ne  were processed using the UKB pipelines; including the DTT fitting tool DTI-
1o FIT and a tract-based spatial statistics (TBSS) style analysis, which gave us
21 the skeletonised DTT files. In total, around 10,000 participants with dMRI-
122 scans passed the quality control applied by the UK Biobank [17]. Afterwards,
123 we added two extra exclusion criteria. First, participants were removed if
124 their Z-score of the discrepancy between the dMRI image and the struc-
s tural T1 image was higher than three, based on data-field 25731 in the UK
126 Biobank. Second, participants were removed if their Z-score of the number
127 of outlier slices was higher than three, which is a reflection of the movement
s of the participant during the scan, based on data-filed 25746-2.0 in the UK
120 Biobank. For the covariates we used age, gender and dummy coded site
130 variables.
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wm 2.2. Cognitive data

132 We used the cognitive phenotypes that were extracted from the UK
133 biobank using FUNPACK [2I] to evaluate the cognitive associations with
134 the deviations from the normative model. These measures are derived from
135 the 13 cognitive tests present in the UK Biobank, see the UKB showcase. The
136 tests were administered using a touchscreen questionnaire and included nu-
137 merical memory, reaction time, fluid intelligence, visual memory and prospec-
s tive memory. Later other tests that measured executive function, declarative
1o memory and non-verbal reasoning were added [22]. For full details on the
1o different cognitive tests applied in UK Biobank see [23]. An overview of all
1 the measures used in this study is presented in the supplementary [E.6]

w2 2.8. Normative model formulation

143 We use a flexible normative modelling framework to model different types
s of neuroimaging data. We have N subjects with brain data {y, }2_,, each of
s dimension D (e.g. the number of voxels or IDPs) and acquired from one of
us S different scanning sites. We use Y to denote an N x D matrix containing
w7 these variables, where 1,4 denotes the n-th subject and d-th neuroimaging
ug variable. Since the neuroimaging variables are estimated separately here,
us  we simplify the notation by using y to denote the vector of observations
10 from a single variable and y,, for a single observation. In general, we want
151 to predict the distribution of the value for each voxel or brain region, the
152 dependent variable (y), from a set of covariates {x, })_, (e.g. age, gender or
153 site), the independent variables. In this paper, we adopt a straightforward
15« approach to model nonlinear relationships, by applying a basis expansion to
155 the independent variables. A common approach is to use polynomials, but
15 these can be a poor choice, as they can induce global curvature [24]. Here
157 we apply a common B-spline basis expansion (specifically, cubic splines with
s b evenly spaced knot points), although other approaches are also possible.
150 We denote this expansion by ¢(x), with ® an N x K matrix containing the
10 basis expansion for all subjects. In the applied model, y is assumed to be the
11 result of a linear combination of the B-spline basis function transformation
12 plus a noise term:

y = wTo(x) + e, (1)

163 With w the estimated vector of weights and ¢, = A/(0, 3;!) a Gaussian noise
16 distribution for site s, with mean zero and a noise precision term f; (i.e. the
165 inverse variance). All the noise precision terms from the different sites will
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16 be combined in a vector B and the site precision matrix Ag, which has B
17 along the leading diagonal and is the inverse of the site covariance matrix
s Ag = Xg~'. Note that we allow the noise precision to vary across sites in
160 order to accommodate inter-site variation along with site-specific intercepts
1o (i.e. dummy coded site regressors in the design matrix). We have shown
i previously that this approach provides an efficient way to accommodate site
2 effects in normative modelling [25].

173 Following similar derivations as given by Huertas et al. [16], we consider
17 a BLR model, placing a Gaussian prior over our model parameters p(w|a) =
s N(w|0,Aq 1), with a the hyper-parameters that the weights depend on. The
e Gaussian prior is assumed to have a mean zero and a precision matrix A,
177 with the precision matrix the inverse of the covariance matrix X, = Ag !
s As shown in Huertas et al. [I6], Ay can be quite general, but here we use a
179 simple isotropic precision matrix A, = aI. The Gaussian prior choice allows
180 us to compute the posterior distribution of w in a closed form:

likelihood x prior IL.p(yn|®, B, W)p(W|a)

P = =
pwly, ®,a,f) marginal likelihood p(y|®, e, B)

(2)

181 The posterior for each subject can then be found using the standard
1.2 derivations of the posterior [26]:

p(wly, ®,a,8) = N(wlw,A™)
A =®TAg® + A,
w=A"®TAgy (3)

183 We use a Type II maximum likelihood approach (i.e. empirical Bayes),

18« optimizing the denominator of the posterior to find the optimal hyper-parameters
s« and B. This gives an automatic trade-off between model fit and model com-

1o plexity. The marginal likelihood is maximized by minimizing the negative

157 log likelihood (NLL):
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NLL = —log(p(y|e, B))

— log( / plylw, B)p(wla)dw)

N ND N N
= —(5109’Aﬁ| — —5 log2m - El09|Aa’ - 5109’A|

N
3y~ B Ay — BW) T ALW) (W

n=1
The optimal hyper-parameters a and 8 are often estimated using a conju-
gate gradient optimisation of the NLL, where the derivatives can be computed
directly. However, here we used Powell’s method to fit the hyper-parameters.
Powell’s method is a derivative-free method, which in this case is faster, be-
cause computing the derivatives of the marginal likelihood with respect to the
hyper-parameters is computationally very expensive. Finally, the predictive

distribution is given by:

