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Summary 
Functional ultrasound imaging (fUSI) is a popular method for measuring blood flow and thus infer brain 

activity, but it relies on the physiology of neurovascular coupling and requires extensive signal processing. 

To establish to what degree its trial-by-trial signals reflect neural activity, we performed simultaneous fUSI 

and neural recordings with Neuropixels probes in awake mice. fUSI signals strongly correlated with the slow 

(<0.3 Hz) fluctuations in local firing rate, and were closely predicted by the smoothed firing rate of local 

neurons, particularly putative inhibitory neurons. The optimal smoothing filter had width ~3 s, matched the 

hemodynamic response function of awake mouse, was invariant across mice and stimulus conditions, and 

similar in cortex and hippocampus. fUSI signals also matched neural firing spatially: firing rates were as 

highly correlated across hemispheres as fUSI signals. Thus, hemodynamic signals measured by ultrasound 

bear a simple and accurate relationship to neuronal firing.  

Introduction 
Functional ultrasound imaging (fUSI) is an 

increasingly popular method for studying brain 

function (Deffieux et al., 2018; Edelman and Macé, 

2021; Macé et al., 2011; Rabut et al., 2020). fUSI is 

appealing because it estimates changes in cerebral 

blood volume with high resolution,  resolving 

spatial features in the order of ~100 μm up to a 
depth of ~2 cm (Macé et al., 2011). It is thus used 

to study how the activity of brain regions depends 

on sensory stimuli, internal state, and behavior, in 

multiple species including mice (Aydin et al., 2020; 

Boido et al., 2019; Brunner et al., 2020; Ferrier et 

al., 2020; Koekkoek et al., 2018; Macé et al., 2018; 

Sans-Dublanc et al., 2021), rats (Bergel et al., 2018; 

Bergel et al., 2020; Gesnik et al., 2017; Macé et al., 

2011; Osmanski et al., 2014; Provansal et al., 2021; 

Rahal et al., 2020; Sieu et al., 2015; Urban et al., 

2015), marmosets (Zhang et al., 2021), ferrets 

(Bimbard et al., 2018), and macaques (Blaize et al., 

2020; Dizeux et al., 2019). In a small animal like a 

mouse, fUSI can image the whole brain, yielding 

measurements that may parallel those obtained in 

humans with functional magnetic resonance 

imaging (fMRI).  

However, the relationship between fUSI signals 

and neural activity is indirect, as it relies on 

multiple intermediate steps: the physiology of 

neurovascular coupling, the physics of ultrasound 

sensing, and the mathematics of the subsequent 

signal processing. Neurovascular coupling links 

neuronal firing to changes in blood oxygenation, 

flow, and volume through processes that have 

been extensively studied (Attwell and Iadecola, 

2002; Drew, 2019; Hamel, 2006; Hillman, 2014; 

Iadecola and Nedergaard, 2007; Nair, 2005; 

Pisauro et al., 2013; Turner et al., 2020; Winder et 

al., 2017). Movement of blood, in turn, causes a 

frequency shift in ultrasound echoes that can be 

measured through power Doppler ultrasound 

sensing (Rubin et al., 1995; Rubin et al., 1994). 

Finally, and crucially, the power Doppler signals 

must be distinguished from multiple, large sources 

of noise -- such as tissue movement -- through 

multiple steps of signal processing. These steps 

typically include temporal binning, power 

estimation, temporal high-pass filtering and 

spatiotemporal clutter filtering by removing the 

largest principal components (Baranger et al., 

2018; Demené et al., 2015; Macé et al., 2011; Macé 
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et al., 2013). Small changes in this procedure can 

profoundly affect the inferred neural signals (e.g., 

Demené et al., 2015). Yet this procedure has not 

been verified with simultaneous recordings of 

neuronal firing rates in the awake brain. Indeed, it 

is unclear to what degree, and at what temporal 

and spatial scales, fUSI signals truly measure neural 

firing on a trial-by-trial basis.  

At first sight, fUSI signals may appear noisy, with 

large fluctuations over short time scales (e.g. >10% 

over a few seconds) that vary across trials (e.g., 

Brunner et al., 2020), and it is not clear to what 

extent these fluctuations are due to the process of 

measurement and analysis of fUSI signals, or to the 

underlying neural activity. Indeed, neural activity 

exhibits endogenous, ongoing fluctuations that are 

strongly correlated across neurons (Schölvinck et 

al., 2015), associated with changes in brain state 

and body movement (Drew et al., 2019; Musall et 

al., 2019; Stringer et al., 2019), and are highly 

correlated across hemispheres (Drew et al., 2019; 

Fox et al., 2007; Fox et al., 2006; Mohajerani et al., 

2010; Shimaoka et al., 2019). Perhaps the 

apparently noisy fUSI signals reflect these 

structured fluctuations in neural activity. Indeed, 

fUSI signals approximately resemble 

simultaneously recorded local field potentials 

(Aydin et al., 2020; Bergel et al., 2018; Bergel et al., 

2020; Sieu et al., 2015), which in turn reflect local 

neuronal firing (Buzsáki et al., 2012; Katzner et al., 

2009).  

Moreover, it is not clear whether the neural 

component of fUSI signals reflect neuronal spiking 

through a simple linear relationship and if this 

relationship differs across brains and brain regions. 

