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Abstract

Pseudouridine is one of the most abundant RNA modifications, occurring when uridines are
catalyzed by Pseudouridine synthase proteins. It plays an important role in many biological
processes and also has an importance in drug development. Recently, the single-molecule
sequencing techniques such as the direct RNA sequencing platform offered by Oxford Nanopore
technologies enable direct detection of RNA modifications on the molecule that is being
sequenced, but to our knowledge this technology has not been used to identify RNA Pseudouridine
sites. To this end, in this paper, we address this limitation by introducing a tool called Penguin that
integrates several developed machine learning (ML) models (i.e., predictors) to identify RNA
Pseudouridine sites in Nanopore direct RNA sequencing reads. Penguin extracts a set of features
from the raw signal measured by the Oxford Nanopore and the corresponding basecalled k-mer.
Those features are used to train the predictors included in Penguin, which in turn, is able to predict
whether the signal is modified by the presence of Pseudouridine sites. We have included various
predictors in Penguin including Support vector machine (SVM), Random Forest (RF), and Neural
network (NN). The results on the two benchmark data sets show that Penguin is able to identify
Pseudouridine sites with a high accuracy of 93.38% and 92.61% using SVM in random split testing
and independent validation testing respectively. Thus, Penguin outperforms the existing
Pseudouridine predictors in the literature that achieved an accuracy of 76.0 at most with an
independent validation testing. A GitHub of the tool is accessible at https://github.com/Janga-

Lab/Penguin.
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1. Introduction

Pseudouridine (abbreviated by the Greek letter V) is one of the most abundant RNA modifications,
occurring when uridines are catalyzed by Pseudouridine synthase proteins. It plays an important
role in many biological processes such as stabilizing RNA through enhancing the function of
transfer RNA and ribosomal RNA [1]. The modification of uridine to ¥ has been observed in
nearly all kinds of RNA, including but not limited to tRNA (transfer RNA), and mRNA (messenger
RNA). ¥ has also important roles in drug development and response to stresses [2].

Despite improvements in experimental technologies, chemical methods developed to detect ¥
sites, they remain both time-consuming and expensive. For example ¥ can be mapped by chemical
conversion with N-cyclohexyl-N-(2-morpholinoethyl) carbodiimide metho-p-toluenesulphonate
(CMC), which then blocks reverse transcription (‘Y-seq or pseudo-seq [1,3]). W-seq detected 89
and 353 modified mRNA transcripts in different human cell lines. However, the number of sites
identified with W-seq is low compared with the spread of ¥ reported by mass spectrometry (MS)
Methods, and the overlap between the different studies is very modest. Moreover, a method
employing a chemical pulldown enrichment step for ¥ (N3-CMC-enriched Pseudouridine
sequencing, CeU-seq) recognized 1929 modified mRNAs, but whether most of these sites were
missed by W-seq or are false positives has not been yet determined [4]. Therefore, there was a
direction in the literature to address this problem using some computational biology methods that
rely on developing machine learning algorithms to identify ¥ sites [5-11]. However, the
performance results of such methods are quite low and they can be improved more.

Recently, the third-generation sequencing technologies such as the platforms provided by Oxford
Nanopore Technologies (ONT) has been proposed as a new mean to detect RNA modifications on
long read RNA sequence data. However this technology has not been used to identify ¥ sites in
RNA sequence. To this end, our work aims to address this with a tool called Penguin. Penguin
integrates several developed ML models (predictors) to identify ¥ sites in Nanopore direct RNA
sequencing reads.

Penguin extracts a set of features from the raw signal of Oxford Nanopore RNA Sequencing reads
and the corresponding basecalled k-mers. Those features are used to train the predictors included
in Penguin, which in turn, is able to predict whether the signal is modified by the presence of ¥
sites. The features extracted by Penguin include: the signal length, some signal statistical features
including the mean and standard deviation of the signal, and one-hot encoding of reference k-mers
produced from aligning nanopore events/signals to a reference genome using the eventalign
module in Nanpolish, a software for Nanopore signal analysis [12].

The developed predictors of Penguin have been trained and tested upon a set of ‘modified’ and
‘unmodified’ sequences containing ¥ at known sites or uridine respectively. All the predictors can
be adopted to detect other RNA modifications which have not been yet tested.