§=NEF"¢(x), o(x)" A7 o(x) + 51) (5)
188 2.3.1. Likelihood warping
189 In order to model non-Gaussian error distributions, we employed a ‘warped’

wo likelihood [27]. This involves applying a non-linear monotonic warping func-
1 tion ; to the input data during the model fit, with the index ¢ indicating a
102 different warping function (e.g. SinArcsinh, Box-Cox etc.). This is similar
13 to the classical statistical technique of variable transformation, but has the
14 advantage that the parameters of the transformation are optimised during
15 model fitting, to provide the optimal mapping that ensures that model resid-
105 uals have a Gaussian form. The warped functions are chosen such that they
17 have a closed form inverse and are differentiable, which has several bene-
s fits: first, non-Gaussian data can be mapped (i.e. warped) exactly to better
199 match Gaussian modelling assumptions or the predictions can be warped
20 back to the original non-Gaussian space; second, it allows inference, predic-
20 tion and computation of error measures all in closed form; finally, we can
202 construct compositions of functions from the invertible monotonic warping
203 functions that can greatly improve the expressivity of the model in transform-
204 ing non-Gaussian distributed data y to a Gaussian form, z, where inference
s i straightforward [28]. This is done by applying a compositional warping
206 function ¢ to the observations y:
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o(.) = pilwim1 (- (p2(p1(.)))-)
z = p(y;) (6)

207 With v denoting the hyper-parameter(s) of different warping functions.
28 The warping transformation allows us to compute error measures in the
200 warped space and to describe the deviations of subjects under a Gaussian
210 error distribution in the form of pseudo 7 statistics, even if the original data
aun distribution is non-Gaussian.

212 The optimal hyper-parameters (a, 8 and ) are calculated by minimizing
213 the warped NLL. The warped NLL can be found by accounting for the change
2 of variables in the probability density function [28]:

Py(¥) = pa((¥)IVe(y)|

215 With Vg(.) the Jacobian of the transformation, which is diagonal and
216 therefore we can simplify as a product of the individual terms:

1 deo(yn)
py(y) = pale) [ | 1
i=1
217 If we take the negative log of this equation the warped NLL will remain

28 the same as equation |4}, except for replacing the y by the transformed ¢(y)
210 and the inclusion of the Jacobian term that takes the change of volume
20 induced by the warping into account, thereby ensuring a valid probability
21 measure, for details see [2§]:

Warped NLL = —log(p(y|a, 3,7))

=~ dp(ya)
= NLL — log——""~ 7
; oy v
2 2.3.2. Computational complexity
223 The optimization of the hyper-parameters is controlled by the minimiza-

24 tion of the warped NLL. The warped NLL consists of the basic BLR NLL

9
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»s term and the log-derivatives of the warping ¢; functions, which are known
26 in closed-form by construction. The complexity of the warped BLR model
227 1s then roughly the same as the classic BLR. However, the warped NLL is
28 optimized for an extra hyper-parameter 7, which could lead to the presence
20 of more local minima, making the optimization process slightly slower [28§].

a0 2.3.3. Warped composition function

231 Different elementary functions can be used to create the warped compo-
2»  sition function . For this paper, we test affine, Box-Cox and SinhArcsinh
233 transformations and compositions of these transformations:

©affine(y;v) = a+ by

A
sgn(y)|ly|* — 1
SOBoxfcox(y;’Y) = ( )|)\ ‘
@SinhArcsinh(y;’Y) = smh(b * CL?"CST:?”Lh(Y) - CL) (8)

With v the respective parameters of the different warping functions. For
the SinArcsinh warping we also applied a reparametrization [29], as this
empirically gave more stable results:

P SinhArcsinh (Y; 7) = Sznh(b * arCSinh(Y) +e* b)
a=—exb

24 2.4. Model selection

We evaluate the models using different model selection criteria. First, we
calculate the explained variance (EV) of the model. It is expected that the
gain in fit for the warped BLR will be highly dependent on the flexibility
of the model. Therefore, the Bayesian Information Criterion (BIC) is also
considered:

BIC = k xlog(N) + 2+ NLL

235 Which penalises for model complexity. Here N denotes the number of partic-
236 ipants in the training set, NLL the negative log-likelihood. £ is the number of
23 free parameters. Note that we use the marginalized from of the NLL, which
238 already takes into account the number of estimated coefficients. Therefore,
239 the BIC only needs to be corrected for the added complexity of the degrees

10
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20 of freedom of the model (i.e. the parameters that are not integrated out).
21 For the standard BLR this is two, one for the precision over the weights and
22 one for the precision over the noise (« and J respectively). For the warped
a3 SinArcsinh BLR two extra degrees of freedom are added for the shape param-
24 eters (a and b). The BIC gives a good trade-off between the extra flexibility
25  found in the warped BLR model and the better fit of the model. Finally, the
26 mean standardized log-likelihood (MSLL) is used as a third model criterion.
27 'The MSLL takes into account the mean error and the estimated prediction
28 variance.

29 2.5. Deviance scores and correlation to cognitive phenotypes
We want to find a statistical estimate of how much each participant de-
viates from the normal range. This is done by computing a Z-score for each
subject n, also denoting explicitly the dependence on each voxel or IDP d:

Ynd — Ynd
I ' )
04 + (U*)d
250 With, 9,4 the predicted mean and y,, the true response. Normalized
s by 03 = (871)4 the estimated noise variance (i.e. reflecting variation in

» the data) and (02); = ¢(x)T A, ¢(x) the variance attributable to modelling
3 uncertainty for the d-th voxel. For the warped statistic, we compute the
2 Z-scores in the warped (i.e. Gaussian) space. The true response variables
s are warped to the Gaussian space to ensure the underlying assumption of
6 normality is satisfied by the construction of the warping functions.