To a first approximation, neurovascular coupling is 

a linear process: hemodynamic signals can be 

predicted from neuronal firing by smoothing firing 

rates with a hemodynamic response function 

(Boynton et al., 1996; Cardoso et al., 2019; Devor 

et al., 2005; Drew, 2019; Heeger and Ress, 2002; 

Lima et al., 2014; Logothetis et al., 2001; 

Martindale et al., 2003; Pisauro et al., 2013). The 

next step might also be linear: fUSI signals can be 

predicted from (separately measured) 

hemodynamic signals (red blood cell velocity) 

through another transfer function (Aydin et al., 

2020; Boido et al., 2019). Because a series of linear 

operations is itself linear, the relationship between 

fUSI signals and neuronal firing may result from a 

simple convolution with a linear filter. 

Furthermore, this relationship may be fixed across 

brain regions and types of activity. 

Here we answer these questions with 

simultaneous measurements of spikes and fUSI 

signals in awake mice. We performed these 

experiments in the awake brain to avoid the 

detrimental effects of anesthesia on neurovascular 

coupling (Pisauro et al., 2013) and on the function 

of inhibitory circuits (Haider et al., 2013). The 

results indicate that fUSI signals are closely related 

to neuronal firing, and especially the firing of 

putative inhibitory neurons, and that the 

relationship between the two is well summarized 

by convolution with a hemodynamic response 

function. The transfer function acts as a low-pass 

filter, so the relationship between fUSI signals and 

neuronal firing becomes progressively more 

accurate at slower time scales. Neural activity 

explains why fUSI signals correlate strongly across 

space and even across hemispheres: these 

correlations reflect true shared fluctuations in 

neural activity across brain locations and 

hemispheres.  

Results 
To measure neuronal firing during fUSI, we 

recorded with Neuropixels probes during sensory 

and spontaneous activity. For each mouse, we 

determined the location of primary visual cortex 

(V1) by aligning fUSI images to the Allen Institute 

Brain Atlas (Wang et al., 2020) using a vascular 

atlas as an intermediate reference (Todorov et al., 

2020). In each session, we inserted a Neuropixels 

probe (Jun et al., 2017) in a parasagittal trajectory 

and acquired a fUSI image coronally (Figure 1A,B).  
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Figure 1. fUSI signal reflects temporally filtered 

firing rate during spontaneous activity.  

(A) Schematic of simultaneous fUSI and 

electrophysiological recordings, showing 

primary visual cortex (V1) and hippocampus 

(HPC).  

(B) Coronal fUSI slice with the location of the 

Neuropixels probe passing through this plane 

(purple) and in front of it (yellow).  

(C) Spikes recorded in V1 in an example 

recording, as a function of time and recording 

depth. 

(D) The resulting mean firing rate. 

(E) fUSI signal measured simultaneously in the 

same location (average over 51 voxels). 

(F) Smoothing the firing rate with the optimal 

filter (shown in K)  yields good predictions 

(black) of the fUSI signals (red). 

(G) Comparison of fUSI signals and firing rate 

measured 2.1 s earlier (the optimal value), with 

best fitting line indicating correlation (red). 34 

recordings in 5 mice.  

(H) Cross-correlation between firing rate and 

fUSI signal, averaged across 34 recordings in 5 

mice.  

(I) Power spectra (top) and spectral coherence 

(bottom) of firing rate and fUSI, averaged across 

recordings. The gray bands in the top plot show 

1 median absolute deviation (m.a.d.). The gray 

band in the bottom plot shows coherence of 

randomly circularly shifted traces. 

(J) Comparison of fUSI signals and filtered firing 

rate.  

(K) Optimal linear filter across recordings, 

obtained with cross-validation. Median of 34 

recordings in 5 mice. 

(L) The filter (red) resembles the hemodynamic 

response function measured in awake mice 

(green, from (Pisauro et al., 2013)).  Error bars 

show ± m.a.d. of 34 recordings in 5 mice. 

Mice were awake and generally alert, as confirmed 

by measures of pupil dilation and whisker 

movements (McGinley et al., 2015; Reimer et al., 

2014) (Suppl. Figure 1). They viewed a gray screen 

(to measure spontaneous activity) or flashing 

checkerboards (to measure visual responses). All 

recordings were repeated after moving the fUSI 

transducer ~0.4 mm to an adjacent coronal slice (3-

5 slices per session). At the end of a session, we 

determined the location of the probe in the fUSI 

images by slowly extracting it while detecting its 

movement with fUSI (Figure 1B). To process fUSI 

signals we used established procedures (Demené et 

al., 2015; Macé et al., 2011), so that our results 

could be directly compared to the literature. 

The fUSI signals from visual cortex during 

spontaneous activity resembled a delayed and 

smoothed version of the firing rate measured in the 

same location. After spike sorting, we computed the 

mean firing rate in all neurons (both single- and 

multi-unit clusters) recorded at the sites that 

intersected the fUSI slice (Figure 1C,D). This firing 

rate resembled the fUSI signal measured in the 

corresponding voxels (Figure 1E). The correlation 

between firing rate (delayed by 2.1 s) and fUSI 

signals was ρ  = 0.34 ± 0.08 (median ± median 

absolute deviation, m.a.d., 34 recordings in 5 mice, 

Figure 1G). The delay between the two signals was 

estimated by plotting the cross-correlation as a 

function of time, which peaked at a delay of 2.1 ± 
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0.3 s, with full-width at half-height of 3.6 ± 0.6 s (± 

m.a.d., 34 recordings in 5 mice, Figure 1H).  