Current trained predictors of Penguin are Support Vector Machine (SVM), Random Forest (RF),
and Neural Network (NN). All the predictors have been trained and tested on two benchmark
datasets for two human cell lines (namely the Hela and Hek293). However, Penguin can be also
trained and tested with any other cell lines.
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2. Materials and Methods

2.1 The pipeline of Penguin

The complete pipeline of Penguin is composed of various components/blocks (Figure 1). Penguin
takes the fastq reads file that is generated from basecalling the fast5 files using any basecalling
software (e.g., guppy, albacore, scrappy), and a reference genome as inputs. The fast5 files are
produced by ONT device (these files are used to store the output of Nanopore sequencers and
contains the raw electrical signal levels that come off the sequencers). Using both inputs to
Penguin, the SAM file is created from the alignment stage (where the fastq reads file is aligned to
reference genome to create this file). Next, using the produced SAM file and a provided BED file
[13] (afile that highlights the target modified locations from the whole genome), the tool can create
a coordinate file with ids of fast5 files that have the target modification. Next, the tool launches
the Nanopolish software that performs signal extraction in two steps in order to produce a dataset
of Nanopore signal samples. The first step takes the fast5 files folder as an input and index all files
in that folder. The second step, takes the fastq reads file of the indexed fasts5 files, the sorted bam
file (a sorted compressed version of the SAM file that is created using samtools software [14]),
and the reference genome as inputs and run Nanopolish eventalign module on these inputs to
generate a dataset of Nanopore signals.

Next the signal samples that are related to ¥ modification are filtered from the samples generated
from signal extraction. Using the information in the coordinate file some of the filtered samples
will be labeled as modified and the remaining will be labeled as unmodified, as will be described
later. Next some features will be extracted from those modified and unmodified samples which are
fed to one of Penguin’s machine learning classifiers in the training phase. Using those features the
classifier will be able to predict the modification sites in the testing phase. The details of each
Penguin component will be described in the next subsections.

2.2 Cell Culture

Culturing the cells is where we extract cells from an animal and let it grow in an artificial
environment [15]. Cell culture Hek293 and HeL a cell line were purchased from ATCC cell line
collection, cultured in DMEM media supplemented with 10% FBS and 0.5%
penicillin/streptomycin and grown at 37°C for 24-48hrs.

2.3 RNA library preparation and Nanopore RNA sequencing

The libraries that we used were prepared following Nanopore Direct RNA sequencing kit
documented protocol (SQK-RNAO0O02). Briefly, total RNA was isolated using Qiagen RNeasy
Mini Kit (Cat No. /ID: 74104), followed by PolyA enrichment using Thermo Fisher Dynabeads™
mRNA DIRECT™ Micro Purification Kit (61021). 500 ng of poly (A) RNA was ligated to a poly
(T) adaptor using T4 DNA ligase. Following adaptor ligation, the products were purified using
Mag-Bind® TotalPure NGS Beads (M1378-00), following NGS bead purification protocol.
Sequencing adaptors preloaded with motor protein were then ligated onto the overhang of the
previous adaptor using T4 DNA ligase followed by NGS bead purification protocol. The
RNA library was eluted from the beads in 21 pl of elution buffer and quantified using a Qubit
fluorometer using the manufacturer’s RNA assay. The final RNA libraries were loaded to FLO-
MIN106 flow cells andrun on MinION. Sequencing runs and base calling was performed using
MinKNOW software (Oxford Nanopore Technologies Ltd.) , a software that controls the MinION
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Nanopore sequencing device. Therefore, once we extract the RNA from the cells during library
preparation, we put it through the MinlON device and start generating signal data. Nanopore is a
small pore in MinlON device that is used to create signal on biological molecules that pass through
it. The MinION is one of the nanopore sequencing devices and it can read both DNA and RNA
signals. When a strand of DNA or RNA goes through the pore it disrupts a membrane and creates
a current that is measured by the device [16]. The output of the device is a fast5 file or files. These
files contain the raw signals of the DNA or RNA reads.