257 Afterwards, to ensure our model can also be applied for behavioural and
»s clinical estimations, we look at the correlations between the Z-scores from
9 the IDPs and the whole brain analysis, and the cognitive scores of the UK
%0 Biobank. For the IDPs, we directly correlate the Z-scores and the cognitive
1 phenotypes through a Spearman correlation. For the whole-brain analysis,
%2 we first make a summary statistic of the Z-scores by calculating the extreme
%3 value distribution. We model the extreme value distribution by looking at
26+ the mean of the top 1% of the deviations across the whole brain [I0]. The
x5 extreme value statistics give the largest deviations per subject from the nor-
6 mal pattern, which have shown to be strongly correlated to behaviour [10],
7 [30]. Afterwards, we apply a principal component analysis (PCA) on the
%8 cognitive phenotypes to give a one-factor solution. This first component has
%0 been shown to be correlated to the ‘general’ factor of cognitive ability or the

11


https://doi.org/10.1101/2021.04.05.438429
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.05.438429; this version posted April 6, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a0 ‘g-factor’ [31]]. Lastly, we compute the Spearman coefficient between the first
o principal component and the summary deviation score.

2 3. Results

a1z 3.1. Performance of the warped Bayesian linear regression model for IDPs

274 All the statistical analyses were performed in Python version 3.8, using
s the PCNtoolkit. The BLR algorithm from the PCNtoolkit was chosen for
a6 all experiments. We considered age, binary gender and binary site ID within
277 the covariance matrix. We used a standard BLR or we transformed the
s age covariate with a B-spline of order three with three knots. The Powell
79 method was selected for the optimizer. We randomly split the dataset into
20 50% training and 50% test and reported all the error metrics on the test
21 set. In the PCNtoolbox, several warpings can be chosen depending on the
22 imaging modality one wants to model. We tested several warping functions
23 (affine, Box-Cox and SinhArcsinh) and compositions of these warping func-
s tions. Preliminary testing showed that the SinhArcsinh warping gave the
285 best fit compared to the alternatives evaluated. Therefore, in this paper,
286 only the results of the SinhArcsinh warping are presented.

287 In figure [1} Bland-Altman plots are shown comparing the standard BLR
s and the B-spline BLR. The figure presents different model selection criteria:
280 MSLL and BIC (EV can be seen in supplement figure . The plots demon-
200 strate that for most IDPs a non-linear B-spline BLR model performs better
21 than a standard BLR. Indicating that non-linearity is a key component that
202 should be accounted for in modelling neuroimaging data.

203 In figure 2| Bland-Altman plots are shown that compare the B-spline
24 BLR and the warped BLR models for all IDPs, using the MSLL and BIC
205 (EV can be seen in supplement figure . We also plotted the difference
206 in absolute values of the skewness and kurtosis. In figure [3] the same plots
27 are shown for the FreeSurfer measures. We included them separately, as
208 they were preprocessed separately (i.e. we did not use the IDPs provided
20 by UK Biobank and instead ran the Freesurfer reconstructions manually).
s0 The plots show that for specific IDPs the warped BLR performs better than
s the B-spline BLR. When we examined these IDPs more closely, it was noted
52 that they demonstrated distinct non-Gaussian behaviour. An example of
203 such behaviour is given down below with the WMHs (white matter hyper-
¢ intensities). In the supplementary table , we provide a summary of some
ss  of the results for different IDPs that can help inform which neuroimaging
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Figure 1: Bland-Altman plots comparing the standard and B-spline Bayesian Linear Re-
gression (BLR) models, using Image-Derived Phenotypes (IDPs). Each dot indicates one
IDP. The models are compared according to the following model selection criteria: the
Mean Standardized Log Loss (MSLL) (A) and the Bayesian Information Criteria (BIC)
(B). The green colour indicates a better fit for the non-linear B-spline model compared to
the linear model. We also plotted a zoomed-in view of the model fit for one of the IDPs.

306 modalities are best modelled with the warped BLR. For an indication of the
a7 effect sizes of the model selection criteria for the different model settings,
ws see supplementary tables [D.4] and Note also that the MSLL and EV
30 do not clearly reflect differences in the shape of the predictive distribution.
s For example, for the IDPs, there is no average difference between the warped
su and non-warped model (Fig. [2] panel A and supp. fig. [A.8 panel B), yet
sz the warped model consistently yields a predictive distribution —and resultant
a3 Z-score distribution— that is less (or equivalently) skewed and kurtotic (Fig.
su [2] panels C and D).

315 In figure [ and [5] we show the results of an illustrative analysis predicting
s WMH load across ageing to demonstrate how the performance of the warped
sz BLR model compares to a B-spline BLR. The figures show the B-spline BLR
sis and warped BLR results for WMHs at one-time point and the longitudinal
a0 data of two-time points. The results demonstrate that (i) the non-linearity
20 of the data is sufficiently captured with a B-spline transformed BLR (ii)
;21 the WMHs show a distinctly non-Gaussian variance pattern, which is better
12 predicted by the warped BLR. Thus, indicating that if the data has a non-
s Gaussian distribution for the residuals a warped BLR is preferred over a
s24  B-spline BLR.
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Figure 2: Bland-Altman plots comparing the B-spline and warped Bayesian Linear Re-
gression (BLR) models, using Image-Derived Phenotypes (IDPs). The models are com-
pared according to the following model selection criteria: the Mean Standardized Log Loss
(MSLL) (A) and the Bayesian Information Criteria (BIC) (B). The green colour indicates
a better fit for the warped model compared to the B-spline model. We also plotted a
zoomed-in view of the model fit for two of the IDPs. On images C and D, we show the
difference in absolute values of the skewness and kurtosis between the B-spline and warped
model. A more positive value indicates that the B-spline model had a higher skewness or
kurtosis than the warped model.