Firing rate and fUSI signals were strongly correlated 

at low frequencies and became progressively less 

correlated at higher frequencies. To estimate the 

correlation between fUSI and firing rate as a 

function of frequency, we computed their spectral 

coherence,  i.e., their correlation as a function of 

frequency (Figure 1I). Coherence was highest 

between 0.01 and 0.1 Hz, with a median correlation 

of 0.59 ± 0.03 (m.a.d., 34 recordings in 5 mice), and 

gradually fell to chance levels (coherence of 0.14 ± 

0.03) at a frequency of  0.32 Hz. These results 

indicate that low frequency fluctuations in fUSI are 

mostly neural in origin, whereas fluctuations at 

higher frequencies are unrelated to neural activity 

and might thus best be discarded.  

The precise relationship between fUSI signals and 

firing rate was well described by convolution with a 

linear filter. The cross-correlation between two 

signals reflects not only their interaction but also 

their individual autocorrelations, which are 

substantial in both firing rates and fUSI signals. To 

obviate this problem, we estimated the optimal 

filter that relates the two through convolution 

(Boynton et al., 1996; Pisauro et al., 2013), using 

cross-validated ridge regression (Hoerl and 

Kennard, 1970).  Smoothing the firing rate with this 

filter yielded a prediction that closely matched the 

fUSI signal (Figure 1F). The filtered firing rate and 

the fUSI signal were highly correlated: in held-out 

data, the median correlation between the two was 

ρ = 0.49 ± 0.13 (m.a.d., 34 recordings in 5 mice, 

Figure 1J).  

The filter relating fUSI signals to firing rate 

resembled the hemodynamic response function 

characteristic of awake mouse cortex. As expected, 

the estimated filter peaked with the same delay as 

the cross-correlations (2.1 ± 0.3 s, median ± m.a.d.), 

but it had a faster time-course. Its full width at half-

height was 2.9 ± 0.6 s (m.a.d., 34 = experiments in 5 

mice, Figure 1K). Overall, the time course of the 

estimated filter closely resembled the fast 

hemodynamic response function (HRF) measured 

optically in the cortex of awake mice (Pisauro et al., 

2013); Figure 1L), with a possibly longer tail (Aydin 

et al., 2020). The estimated filter, therefore, likely 

corresponds to the hemodynamic response 

function (HRF) of the awake mouse cortex.  

Hemodynamic coupling across stimulus 

conditions and neural sources 

This simple linear relationship explained cortical 

fUSI signals also during visually driven activity. To 

evoke visual responses, we presented a sequence of 

flashing checkerboards on the left, center, and right 

of the visual field (Figure 2A). In this sequence, 

there was only a 2.5% chance that a stimulus would 

reappear consecutively in the same position. The 

typical interval between stimuli in the same position 

was >7 s and often much longer, allowing fUSI 

signals to return to baseline between stimuli. An 

event-related analysis revealed the expected 

representation of visual space in both primary 

visual cortex and superior colliculus, with lateral 

stimuli driving fUSI responses in the opposite 

hemisphere, and the center stimulus driving both 

hemispheres (Brunner et al., 2020; Gesnik et al., 

2017; Macé et al., 2018) (Figure 2B). Just as with 

spontaneous activity, the fUSI signal was well 

predicted by smoothing the firing rate with the 

estimated HRF (Figure 2C,D). Across experiments 

the median correlation between filtered firing rate 

and fUSI signals, in held-out data, was ρ = 0.55 ± 

0.22 (m.a.d. across 34 experiments in 5 mice).  
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Figure 2. Hemodynamic coupling across 

stimulus conditions and neural sources.  

(A) Flashing checkerboards were presented on 

the left, center or right.  

(B) fUSI voxel responses to checkerboards, 

showing deviations from the mean activity. 

Black outline indicates the voxels traversed by 

the Neuropixels probe in V1.  

(C) Response to an example sequence of 30 

stimuli (dots), showing firing rate in left V1 

(gray), the corresponding fUSI signal (red), and 

the filtered firing rate (black).  

(D) Same format as C, showing the average 

response to the right (optimal) stimulus.   

(E-F). The estimated HRFs for visual cortex under 

spontaneous activity and visual stimulation for 

individual mice (n=5) resembled the mean HRF 

computed across mice, areas, and conditions 

(thick curve).  

(G). Individual HRFs for hippocampus estimated 

across spontaneous activity and visual 

stimulation (n=4) resembled the mean HRF 

(thick curve, same as in E-F).  

(H) Correlation between fUSI signals and LFP 

bands (n=187 recordings across hippocampus 

and visual cortex, in 5 animals). Asterisks 

indicate significant differences between firing 

rate and LFP bands (P<10-12).  

(I) Correlation between fUSI signals and putative 

excitatory and inhibitory neurons (n = 187 

recordings).  

(J) Correlation between fUSI signals and 

infragranular and supragranular units recorded 

from visual cortex (n = 100 recordings in 5 

animals). 

The estimated HRF relating firing rate to fUSI 

signals was similar across mice and stimulus 

conditions, and between cortex and hippocampus. 

The HRFs measured in visual cortex in different 

mice were similar, both during spontaneous 

activity and during visual stimulation (Figure 2E,F). 

