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Abstract

Learning and decision-making are greatly influenced by the social context surrounding
individuals. When navigating a complex social world, individuals must quickly ascertain where
to gain important resources and which group members are useful sources of such information.
Such dynamic behavioral processes require neural mechanisms that are flexible across contexts.
Here we examined how the social context influences the learning response during avisual cue
discrimination task and the neural activity patterns that underlie acquisition of this novel
information. Using the cichlid fish, Astatotilapia burtoni, we show that learning of the task is
faster in social groups than in anon-social context. We quantified the expression of Fos, an
immediate-early gene, across candidate brain regions known to play arolein socia behavior and
learning, such as the putative teleost homologues of the mammalian hippocampus, basolateral
amygdala, and medial amygdala/BNST complex. We found that neural activity patterns differ
between social and non-social contexts. Our results suggest that while the same brain regions
may be involved in the learning of a discrimination task independent of social context, activity in

each region encodes specific aspects of the task based on context.
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Introduction

For group-living species, social interactions provide akey source of information that can
greatly impact the fitness and well-being of individual group members. It is commonly assumed
that learning from others, or social learning, isinherently adaptive asit allows individuals to
avoid costs associated with learning by themselves, or non-socially [1]. The benefits of social
learning alow individuals to gain information from conspecifics, such as to which foods to ez,
which routes to take to feeding locations, and how to escape from predators [2]. These wide-
ranging behaviors have been studied across species, such asin instances of socially transmitted
food preferences [3, 4], socia learning of certain skills [5, 6, 7], mate preference learning
[reviewed in 8], predator avoidance [9], and fear transmission [10, reviewed in 11]. The
behavioral mechanisms that underlie these behaviors are diverse, ranging from stimulus
enhancement (when another individual draws the observer’s attention to a particular stimulus or
object) to observational learning [12, 13, 14], allowing animals to acquire new information
important for their survival and which can incidentally be transmitted to conspecifics[15, 16, 17,
18]. While alot is known about the neural basis of learning in non-social contexts [reviewed in
19], few studies have examined whether and how these mechanisms might operate in the context
of socia learning.

Studies in rodents and songbirds have expanded our understanding of the neurobiological
mechanisms that mediate social learning, such as the brain regions that are important for
acquisition and maintenance of socially-transmitted food preferencesin rats [reviewed in 20].
Subregions of the hippocampus (specifically, the subiculum and dentate gyrus) have been shown

to be critical for the retention of socially acquired food preferences [21-23]. Social learning of
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fear has been found to be also modulated in part by the lateral nucleus of the amygdalain both
rhesus monkeys and humans[11, 24].

At the molecular level, social learning requires neural activity-dependent changes in gene
expression, much like long-lasting alterations in the strength of synaptic connectivity important
for associative learning [25, 26]. Activation of immediate early genes (IEGS) isacritical
mediator in this process [27, 28]. Previous studies in rodents have shown that IEGs such as cfos
are expressed following acquisition and consolidation of associative learning [29 — 32]. In
addition, ratstrained on atest of socia transmission of food preference show greater cfos
expression in subregions of the hippocampus in a time-dependent manner [29, 30]. The medial
amygdala plays a key role in mouse social cognition, as oxytocin receptorsin thisregion are
essential for recognizing familiar conspecifics [33]. In songbirds, differential Fos expression has
been shown to underlie different aspects of song learning and production [34, 35]. Thereisaso
evidence in songbirds that differential neural activity underlies different phases of sexual
imprinting, atype of social learning by which ajuvenile learns specific characteristics of a parent
or other familiar individual [36]. Taken together, these findings suggest that across species
associative learning in social contextsisdriven by differential neural activity patterns across
multiple brain regions.

Here, we investigate the neural activity patterns that differentiate social and non-social
learning in amodel system that readily forms naturalistic social groupsin the laboratory. The
African cichlid fish, Astatotilapia burtoni, isamodel system in social neuroscience because of
its remarkable phenotypic plasticity and sophisticated social cognition [37, 38]. Dominant males
of this species are territorial and aggressive, while subordinates typically do not hold territories

and are overall less aggressive [38, 39]. In arecent study, we found that although dominant
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males of this species had strong influence over the movement of their social groups under normal
conditions, they were less influential in amore complex learning task [40]. This effect was
primarily driven by the socially aversive behavior of dominant males, which, although central in
interaction networks, occupied peripheral positionsin spatial networks. IEG expression in
response to different types of social information has also been shown in this species[41 — 44],
suggesting that differencesin learning in social or non-social contexts may induce differential
patterns of neural activity.