s 3.1.1. Correlation deviance scores WMHs and cognitive phenotypes

326 We also wanted to correlate the warped BLR model output of the WMHs
27 to behavioural variables to ensure that the model can be used for behavioural
ws  predictions. We loaded all cognitive phenotypes available in UK Biobank ac-
»9 cording to the FUNPACK categorization, including: reaction time, numeric
30 memory, prospective memory etc. (for a full list of the cognitive phenotypes
s used, see the supplementary table . We calculated the deviance Z-scores
3 according to formula[9] Afterwards, we calculated the Spearman correlation
133 between the cognitive phenotypes and the Z-scores. Numeric memory (ID:
s 4259, ‘Digits entered correctly’) was modestly but significantly correlated
135 with the warped Z-scores: p = —0.0331, p = 0.0262. In other words, if a par-
16 ticipant’s WMH deviation from normal development increases the number of
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Figure 3: Bland-Altman plots comparing the B-spline and warped Bayesian Linear Re-
gression (BLR) models, using the FreeSurfer measurements. The models are compared ac-
cording to the following model selection criteria: the Mean Standardized Log Loss (MSLL)
(A) and the Bayesian Information Criteria (BIC) (B). We also plotted a zoomed-in view
of the model fit for one of the IDPs. On images C and D, we show the difference in
absolute values of the skewness and kurtosis between the B-spline and warped model. A
more positive number means a better fit for the warped model compared to the B-spline
model.

szr - correctly remembered digits drops.

338 Lastly, to illustrate the value of normative models in a longitudinal con-
;9 text, we tested for an association between change in WMHs and change in
s cognitive phenotypes of the longitudinal data to see if WMH load is corre-
s lated to cognitive decline. We performed a statistical Wilcoxon rank-sum
sz test on the participants’ cognitive phenotypes contrasting subjects that have
sz a difference in the Z-scores > 0.5, which corresponds to a difference in half
as  a standard deviation, versus the participants that do not. Intuitively, this
us  contrasts individuals who are following an expected trajectory of ageing with
us  those who deviate from such a trajectory. Highly significant associations were
s7 found with the reaction time (ID: 404, ‘Duration to first press of snap-button
1s in each round’) W = 5.5641, p < 0.001 and with the Trail Making Test (ID:
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Figure 4: White matter hyperintensities (WMHs) modelled as a function of age using a
Bayesian Linear Regression (BLR) model. Images A and C demonstrate the model fit
using a regular Gaussian B-spline BLR, for the female and male cohorts respectively, both
visualizing the mean prediction and the centiles of variation for the WMHs. Images B and
D show comparable fits for a SinArcsinh warped BLR, for the female and male cohorts
respectively. In images E and F quantile-quantile (QQ) plots of the two models are shown,
demonstrating a better fit for the data using a warped BLR model.

10 6771, ‘Errors before selecting correct item in alphanumeric path (trail #2)’)
0 W = 8.3105, p < 0.001. The results show an association between the change
1 in cognition and the change in WMH deviance scores.
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Figure 5: Here the longitudinal follow-up data of the WMHs is plotted for females (A)
and males (B), using a SinhArcsinh warped BLR model.

2 3.2. Scalability to a whole brain voxelwise based analysis

353 For the follow-up analysis, we evaluated the warped BLR approach on a
3+ whole-brain level for two DTT imaging modalities (FA and MD). The results
35 of these two modalities were very similar and therefore we will only present
356 the results for FA here. We separated the entire dataset into 80% training
57 data and 20% testing data. First, we computed the time complexity per
3ss model fit (e.g. for one voxel) with varying number of subjects using the B-
30 spline BLR model setting and compared it to the Gaussian process regression
w0 setting (Figure @ This demonstrates the clear computational advantage of
ssr the BLR setting for the whole brain analysis.

362 Afterwards, we tested different model settings for the imaging modalities
3 including a standard BLR, B-spline BLR and a SinhArcsinh warped BLR.
s Figure [7] shows the comparative results in a Bland-Altman plot for the FA
s dataset (which were similar for the MD dataset). The figure presents the
w6 BV, MSLL and the BIC for the B-spline BLR and the warped BLR. These
ss7 results are consistent with the IDPs in that according to the EV and MSLL,
s the models perform quite similarly for most voxels. Although, we would
w0 argue that these measures are not necessarily sensitive for the added benefit
s of the warping of the likelihood, which will mostly affect the predictions in
sn the outer centiles. For the BIC the results demonstrate that the warped BLR
sz is preferred for certain voxels. The voxels where a warped model is favoured
;3 generally showed more non-Gaussian behaviour.