Moreover, they resembled the HRFs measured in 

hippocampus (Figure 2G). To assess whether the 

same HRF applies across mice, stimulus conditions 

(visual stimulation vs. spontaneous activity), and 

brain regions (visual cortex vs. hippocampus), we 

compared the predictions of fUSI signals obtained 

while allowing different HRFs vs. imposing a single 

average HRF (thick curve in Figure 2E-G). We used 

cross-validation to avoid over-fitting, and found 

that this single HRF explained a similar fraction of 

the variance as the individual HRFs. Therefore, 

though visual cortex and hippocampus show 

marked differences in vascular networks (Shaw et 

al., 2021), they have similar hemodynamic 

responses. 

fUSI signals correlated equally well with neuronal 

firing rates and with local field potentials (LFP) in 

the gamma range.  The LFP reflects average neural 

activity in a local region (Buzsáki et al., 2012; 

Katzner et al., 2009). We measured its power in 

four frequency bands: 4-12 Hz (alpha and theta), 

12-30 Hz (beta), 30-90 Hz (gamma), and 110-170 

Hz (high gamma). Consistent with previous findings 

(Aydin et al., 2020; Lima et al., 2014), fUSI signals 

correlated best with LFP signals in the gamma and 

high-gamma range (Figure 2H). These correlations 

were not significantly different from those 

observed with firing rates (P < 10-12, paired t-test). 

Correlations with the two lower LFP frequency 

bands, instead, were significantly lower (P = 0.57 

and P = 0.08).
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Figure 3. fUSI signals and firing rate are correlated across hemispheres.  

(A) fUSI traces measured during spontaneous activity in an example recording, in a ROI in the left visual cortex (top) and in a 

symmetrical ROI in right visual cortex (bottom).  

(B). Filtered firing rate measured simultaneously in the left ROI.  

(C) Correlation between the fUSI voxels in the left ROI (white contour) and all the individual fUSI voxels.  

(D) Correlation between the filtered firing rate measured in the left ROI (plus sign) and all the individual fUSI voxels. 

(E) Correlations between fUSI signals in left and right visual cortex (left) and between filtered firing rate and simultaneous fUSI signals 

in the same location in visual cortex (center) and in the opposite hemisphere (right). Black dot and error bars show median ± m.a.d 

across n = 68 recordings during spontaneous activity and visual stimulation. 

(F-J) Same analyses for recordings where firing rate and fUSI were measured in hippocampus (n = 58 recordings). 

fUSI signals were best correlated with the activity 

of putative inhibitory neurons. We distinguished 

putative excitatory and inhibitory neurons based 

on their spike shape (Barthó et al., 2004), and 

filtered their firing rates separately with the 

estimated HRF. fUSI signals correlated significantly 

better with the filtered firing of putative inhibitory 

neurons than of putative excitatory neurons (ρ = 
0.63 vs 0.45, P < 10-12, paired t-test). This difference 

was not due to a larger number of spikes, because 

the putative inhibitory neurons collectively fired 

fewer spikes. Indeed, the difference was still 

significant when we equated spike numbers by 

subsampling (P < 10-12). 

In cortex, finally, fUSI signals were best correlated 

with activity measured in supragranular layers. 

This activity was significantly more correlated with 

fUSI signals than activity in infragranular layers (ρ = 
0.56 vs 0.44, P = 0.005, paired t-test). Again, this 

effect was not due to larger numbers of spikes, 

because supragranular neurons have lower firing 

rates (Sakata and Harris, 2009). Indeed, the 

difference was still significant when we equated 

spike numbers through subsampling (P = 0.002). 

fUSI signals and firing rate are correlated 

across hemispheres 

Consistent with previous results, fUSI signals 

showed broad spatial correlations: activity in one 

location was highly correlated with activity at 

nearby locations and in the opposite hemisphere. 

Similar to BOLD fMRI signals (Desjardins et al., 

2001; Fox et al., 2007; Fox et al., 2006; Macey et 

al., 2004; Murphy et al., 2009), fUSI signals have 

broad spatial correlations within and across 
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hemispheres, allowing the use of fUSI to study 

<functional connectivity= (Ferrier et al., 2020; 

Osmanski et al., 2014; Rabut et al., 2020; Rahal et 

al., 2020; Urban et al., 2015). Indeed, the fUSI 

signals measured in left visual cortex during 

spontaneous activity correlated highly with signals 

in many other cortical and subcortical locations, 

including those in the opposite hemisphere (Figure 

3A,C). Correlations between fUSI signals across 

hemispheres were as high as ρ = 0.75 ± 0.08 

(median ± m.a.d. across 68 recordings; Figure 3E, 

left). Similar results were seen in the hippocampus 

(Figure 3F,H), where the bilateral correlations were 

as high as ρ = 0.90 ± 0.04 (across 58 recordings; 
Figure 3J, left). 

Accordingly, the filtered firing rate correlated not 

only with fUSI signals at the same location but also 

at other locations, including those in the opposite 

hemisphere. The filtered firing rate measured in 

left visual cortex resembled fUSI signals measured 

in the same location and in the opposite 

hemisphere (Figure 3B,D). Correlations with 

contralateral fUSI signals were ρ = 0.57 ± 0.14, 

barely lower than correlations with ipsilateral fUSI 

signals (ρ = 0.68 ± 0.10, Figure 3E, center and right). 

Likewise, the filtered firing rate measured in left 

hippocampus resembled fUSI signals measured in 

both left and right hippocampus (Figure 3G,I), with 

correlations above 0.7 in both cases (Figure 3J). 

