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Abstract 

Complex signaling pathways/networks are believed to be responsible for drug resistance in 

cancer therapy. Drug combinations inhibiting multiple signaling targets within cancer-related 

signaling networks have the potential to reduce drug resistance. Deep learning models have been 

reported to predict drug combinations. However, these models are hard to be interpreted in terms 

of mechanism of synergy (MoS), and thus cannot well support the human-AI based clinical 

decision making. Herein, we proposed a novel computational model, DeepSignalingFlow, which 

seeks to address the preceding two challenges. Specifically, a graph convolutional network (GCN) 

was developed based on a core cancer signaling network consisting of 1584 genes, with gene 

expression and copy number data derived from 46 core cancer signaling pathways. The novel 

up-stream signaling-flow (from up-stream signaling to drug targets), and the down-stream 

signaling-flow (from drug targets to down-stream signaling), were designed using trainable 

weights of network edges. The numerical features (accumulated information due to the signaling-

flows of the signaling network) of drug nodes that link to drug targets were then used to predict 

the synergy scores of such drug combinations. The model was evaluated using the NCI 

ALMANAC drug combination screening data. The evaluation results showed that the proposed 
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DeepSignalingFlow model can not only predict drug combination synergy score, but also interpret 

potentially interpretable MoS of drug combinations.  
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1. Introduction 

Complex signaling pathways and ensuing networks are believed to be responsible for drug 

resistance in cancer therapy. Thus, drug combinations inhibiting multiple signaling targets in 

cancer-related signaling networks have the potential to be effective in terms of reduce drug 

resistance.  However, it is challenging to discover effective and synergistic drug combinations in 

clinical and laboratories settings because of the unclear and complex mechanism of synergy 

(MoS) for such drug combinations. Recent analyses of reported drug combinations indicate that 

there are complex, diverse and heterogeneous MoS for different drug combinations in different 

diseases1. Further, in recent studies, the RAS/ERK signaling pathway, which has been show to 

inhibit the efficacy of certain anti-cancer drugs was found to be synergistic with autophagy 

inhibitors in RAS-driven cancers2,3. This is notable, given that autophagy signaling was activated 

after treatment with RAS inhibitors2,3. Despite this evolving body of research concerning the 

targeting of synergistic cancer therapeutics, there remain few effective drug combinations that are 

used broadly in the clinical environment.  Therefore, novel and effective drug combinations are 

needed in order to expand the scope and impact of precision cancer therapy and to ultimately 

improve cancer treatment outcomes. 

In response to the aforementioned challenges, and to help facilitate the discovery of 

synergistic drug combinations for use in a variety of cancer, we sought to understand the 

associations between genetic biomarkers and drug response, as well as mechanism of drug 

synergy, using computational methods. The National Cancer Institute (NCI) has previously 

generated a comprehensive screening data set of ~5,232 combinations from ~100 drugs in 60 

human tumor cell-lines (NCI-60), which is publicly available as the NCI-ALMANAC Drug 

Combination Data Set4. This dataset is valuable for developing computational models for drug 

combination prediction. There have been a variety of computational methods described in the 

scientific literature concerning the application of machine learning techniques to such data. For 
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example, matchmaker5 was developed to analyze chemical and gene expression profiles using a 

deep learning framework, which is similar as the DeepSynergy6 and  AuDNNsynergy7 models. 

Similarly, a simplified deep learning model, DeepSignalingSynergy, has been proposed to 

investigate the discriminative importance of individual signaling pathways for drug combination 

prediction8,9. In addition, the use of multi-task learning with transfer learning model has been 

proposed to prediction drug combinations10. Further, random forest (RF) and XGBoost models 

have been used, based on the chemical and genomics features of source data, to predict drug 

combinations11. These and many other computational models have also been proposed for drug 

combination prediction (as opposed to predicting the efficacy of single drugs). For example, the 

connectivity map (CMAP)12,13 and associated network analysis based drug combination prediction 

models have been used in this context14,15.  In an analogous manner, message propagation-

based models have been developed based on the confluence of drug targeting and genomics 

data16,17. A common thread in the preceding work has been the use of semi-supervised learning 

models, applied to multiple pharmacogenomics datasets, for drug combination prediction18.  