374 Finally, We used a paired-sample t-test, pairing the whole brain results
ws  (EV, MSLL and BIC) of the different models to estimate the difference be-
s tween performance measures of the warped and non-warped BLR. For MD
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si7 the following effect sizes were found: EV : d = 0.33, MSLL : d = 0.003
s and BIC : d = —0.79. For FA the following effect sizes were found: EV :
s d = 0.028, MSLL : d = 0.017 and BIC : d = 0.55. We can see that the
0 difference between the methods is small. Indicating that the B-spline BLR

ss1 and the warped BLR model are quite similar in their model fit for MD and
382 FA

3 3.2.1. Correlation deviance scores DTI and cognitive phenotypes

384 Finally, we correlated the Z-scores of the whole brain warped BLR model
ss  for the MD dataset to the cognitive phenotypes. First, we scaled the cognitive
;s data and performed a principal component analysis. We selected the first
sz component, which explained 29% of the variance in the data. Afterwards,
s we made a summary score of the Z-scores for each participant by looking
;0 at the largest deviations, which in the limit should follow an extreme value
w0 distribution [32]. We fitted a generalized extreme value distribution to the
s top 1% of the absolute Z-scores of each subject. Subsequently, we computed
32 a Spearman correlation between the extreme values and the first principal
33 component of the cognitive phenotypes, which gave p = 0.158, p < 0.001.
s The results demonstrate a clear correlation between the warped deviations
35 from normal development and the cognitive phenotypes. This relationship
506 will be explored further in future studies.
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Figure 6: Computational complexity comparison between the Bayesian linear regression

(BLR) model setting and the Gaussian process regression (GPR) model setting, giving
the mean and the standard error (SE) over ten runs.
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Figure 7: Bland-Altman plots comparing the warped Bayesian Linear Regression (BLR)
model to the B-spline BLR model, using Fractional Anisotropy (FA) data. The comparison
is done according to the following model selection criteria: The Bayesian Information
Criteria (BIC) (A), the Explained Variance (EV) (B), and the Mean Standardized Log
Loss (MSLL) (C). The green colour indicates a better fit for the warped BLR.

4. Discussion

In this paper, we presented a next-generation framework to scale norma-
tive models for large population-sized datasets based on warped Bayesian
linear regression (BLR). Normative models can capture the heterogeneity
in the population and model individual deviations from normal brain de-
velopment. We demonstrated that the shift in normative modelling to a
B-spline BLR with a likelihood warping gives several benefits. In this study
we showed that: (i) Compared to Gaussian process regression, it is compu-
tationally much less demanding and is therefore scalable to big datasets. (ii)
The non-linearity of the model, incorporated by the B-spline, improves the
fit and out of sample predictions for most variables. (iii) Non-Gaussianity
of the data can be naturally included due to the incorporation of the likeli-
hood warping in the algorithm, which allows for a wider range of datasets to
be accurately modelled. (iv) Model selection criteria based on the marginal
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a1 likelihood, such as the BIC, can be calculated in closed form and therefore
a2 a trade-off between model fit and model complexity can be chosen opti-
a3 mally from the training data, without cross-validation. (v) The deviations
ais scores from normal brain development can be meaningfully related to be-
a5 haviour. Furthermore, we demonstrated the use of the normative model
a6 with the warped BLR on different datasets from the UK Biobank, including
a7 image-derived phenotypes (IDPs); focusing on white matter hyperintensities
ss  (WMHs) as an example of non-Gaussianity and a diffusion tensor imaging
so  (DTT) modality for a whole-brain model.

420 Our proposed method makes it possible to apply normative modelling to
a1 considerably larger samples than was feasible before [7], [8]. The results from
222 the computational experiments on the whole brain model showed that the
23 BLR method is scalable to population-sized data sets and fine-grained voxel-
w20 level data. In comparison, most normative models used Gaussian process
w5 regression, which due to its high computational complexity could only be
w6 used in studies with a relatively low sample size. This improvement is mainly
227 because the approximation of the covariance matrix by a set of basis functions
w8 allowed us to account for non-linearity in a computationally less demanding
w20 way than the Gaussian process regression method, therefore making the B-
a0 spline BLR scalable for big datasets. Computationally scalable modelling
.31 of nonlinear effects is important since our experiments showed that a cubic
a2 B-spline transformation of the age covariate improved model fit compared to
33 linear models for most neuroimaging modalities.

a3 Another major benefit of our method is the possibility of modelling non-
a5 Gaussian distribution by the use of the likelihood warping technique. This
a6 18 important in general, as the aim of normative modelling is to accurately
s model the centiles of variation in addition to modelling the mean and is
a8 especially important for normative modelling of variables that are not ap-
10 proximately Gaussian distributed. For example, we showed that the WMHs
a0 show non-Gaussian behaviour that is well suited to uncover the benefits of
a1 the warped model over the standard model. We demonstrated the improved
w2 fit of the WMHs by including a B-spline transformation and a SinhArcsinh
a3 likelihood warping in the normative model, which was also exemplified for
aas  the longitudinal data. The same improvement in fit for other data modalities
us  that showed more non-Gaussianity in their residuals was also demonstrated
us by comparing the warped BLR to the B-spline BLR for all the IDPs. Fur-
a7 thermore, it was shown on a whole-brain model of a DTI modality that for
as  several voxels the warped BLR gives a better model performance than a
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uo  B-spline BLR.

