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Abstract

Complex signaling pathways/networks are believed to be responsible for drug resistance in
cancer therapy. Drug combinations inhibiting multiple signaling targets within cancer-related
signaling networks have the potential to reduce drug resistance. Deep learning models have been
reported to predict drug combinations. However, these models are hard to be interpreted in terms
of mechanism of synergy (MoS), and thus cannot well support the human-Al based clinical
decision making. Herein, we proposed a novel computational model, DeepSignalingFlow, which
seeks to address the preceding two challenges. Specifically, a graph convolutional network (GCN)
was developed based on a core cancer signaling network consisting of 1584 genes, with gene
expression and copy number data derived from 46 core cancer signaling pathways. The novel
up-stream signaling-flow (from up-stream signaling to drug targets), and the down-stream
signaling-flow (from drug targets to down-stream signaling), were designed using trainable
weights of network edges. The numerical features (accumulated information due to the signaling-
flows of the signaling network) of drug nodes that link to drug targets were then used to predict
the synergy scores of such drug combinations. The model was evaluated using the NCI

ALMANAC drug combination screening data. The evaluation results showed that the proposed
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DeepSignalingFlow model can not only predict drug combination synergy score, but also interpret

potentially interpretable MoS of drug combinations.
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1. Introduction

Complex signaling pathways and ensuing networks are believed to be responsible for drug
resistance in cancer therapy. Thus, drug combinations inhibiting multiple signaling targets in
cancer-related signaling networks have the potential to be effective in terms of reduce drug
resistance. However, it is challenging to discover effective and synergistic drug combinations in
clinical and laboratories settings because of the unclear and complex mechanism of synergy
(MoS) for such drug combinations. Recent analyses of reported drug combinations indicate that
there are complex, diverse and heterogeneous MoS for different drug combinations in different
diseases'. Further, in recent studies, the RAS/ERK signaling pathway, which has been show to
inhibit the efficacy of certain anti-cancer drugs was found to be synergistic with autophagy
inhibitors in RAS-driven cancers®®. This is notable, given that autophagy signaling was activated
after treatment with RAS inhibitors®®. Despite this evolving body of research concerning the
targeting of synergistic cancer therapeutics, there remain few effective drug combinations that are
used broadly in the clinical environment. Therefore, novel and effective drug combinations are
needed in order to expand the scope and impact of precision cancer therapy and to ultimately

improve cancer treatment outcomes.

In response to the aforementioned challenges, and to help facilitate the discovery of
synergistic drug combinations for use in a variety of cancer, we sought to understand the
associations between genetic biomarkers and drug response, as well as mechanism of drug
synergy, using computational methods. The National Cancer Institute (NCI) has previously
generated a comprehensive screening data set of ~5,232 combinations from ~100 drugs in 60
human tumor cell-lines (NCI-60), which is publicly available as the NCI-ALMANAC Drug
Combination Data Set*. This dataset is valuable for developing computational models for drug
combination prediction. There have been a variety of computational methods described in the

scientific literature concerning the application of machine learning techniques to such data. For
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example, matchmaker® was developed to analyze chemical and gene expression profiles using a
deep learning framework, which is similar as the DeepSynergy® and AuDNNsynergy’ models.
Similarly, a simplified deep learning model, DeepSignalingSynergy, has been proposed to
investigate the discriminative importance of individual signaling pathways for drug combination
prediction®®. In addition, the use of multi-task learning with transfer learning model has been
proposed to prediction drug combinations'. Further, random forest (RF) and XGBoost models
have been used, based on the chemical and genomics features of source data, to predict drug
combinations''. These and many other computational models have also been proposed for drug
combination prediction (as opposed to predicting the efficacy of single drugs). For example, the
connectivity map (CMAP)'>'3 and associated network analysis based drug combination prediction

models have been used in this context''®.

In an analogous manner, message propagation-
based models have been developed based on the confluence of drug targeting and genomics
data'®'. A common thread in the preceding work has been the use of semi-supervised learning

models, applied to multiple pharmacogenomics datasets, for drug combination prediction®.