However, despite the promise of the existing body of work in this domain, there remain three 

limitations of the existing deep learning models. First, a large number of genomic and chemical 

features have been used in such predictive models. Given the limited amount of drug screening 

data currently available, the training of such models with a large number of features is intrinsically 

limited. Second, the signaling interactions in gene regulatory signaling networks are often not 

incorporated in the deep learning models, despite their criticality in terms of treatment efficacy. 

Third, complex mechanism of synergy (MoS) are usually not modeled in these existing constructs. 

As such, these models are hard to interpret and explain in order to identify effective and 

synergistic drug combinations for subsequent verification and validation. 

In the specific context of cancer studies, signaling pathways playing important roles in terms 

of tumor development and drug response, are of critical importance when seeking to identify 
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single or synergistic therapeutic targets. For example,  in one set of studies, 10 signaling pathways 

were systematically analyzed cross 9,125 tumor samples in 33 cancer types (64 subtypes)19. The 

results of this study indicated that 89% of tumor samples had at least one driver alteration in one 

of these pathways, and 57% and 30% had one and multiple potentially druggable targets, 

respectively. These results indicate the importance of identifying or repurposing effective drugs 

and drug combinations that target these signaling pathways. Therefore, in our study, we proposed 

a novel computational graph neural network (GNN) model, DeepSignalingFlow, to investigate the 

aforementioned issues as they relate to the used of deep learning models for drug combination 

therapy predication, by incorporating core cancer signaling pathways into such analyses.  

 

2. Methodology 

2.1 NCI ALMANAC drug combination screening dataset  

As was introduced previously, the NCI Almanac dataset includes the combo-scores1 of 

permutations of 104 FDA approved drugs relative to the tumor growth of NCI60 human tumor cell 

lines. The average combo-score of two drugs with different doses on a given tumor cell line was 

used as the basis for assessing the synergy score of two drugs on the given tumor cell line using 

a 4-element tuple: <DA, DB, CC, SABC>. 

2.2 Gene expression and copy number data of NCI-60 Cancer Cell Lines 

Multi-omics data (e.g., RNA-seq  [gene expression], copy number variation, metabolomics, 

miRNA, and RPPA_ for 1000 human tumor cell lines were available in the Cancer Cell Line 

Encyclopedia (CCLE) database20, which are of value when seeking to identify associations 

between genetic biomarkers and drug response. In addition, copy number data was downloaded 

from GDSC database21. By identifying overlapping cell lines from these two databases, we 

identified 43 of NCI-60 cancer cell lines that were also present in CCLE (see Table 1).  
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Table 1: 43 NCI-60 human tumor cell lines included in CCLE database. 

A498_KIDNEY A549_LUNG ACHN_KIDNEY BT549_BREAST CAKI1_KIDNEY 

HOP62_LUNG HOP92_LUNG HS578T_BREAST 
HT29_LARGE_INT
ESTINE 

IGROV1_OVARY 

K562_HAEMATOP
OIETIC_AND_LYM
PHOID_TISSUE 

KM12_LARGE_INT
ESTINE 

LOXIMVI_SKIN MCF7_BREAST 
MDAMB231_BREA
ST 

MDAMB468_BREA
ST 

NCIH226_LUNG NCIH23_LUNG NCIH322_LUNG NCIH460_LUNG 

NCIH522_LUNG 
NIHOVCAR3_OVA
RY 

OVCAR4_OVARY OVCAR8_OVARY PC3_PROSTATE 

RPMI8226_HAEMA
TOPOIETIC_AND_L
YMPHOID_TISSUE 

SF268_CENTRAL_
NERVOUS_SYSTE
M 

SF295_CENTRAL_N
ERVOUS_SYSTEM 

SF539_CENTRAL_
NERVOUS_SYSTE
M 

SKMEL28_SKIN 

SKMEL5_SKIN SKOV3_OVARY 
SW620_LARGE_INT
ESTINE 

T47D_BREAST 
U251MG_CENTRA
L_NERVOUS_SYS
TEM 

UACC257_SKIN UACC62_SKIN UO31_KIDNEY   

 

2.3 KEGG signaling pathways and cellular process 

46 signaling pathways (45 <signaling pathways= + cell cycle)8,9 were collected from the KEGG 

(Kyoto Encyclopedia of Genes and Genomes)22 database, specifically: MAPK, FoxO, TGF-beta, 

T cell receptor, Adipocytokine, ErbB, Sphingolipid, VEGF, B cell receptor, Oxytocin, Ras, 