450 We emphasize that the addition of non-linear effects and non-gaussianity
1 makes the model more flexible which increase the need for model selection
s2 in order to avoid possible overfitting. We presented several model selection
ss3 criteria that can be used to choose the optimal model settings for different
e neuroimaging modalities. It should be recognized that for some IDPs and
sss voxels the B-spline BLR gives a better fit, showing that a more flexible
sss  model is not always needed. Therefore, we recommend carefully examining
7 the type of data one wants to model and based on the data trends found
s for the residuals (Gaussian or non-Gaussian) to decide if a more flexible
w0 model is preferred. This can easily be checked by looking at the skewness
w0 and kurtosis of the distribution or making a QQ-plot. Additionally, different
w1 model selection criteria can sometimes contradict each other, as they are
w2 sensitive to different parts of the data. As we showed above, classical metrics
w3 such as EV and MSLL are not very sensitive to the shape of the predictive
we  distribution. The consequence is that per task, we have to decide if we
s want a better EV, most sensitive to the mean fit and dependent on the
w6 flexibility of the model, or a better MSLL/BIC, which is more sensitive to
w7 the variance and penalizes the flexibility of the model. The variability in
s model selection criteria demonstrates that for different imaging modalities,
w0 different normative modelling settings are preferred and the added flexibility
a0 is confirmed to only give an advantage for response variables that show non-
an  Gaussianity in their residuals.

an2 We confirmed that the deviations from the normative modelling frame-
a3 work can be meaningfully related to behaviour. We established a significant
aa  correlation between the warped deviance scores from the IDPs and several
a5 dimensions of the intelligence phenotype. These tests give a first indication
a6 of the possible relationships between the deviations and behaviour. For the
a7 whole brain model, the relationship with behaviour was shown with a sig-
as  nificant correlation between an approximation to the g-factor in the form of
a0 the first principal component of the cognitive phenotypes and the warped
w0 deviance scores. This study demonstrates that the model could be extended
w1 to make predictive scores not only in the brain domain, but also for the be-
s> havioural phenotype. In the future, the neurobiological markers of deviation
a3 from normal development can be extended to become markers of psychiatric
ssa  disorders. This has already been done on a smaller scale, using normative
s modelling [9], [10], [13], [30], [33], [34], but we would like to extend these
s studies to bigger data models, which include a wide variety of neuroimaging
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Figure A.8: Bland-Altman plots of the Explained Variance (EV): Figure A shows the com-
parison of the linear and B-spline model, using the IDPs. Figure B shows the comparison
of the warped and B-spline model, using the IDPs. Figure C shows the comparison of the
warped and B-spline model, using the FreeSurfer measurements.

w7 data modalities.

288 In conclusion, the current study suggests that non-linearity and non-
w0 Gaussianity are two parameters of big neuroimaging datasets that need to
w0 be captured to make accurate predictions for normal brain development. In
a1 this paper, we have done that through a warped BLR normative model.
w2 We have shown using several neuroimaging modalities the benefit of this
w3 model over more conservative models. Caution is essential when applying
sa non-Gaussian models, as they can overfit and should mainly be used in the
w5  presence of non-normally distributed residuals. We recommend carefully
w6 assessing the distribution of residuals and the model selection parameters
w7 using the different model selection criteria mentioned in this paper that give
w8 a balance between model complexity and model fit.

o Appendix A.
500 Figure[A.§ shows the Bland-Altman plots of the explained variance for the
s IDPs and FreeSurfer measurements comparing the different model settings.

s2 Appendix B.

503 An example list of the IDPs, processed using FUNPACK (the FMRIB
so.  UKBiobank Normalisation, Parsing And Cleaning Kit), used in this study
s05 1S given in The IDPs contained the following neuroimaging modalities

506 m:

507 1. T1, from which the total brain volumes are calculated.
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Table B.1: Example list of the IDP field names, processed using FUNPACK (the FMRIB
UKBiobank Normalisation, Parsing And Cleaning Kit).

Volumetric scaling from T1 head image to standard space
Volume of white matter
Median T2star in thalamus (left)

Mean FA in middle cerebellar peduncle on FA skeleton
Mean MD in middle cerebellar peduncle on FA skeleton
Mean MO in fornix on FA skeleton
Mean L1 in body of corpus callosum on FA skeleton
Mean L2 in cerebral peduncle on FA skeleton (right)

Mean L2 in cerebral peduncle on FA skeleton (right)

Mean OD in posterior limb of internal capsule on FA skeleton (right)
Mean ISOVF in splenium of corpus callosum on FA skeleton
Weighted-mean FA in tract acoustic radiation (left)
Weighted-mean MD in tract corticospinal tract (right)
Weighted-mean MO in tract acoustic radiation (right)
Weighted-mean L1 in tract acoustic radiation (left)
Weighted-mean L2 in tract acoustic radiation (left)
Discrepancy between T2 FLAIR brain image and T1 brain image
Volume of grey matter in Frontal Pole (left)

508 2. Resting-state fMRI, from which the apparent connectivity between cer-
500 tain brain regions is estimated.

510 3. Task fMRI, from which the strength of response to certain tasks is
511 given, which can be related to higher cognitive functioning.

512 4. T2 Flair, from which the white matter lesions are estimated.

513 5. DMRI, from which the DTI measures such as FA and MD are calcu-
514 lated.

515 6. Susceptibility-weighted imaging (SWI), from which venous vasculature,
516 microbleed and other aspects of microstructure are estimated.

Appendix C.

5

s
3

518 We computed the differences between the BICs of a B-spline BLR and
o a warped BLR. Afterwards, we selected the top 30 IDPs where the B-spline
s20 model had the lowest BIC comparatively to the warped score or the other

5

ey
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s1 way around. In table[C.2]the model selection criteria of the top 30 best-fitted
s IDPs with the B-spline BLR compared to the warped BLR are shown. In
3 table the model selection criteria of the top 30 best-fitted IDPs with the
s warped BLR compared to the B-spline BLR shown. These tables demon-
5 strate that every neuroimaging modality has its optimal model settings and
s2 that one should carefully examine the model selection criteria and shape of
s27  the response distribution, before choosing a model.

s Appendix D.