The data output from MinKNOW for Hela cell line was 800k sequence reads using one flow cell.
MinKnow generates data as pass and fail folders. FASTS files from pass folder were again
base called using Albacore 2.1.0 (Oxford Nanopore Technologies Ltd.) resulting in 723kb
single molecule reads for Hek293 and 500K single molecule reads for Hela cell line which
corresponded to full length transcripts ranging from 50b to 8kb. The directRNA-sequencing data
generated for Hek293 and Hela cell lines in this study is publicly available on SRA, under the
project accession PRINA685783 and PRINA604314 respectively.

2.5 Basecalling, alignment and mapping

There are several basecallers such as scrappy, albacore , guppy and many more [17]. The basecaller
uses algorithms to determine what base is being passed through the Nanopore. Some fast5 files
may or may not contain sequence information, so the basecallers can provide that for us. Once we
have the sequence information, we can align the sequence to a reference genome. Aligning a
sequence is just mapping the sequence to a certain location in the genome. It could be in any of
the chromosomes and this information is saved to the SAM file.

2.6 Identifying Pseudouridine modified /Tunmodified coordinates

For a gold standard set of modified locations we use a BED file that address ¥ RNA modification
locations in human genome (as Penguin has been tested on RNA data of two human cell lines:
Hela and Hek239). These locations have been mentioned and verified in literature. The
aforementioned BED file was imported from Epitomy, a gold standard RNA modification database
that 1s used to search for locations of modifications [18]. Epitomy database incorporates data from
over 51 different sources for human and mouse genomes at single nucleotide resolution and
features more than 3 million modification loci in more than 12 RNA modification types. So
Penguin uses these ¥ RNA modified locations imported from Eoitomy in a form of BED file to
verify its prediction accuracy of W sites. The imported ¥ BED file used Penguin has 2987 unique
locations distributed in 25 unique genes (Supplementary textl).

2.7 Raw signal extraction

The Nanopore direct RNA sequencing holds a great advantage in identifying RNA modifications
at single base resolution by the interpretation of ONT raw signals ( i.e., events or ‘’squiggles’’)
plotted over time that are corresponding to modified and unmodified base sequence contexts. To
this end, the basic functionality of Penguin aims to exploit the difference in the raw signal between
modified and unmodified bases in order to predict W sites in RNA sequence. Thus, the signal
extraction phase plays an important role in achieving Penguin functionality. For this phase, we use
Nanopolish [19], the ONT analysis software. In particular, the eventalign module [20] of
Nanoploish is used to extract the raw Nanopore signals and get some of its corresponding features
such as the mean, standard deviation and length of the signal. In order to achieve this, eventalign
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first aligns events to a reference genome, and so the low-level signal information can be obtained.
Such information can be used to discover the differences in the current that might lead to base
modifications. We refer to Nanopolish manual for more information about the Nanopolish pipeline
for signal analysis [21].

2.8 Benchmark datasets generation

Two different benchmark datasets were generated for Hek293 and HeLa cell lines (Supplementary
csv files Hek293.csv and Hela.csv). In order to generate those datasets, we consider the samples
of eventalign output (where eventalign was run on the basecalled sequence reads of each cell line)
as the samples of the benchmark. In order to label each sample, we filter all samples that have a U
base in the middle of the model k-mer (one column in event align output), which is the target base
for identifying W modification. Next, we find the intersection between their position column on
the reference genome and the position in the coordinate file (generated from ¥ BED file and SAM
file for each cell line). This intersection will represent the positive samples, while the remaining
samples will be the negative samples. In the end we have 13072 samples: 6536 are positive and
6536 are negative ones (after sampling the negative samples which are very huge in comparison
with negative ones) for Hek293. Similarly, we get 1354 samples: 677 are positive samples and 677
are negative samples for HeLa cell line.

2.9 Feature extraction

Each generated benchmark dataset has 4 columns that represent four features that were used for
training the machine learning models that we developed and integrated in Penguin platform. Those
features were extracted by picking 4 columns from the evenalign output (Supplementary text2)
(namely: reference_kmer, mean, stdv, and length of event) and use them as features for training
the constructed ML classifiers of Penguin. Those columns refer to the k-mers generated from
aligning events to a reference genome, the mean, the standard deviation, and the length of each
extracted signal respectively.