However, despite the promise of the existing body of work in this domain, there remain three
limitations of the existing deep learning models. First, a large number of genomic and chemical
features have been used in such predictive models. Given the limited amount of drug screening
data currently available, the training of such models with a large number of features is intrinsically
limited. Second, the signaling interactions in gene regulatory signaling networks are often not
incorporated in the deep learning models, despite their criticality in terms of treatment efficacy.
Third, complex mechanism of synergy (MoS) are usually not modeled in these existing constructs.
As such, these models are hard to interpret and explain in order to identify effective and

synergistic drug combinations for subsequent verification and validation.

In the specific context of cancer studies, signaling pathways playing important roles in terms

of tumor development and drug response, are of critical importance when seeking to identify
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single or synergistic therapeutic targets. Forexample, in one set of studies, 10 signaling pathways
were systematically analyzed cross 9,125 tumor samples in 33 cancer types (64 subtypes)'®. The
results of this study indicated that 89% of tumor samples had at least one driver alteration in one
of these pathways, and 57% and 30% had one and multiple potentially druggable targets,
respectively. These results indicate the importance of identifying or repurposing effective drugs
and drug combinations that target these signaling pathways. Therefore, in our study, we proposed
a novel computational graph neural network (GNN) model, DeepSignalingFlow, to investigate the
aforementioned issues as they relate to the used of deep learning models for drug combination

therapy predication, by incorporating core cancer signaling pathways into such analyses.

2. Methodology
2.1 NCI ALMANAC drug combination screening dataset

As was introduced previously, the NCI Almanac dataset includes the combo-scores’ of
permutations of 104 FDA approved drugs relative to the tumor growth of NCI60 human tumor cell
lines. The average combo-score of two drugs with different doses on a given tumor cell line was
used as the basis for assessing the synergy score of two drugs on the given tumor cell line using

a 4-element tuple: <Da, Dg, Cc, Sasc>.
2.2 Gene expression and copy number data of NCI-60 Cancer Cell Lines

Multi-omics data (e.g., RNA-seq [gene expression], copy number variation, metabolomics,
miRNA, and RPPA_ for 1000 human tumor cell lines were available in the Cancer Cell Line
Encyclopedia (CCLE) database®, which are of value when seeking to identify associations
between genetic biomarkers and drug response. In addition, copy number data was downloaded
from GDSC database?'. By identifying overlapping cell lines from these two databases, we

identified 43 of NCI-60 cancer cell lines that were also present in CCLE (see Table 1).
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Table 1: 43 NCI-60 human tumor cell lines included in CCLE database.

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.437003; this version posted March 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

A498_KIDNEY

A549_LUNG

ACHN_KIDNEY

BT549_BREAST

CAKIM_KIDNEY

HOP62_LUNG

HOP92_LUNG

HS578T_BREAST

HT29 LARGE_INT
ESTINE

IGROV1_OVARY

K562_HAEMATOP

KM12_LARGE_INT

MDAMB231_BREA

ST

OIETIC_AND_LYM LOXIMVI_SKIN MCF7 BREAST
PHOID TISSUE ESTINE ST
MDAMB468_BREA | \ciH226 LUNG NCIH23_LUNG NCIH322 LUNG | NCIH460_LUNG