Phospholipase D, Apelin, Fc epsilon RI, Glucagon, Rap1, p53, Hippo, TNF, Relaxin, Calcium, 

mTOR, Toll-like receptor, Neurotrophin, AGE-RAGE, cGMP-PKG, PI3K-Akt, NOD-like receptor, 

Insulin, Cell cycle, cAMP, AMPK, RIG-I-like receptor, GnRH, Chemokine, Wnt, C-type lectin 

receptor, Estrogen, NF-kappa B, Notch, JAK-STAT, Prolactin, HIF-1, Hedgehog, IL-17, Thyroid 

hormone signaling pathways. In these 46 signaling pathways8,9,, 1584 genes were identified for 

which gene expression (TPM) and copy number data were available in the CCLE database.   

 2.3 Drug-Target interactions from DrugBank database 

Drug-target information were extracted from the DrugBank23 database (version 5.1.5, released 

2020-01-03). In total, 15,263 drug-target interactions were obtained for 5435 drugs/investigational 

agents and 2775 targets. Among these drug, 67 drugs were included in NCI ALMANAC with 
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associated targets. Further, 21 drugs with known targets corresponding to the 1584 signaling 

pathways previously identified were selected for use in our model, specifically: Celecoxib, 

Gefitinib, Quinacrine hydrochloride, Tretinoin, Cladribine, Imatinib mesylate, Romidepsin, 

Vinblastine sulfate (hydrate), Dasatinib, Lenalidomide, Sirolimus, Vorinostat, Docetaxel, Mitotane, 

Sorafenib tosylate, Thalidomide, Everolimus, Nilotinib, Tamoxifen citrate, Paclitaxel, Fulvestrant.  

 

2.4 Architecture design of DeepSignalingFlow 

Fig. 1 shows the schematic architecture of the proposed DeepSignalingFlow model. The model 

input parameters are: � * =	%×	' , � * 	=%×% , �*% * 	=%×%	, �,-. * =%×%	 , where �  denotes the 

nodes features matrix with � nodes of � features, � is the adjacent matrix that links gene-gene 

 
Figure 1: Architecture of DeepSignalingFlow.
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interactions on the signaling pathways and gene-drug interactions, and the elements of adjacent 

matrix � such as �*2 indicates an edge from � to �. �*%	is an in-degree diagonal matrix for nodes 

in directed graph, and �,-.  is an out-degree diagonal matrix for nodes in in directed graph.  

In the graph convolution stages of our architecture, we added the bidirectional nodes-flow 

with both of 8upstream-to-downstream9 (from up-stream signaling to drug targets) and 

8downstream-to-upstream9 (from drug targets to down-stream signaling). Therefore, we call this 

model a Weight Bi-directional Graph Convolution Network (WeB-GCN). The weight matrices are 

denoted as: �-6(8) * =%×%, �',:%
(8) * =%×%, (� = 1,2, & , �)  respectively. And then the weight 

adjacency matrices will be denoted as: 

�A-6(8) =	�-6(8) 	 ; �	 (1) 

�A',:%(8) =	�',:%
(8) 	 ; �	 (2) 

where for each �2-6(8) * 	=%×%, �A',:%(8) * 	=%×%, (� = 1,2, & , �), parameters for drug-gene relations 

values are the same with those in original adjacent matrix. Complete model parameters are 

specified in Table 2.  

 

Table 2: Model parameters and notations. 

Input Matrices When � = �, �,& ,� When � = � 

Nodes Features Matrix �(8JK) * 	=%×L'(MNO) 	 �(P) * =%×	'(Q) 

New Nodes Adjacent Matrices �2-6(8) * 	=%×%, �A',:%(8) * 	=%×% same 

Nodes In-degree Diagonal 
Matrix 

�*% * 	=%×% same 

Nodes Out-degree Diagonal 
Matrix 

�,-. * =%×% same 



Trainable Feature 
Transformation Matrix 

�-6(8) * =L'(MNO)×'(M)  

	�',:%
(8) * =L'(MNO)×'(M)		 

�-6(K) * ='(Q)×	'(O) 

	�',:%
(K) * ='(Q)×	'(O) 

Trainable Biased Feature 
Transformation Matrix 

 

�(8) * =L'(MNO)×'(M) 		 
 

�(K) * ='(Q)×	'(O) 

 

 