529 We used a paired-sample t-test, pairing the IDP results (EV, MSLL and
s BIC) of the different models to estimate the difference between performance
ss1 measures of the warped and non-warped BLR. In table and the
s Cohen’s d effect sizes and p-values are reported. The results show that there
s33  is a large difference between the standard BLR and the B-spline BLR, which
s confirms that one should take into account the non-linearity of the data.
s For the warped BLR and the B-spline BLR model, there is only a significant
s36  difference in the BIC score. We argue that this is because the model selection
s37  criteria are not necessarily sensitive to the deviations in the residuals from
s33  normality. Therefore, we also recommend to, alongside the model selection
s30  criteria, look at the skewness and kurtosis values together with the QQ-plot
ss0  to choose the optimal model settings for each modality.

s Appendix E.

542 In table we listed the cognitive variables from the UK Biobank that
sa3 were used in this study with their IDs.
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qc

| EV. MSLL BIC Field
0.206 -0.115 -166562.002 Mean MD in superior fronto-occipital fasciculus on FA skeleton (right)
0.134 -0.072 -46220.575 Mean ISOVF in genu of corpus callosum on FA skeleton
0.025 -0.013 -12455.567 Mean MO in superior fronto-occipital fasciculus on FA skeleton (left)
0.159 -0.087 -163761.463 Mean L2 in superior fronto-occipital fasciculus on FA skeleton (right)
0.148 -0.08 -176269.475 Mean MD in external capsule on FA skeleton (right)
0.17  -0.093 -40955.602 Discrepancy between T1 brain image and standard-space brain template (linearly-aligned)
0.074 -0.039 -52218.319 Mean ISOVF in anterior limb of internal capsule on FA skeleton (left)
0.066 -0.034 -50151.283 Mean ISOVF in anterior limb of internal capsule on FA skeleton (right)
0.135 -0.072 -175704.326 Mean L3 in external capsule on FA skeleton (right)
0.202 -0.113 -32491.645 Mean ICVF in superior fronto-occipital fasciculus on FA skeleton (right)
0.077  -0.04  -99708.396 Inverted temporal signal-to-noise ratio in pre-processed tfMRI
0.188 -0.104 -171678.769 Mean MD in anterior corona radiata on FA skeleton (left)
0.265 -0.154 -176057.846 Weighted-mean MD in tract anterior thalamic radiation (left)
0.078 -0.041 -44211.387 Mean ISOVF in superior fronto-occipital fasciculus on FA skeleton (left)
0.143 -0.077 -59646.162 Weighted-mean ISOVF in tract anterior thalamic radiation (right)
0.177 -0.098 -172620.769 Mean MD in anterior corona radiata on FA skeleton (right)
0.273 -0.16 -176331.153 Weighted-mean MD in tract anterior thalamic radiation (right)
0.174 -0.096 -170432.707 Mean L2 in anterior corona radiata on FA skeleton (right)
0.054 -0.028 101219.506 Volume of grey matter in Pallidum (right)
0.175 -0.096 -169471.163 Mean MD in genu of corpus callosum on FA skeleton
0.229 -0.13 -175866.701 Weighted-mean L2 in tract anterior thalamic radiation (right)
0.163 -0.089 -177074.476 Mean MD in anterior limb of internal capsule on FA skeleton (left)
0.079 -0.041 -53234.386 Mean ISOVF in posterior corona radiata on FA skeleton (left)
0.159 -0.087 -58912.836 Weighted-mean ISOVF in tract anterior thalamic radiation (left)
0.04 -0.02 -25966.018 Mean ICVF in fornix on FA skeleton
0.076  -0.04  -56374.466 Mean ISOVF in anterior corona radiata on FA skeleton (left)
0.14 -0.075 -55319.609 Weighted-mean OD in tract superior thalamic radiation (left)
0.076  -0.039 -57122.197 Weighted-mean ISOVF in tract superior longitudinal fasciculus (left)
0.039 -0.02  -57205.686 Mean ISOVF in anterior corona radiata on FA skeleton (right)
0.103 -0.054  -51036.79 Mean ISOVF in posterior corona radiata on FA skeleton (right)

Table C.2: Model selection criteria of the top 30 IDPs, ranked according to difference between the BIC of a B-spline BLR and

a SinhArcsinh warped BLR, where the B-spline BLR had a lower BIC score.
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9¢