NCIH522_LUNG

NIHOVCAR3_OVA
RY

OVCAR4_OVARY

OVCAR8_OVARY

PC3_PROSTATE

RPMI8226_HAEMA

YMPHOID_TISSUE

TOPOIETIC_AND L

SF268 CENTRAL_
NERVOUS_SYSTE
M

SF295_CENTRAL_N
ERVOUS_SYSTEM

SF539 CENTRAL_
NERVOUS_SYSTE
M

SKMEL28_SKIN

SKMEL5_SKIN

SKOV3_OVARY

SW620_LARGE_INT
ESTINE

T47D_BREAST

U251MG_CENTRA
L_NERVOUS_SYS
TEM

UACC257_SKIN

UACC62_SKIN

UO31_KIDNEY

2.3 KEGG signaling pathways and cellular process

46 signaling pathways (45 “signaling pathways” + cell cycle)®® were collected from the KEGG
(Kyoto Encyclopedia of Genes and Genomes)?? database, specifically: MAPK, FoxO, TGF-beta,
T cell receptor, Adipocytokine, ErbB, Sphingolipid, VEGF, B cell receptor, Oxytocin, Ras,
Phospholipase D, Apelin, Fc epsilon RI, Glucagon, Rap1, p53, Hippo, TNF, Relaxin, Calcium,
mTOR, Toll-like receptor, Neurotrophin, AGE-RAGE, cGMP-PKG, PI3K-Akt, NOD-like receptor,
Insulin, Cell cycle, cAMP, AMPK, RIG-I-like receptor, GnRH, Chemokine, Wnt, C-type lectin
receptor, Estrogen, NF-kappa B, Notch, JAK-STAT, Prolactin, HIF-1, Hedgehog, IL-17, Thyroid
hormone signaling pathways. In these 46 signaling pathways®®, 1584 genes were identified for

which gene expression (TPM) and copy number data were available in the CCLE database.
2.3 Drug-Target interactions from DrugBank database

Drug-target information were extracted from the DrugBank® database (version 5.1.5, released
2020-01-03). In total, 15,263 drug-target interactions were obtained for 5435 drugs/investigational

agents and 2775 targets. Among these drug, 67 drugs were included in NCI ALMANAC with
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associated targets. Further, 21 drugs with known targets corresponding to the 1584 signaling
pathways previously identified were selected for use in our model, specifically: Celecoxib,
Gefitinib, Quinacrine hydrochloride, Tretinoin, Cladribine, Imatinib mesylate, Romidepsin,
Vinblastine sulfate (hydrate), Dasatinib, Lenalidomide, Sirolimus, Vorinostat, Docetaxel, Mitotane,

Sorafenib tosylate, Thalidomide, Everolimus, Nilotinib, Tamoxifen citrate, Paclitaxel, Fulvestrant.
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Figure 1: Architecture of DeepSignalingFlow.

2.4 Architecture design of DeepSignalingFlow

Fig. 1 shows the schematic architecture of the proposed DeepSignalingFlow model. The model
input parameters are: X € R4, A € R™", D;, € R™", D, € R™™™"  where X denotes the

nodes features matrix with n nodes of d features, A is the adjacent matrix that links gene-gene



interactions on the signaling pathways and gene-drug interactions, and the elements of adjacent

matrix A such as a;; indicates an edge from i to j. D;;, is an in-degree diagonal matrix for nodes

in directed graph, and D,,; is an out-degree diagonal matrix for nodes in in directed graph.

In the graph convolution stages of our architecture, we added the bidirectional nodes-flow
with both of ‘upstream-to-downstream’ (from up-stream signaling to drug targets) and
‘downstream-to-upstream’ (from drug targets to down-stream signaling). Therefore, we call this

model a Weight Bi-directional Graph Convolution Network (WeB-GCN). The weight matrices are

denoted as: Wu(;’;) e R, Wk e grxn, (k=1,2,...,K) respectively. And then the weight

down

adjacency matrices will be denoted as:

AL =wld a4 D
(k) k
A gown = Wd(ov)vn A (2)

where for each A’ﬂ;) € R™™, A’gﬁ,)‘,vn € R™", (k =1,2,...,K), parameters for drug-gene relations

values are the same with those in original adjacent matrix. Complete model parameters are

specified in Table 2.

Table 2: Model parameters and notations.

Input Matrices When k =2,3,...,K When k=1
Nodes Features Matrix k-1 ¢ grxad®-D HO© ¢ gnxd©
New Nodes Adjacent Matrices A’f};) € R, A’é’?wn € RV same
Nodes In-degree Diagonal D;, € R™" same
Matrix
Nodes Out-degree Diagonal D, € R™*M same
Matrix
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Figure 2: Schematic architecture of the DeepSignalingFlow Model.