Fig. 2 shows the structural details of our model. First, the mean aggregation of each node 

neighbors9 features from upstream to downstream is achieved by: 

�-6_%U*VW(8) = �*%JK(�2-6(8))X	�(8	JK)�-6(8)	 (3) 
And the mean aggregation of each node neighbors9 features from downstream to upstream is 

achieved by: 

 
 

 
Figure 2: Schematic architecture of the DeepSignalingFlow Model.
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�',:%_%U*VW(8) = �,-.JK (�2',:%(8) )X	�(8	JK)�',:%
(8) 	 (4) 

And biased transformation of nodes themselves and their features is achieved by: 

�[U\](8) = �(8JK)�(8)	 (5) 

For � = 1,2, & , � , the model uses normalization function �:=%×L'(M) ³ =%×L'(M)	and LeakyReLU 

function with parameter �  to map concatenated nodes features �c,%cd.(8)
= 

e�-6_%U*VW(8) |�',:%_%U*VW(8) 	|	�[U\](8) g * 	=%×L'(M) 	to �(8) * =%×L'(M) 	 with the equation: 

�(8) = LeakyReLU(�(�c,%cd.(8) )) (6) 

where normalization function � enable L2 normalization for demo matrix � * 	=6×j in row axis 
with the equation: 

�A*2 =	 �*2
l32nK

j 	�*2o
	 (7)

 

where �2*2 is the element of new matrix �A * 	=6×j. Therefore, the output of �-th layer WeB-GCN 

is �(8). After obtaining the embedded nodes features with �(q) * 	=%×L'(r), the embedded nodes 

features of drug_A are obtained: �s(q) * 	=L'(r), and the drug_B embedded nodes features are 

obtained as: �t(q) * 	=L'(r), which are just the 1585th and 1586th rows in �(q).  Based on the idea 

of decagon decoder24, the prediction of combo score will be calculated in following equation: 

� e�s(q), �t(q)g =	�s(q)	���w�t(q)	 (8) 
where � * 	=L'(r)×y and � * 	=y×y are trainable decoder matrices. 

 

Drug combination response interpretation using the directional signaling flow 

As aforementioned, we added directional signaling interaction weights to indicate the potential 

signaling flow from up-stream signaling to drug targets, and from drug targets to down-stream 

signaling. The trainable directional weights can potentially indicate and interpret the signaling flow 



on the signaling network to affect the drug combination response. Specifically, the signaling flow 

derived from the directional weighted matrices are defined as follows. Each such model had k=3 

layers, and each layer has upstream weight adjacent parameters and downstream weight 

adjacent parameters, which are �2-6(K), �2-6(o), �2-6(z) and �2',:%(K) , �2',:%(o) , �2',:%(z)
 . Through aggregating 

3 layers upstream and downstream to weight adjacent matrices, we arrive at an aggregated 

upstream, downstream and bind-stream for �th 5-fold cross valuation model with �th model9s 

�2-6(K), �2-6(o), �2-6(z) and �2',:%(K) , �2',:%(o) , �2',:%(z)
 using the formula: 

�A-6dVV(8) =	13 e�A-6
(K) +	�A-6(o) +	�A-6(z)g		 (9)	

�A',:%dVV(8) =	13 e�A',:%
(K) +	�A',:%(o) +	�A',:%(z) g	 (10) 

�A~*%'dVV(8) =	13 �	
1
2 e�A-6

(K)+�A',:%(K) g +	12 e�A-6
(o) + �A',:%(o) g +	12 e�A-6

(z) + �A',:%(z) g�	 (11) 

With upstream, downstream and bind-stream weight adjacent matrices parameters, we then 

aggregated weight adjacent matrices of those 5 models by the following formula: 

�A-6_]*%d\ =	15	e�A-6dVV
(K) +	�A-6dVV(o) + �A-6dVV(z) + �A-6dVV(L) + �A-6dVV(�) 	g	 (12) 

�A',:%_]*%d\ =	15	e�A',:%dVV
(K) +	�A',:%dVV(o) + �A',:%dVV(z) + �A',:%dVV(L) + �A',:%dVV(�) 	g	 (13) 

�A~*%'_]*%d\ =	15	e�A~*%'dVV
(K) +	�A~*%'dVV(o) + �A~*%'dVV(z) + �A~*%'dVV(L) + �A~*%'dVV(�) 	g	 (14) 

With the final upstream, downstream and bind-stream weight adjacent matrices parameters for 

1584 genes of �2-6_]*%d\ , �2',:%_]*%d\ , �2~*%'_]*%d\, we then were able to study the signaling flow 

on the signaling network. 