We examined |EG expression in different brain regions of A. burtoni males and females
during learning in socia groups or without a conspecific informant. We first compared the
learning response rates in asocial and non-social context as measured by the latency to acquire a
cue association. We hypothesized that social facilitation mechanisms would allow groups to
learn the task faster than individuals in the non-social context. To understand how the brain
acquires a cued association across social contexts, we then quantified expression of Fos, an IEG,
across the putative teleost homologues of the mammalian hippocampus, basolateral amygdala,
and medial amygdala/bed nucleus of the striaterminalis (BNST) complex, which are key nodes
of the Social Decision-Making Network (SDMN) [45, 46]. We predicted that neural activity
during learning in a social context would be highest in brain regions important for mediating
social behavior in this species, such as the supracommissural part of the ventral pallium (Vs, the
putative homologue of the mammalian medial amygdala/BNST complex) and the medial part of
the dorsal telencephalon (Dm, the putative homologue of the basolateral amygdala); aswell as
those important for associative learning, such as specific sub-regions of the lateral part of the
dorsal telencephalon (DI, the putative homologue of the hippocampus). In addition, we expected

neural activity in DI to increase in both contexts once learning occurs. Finally, we predicted that
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neural activity in regions important for social behavior would be relatively low in the non-social
context. Our results reflect differencesin how new information is acquired in different social

contexts.

2. Methods
Animals

Astatotilapia burtoni descended from awild caught stock population were kept in stable
naturalistic communities of eight males and eight females, as described previously [46] until
being transferred to experimental aquaria. Brooding females were stripped of fry immediately
prior to being placed in experimental aquaria. All work was done in compliance with the

Institutional Animal care and Use Committee at The University of Texas at Austin. All relevant

code and analyses are available online at https://github.com/neuromari/neuro_social_learning.

Visual cue discrimination task

Our protocol broadly followed that of Rodriguez-Santiago, Nihrenberg et al. (2020). A
detailed description of the task setup, task training in asocial and non-socia context, aswell as
the response criterion we used to consider atask to have been completed successfully is provided
in the Supplemental Materials. Because A. burtoni communities form social dominance
hierarchies, we accounted for social hierarchy dynamics and group behavior in the social

context, as described in Supplemental Materials.

Sample processing and immunohistochemistry for examining neural activity
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To examine neural activity patterns across learning trials, three individual samples were
collected from each community. In groups with a dominant male informant, the second largest
male, subordinate male, and a female were collected. In groups with a subordinate male
informant, the dominant male, and third largest male, and afemale were collected. For all non-
socially trained individuals, males and females were euthanized after trials 6, 14, or 22. A
detailed description of the immunohistochemical procedures and the quantification of Fos-

positive cellsis provided in the Supplemental Materials.

Satistical analysis

All statistical analyses were conducted using R Studio (version 1.0.143) and the
‘survival’ package [47]. We analyzed the learning response using a survival analysis. We used
the nonparametric log-rank test because the proportional hazard assumption was not met, given
that it does not support multiple response variables, such as social context, informant status, and
individual sex. Thus, we used a series of log-rank teststo examine the overall effect of social
context and pairwise differences between informant statusin the social context and sex in the
non-social context. In a separate analysis, we examined differences between informant status
effectsin asocial context, as well as sex differences in response rate in the non-social context
using repeated measures analysis of variance (ANOVA).

We used Principal Components Analysis (PCA) to identify how neural activity patterns
across brain regions clustered based on social context conditions and individual-levd traits.
Independent ANOV A tests were used to compare PC scores between social condition (social v
non-social), trial, and learning response. To account for repeated measures of the same fish

across treatments, generalized linear mixed models (GLMM) were used for Fos expression


https://doi.org/10.1101/2021.04.04.438393
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.04.438393; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

167  analyses, which are a proxy for neural activity. To examine how learning context, trial, and

168 individual-level traitsinfluence learning and neural activity patterns, we used the R package

169  gimmTMB which ranks models based on Akaike Information Criterion scores, corrected for

170  sample size (AICc) [48], and allows for usage of the beta family, which is appropriate for

171 modeling proportional data. We first performed an overall GLMM that included both social and
172 non-socia learning conditions, and also did a separate model on the social and non-social

173 conditions. In the overall model, we included learning condition, trial, sex, whether the learning
174  criterion was met, and group as dependent variables and brain region (DI-g, DI-v, Dm-1, Dm-3,
175 and Vs) astheindependent variables. In the social condition model, the dependent variables were
176  trial, sex, observer status, informant status, whether the learning criterion was met, and group. In
177  thenon-social condition model, the dependent variables were trial, sex, and learning as the

178  dependent variables. Model results and tables can be found in the Supplemental Materials.