Fig. 2 shows the structural details of our model. First, the mean aggregation of each node

neighbors’ features from upstream to downstream is achieved by:

k — 1(k _ k
HE oion = Dt (AT HE-D M) 3)

And the mean aggregation of each node neighbors’ features from downstream to upstream is

achieved by:



)T H(k—l)M(k) (4)

down

(%) — n-1 )
Hdown_neigh - Dout (A down

And biased transformation of nodes themselves and their features is achieved by:

&) _ (k- k
Hggr = HD B (5)

Fork =1,2,...,K , the model uses normalization function N: Rx4d® _, pnx4d® and LeakyRelLU

function with parameter « to map concatenated nodes features H® =

( g | g

up_neigh!”“down_neigh

| Hs(fz)f) e R44Y to ) g Rrx4d® with the equation:

H® = LeakyReLUWV(H®..)) ©

on

where normalization function N enable L2 normalization for demo matrix V € RP*? in row axis
with the equation:

vij
vy = =l ™)
=1 Vi)

where v';; is the element of new matrix V' € RP*9. Therefore, the output of k-th layer WeB-GCN

is H(O. After obtaining the embedded nodes features with HK) € R4 the embedded nodes

(K), and the drug_B embedded nodes features are

features of drug_A are obtained: H € R*?
obtained as: H € R**™, which are just the 1585™ and 1586" rows in H). Based on the idea
of decagon decoder®, the prediction of combo score will be calculated in following equation:

9 (1, 1{?) = H{ DEDTHO (8)

K . .
where D € R*“*N and 0 € RV*V are trainable decoder matrices.

Drug combination response interpretation using the directional signaling flow

As aforementioned, we added directional signaling interaction weights to indicate the potential
signaling flow from up-stream signaling to drug targets, and from drug targets to down-stream

signaling. The trainable directional weights can potentially indicate and interpret the signaling flow



on the signaling network to affect the drug combination response. Specifically, the signaling flow
derived from the directional weighted matrices are defined as follows. Each such model had k=3

layers, and each layer has upstream weight adjacent parameters and downstream weight

adjacent parameters, which are '), A'%, 4’C) and A'Q), ., A, A, . Through aggregating

up’“* up’ down’ " down’ ‘" down

3 layers upstream and downstream to weight adjacent matrices, we arrive at an aggregated

upstream, downstream and bind-stream for kth 5-fold cross valuation model with kth model’'s

A’&?,A’ffp),A’g? and A,Ello)wn'A,Eizo)wn'A,Els;)wn using the formula:
1
1 (k) _ (1) 1(2) 1(3)
Apagg = 3(A5 + 43 + 43) 9)
/() 1o, /(@) /(3)
A downagg = § (A down + A down + A down) (10)
) (K) 1l @, 1o @, 4@ 1o, 4G
A bindagg = 3 [E (A up T4 down) + 2 (A w T4 down) + 2 (A w T4 down) (11)

With upstream, downstream and bind-stream weight adjacent matrices parameters, we then

aggregated weight adjacent matrices of those 5 models by the following formula:

’ 1 (1 (2 /(3 (4 /(5
Aup_finar = 5 (A z(zp)agg+ A4 l(tp)agg +4 l(tp)agg +4 l(tp)agg +4 l(tp)agg ) (12)
: Ly /() /3) /(4) /(5)
A down_final = ¢ A downagg+ A downagg +4 downagg +4 downagg +A downagg (13)
5
: Ly /@) /(3 /() /(5)
A bind_final = g (A bindagg+ A bindagg +A bindagg +A bindagg +A bindagg ) (14)

With the final upstream, downstream and bind-stream weight adjacent matrices parameters for

1584 genes of A’y finat, A down_finat» A'pina_rinar» We then were able to study the signaling flow

on the signaling network.