These results suggest that the strong spatial 

correlations seen in fUSI signals may be explained 

by underlying bilateral fluctuations in neural 

activity. Indeed, ongoing neural activity has broad 

spatial correlations and is strongly bilateral, both 

during rest and during behavior (Mohajerani et al., 

2010; Musall et al., 2019; Shimaoka et al., 2019). 

However, there is another possible source of 

broad, bilateral correlations: perhaps there are 

hemodynamic fluctuations that are broad and 

bilateral but unrelated to neuronal activity (Drew 

et al., 2020; Turner et al., 2020).   

Bilateral firing largely explains bilateral fUSI 

signals  

To investigate the high bilateral correlations 

observed in fUSI we performed simultaneous 

recordings with two Neuropixels probes. In three 

of the mice, we inserted two probes symmetrically 

relative to the midline, targeting bilateral locations 

in visual cortex (Figure 4A). We could thus not only 

compare filtered firing rates to fUSI signals (Figure 

4A) and fUSI signals across hemispheres (Figure 

4B), but also firing rates measured across 

hemispheres (Figure 4C).  

The filtered firing rates in left visual cortex closely 

resembled those simultaneously recorded in right 

visual cortex (Figure 4C). Across recordings, the 

two filtered firing rates had high bilateral 

correlation, ρ = 0.87 ± 0.06 (median ± m.a.d., 

across 22 recordings; Figure 4D, middle). These 

correlations in firing rate matched those measured 

in fUSI signals (Figure 4D, left), which were not 

significantly higher (paired t-test P = 0.28, n = 22). 

Similar results were seen in the left and right 

hippocampus (Figure 4E-G). The filtered firing rate 

measured in left and right hippocampus exhibited 

strong bilateral correlation, ρ = 0.93 ± 0.03 (median 

± m.a.d. across 14 recordings; Figure 4H, middle). 

These bilateral correlations were not significantly 

lower than those measured in fUSI signals (Figure 

4H, left, P = 0.40, n = 14).  

To test whether the bilateral correlations in firing 

rates fully explain the bilateral correlations 

observed in fUSI, we removed the fluctuations in 

fUSI signals that were predicted by the filtered 

firing rate measured at the same location and 

examined the residuals. The residuals had much 

smaller bilateral covariance than the original fUSI 

signals, both in visual cortex (paired t-test P < 10-10, 

Figure 4D, right), and in hippocampus (P < 10-4, 

Figure 4H, right). These fUSI residuals strongly 

correlated across the entire fUSI slice (Suppl. 

Figure 2), suggesting that they reflect 

micromovements of the brain and global vascular 

effects. The latter may include aliasing of small 

respiratory and heartbeat movements, and 

spontaneous oscillations in arterial diameter 

(Drew, 2019; Winder et al., 2017). 
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Figure 4. Bilateral firing largely explains bilateral fUSI signals.  

(A) Example recordings from two Neuropixels probes inserted bilaterally, yielding simultaneous measurements of firing rate (filtered 

with the HRF, black and gray curves) and fUSI signals (red and blue curves) during spontaneous activity in left and right visual cortex.  

(B,C) Superposition of the bilateral fUSI signals (B) and of the bilateral filtered firing rates (C).  

(D) Covariance between left and right fUSI signals (left), filtered firing rates (middle), and residuals obtained by subtracting the filtered 

firing rates from the fUSI signals (right). Because fUSI signals and filtered firing rates are z-scored, for these two quantities, covariance 

is equal to correlation. Dots and error bars indicate median ± m.a.d. across 22 recordings (lines) in 3 mice during spontaneous activity 

and visual stimulation.  

(E-H). Same analysis, for hippocampus (14 recordings in 3 mice). 

Discussion 
Much of brain activity is endogenous – unrelated 

to external events – so it must be measured in 

individual trials. Single-trial measurements of brain 

activity, indeed, are routine with electrophysiology 

techniques that record local neuronal spikes. 

However, they are exceedingly difficult with 

methods that have larger spatial coverage, such as 

fMRI and EEG. These methods have low 

signal/noise ratios, and thus require recordings to 

be averaged across trials (event-related analysis) 

or internal events (e.g., correlation with a seed 

voxel).  

Our results indicate that functional ultrasound 

imaging (fUSI) in mice can bridge this gap, 

providing large-scale measurements of brain 

activity in single trials. By performing simultaneous 

electrophysiology and fUSI, we were able to 

establish the relationship between neuronal firing 

and ultrasound signals on a trial-by-trial, moment-

by-moment basis. The results indicate that 

functional ultrasound signals measured at 

frequencies below 0.3 Hz strongly correlate with 

neural activity. Indeed, thanks to their high 

signal/noise ratio, fUSI signals can even drive brain-

machine interfaces (Norman et al., 2021).  

We found that fUSI signals bear a simple 

relationship to the underlying neural activity 

captured by convolution with a standard 

hemodynamic response function. These results 

confirm and extend previous work that related 

blood signals to fUSI measurements performed 

separately and averaged across trials (Aydin et al., 

2020; Boido et al., 2019). They suggest that the 
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hemodynamic response function measured with 

fUSI is the same that had been measured optically  

(Pisauro et al., 2013), and is consistent across mice, 

stimulus conditions, and brain regions. However, 

we only tested two brain regions – visual cortex 

and hippocampus – and further investigations 

might reveal different hemodynamic responses 

elsewhere in the brain (Handwerker et al., 2004).   

fUSI signals may appear noisy because they are 

variable in time and broadly correlated in space. 