  

 



3. Results 

3.1 Experimental Setup 

Model input: <drug_A, drug_B, cellline name, combo score> were used to construct each point in 

an input dataset, which was comprised of 5445 such points; among these data, using a 5-fold 

cross validation with 5 splits of 1089 nodes, we created a training dataset. For each point, the cell 

line name contained the RNA sequence of the 1584 genes. Given all possible 2-drug 

permutations, each point created a graph with 1586 nodes, and each such graph had 3 initial 

features. For those 1584 genes, their 3 features indicate the RNA sequence number, and whether 

they have connection spanning drug_A and drug_B. For each 2-drug dyad, their 3 features were 

initiated with zeros. Furthermore, to indicate connections between nodes, adjacent matrices were 

also created. Those matrices were formed from file 8Selected_Kegg_Pathways_edges_19, which 

contains gene pairs with sources and destinations. In this way, the graphs generated were 

directed graphs. For drug-gene edges, the connections are bidirectional, which means that in 

adjacent matrices, those elements are symmetric. At the same time, in-degree matrices are 

formed according to said adjacent matrices. 

 

3.2 Hyperparameters Setting 

Subsequently, a model was developed by using pytorch. Using the Adam optimizer, learning rate 

started with 0.01 and reduced equally within each batch of first 50 epochs. We empirically set the 

training epochs as 75, which allows for optimal validation results. � = 3	WeB-GCN layers were 

used, and the initial input feature dimension was: �(P) = 3, with the feature dimensions varying at 

the different layers, and denoted by: (�(K), �(o), & , �(8), & , �(q)), � = 1,2,3. WeB-GCN concatenate 

biased last layer node features and transformed nodes features, with the final concatenated 



dimensions of the WeB-GCN layers for the output dims being 3	 ×	�(8). Output dims of the last 

layer served as the input dims for this layer, as follows: 

(1) First layer (input dims, output dims):  (�(P), 4�(K)) 
(2) Second layer (input dims, output dims): (4�(K), 4�(o)) 
(3) Third layer (input dims, output dims): (4�(o), 4�(z)) 

The final embedded drug nodes dims were 4�(z) (see Table 2). Decoder trainable transformation 

matrix dims: � *	=o'(r)×y  and � * 	=y×y  were ysed as trainable decoder matrices, with 

changeable parameters of � to adapt model performance. As shown in Table 2, the model uses 

� = 40. As for the LeakyReLU function, the parameter � = 0.1 . 

 

Table 2: 5-fold Cross Validation on 2 Sets of Hyper-parameters 

Number 
of 

Dataset 

Input Dims, Output Dims Dec
oder 
dim

s 

Dropo
ut 

Training 
MSE Loss 

Training 
Pearson 

Correlatio
n 

Test        
MSE Loss 

Test 
Pearson 

Correlatio
n 

1st 
layer 

2nd 
layer 

3rd 
layer 

1st 

dataset 
(4, 12) (12, 12) (12, 36) 40 0.01 34.11 74.64% 53.34 68.20% 

2nd 
dataset 

(4, 12) (12, 12) (12, 36) 40 0.01 33.48 74.40% 51.91 64.21% 

3rd 
dataset 

(4, 12) (12, 12) (12, 36) 40 0.01 33.01 75.75% 44.59 66.64% 

4th 
dataset 

(4, 12) (12, 12) (12, 36) 40 0.01 32.78 75.71% 42.19 67.93% 

5th 
dataset 

(4, 12) (12, 12) (12, 36) 40 0.01 35.38 73.39% 48.01 62.48% 

Average (4, 12) (12, 12) (12, 36) 40 0.01 33.76 74.78% 48.01 65.89% 

 

 

 



3.3 Synergistic score prediction evaluation 

To evaluate the model performance in terms of synergy score prediction for drug combinations, 

we conducted 5-fold validation. As seen, the average prediction (using the Pearson correlation 

coefficient), was about 66% accuracy using the testing data. These prediction results are 

comparable with existing deep learning models6,7. The results indicated the feasibility of drug 

combination synergy score prediction using a graph neural network with a small set of core 

signaling pathways genes, compared with the existing complex deep neural network (DNN) 

models using a large number of genomics and chemical structure features.  