2.10 ML Models construction

We have developed several machine learning models and integrate them into Penguin’s platform
including the SVM [22], RF [23] and NN [24]. Those algorithms have been used extensively to
address several problems in bioinformatics research [25], [26], [27]. The radial basis function
kernel (rbf) was used in SVM training. The gamma parameter was set to ‘scale’ and the default
value of C parameter was used. For RF, the seed number was set to 1234 and the number of trees
was set to 30. As for NN, a two hidden layers NN was implemented. The number of neurons
(nodes) was 12 in the first and 8 in the second. The ‘Adam’ optimizer with a learning rate of 0.001
was used, the number of epochs were set to 150, and the batch size was set to the length of training
set.

We have used the scikit-learn toolkit [28], the free machine learning python library to implement
the SVM and RF models, while a keras [29] with tensorflow [30, 31] back end were used to
implement the NN model.


https://doi.org/10.1101/2021.03.31.437901
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2021.03.31.437901
http://creativecommons.org/licenses/by-nc/4.0/

I arRetiv pregpriivitabbni: Hitfss /bbb conoy 10D TGO 22021 (083 3B 4537/38001T, ; thiés weeresscom ponesst et S emrieesrr 241, , 200201 Tihree ooyt Had ek for thiss goregprinit
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

2.11 Feature importance

As for deep analysis of the features that contribute mostly to the performance of machine learning
model that does W site identification, we have reported about the importance of each feature
thorugh training and testing each developed ML model of Penguin with each of the four extracted
features that were described in sec 2.9. This is acheived by buliding five versions of the ML model
applied to each benchmark dataset. In the first four versions , each developed ML model is trained
with one of the four extracted features, while the in fifith version each model is trained with the
combination of all four features.

2.12 Random test splitting

In this approach, we randomly divide the benchmark datasets into two folds: one is for training
and another one for testing. The test_size was set to 0.2 which means 80% of the benchmark dataset
is used for training the model and 20% of the dataset is kept for testing the model.

2.13 Test with independent cell line
In this approach two benchmark datasets for two different cell lines are used one is used for training
and another one is used for testing.

2.14 Evaluation metric

We have used the accuracy (Acc), precision, recall, and the area under the curve (AUC) [32] as
metrics to evaluate the performance of penguin predictor. Below we introduce the mathematical
equation for the first three metrics:

TP+TN
Acc = TP+FP+FN+TN (1)
.. TP
precision = ——— (2)
TP
recall = (3)
TP+FN

Where:

e TP stands for true positive and refers to the number of correctly classifed Pseudouridine
sites.

e FP stands for false positive and refers to to the number of non Pseudouridine sites that
were misclassified as Pseudouridine sites.

e FN stands for false negative and refers to the number of Pseudouridine sites that were
misclassified as non Pseudouridine sites

e TN stands for true negative and refers to the number of correctly classifed non
Pseudouridine sites.

3. Results

We have used the two validation methods: the random-test splitting and the test with independent
cell line introduced in Section 2 for evaluating the performance of each predictor in Penguin
platform using the metrics that we previously mentioned. In the following we present the
performance results that we have got using each method.
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3.1 Performance evaluation with random-test splitting

Table. 1 shows the performance of ML models (Supplementary python files SVM.py, RF.py, and
NN.py) using the extracted 4 features introduced in Section 2 from the benchmark dataset of
Hek293 cell line. Clearly SVM achieves the best performance in terms of accuracy as it achieves
93.38%, while RF achieve best precision of 0.98 and SVM and NN achieve the best recall of 0.95

per each.
SVM 93.38 0.92 0.95 0.933
RF 84.59 0.98 0.72 0.852
NN 93.35 0.92 0.95 0.932

Table 1: The performance of Penguin’s predictors on Hek293 benchmark dataset with random-
test splitting using all four extracted features.

The learning curve of SVM, RF, and NN (see Figure 2, panels A,B, and C respectively) show the
performance of SVM and NN in terms of accuracy score outperforms the perofrmnce of RF. Also
we used receiver operating characteristic (ROC) which plots the true positive rate on the vertical
coordinate versus the false positive rate on the horizontal coordinate. The ROC curve of SVM, RF
and NN (see Figure 3 A,B ansd C) show that the percentage of true postive rate to the fasle positive
rate in case of SVM and NN is more that the case of RF.