However, this reflects not just measurement error, 

but true structured fluctuations in neuronal firing. 

Brain activity involves the simultaneous firing of 

large numbers of neurons across regions. These 

broad activations are typically associated with 

fluctuations in internal state and body movement 

(Drew et al., 2019; Musall et al., 2019; Stringer et 

al., 2019), and can be highly correlated across 

hemispheres (Drew et al., 2019; Fox et al., 2007; 

Fox et al., 2006; Mohajerani et al., 2010; Shimaoka 

et al., 2019). Accordingly, our double recording 

experiments reveal that fUSI signals match neural 

activity even when they spread over large portions 

of the brain, including the opposite hemisphere.  

We found a correlation as high as 0.6 between fUSI 

signals and smoothed firing rates in mice that were 

mainly awake and alert. The correlation might be 

even higher if it were measured during NREM 

sleep, when the relationship between blood flow 

and neural activity is thought to be particularly 

strong (Turner et al., 2020). 

fUSI signals correlated best with the firing of fast-

spiking, putative inhibitory neurons. This 

observation may relate to a specific role of synaptic 

inhibition in controlling blood flow (Anenberg et 

al., 2015; Cauli et al., 2004). However,  fast-spiking 

cells are likely to be largely parvalbumin-positive 

interneurons, whose activation reduces, rather 

than increase, blood flow (Lee et al., 2021). The 

high correlation with inhibitory activity seems thus 

more likely to arise because inhibitory neurons are 

robust estimators of nearby firing rate (Isaacson 

and Scanziani, 2011),  pooling over more neurons 

than those surrounding the probe.  

Perhaps a similar reasoning explains the higher 

correlations we observed between fUSI signals and 

activity in supragranular layers of the cortex. These 

laminar differences were small but significant, and 

may make it difficult to measure laminar activity 

with fMRI (Huber et al., 2017) 

By releasing the data from our simultaneous 

recordings and fUSI imaging (URL to go here upon 

publication), we hope to facilitate improvements 

to the fUSI processing pipeline. This pipeline begins 

from raw Doppler images and aims to isolate 

signals related to neural activity from noise 

originating, e.g., from tissue movement (Baranger 

et al., 2018; Demené et al., 2015; Macé et al., 2011; 

Macé et al., 2013). It involves multiple steps,  

including temporal high-pass filtering, principal 

component analysis, and subsequent removing of 

the largest components. We confirmed that the 

present pipeline is adequate: it yields fUSI signals 

that are closely related to the underlying firing 

rates. However, it may be amenable to further 

improvements. Moreover, it should be possible to 

design a deconvolution filter that estimates firing 

rate from fUSI signals, much as one can estimate 

firing rates from widefield calcium fluorescence 

(Peters et al., 2021). To validate all this, it is 

essential to have neuronal spikes as ground-truth 

data. 

We conclude that fUSI signals bear a simple 

relationship to neuronal firing and accurately 

reflect this firing both in time and in space. We 

hope that these results will be useful to the 

increasing numbers of laboratories that use 

functional ultrasound imaging to reveal brain 

function. 
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Methods 
All experimental procedures were conducted 

according to the UK Animals Scientific Procedures 

Act (1986). Experiments were performed at 

University College London, under a Project License 

released by the Home Office following appropriate 

ethics review. 

Initial surgery 

Experiments were conducted in 5 C57/BL6 mice (4 

male, 1 female), 9-12 weeks of age. Mice were first 

implanted with a headplate and cranial window 

under surgical anesthesia in sterile conditions. 

Procedures for implanting the headplate are 

standard in the field (e.g., International Brain 

Laboratory et al., 2021). The cranial window 

replaced a dorsal section of the skull (~8 mm in ML 

and ~5 mm in AP) with 90 µm thick ultrasound-

permeable polymethylpentene (PMP) film 

(ME311070, Goodfellow Cambridge Ltd.). The PMP 

film was then covered with Kwik-Cast (World 

Precision Instruments, USA), except during imaging 

sessions. This initial surgery was followed by 5-12 

days of recovery, handling, and habituation to the 

experimental rig.  

Recording sessions 

In each recording session, we head-fixed the mice 

by securing the headplate to a post placed 10 cm 

from three computer screens (Adafruit, LP097QX1, 

60Hz refresh rate) arranged at right angles to span 

270 deg in azimuth and ~70 deg in elevation. 

Fresnel lenses (f = 220 mm, BHPA220-2-5, Wuxi 

Bohai Optics) were mounted in front of the screens 

to reduce intensity differences across parts of the 

screens that are viewed from different angles. The 

lenses were covered with diffusing film (Frostbite, 

The Window Film Company) to reduce specular 

reflections.  

We then inserted a Neuropixels probe (Jun et al., 

2017) through a hole in the PMP film (0.5 mm 

radius). The probe described a parasagittal 

trajectory (posterolateral to anteromedial), at an 

angle of 28 deg relative to the midline (sagittal 

plane) and 40 deg relative to the horizontal (axial) 

plane. In some experiments we introduced a 

second Neuropixels probe in the opposite 

hemisphere, along the mirror-symmetric 

trajectory.  