[ EV_MSLL __ BIC Field | -
0.249 -0.143 184900.524 Total volume of white matter hyperintensities (from T1 and T2-FLAIR images) %é
0.147 -0.079 -29710.013 Mean OD in fornix on FA skeleton %2
0.285 -0.164 -137192.133 Mean MD in fornix on FA skeleton %i
0.276 -0.153 -136161.29 Mean L3 in fornix on FA skeleton %g
0.275 -0.151 -134595.545 Mean L2 in fornix on FA skeleton o
0.153 -0.083 -87376.141 Inverted temporal signal-to-noise ratio in pre-processed rfMRI %g
0.27  -0.157 -24636.152 Mean FA in fornix on FA skeleton i’g
0.171  -0.093 -32985.173 Mean MO in anterior limb of internal capsule on FA skeleton (right) Egs
0.094 -0.049 -22330.216 Mean MO in tapetum on FA skeleton (left) N %é
0.043 -0.022 -26681.768 Mean MO in tapetum on FA skeleton (right) 535
0.141 -0.076  -33305.028 Mean MO in anterior limb of internal capsule on FA skeleton (left) %%E
0.054 -0.027 -42459.737 Weighted-mean ISOVF in tract parahippocampal part of cingulum (left) g;g
0.117  -0.062 -71451.215 Mean OD in splenium of corpus callosum on FA skeleton §§§
0.064 -0.033 -40476.534 Weighted-mean FA in tract parahippocampal part of cingulum (right) 3hs
0.307 -0.183 -15506.712 Mean ISOVF in fornix on FA skeleton Egé
0.182  -0.1 -34039.973 Discrepancy between T2 FLAIR brain image and T1 brain image g%%
0.047 -0.024 -41660.315 Weighted-mean FA in tract parahippocampal part of cingulum (left) g%g
0.058 -0.03 -51125.932 Mean OD in tapetum on FA skeleton (left) 2sg
0.199 -0.111 -172072.977 Weighted-mean MD in tract posterior thalamic radiation (left) §’§§
0.311 -0.186 -26746.982 Discrepancy between tfMRI brain image and T1 brain image §c_‘?n:2
0.131 -0.071 -169248.259 Mean MD in posterior thalamic radiation on FA skeleton (left) 558
0.089 -0.046 -181090.417 Mean MD in inferior cerebellar peduncle on FA skeleton (left) ’%;‘
0.07 -0.036 -41654.584 Weighted-mean ISOVF in tract parahippocampal part of cingulum (right) %E
0.028 -0.014 -35788.551 Mean MO in posterior limb of internal capsule on FA skeleton (right) ?BE
0.069 -0.036 -62423.772 Weighted-mean OD in tract forceps major gi
0.027 -0.014 -52538.461 Mean ISOVF in middle cerebellar peduncle on FA skeleton g%
0.314 -0.188 -27837.003 Discrepancy between rfMRI brain image and T1 brain image %é’
0.085 -0.044 -170720.346 Weighted-mean MD in tract medial lemniscus (right) gg

Table C.3: Model selection criteria of the top 30 IDPs, ranked according to the difference between the BIC of a B-spline BLR 5§

and a SinhArcsinh warped BLR, where the SinArcsinh warped BLR had a lower BIC score. 93_ Z;
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552 The enigma consortium: large-scale collaborative analyses of neuroimag-
553 ing and genetic data, Brain imaging and behavior 8 (2014) 153-182.
s54 d0i{10.1007/s11682-013-9269-5!
s [3] B. Casey, T. Cannonier, M. I. Conley, A. O. Cohen, D. M. Barch, M. M.
556 Heitzeg, M. E. Soules, T. Teslovich, D. V. Dellarco, H. Garavan, et al.,
557 The adolescent brain cognitive development (abed) study: imaging ac-
558 quisition across 21 sites, Developmental cognitive neuroscience 32 (2018)
550 43-54. doii10.1016/j.dcn.2018.03.001,
so0o  [4] T. D. Satterthwaite, J. J. Connolly, K. Ruparel, M. E. Calkins, C. Jack-
561 son, M. A. Elliott, D. R. Roalf, R. Hopson, K. Prabhakaran, M. Behr,
562 et al., The philadelphia neurodevelopmental cohort: A publicly avail-
563 able resource for the study of normal and abnormal brain development in
564 youth, Neuroimage 124 (2016) 1115-1119. do0i:10.1016/j .neuroimage.
565 2015.03.056.
ss  |b] T. R. Insel, B. N. Cuthbert, Brain disorders? Precisely: Precision
567 medicine comes to psychiatry, Science 348 (2015) 499-500. doi:10.1126/
568 science.aab2358.
’ Criteria \ t p d ‘

EV 27.511 p<0.001 0.922

MSLL | -26.538 p < 0.001 -0.889

BIC -15.95 p < 0.001 -0.534

Table D.4: Table presenting a paired-sample t-test between the B-spline and standard BLR
models, using the IDP data, showing a significant difference between the model selection
criteria of the B-spline BLR and the standard BLR, with a large effect size.

’ Criteria \ t p d ‘
EV -0.897 0.37 -0.03
MSLL 0.026 0.979 0.001
BIC 9.279 p<0.001 0.311

Table D.5: Table presenting a paired-sample t-test between the B-spline and warped
BLR models, using the IDP data, showing only a significant difference between the model
selection criteria of the B-spline BLR and the B-spline SinhArcsinh warped BLR using
the BIC score, with a small effect size.
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Table E.6: Cognitive variables of the UK Biobank that were used in this study.

Field FieldID ‘
Number of times snap-button pressed 403
Duration to first press of snap-button in each round 404
Mean time to correctly identify matches 20023
Time elapsed 4256
Digits entered correctly 4259
Number of rounds of numeric memory test performed 4283
Time to complete test 4285
Duration screen displayed 4290
Number of attempts 4291
Prospective memory result 20018
Fluid intelligence score 20016
Number of fluid intelligence questions attempted within time limit 20128
Duration to complete numeric path (trail 1) 6348
Total errors traversing numeric path (trail 1) 6349
Duration to complete alphanumeric path (trail 2) 6350
Total errors traversing alphanumeric path (trail 2) 6351
Errors before selecting correct item in numeric path (trail 1) 6770
Errors before selecting correct item in alphanumeric path (trail 2) 6771
Interval between previous point and current one in numeric path (trail 1) 6772
Interval between previous point and current one in alphanumeric path (trail 2) 6773
Number of puzzles correctly solved 6373
Number of puzzles viewed 6374
Number of puzzles correct 6382
Number of puzzles attempted 6383
Number of puzzles correct 21004
Number of symbol digit matches attempted 23323
Number of symbol digit matches made correctly 23324
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