3. Results
3.1 Experimental Setup

Model input: <drug_A, drug_B, cellline name, combo score> were used to construct each point in
an input dataset, which was comprised of 5445 such points; among these data, using a 5-fold
cross validation with 5 splits of 1089 nodes, we created a training dataset. For each point, the cell
line name contained the RNA sequence of the 1584 genes. Given all possible 2-drug
permutations, each point created a graph with 1586 nodes, and each such graph had 3 initial
features. For those 1584 genes, their 3 features indicate the RNA sequence number, and whether
they have connection spanning drug_A and drug_B. For each 2-drug dyad, their 3 features were
initiated with zeros. Furthermore, to indicate connections between nodes, adjacent matrices were
also created. Those matrices were formed from file ‘Selected_Kegg_Pathways_edges_1’, which
contains gene pairs with sources and destinations. In this way, the graphs generated were
directed graphs. For drug-gene edges, the connections are bidirectional, which means that in
adjacent matrices, those elements are symmetric. At the same time, in-degree matrices are

formed according to said adjacent matrices.

3.2 Hyperparameters Setting

Subsequently, a model was developed by using pytorch. Using the Adam optimizer, learning rate
started with 0.01 and reduced equally within each batch of first 50 epochs. We empirically set the
training epochs as 75, which allows for optimal validation results. K = 3 WeB-GCN layers were
used, and the initial input feature dimension was: d(® = 3, with the feature dimensions varying at
the different layers, and denoted by: (d™,d®, ..., d®, ..., d®)), k = 1,2,3. WeB-GCN concatenate

biased last layer node features and transformed nodes features, with the final concatenated



dimensions of the WeB-GCN layers for the output dims being 3 x d®). Output dims of the last

layer served as the input dims for this layer, as follows:

(1) First layer (input dims, output dims): (d(®, 4d™)

(2) Second layer (input dims, output dims): (4dV, 4d®)

(3) Third layer (input dims, output dims): (4d®, 4d®)

The final embedded drug nodes dims were 4d® (see Table 2). Decoder trainable transformation

matrix dims: D € R2“*N and Q € R¥N were ysed as trainable decoder matrices, with

changeable parameters of N to adapt model performance. As shown in Table 2, the model uses

N = 40. As for the LeakyReLU function, the parameter « = 0.1 .

Table 2: 5-fold Cross Validation on 2 Sets of Hyper-parameters

Number Input Dims, Output Dims Dec | Dropo Training Training Test Test

of oder ut MSE Loss Pearson MSE Loss | Pearson
Dataset qst 2nd 3rd dim Correlatio Correlatio

layer layer layer S n n

1st (4,12) | (12,12) | (12, 36) 40 0.01 34.11 74.64% 53.34 68.20%
dataset

2nd (4,12) | (12,12) | (12, 36) 40 0.01 33.48 74.40% 51.91 64.21%
dataset

3rd (4,12) | (12,12) | (12, 36) 40 0.01 33.01 75.75% 44.59 66.64%
dataset

4t (4,12) | (12,12) | (12, 36) 40 0.01 32.78 75.71% 42.19 67.93%
dataset

5th (4,12) | (12,12) | (12, 36) 40 0.01 35.38 73.39% 48.01 62.48%
dataset
Average | (4,12) | (12,12) | (12, 36) 40 0.01 33.76 74.78% 48.01 65.89%




3.3 Synergistic score prediction evaluation

To evaluate the model performance in terms of synergy score prediction for drug combinations,
we conducted 5-fold validation. As seen, the average prediction (using the Pearson correlation
coefficient), was about 66% accuracy using the testing data. These prediction results are
comparable with existing deep learning models®’. The results indicated the feasibility of drug
combination synergy score prediction using a graph neural network with a small set of core
signaling pathways genes, compared with the existing complex deep neural network (DNN)

models using a large number of genomics and chemical structure features.