We then covered the PMP film with ultrasound gel 

and positioned an ultrasound transducer above it 

(128-element linear array, 100 μm pitch, 8 mm 

focal length, 15 MHz central frequency, model L22-

Xtech, Vermon, France). Doppler signals from the 

transducer were acquired using a Vantage 128 

ultrasound system (Verasonics, USA) controlled by 

a custom Matlab-based user interface (Alan Urban 

Consulting) recording continuously at 500 Hz. fUSI 

acquisition was synchronized with the visual 

stimulus by recording the TTL pulses of the fUSI 

frames together with the flickering sync square on 

the visual stimulus monitor (using TimeLine, 

Bhagat et al., 2020). A similar method was used to 

align the Neuropixels recordings, by simultaneous 

recording external TTL pulses on an additional 

channel of a Neuropixels probe and on TimeLine. 

In each recording session, we moved the 

ultrasound transducer to cover 3-5 coronal slices. 

For each slice, we performed two recordings: first, 

we displayed a gray screen for ~4 minutes to 

measure spontaneous activity; second, we 

presented flashing checkerboards flashing at 2 Hz 

for ~8 minutes to measure stimulus-evoked 

responses. The checkerboards were presented in 

the left, center, or right screens (one screen at a 

time). Checkerboard squares had a size of 15 deg 

and could be white or black. The checkerboard 

sequence was interspersed with blank trials. The 

sequence consisted of 40 checkerboards, lasted 

~90 seconds and was repeated 4-5 times. 

At the end of the recording session, we slowly 

extracted the Neuropixels probe from the brain 

while recording fUSI images from one coronal slice. 

This movement allowed us to localize the probe’s 

tip within the fUSI slice, giving us a 2D coronal 

projection of the probe’s 3D trajectory.  

Finally, we acquired a series of coronal fUSI images 

(a <Y-stack=) from posterior to anterior, spaced 0.1 

mm apart. These images were later used to 

construct a 3D fUSI volume of the brain to facilitate 

registration with the Allen Atlas and to identify the 

location of the Neuropixels probe in the fUSI slices. 
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Processing of ultrasound signals 

fUSI signals were computed using standard 

methods (Macé et al., 2011). The 500 Hz complex-

valued Doppler signals were divided into 400 ms 

chunks that overlapped by 50 ms. Then, each 

chunk was high-pass filtered with a cut-off of 15 Hz, 

and its principal components were computed in 

space and time. The first 15 principal components 

were then removed, to remove artifacts including 

those due to brain movement (Demené et al., 

2015). A power Doppler image was then computed 

by squaring the complex-valued signals and 

averaging them in the central (non-overlapping) 

300 ms window, for a final temporal resolution of 

3.33 Hz. The voxel time courses were then 

converted to fractional change relative to the 

mean of each voxel.   

We computed the fUSI signal trace for a region of 

interest (ROI) by taking the mean of the individual 

time courses of voxels in the ROI. The individual 

voxel time courses were normalized to percent 

signal change units before computing their mean. 

fUSI images were manually aligned to a vascular 

atlas with Allen CCF labels (Todorov et al., 2020). 

We first registered the 3D volume from each 

recording session to the vasculature atlas. To this 

end, we used FreeSurfer (Fischl, 2012) to rotate, 

shift, and scale the vasculature atlas to match the 

vasculature features salient in the fUSI 3D volume. 

Once aligned, the transformation relating the 

vasculature atlas to the fUSI volume was saved and 

applied to the vasculature-matched Allen CCF 

labels. Finally, the Allen CCF labels were resampled 

to match the spatial resolution of the fUSI volume 

(100 x 100 x 48 m3), yielding Allen CCF labels for 

each fUSI voxel. 

Spatial alignment 

To identify brain locations simultaneously 

traversed by the Neuropixels probe and the fUSI 

slices, we estimated the 3D trajectory of the 

Neuropixels probe in the fUSI Y-stack volume. 

Based on the geometry of the simultaneous 

recordings, we located the Neuropixels probe 

insertion site ~0.2 mm behind the posterior-most 

fUSI slice. We then reconstructed the Neuropixels 

probe 3D trajectory so that its 2D coronal 

projection best matched the 2D coronal projection 

measured with fUSI in vivo during Neuropixels 

probe extraction. This 3D trajectory allowed us to 

map from Neuropixels probe sites to fUSI voxels in 

a slice, and vice versa. 

While the Neuropixels probe intersects with the 

fUSI slice plane at one point, the fUSI slice has a 

thickness. This thickness has a full-width at half 

maximum of ~300 μm (Brunner et al., 2020) and 

not larger than 500 μm (Demené et al., 2016). The 

fUSI voxels and Neuropixels probe sites located 

250 µm on either side of the fUSI plane (along the 

Y-axis) were used for the analyses.  

For each recording, we identified the fUSI voxels 

that were intersected by the Neuropixels probe 

and used them to define a region of interest (ROI). 

ROIs for visual cortex and for hippocampus tended 

to have a similar number of voxels (~50 voxels). 

The fUSI signal within the ROI was computed as the 

mean of the individual voxel time courses.  