3.1.1 Performance results using single type of feature

Table 2 shows the performance of ML models with random test-splitting on Hek293 benchmark
dataset in terms of accuracy with single type of feature among the four extracted features
introduced in Section 2.

SVM 69.33 61.87 51.81 93.38 93.38
RF 69.17 61.49 50.86 87.92 84.59
NN 67.34 46.46 47.53 93.42 93.35

Table 2: The performance of Penguin’s predictors on Hek293 benchmark dataaset in terms of
accuracy with random test-splitting using single type of feature.
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Clearly the one-hot encoding of reference kmer contributes more to the classifier’s accuracy than
other features for all classifiers. It is by followed by mean, then standard deviation, then the length
feature comes at the end for SVM and RF and the standard deviation comes at the end for NN.
Based on the results in Table 2, one would wonder why we do not use the one-hot encoding feature
alone for prediction and avoid using features extracted from the signal as the former leads to a
classification accuracy equal to that when using the combination of four features in case of SVM
and outperforms the classification accuracy of combination in case of RF and NN. However, using
onehot encoding feature alone is not useful when predicting new location of W sites that have not
seen before. Also the extracted signals are still needed even if their features are not contributing to
the performance as one-hot encoding feature. This is because without signals extraction we can’t
get the model_kmer that is needed to filter the samples in eventalign output that address the target
modification.

3.2 Performance against independent cell line

Table 3 shows the performance of ML models against independent cell line (i.e., with independent
test dataset, where Hek293 cell line benchmark dataset is used for training penguin’s predictors
and Hela cell line benchmark dataset is used for testing them) using the four extracted features
introduced in Section 2. We only include SVM and NN models (Supplementary python files
SVM_validate.py and NN_validate.py) and execlude the RF model as it acheives very low
performance against independent cell line (below 50% accuracy) in comparison with SVM and
NN. Clearly as shown in Table3 NN outperforms SVM. However, SVM is more stable as it
achieves reproducable results, while NN performance results changes from run to run though all
NN results are still high (above 93% accuracy). See also learning curves of SVM and NN
(Supplementary Figure 1 and Figure 2 respectively) and ROC curves of SVM and NN
(Supplementary Figure 3 and Figure 4 respectively).

SVM 0.94

92.61 0.91 0.926

NN 95.35 0.92 1.00 0.953

Table 3: The performance of Penguin’s predictors against independent cell line using all
extracted features.

3.2.1 Performance results using single type of feature

Table 4 shows the performance of ML models against independent cell line in terms of accuracy
with single type of feature among the four extracted features introduced in Section 2. Clearly the
one-hot encoding of reference_kmer contributes more to the classifier accuracy than other features,
followed by length, then standard deviation, then mean feature comes at the end.
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SVM  39.22  40.99 51.62 95.35 92.61

NN 32.94 37.59 51.18 95.35 95.42

Table 4: The performance of Penguin's predictors with against independent cell line using single
type of extracted features.

4. Abundance of ¥ sites

In order to identify the abundance of W sites in the RNA sequence of either Hek293 or HeLa cell
lines, first we run the best Penguin’s machine learning model (i.e., SVM as it achieves very high
reproducible performance results over all runs) on the complete RNA sequence reads of Hek293
and HeLa cell lines. Then, we identify all U-mers samples predicted as ¥ ones in those reads, then
we identify the number of W unique genomic locations as well as their frequencies in the two
complete cell lines. We found that there are 6137606 U-mers samples predicted as ¥ ones from a
total of 67491289 U-mers samples of the complete RNA sequence of Hek293 cell line with 556813
unique genomic location of ¥ (Supplementary excel file 1)!. Similarly, we found that there are
1193192 U-mers samples predicted as ¥ ones from a total of 229637931 U-mers samples in the
complete RNA sequence of Hela cell line with 39384 unique genomic locations of ¥
(Supplementary excel file 2). As for overlapping between unique genomic locations of ¥ in both
cell lines, we found 6482 unique genomic locations of ¥ that are common between both cell lines
(Figures 4.A). Similarly, we found that there are 7148 modified ¥ genes that are
common/overlapped between both cell lines. Also, we found that there is an overlapping of 15.8%
between the top 1% frequent modified W genes of both complete Hela and Hek293 cell lines
(Figures 4.B).