179

180

181 3. Results

182  Social facilitation resultsin faster response rates compared to a non-social context

183 We first asked whether the cumulative response rate differed between the social and non-
184  social contexts and found that the cumulative probability of consecutive group responses during
185  the cue discrimination task is significantly greater than the response rate of individualsin an non-
186  social context (log-rank test: X* = 8.1, P = 0.004; Figure 1a). However, the number of trialsit
187  took to reach the response criterion did not differ between the social and non-social contexts

188  (Wilcox test: W =41, p = 0.426; Figure 1b). To our surprise, the social status of the informant —
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189  dominant vs. subordinate — did not have any effect on learning rate (log-rank test: X* = 0.005, P
190 = 0.94), contrary to our previous study [40].

191

192  Neural activity patterns depend on the social context

193 We used PCA to determine which aspects of the social context and individual-level traits
194  influence neural activity patterns during a learning task, and how these contextual aspects

195  contributeto alearning response. We first conducted a PCA that included variables in both social
196  conditions: thetrial at which individuals were taken (trial), the context condition (social v non-
197  social), and whether the response criterion was met (yes or no). We found that principal

198  component 1 (PC1) accounted for 59.6% of the total variance and differed significantly between
199  social conditions acrosstrials (Figure 2). There was amain effect of both social context (Fpo1 =
200 385.4, p<.001) andtria (F0 = 7.47, p = 0.0009), though no significant interaction effect (F201
201 =1.911, p= 0.154; Figure 2d). However, there was a significant interaction between trial and
202  learning response (learning response; Fi o1 = 22.37, p <.001; trial: Fp91 = 3.396, p = .04;

203  responsex trid: Fpo1 = 8.3, p < .001; Figure 2e), and strong main effects of learning response
204  and context (learning response: F19; = 71.038, p < .001; context: F; 91 = 269.57, p < .001; Figure
205  2f). There was a strong main effect of trial and learning response on PC2, aswell as interactions
206  between trial and context, and learning response and context (Figure 2g: context: F;9; = 1.086, p
207 = .3;trid: Fyo1 = 76.24, p < .001; interaction: F,91 = 19.45, p < .001; Figure 2h: learning

208  response. F1g91 =59.61, p <.001; trial: Fy0; = 26.16, p < .001; trial x learning response: Fo0; =
209  .064, p =.938; Figure 2i: learning response: F10; = 47.93, p < .001; context: Fy9; = 13.493, p =
210 .004). Given the striking differencesin neural activity patterns between the social and non-social

211 contextsin both the comparisons of estimated Fos+ cells across brain regions and the PCA, we
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conducted separate PCAs on the socia (Supplemental Figure 5) and non-social contexts. The

results of these analysis can be found in the Supplemental Materials and Figures.

Neural activity patterns during acquisition of learning differ across social contexts

To disentangle the factors that contribute to the stark PCA differences we see with the
learning context, we examined neural activity in key nodes of the SDMN across trials and
contexts. We used relative Fos expression as a marker of neural activity across DI-g, Dm-1, and
Vsbrain regionsinvolved in social behavior and association learning. We compared neural
activity across social conditions (social, non-social) and learning task trial (6, 14, 22) using two-
way ANOV As (Figure 3a,c,e; Supplemental Table 3 for statistics). We found that the trial and
context had significant main effects on Fos expression in the DI-g, but there was no significant
interaction. In the Dm-1, there was both a significant main effect of trial and context as well as
an interaction. In the Vs, there was a main effect of trial and context. In addition, we also
examined neural activity in the DI-v and the Dm-3 subregions and found no significant effect of
trial, although there was a significant effect of context (data not shown, statisticsin Supplemental
Table 3).