 

3.3 Signaling flow interpreting the mechanism of synergy 

As aforementioned, we added directional signaling interaction weights to indicate the potential 

signaling flow from up-stream signaling to drug targets, and from drug targets to down-stream 

signaling. In this sub-aim, we identified a set of important sub-network, including important 

signaling interactions, to show the feasibility of model interpretation. As an example, first, the 

signaling interactions (edges) were filtered, based on the trained signaling interaction weights, by 

selecting the signaling interactions with weights more than a given threshed, which indicates the 

important signaling flow on the signaling network. Then network nodes with degrees larger than 

 

Figure 3: Scatterplots of the predicted and experimental synergy scores on the 5-fold training and 
validation dataset with dropout rate 0.01



50 were selected to generate signaling flow network to partially explain the mechanism of drug 

combination synergy (see Table 3). Different thresholds of edges and nodes could generate 

different signaling flow subnetworks. As seen in Figs. 4,5,6, the core up-stream, down-stream 

and integrated (up- and down-stream) signaling flow networks were identified from the large 

signaling network based on the average trained directional weight matrices on the 5 training 

datasets. This sub-network module has the potential to uncover the potential mechanism of 

synergy of the involved drugs.  

 

Table 3: Filtering results for upstream 

Network Filtering 
Threshold 

Nodes Number Edges Number Target Genes 
Number 

Upstream Nodes Degree > 
50 

105 1034 20 

Downstream Nodes Degree > 
50 

100 1101 14 

Bindstream Nodes Degree > 
50 

106 1095 19 

 



 

 

Figure 4: Up-stream core signaling targets and signaling flows among these targets (nodes circled 
with red are targets of drugs).

Figure 5: Down-stream core signaling targets and signaling flows among these targets (nodes 
circled with red are targets of drugs).



 

4. Discussion and conclusion 

Along with the advancement of next-generation sequencing (NGS) technology, multi-omics data, 

like gene expression, copy number variation, methylation, genetic mutation, microRNA, are being 

generated to characterize the dysfunctional molecules and complex signaling pathways in cancer 

patients. The valuable multi-omics data provides the basis for personalized medicine or precision 

medicine prediction. Drug combinations are being investigated to reduce the drug resistance 

influenced by the complex signaling networks in cancer. However, it remains an open problem 

and challenging because of the mysterious, heterogenous molecular mechanisms of synergy of 

drug combinations.  

Deep learning models have been reported to predict drug combinations by simply 

concatenating a large number of multi-omics data and chemical structure information using the 

deep neural network (DNN) model. One limitation of the existing DNN models is the missing of 

Figure 6: Integrated (up- and down-stream) core signaling targets and signaling flows among these 
targets (nodes circled with red are targets of drugs).



complex and biological meaningful gene regulatory relationships. Thus, it is hard to interpret these 

models to support the real clinical use, which requires the clinical experts to understand the 

molecular mechanisms used in the AI prediction.  

In this study, we aim to explore the feasibility of building an interpretable AI model using 

the proposed DeepSignalingFlow model. The model is built on a core cancer signaling network 

consisting of 1584 genes, with gene expression and copy number data derived from 46 core 

cancer signaling pathways. The novel up-stream signaling-flow (from up-stream signaling to drug 

targets), and the down-stream signaling-flow (from drug targets to down-stream signaling), were 

designed using trainable weights of network edges. The selected signaling interaction edges with 

large weights indicate 1) the important biomarker genes; and 2) the signaling cascades among 

them, which can potentially interpret the model prediction results. In conclusion, the first-time 

proposed up-stream and down-stream signaling flow design is novel and can potentially interpret 

the mechanism of drug combination response.    

This is still an exploratory study to prediction and investigate drug combination response 

using deep neural graph network models. There are some limitations to be further investigated. 

For example, more signaling pathways and protein-protein interactions should be considered to 

include more drugs. Moreover, more omics data, like mutation, methylation, miRNA, should be 

integrated and investigated. In addition, our current analysis is a global analysis or pan-cancer 

analysis by considering all drugs and all cell lines together. However, the drug combination, and 

cell line specific signaling flows might be different. Thus, it is interesting to investigate the drug- 

and cell-specific signaling flows that are informative for the drug combination response prediction. 

We will investigate these challenges in future work.  
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