Clearly, we notice that the extent of ¥ modification (the number of U-mers samples predicted as
Y samples to the total number of U-mer samples in the complete RNA sequence of the cell line)
in RNA sequences of Hek293 cell line is much greater than its counterpart for HeLa cell line (9%
for Hek293 versus 0. 5 % for Hela cell line). This is due to the existence of more modified W
genes with extensive ¥ unique genomic locations in RNA sequences of the complete Hek293 as
we just mentioned in comparision to the number of modified W genes with W fewer unique
genomic locations found in the RNA sequence of the complete Hela cell line. Therefore the y

' U-mers samples are rows (with U in the middle of their reference kmers column) in the
eventalign output that corresponds to the result of aligning the events (signals or squiggles) of
RNA sequence of a specific cell line to a reference genome.
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distribution across normalized gene length for Hek293 cell line is larger than it equivalent in HeLLa
cell line (Figures 4.C).

5 Functional enrichment analysis

To investigate the potential functional role of ¥ modification in RNA, we performed functional
enrichment analysis for the most frequently modified ¥ genes (top 1%) across Hek293 and HeLa
cell lines. A total of 159 genes from Hek293 and 90 genes from Hela cell lines were identified to
have the most abundance of ¥ RNA modification. The short-listed genes from both cell lines were
plugged into Cytsoscape ClueGo [33] application to obtain enriched ontologies and pathways at
high confidence (p<0.05). Enrichment observations from this analysis are visualized in Figure 5.

From the functional enrichment analysis of the gene set form Hek293 cell line, we observed a wide
range of functional processes like (as seen in Figure 5B): “protection from natural killer cell
mediated cytotoxicity”, “T cell mediated cytotoxicity”, “glucokinase activity”, “histone H3
acetylation”, “type I interferon signaling pathway”, and “regulation of mRNA 3'-end processing”
being significantly (adjusted p-val < 0.0013) enriched. Essentially highlighting the diverse
regulatory role of W modification, from its involvement in cell immune signaling to mRNA 3’-end

processing.

In HeLa cell line, we observed several high confidence (adjusted p-val < 0.0014) enriched
ontologies that were more representative of ¥ modification role in cellular development and
homeostasis via post-transcriptional regulation (as seen in Figure 5B): “regulation of cardiac
muscle tissue development”, “cellular transition metal ion homeostasis”, “positive regulation of
transcription from RNA polymerase II promoter involved in cellular response to chemical

stimulus”, “SNARE complex”, “Zinc ion transport”, and “endoplasmic reticulum organization”.

6. Discussion

Penguin tool main file is implemented in python 3.x and the tool has to be run on Linux
environment by running the following command from Penguin main directory on the user’s local
machine after cloning the code from Penguin GitHub repository:

python main.py -r ref.fa -f reads.fastq
Where the penguin tool needs the following two inputs files when running it:

e The absolute path to the reference Genome file (ref.fa)

e The absolute path to fastq reads file (reads.fastq)

Once the user runs the penguin tool, then the tool pipeline (Figure 1) that accepts the
aforementioned inputs will start execution and the user will be asked to enter the bed file name
with the absolute path and extension that is needed to generate the coordinate file that is needed
for labeling the U-mers Nanopore signals samples as modified and unmodified ones. Next, the tool
will extract the raw Nanopore signals from the input fast5 file(s) as well as extracting some of its
corresponding features that are used later to train the three different machine learning models
(SVM, RF, and NN) integrated in Penguin platform for predicting ¥ sites in direct Nanopore RNA
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sequence. However this raises a question about why we did not develop a deep learning model for
this prediction task? So the answer is simply because our developed machine learning models for
Penguin achieved high accuracy in predicting W sites and their performances significantly
outperform the performances of other existing models in the literature that were developed for the
same purpose. However, Penguin platform can also be extended to involve deep learning models
for predicting W sites or any other type of RNA modification in Nanopore sequencing data and we
leave this as a future work.

7. Conclusions

In this paper, we have proposed a new tool called Penguin that represents a complete pipeline for
predicting W sites in direct Nanopore RNA sequence of reads. It has been shown that our proposed
tool outperforms the existing prediction models of ¥ in the literature. We expect that Penguin will
become a useful tool for accurate identification of W sites in RNA read sequence. Penguin platform
can be adopted to be used for predicting other types of RNA modification.