When we examined whether Fos expression changed with learning, we found a
significant difference between context treatments (Figure 3b,d,f; see Supplemental Table 4 for all
statistics). Across all brain regions, there was a main effect of context and learning response.
There was an interaction between learning and context in the Dm-1 only. There was no
difference in Fos expression in the non-social context based on whether individuals learned the
task, while in the social context Fos expression was highest in observers that learned the task in

the DI-g (p < 0.001; Figure 3b) aswell asin the Vs (p = 0.001; Figure 3f). Despite the large
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differences between Fos expression across social contextsin the five brain regions measured
over trials, when we looked closer at factors that impact this difference within the social context
we found no significant differences in expression based on the social rank of observers or based

on the informant status (data not shown).

4. Discussion

In the present study, we found large differences between a social and non-social context
in behavioral and neural activity during an associative learning task. Specifically, we discovered
asignificant difference in learning rate between contexts, such that social groups had a higher
cumulative probability of reaching the response criterion sooner than individuals in a non-social
context. This striking behavioral differenceis reflected in the neural activity pattern differences
between contexts, with specific brain regions encoding different aspects of our learning
paradigm, suggesting that the acquisition of alearning response to a cue association is mediated

by different brain regions depending on the social context.

Observational learning and stimulus enhancement accelerate associative learning of a visual
cue discrimination task

By examining the cumulative learning rate probability of acquiring a cue association
response across two experimental contexts, we found that social groups had a significantly
higher cumulative probability of learning than individuals in anon-social context. Thisis not
necessarily surprising given the prevalence of social learning strategies across species and the

notion that social learning is more adaptively beneficial asit confers fewer costs and allows
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individuals to gain new information more quickly [49]. In addition, information diffusion is
typically accelerated in social groups[20].

There are at least two mechanisms by which learning might have occurred in our social
paradigm, social facilitation (when the presence of an informant affects the observer’ s behavior)
and stimulus enhancement (where the observer’s behavior changes after watching an informant
interact with a stimulus). To demonstrate that the group response is due solely to the presence of
an informant (i.e., social facilitation), it would be necessary to test individua group members by
themselves following acquisition. While we did not examine this retention by observersin the
present study, it should be noted that the informants themselves were trained in naive groups and
then transplanted to new groups, where they were the only informed individual. Importantly, all
informants displayed a correct response to the cue within one or two trialsin their new
communities, suggesting that the observers in our study in fact acquired the association and were
not just copying other group members behavior. It seems thus likely that individualsin social
groups learned by means of observation or stimulus enhancement, which ultimately led them to
respond faster than lone individuals. However, it cannot be ignored that A. burtoni is ahighly
social species, and although individuals in the non-social context had blind cave fish asa social

buffer, their dow learning rate could be due to stress factors from being apart from conspecifics.

Hippocampal sub-regions differentially mediate learning in social and non-social contexts
When we examined the neural activity across brain regionsin different trials of the

learning task, we found significant differences in neural activity (measured as number Fos-

immunoreactive cells) between the social and non-social contexts as well as depending on

whether the task had been learned or not. In DI (thelateral part of the dorsal telencephalon and
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putative homologue of the mammalian hippocampus), we found a significant increase in Fos
expression (or ‘activity’) fromtrial 6 to trial 14 in the social context in the DI-g sub-region,
which was a so significantly higher in groups that learned the task. In the DI-v sub-region, there
was a significant main effect of social context acrosstrials, and a significant decrease in activity
between trials 14 and 22. Activity in the DI-v was not correlated with learning. The DI-g and DI-
v are subdivisions of the dorsal pallium, aregion implicated in the learning of spatial and
temporal relationshipsin teleosts [50, 51]. Previous work has also shown that the major
pathways within the dorsal pallium are highly recursive and have complex reciprocal
connections with subpallial regions [52]. Based on tract-tracing neuroanatomical data, as well as
lesions studies that implicate the DI and other dorsal pallial regionsin learning and memory
tasks, Elliott et al. (2016) suggested that the dorsal pallial circuitry (which includes the DI
subregions) can implement the same pattern separation and completion computations ascribed to
the mammalian hippocampal dentate gyrus and CA3 fields. Taken together, these results suggest

adifferential role for these DI subregions in the acquisition of this association learning task.