Processing of electrophysiological signals 

The electrophysiology data was spike sorted using 

kilosort2 (Pachitariu et al., 2016) and the resulting 

output was then manually curated with Phy 

(github.com/cortex-lab/phy). Manual curation 

sought to identify clusters corresponding to single- 

and multi-unit activity and to remove spurious and 

noisy clusters based on traditional measures such 

as inter-spike interval, autocorrelation, waveform 

shape. After spike sorting, single- and multi-unit 

activity was summed across the electrode sites 

that traversed the fUSI imaging plane to obtain a 

single firing rate trace for the ROI. This trace was 

binned at 300 ms intervals to match the temporal 

resolution of fUSI signals. To distinguish spikes of 

putative excitatory and inhibitory neurons we 

clustered based on spike width (Barthó et al., 2004; 

Lin et al., 2020).  

To analyze the LFP signals we took the LFP output 

of the Neuropixels probes and separated it into 

four frequency bands using established methods 

(Lima et al., 2014). 

To identify the Neuropixels probe sites located in 

visual cortex and in hippocampus, we used the 

cross-correlation of the multi-unit activity.  We 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2021.03.31.437915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437915
http://creativecommons.org/licenses/by/4.0/


13 
 

divided the Neuropixels probe sites into non-

overlapping 100 μm segments and computed their 

cross-correlation. Sites at the top of the 

Neuropixels probe corresponded to visual cortex 

and were strongly correlated with each other. Sites 

immediately below the visual cortex corresponded 

to the hippocampus and were strongly correlated 

with each other.  

To obtain ROIs in the fUSI images we identified the 

fUSI voxels traversed by the Neuropixels probe in 

visual cortex and hippocampus using the probe’s 
3D trajectory and a labeled volume of the standard 

C57 mouse brain, the Allen Common Coordinate 

Framework (CCF, Wang et al., 2020). For a ROI in 

visual cortex or hippocampus we included all 

voxels that were (1) in the fUSI slice; (2) in the 

appropriate brain region according to the CCF; and 

(3) in the Neuropixels probe trajectory.  

Cross-correlation and coherence 

The cross-correlation between firing rate and fUSI 

signal traces was computed at different delays by 

shifting the firing rate relative to the fUSI signals 

(from –5 to +30 s).  

Coherence was computed using the multi-taper 

method (github.com/nipy/nitime). To do this, we 

used three minutes of firing rate and fUSI signal 

traces recorded simultaneously during periods of 

spontaneous activity. We computed the coherence 

between signals up to 1.667 Hz, the Nyquist limit 

of our 300 ms sampling interval.  

To compute the chance coherence between fUSI 

signals and firing rate, we randomly and circularly 

shifted the firing rate and computed its coherence 

with the original fUSI signal trace. This process was 

repeated 1,000 times and computing the mean at 

each frequency. The chance coherence was then 

computed as the median across recordings for 

each frequency.  

To determine the highest frequency at which firing 

rate and fUSI signals are coherent, we compared 

the actual versus chance coherence values across 

sessions. To do this, we found the frequencies at 

which coherence was above chance. We then 

identified the highest of these frequencies (0.32 

Hz). Above this frequency, the coherence between 

firing rate and fUSI matches what can be expected 

by chance.  

Hemodynamic response function  

To estimate the hemodynamic response function 

relating firing rate to fUSI, we modelled fUSI 

responses for each recording as a convolution of 

the firing rate in time with a finite impulse 

response filter. The optimal filter for each 

recording was estimated using cross-validated 

ridge regression (Hoerl and Kennard, 1970) using 

open-source software (Nunez-Elizalde et al., 2019). 

To avoid overfitting, the data were split into a 

training and a test set (75%/25%). Using the 

training set, the optimal regularization parameter 

was found independently in each recording using a 

5-fold cross-validation procedure twice. The 

accuracy of the model was assessed by computing 

the correlation between predicted and actual fUSI 

signals in the held-out test set. Finally, the 

hemodynamic response function was estimated 

for each recording using 100% of the data.  

Whisker movements and pupil diameter 

To assess alertness, we recorded videos of the 

mouse’s face during our experiments (Suppl. 

Figure 2). Using these videos, we quantified pupil 

size and whisker motion. Pupil diameter was 

estimated with DeepLabCut (Mathis et al., 2018; 

Meijer et al., 2020). Whisker motion was estimated 

following established procedures (Stringer et al., 

2019) using a pyramid of spatiotemporal Gabor 

filters (github.com/gallantlab/pymoten). The 

difference between frames was computed for each 

pixel, yielding a time-by-pixels matrix. The principal 

components were then computed by 

concatenating all frames, and the top 10 

components were used to compute the total 

energy over time.  
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Supplementary Figures 
 

 

Supplemental Figure 1. Behavioral monitoring.  

(A) Example frame from a camera pointed at the mouse face, showing regions analyzed for eye (green) and whiskers (purple).  

(B) Example frames of the eye, used to estimate pupil size, showing a frame with smaller pupil (1) and one with larger pupil (2). 

(C) Example frames of the whiskers, used to estimate whisker motion energy. 

(D) Pupil size (green) and whisker motion energy (purple) for 11 recording sessions in 5 mice. Arrows 1 and 2 mark the frames in B. 
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Supplemental Figure 2. fUSI residuals correlate with the whole brain. 

(A) Correlations between fUSI residuals (fUSI signals minus filtered firing rate) in visual cortex with fUSI signals in the whole slice.  

(B) Correlations with fUSI signals in the ROI, in the rest of visual cortex, in contralateral visual cortex, and in the rest of the brain. 

(C,D) Same, for fUSI residuals in hippocampus. 
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