Figure 3: Scatterplots of the predicted and experimental synergy scores on the 5-fold training and
validation dataset with dropout rate 0.01

3.3 Signaling flow interpreting the mechanism of synergy

As aforementioned, we added directional signaling interaction weights to indicate the potential
signaling flow from up-stream signaling to drug targets, and from drug targets to down-stream
signaling. In this sub-aim, we identified a set of important sub-network, including important
signaling interactions, to show the feasibility of model interpretation. As an example, first, the
signaling interactions (edges) were filtered, based on the trained signaling interaction weights, by
selecting the signaling interactions with weights more than a given threshed, which indicates the

important signaling flow on the signaling network. Then network nodes with degrees larger than



50 were selected to generate signaling flow network to partially explain the mechanism of drug
combination synergy (see Table 3). Different thresholds of edges and nodes could generate
different signaling flow subnetworks. As seen in Figs. 4,5,6, the core up-stream, down-stream
and integrated (up- and down-stream) signaling flow networks were identified from the large
signaling network based on the average trained directional weight matrices on the 5 training
datasets. This sub-network module has the potential to uncover the potential mechanism of

synergy of the involved drugs.

Table 3: Filtering results for upstream

Network Filtering Nodes Number | Edges Number Target Genes
Threshold Number
Upstream Nodes Degree > 105 1034 20
50
Downstream | Nodes Degree > 100 1101 14
50
Bindstream Nodes Degree > 106 1095 19
50
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Figure 4: Up-stream core signaling targets and signaling flows among these targets (nodes circled

with red are targets of drugs).
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Figure 5: Down-stream core signaling targets and signaling flows among these targets (nodes

circled with red are targets of drugs).
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Figure 6: Integrated (up- and down-stream) core signaling targets and signaling flows among these
targets (nodes circled with red are targets of drugs).

4. Discussion and conclusion

Along with the advancement of next-generation sequencing (NGS) technology, multi-omics data,
like gene expression, copy number variation, methylation, genetic mutation, microRNA, are being
generated to characterize the dysfunctional molecules and complex signaling pathways in cancer
patients. The valuable multi-omics data provides the basis for personalized medicine or precision
medicine prediction. Drug combinations are being investigated to reduce the drug resistance
influenced by the complex signaling networks in cancer. However, it remains an open problem
and challenging because of the mysterious, heterogenous molecular mechanisms of synergy of
drug combinations.

Deep learning models have been reported to predict drug combinations by simply
concatenating a large number of multi-omics data and chemical structure information using the

deep neural network (DNN) model. One limitation of the existing DNN models is the missing of



complex and biological meaningful gene regulatory relationships. Thus, itis hard to interpret these
models to support the real clinical use, which requires the clinical experts to understand the
molecular mechanisms used in the Al prediction.

In this study, we aim to explore the feasibility of building an interpretable Al model using
the proposed DeepSignalingFlow model. The model is built on a core cancer signaling network
consisting of 1584 genes, with gene expression and copy number data derived from 46 core
cancer signaling pathways. The novel up-stream signaling-flow (from up-stream signaling to drug
targets), and the down-stream signaling-flow (from drug targets to down-stream signaling), were
designed using trainable weights of network edges. The selected signaling interaction edges with
large weights indicate 1) the important biomarker genes; and 2) the signaling cascades among
them, which can potentially interpret the model prediction results. In conclusion, the first-time
proposed up-stream and down-stream signaling flow design is novel and can potentially interpret

the mechanism of drug combination response.

This is still an exploratory study to prediction and investigate drug combination response
using deep neural graph network models. There are some limitations to be further investigated.
For example, more signaling pathways and protein-protein interactions should be considered to
include more drugs. Moreover, more omics data, like mutation, methylation, miRNA, should be
integrated and investigated. In addition, our current analysis is a global analysis or pan-cancer
analysis by considering all drugs and all cell lines together. However, the drug combination, and
cell line specific signaling flows might be different. Thus, it is interesting to investigate the drug-
and cell-specific signaling flows that are informative for the drug combination response prediction.

We will investigate these challenges in future work.
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