The basolateral amygdala likely encodes social group formation, not learning of the association
task

We found a significant difference in neural activity across social contextsin subregions
of Dm (media part of the dorsal telencephalon and putative homologue of the mammalian
basolateral amygdala). More specificaly, we found a significant decrease in activity acrosstrials
in the social context in Dm-1, and a significant decrease from trial 14 to 22. Activity in Dm-1
was not associated with group learning, and there was no difference across learning response in

the Dm-3 (not shown). These findings are consistent with previous studies in goldfish that have
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shown that Dm lesions disrupt trace and delay avoidance conditioning [51, 53], aswell as fear
and heart-rate classical conditioning [22], while such lesions have no effect on spatial memory
and cue learning [54, 55]. The effects of these lesions in fish are similar to lesions of the
amygdalain mammals[56 — 59] and in part based on this evidence the teleost medial pallium
(which includes the Dm) has been proposed as homologous to the pallial amygdala of mammals
[51]. In A. burtoni males, Dm activity is correlated with the level of engagement in joint territory
defense, although the sign of the correlation depends on an individual’ s role in this cooperative
behavior [44]. In the present study, we found that activity in the Dm complex was significantly
higher in trial 6 compared to 14 and 22. Given that few groups had learned the task prior or by
trial 6, it isnot surprising that Dm activity was also higher in groups that had not yet successfully
learned the task. Interestingly, individuals from groups that did reach the learning criterion by
trial 6 or sooner showed lower Dm activity, which further indicates that Dmisnot involved in
learning the cue association task. Instead, this result suggests that the Dm regions, and the Dm-1
in particular, may play arolein some aspect of social group formation rather than being involved
in the acquisition of the cue association task, providing further support for arole of thisbrain

region in affective processing.

The extended medial amygdala encodes social context

In Vs (the supracommissural part of the ventral pallium and putative homologue of the
mammalian medial amygdala/lBNST) we found a significant main effect of social context. Also,
Vs activity increased in social groupsin trials 14 and 22, possibly as a consequence of more
groups successfully learning the task at these later trials. Homology of this brain region has

historically been difficult to characterize due to the eversion, rather than invagination, of the
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neural tube during teleost development [60 — 63]. However, developmental studies have found
similar genetic markers, namely DIx2, Lhx7, Nkx2.1b, between the Vs and the extended
amygdala [64]. Stimulation of the Vs has been shown to increase aggression in male bluegill fish
[65]. In our species, A. burtoni, thisregion is under social and reproductive modulation [42] and
shows varying levels of sex steroid receptor expression in males when given the opportunity to
ascend or descend in status. Taken together, this suggests that Vs plays a predominant rolein
mediating social information, which iswhy we see large differencesin neural activity here

between the social and non-social learning contexts.

Disentangling the effects of group formation and learning on neural activity patterns

While we see evidence for differential neural activity across multiple brain regions during
the acquisition of an association in both social and non-social contexts, we are unable to fully
separate the effects of group formation time from the effects of learning. Even though there are
significant differencesin neural activity in specific brain regions (DI, Dm) based on whether
groups demonstrated learning, it remains unclear how group formation impacts learning. In other
words, there could be a dampening of response in early trials due to social instability simply
because the groups did not have time to acclimate prior to the start of the trials. In the non-social
context, we observed a general dampening of neural activity specifically in early trials that
coincided with lower behavioral activity levels. Disentangling the effects of social stability
formation from the increased probability of learning after repeated trials in both social and non-

social contexts will require subsequent rigorous behavioral examination with automated tracking.

What Fos expression tells us about the observed neural activity patterns
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An important aspect of examining |EG induction as a measure of neural activity is that
we examined this expression 1 hour after the last learning trial the animals underwent — whether
it wastrial 6, 14, or 22. Expression of IEGs such as Fos is widely used as ameasure of neural
activity [66,67] as most IEGs encode transcription factors or DNA-binding proteins that
coordinate the cellular response to a stimulus [28]. By examining Fos protein expression within
60-90 minutes following the last stimulus exposure, we aimed to capture the brain regions that
were active, and presumably important, for the animal’ s behavioral response. Animals did not
perform these behaviorsin isolation, and it is possible that both in the social and non-social
contexts their neural activity reflects a response to the environment rather than the stimulus cue
itself. For example, there could have been a salient social signal occurring in the aguarium at the
same time as the cue (such as high territorial aggression by a dominant male). However, given
the high Fos expression in the Dm-1 in trial 6 compared to later trialsin both the social and non-
social contexts, the observed IEG pattern in thisregion is likely reflective of the animal’s
response to other salient cuesin the (social) environment besides the stimulus cue. In addition,
we found no correlation between neural activity and informant aggression (data not shown),
although the aggressive behaviors of other observer males could have had an effect on the neural

activity patterns seen in the social context.