For future work, we are looking forward to address the general limitiation of the method used to
detect W modifications using Nanoppore technology which is implmented in Penguin. Such a
limitation occures because the prediction of RNA modification in ONT sequencing is further
complicated due to the fact that each sequencing signal originates from a group (k-mer) rather than
from a single nucleotide. Furthermore, the signal for each k-mer is variable, leading to a
distribution of possible signals. So RNA modifications can result in a shift in the signal distribution
for a given k-mer, and this shift can be used to predict the presence of modifications. However,
these shifts can be relatively small, and the distribution of signals generated by modified k-mers
largely overlaps with the distribution of unmodified k-mers which leads to mis- identifying some
Y sites [3]. Moreover, the modification prediction platform of Penguin that employs machine-
learning models depends on the quality of the training datasets generated by the automated pipeline
of penguin for data preprocessing including basecalling, alignment using Minimap2, and signal
alignment using Nanopolish.
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Figure Legends

Figure 1. The complete pipeline of Penguin showing: the RNA sequencing of a HEk293 cell line,
basecalling-alignment and mapping, identifying modified and modified ¥ coordinates, the raw
signal extraction by nanopolish eventalign module, the feature extraction from signals that address
Y modification, machine learning model development and validation, and single molecule
Y prediction.

Figure 2. The learning curve for each Penguin's predictor and a bar chart of the performance
evaluation using Hek293 cell line benchmark dataset with random test splitting showing (a) The
learning curve of SVM (b) The learning curve of RF (c) The learning curve of NN (d) A bar chart
of the precision, recall, and AUC of Penguin’s developed ML classifiers.

Figure 3. The ROC curve for each Penguin’s predictor using Hek293 cell line benchmark dataset
showing (a) The ROC curve of SVM (b) The ROC curve of RF (C) The ROC curve of NN.

Figure 4. Showing (a) The overlapping between ¥ unique locations in complete Hek293 and HeLLa
cell lines (b) the overlapping between top frequent 1 % modified ¥ genes in complete Hek293 and
Hela cell lines (c) The density plots that represents y distribution across normalized gene length
for Hek293 and Hela cell lines.

Figure 5. Functional enrichement analysis of most frequenlty ¥ modified genes across (a)
Hek?293 cell line and (b) Hela cell line, visualizing high confidence (p-val<0.05) ontologies and
pathways potentially associated with ¥ RNA modification. Cliques clustered by functional
grouping of the GO-terms based on GO hierarchy using Cytoscape ClueGO application. Size of
the nodes representative of the significance of association with respect to genes per GO-term.
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HIGHLIGHTS

e Penguin integrates several developed ML learning models (i.e., predictors) to identify RNA W
sites in Nanopore direct RNA sequencing reads.

e The pipeline of penguin automates the data preprocessing including Nanopore direct RNA
reads alignment using Minimap2, and Nanopore signal extraction using Nanopolish, feature
extraction from raw Nanopore signal for training ML predictors integrated in its platform, and
the prediction of RNA W sites with those predictors.

e Penguin can predict ¥ sites with a performance that outperforms the performance of the state-
of-the-art research methods existing in the literature.

e Penguin platform can be adopted to be used for predicting other/various types of RNA
modification.

e There are 6137606 U-mers samples predicted by penguin best ML model (SVM) as W ones
from a total of 67491289 U-mers samples in the complete Hek293 cell line with 556813 unique
genomic location of V.

e There are 1193192 U-mers samples predicted by penguin best ML model (SVM) as W ones
from a total of 229637931 U-mers samples in the complete Hela cell line with 39384 unique
genomic locations of V.

e There is a small fraction of 0.01% (6482 unique genomic locations) of ¥ that are common
(overlapped) between both Hek293 and Hela cell lines.

e The extend of ¥ modification (the number of U-mers samples predicted as ¥ samples to the
total number of U-mer samples in the complete RNA sequence of the cell line) in RNA
sequence of Hek293 cell line is much greater than its counterpart for Hela cell line (9% for
Hek293 versus 0. 5 % for Hela cell line).
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