Group learning and neural activity patterns are independent of social status

Communities of A. burtoni naturally form rank hierarchies with some males establishing
social dominance by aggressively defending territories for mating with females, while the
majority of males are socially subordinate and reproductively suppressed [37, 68]. We have

previously shown for this species that the social status of an informant can have a strong effect
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373 on how fast agroup learns the visual cue discrimination task we used in the present study.

374  Specifically, even though socially dominant males strongly influence their socia groups through
375  aggressive displays and space use, they are significantly less effective in generating group

376  consensus during the association task than subordinate males[40]. In contrast, we did not find a
377  significant effect of informant status on group learning in the present study. This may not be

378  surprising given that the present study was not designed to examine the effects of social status on
379  group learning, and thus lacks the statistical power to robustly detect such an effect. It should
380  also be noted that in the Rodriguez-Santiago, Nuhrenberg et al. (2020) study, dominant males
381  were considerably larger than subordinate males, while in the present study the size difference
382  was much smaller. Previous work has shown that small size differences result in lower stability
383  of the social hierarchy in this species [69]. Although we did not quantify group stability here, the
384  behavioral traits that determine whether an individual is an effective informant — aggression and
385  gpace use— are highly context-specific and might explain the absence of a social status effect.
386  Thesefactors may also explain why we did not find differences in neural activity patterns

387  between dominant and subordinate observers when learning the task. One interesting observation
388  of relevance here comes from social fear learning in rats, where subordinate animals display

389  increased fear responses after interacting with adominant informant, which is also reflected in
390 distinct neural activity patterns[70].

391

392

393 5. Conclusion

394 We used the highly social African cichlid fish A. burtoni to demonstrate that social

395 learning isassociated with increased neural activity (as measured by the expression of Fos, an
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396 |EG) when compared to non-social learning across key brain regions important for learning and
397  socia behavior. These brain regions are important for modulating learning (hippocampus),

398  emotional learning and fear avoidance (basolateral amygdala), and social behavior (medial

399 amygdala/BNST), and are part of agreater Social Decision-Making Network that is important
400 for mediating various aspects of social behavior [45, 46]. In addition, we found that activity in
401  theseregions was not modulated by the sex or social status of individuals, nor was it impacted by
402  the status of informantsin social groups. Thus, while these regions are important for different
403  aspects of social learning [45], they do not appear to be modulated by group dynamics or

404  individual-level traitsin asocial learning context. While future studies are needed to fully

405  understand the mechanisms that drive social learning contexts (e.g. neuroendocrine or

406  dopaminergic pathways), our resultsin A. burtoni highlight that there are neural activity pattern
407  differencesin how individuals acquire information in different social contexts.

408
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640  Figure Captions

641

642 Figure 1. Learning rate is faster in a social context. A) Comparison of the cumulative
643  response probability to avisual cue discrimination task between a social and a non-social context
644  shows that groups have a higher response probability than individuals in a non-social context (p
645 = 0.004). B) Although the rate of response probability is significantly different between social
646  contexts, the total number of trials required to achieve this response criterion is not statistically
647  different between contexts (p = 0.426).

648

649  Figure 2. Principal component analyss (PCA) of neural activity shows differential
650  expression pattern with learning context. A) Scatter plot of all Fos expression data separates
651 out by social condition (social, non-social) across PC1. B) Vector plot showing the PCA
652  variables that load on PC1 and PC2. C) Plot showing the percent of the variance explained by
653 each PC. PC1 (D-F) and PC2 (G-I) loadings plotted across trials based on socia condition (D
654 and G) and whether learning response was reached (E and H). Boxplot showing that PC1
655 loadings (F) differentiates data by social condition but not by learning response while PC2
656  loadings (1) differentiate do not differentiate context across learning response.

657

658 Figure 3. Neural activity across brain regions varies over trials and with learning. Fos
659  expression was quantified as a marker of neural activity in the Dlg, Dm-1, and Vs regions of the
660 forebrain (A, D, F). In the Dlg, there was a significant increase in activity fromtrial 6 to 14 in the
661  socia context, while there was no difference in activity across trials in the non-social context
662  (B). Neural activity was significantly highest in learners in the social context (C). In the Dm-1,
663  activity significantly decreased over trials (E). Activity was significantly highest in the Dm-1 in
664  the socia context when learning had not occurred (F). In the Vs, activity significantly increased
665  after trial 6 in the social context (G) and was significantly higher in the social context with
666  learning (H).
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