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ABSTRACT

The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of
protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2
variants, including B.1.1.7, P1, and B.1.351, some of which appear to be less effectively targeted
by current monoclonal antibodies and vaccines. Here we report a high resolution and
comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain
(RBD), which is the target of most neutralizing antibodies, using computational structural
analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures,
we classified antibodies by RBD residue binding determinants using unsupervised clustering. We
also identified the energetic and conservation features of epitope residues and assessed the
capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies
predicted to effectively target recently described viral variants. This detailed structure-based
reference of antibody RBD recognition signatures can inform therapeutic and vaccine design

strategies.
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INTRODUCTION

Over the past year, the SARS-CoV-2 pandemic has resulted in a massive and growing global
death toll and disease burden. A number of vaccines (Krammer, 2020), monoclonal antibodies
(Jiang et al., 2020), and small molecule therapies (Simonis et al., 2021) that target SARS-CoV-2
have been developed. However, viral variants have raised the possibility of viral escape from, or
reduced efficacy of, current vaccines and therapeutics (Liu et al., 2021a; Madhi et al., 2021; Starr

etal., 2021; Wang et al., 2021b; Wang et al., 2021c; Wu et al., 2021).

Several recent studies have used in vitro experimental approaches to test human sera (Greaney et
al., 2021a; Wang et al., 2021b) and sets of monoclonal antibodies (Greaney et al., 2021b; Liu et
al., 2021b; Starr et al., 2021; Wang et al., 2021b) to profile SARS-CoV-2 antibody resistance.
The rapidly expanding set of experimentally determined structures of antibodies targeting the
spike glycoprotein provides the opportunity to use computational biology tools to map key
features of antibody-spike recognition. At the same time, the impact of viral variability can be
predicted, which can provide insights into effective targeting and neutralization of SARS-CoV-2

and enable selection and engineering of anti-spike therapeutics and vaccines.

Here we report detailed structural analysis of a large set of high resolution antibody-spike
complexes that have been collected in our database, CoV3D (Gowthaman et al., 2021).
Structure-based mapping of antibody footprints on the receptor binding domain (RBD) and
unsupervised clustering led to the identification of four major antibody groups based on their
recognition signatures. These antibody-spike complexes were assessed for key energetic features

using computational alanine mutagenesis of all RBD interface residues to identify shared and
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distinct binding hotspots on the RBD. The structure-based antibody clusters were also assessed
both for residue conservation with SARS-CoV-1, and predicted effects of individual RBD
substitutions from circulating SARS-CoV-2 variants, showing substantial differences between
groups of RBD-targeting antibodies. These structural features and clusters can serve as a
reference for rational vaccine design and therapeutic efforts, and updated antibody cluster
information based on this analysis is available to the community on the CoV3D site:

https://cov3d.ibbr.umd.edu/antibody classification.

RESULTS

Clustering of antibody-RBD interaction modes

To identify common recognition modes and key features of antibody recognition of the spike
glycoprotein, we analyzed a set of high resolution structures of antibody-spike complexes from
the CoV3D database (Gowthaman et al., 2021), which were originally obtained from the Protein
Data Bank (Rose et al., 2011). We focused on the SARS-CoV-2 RBD, which is the primary
target of neutralizing antibodies (Zost et al., 2020) and is the target of the vast majority of
structurally characterized SARS-CoV-2 antibodies. Structures were filtered by resolution (< 4.0
A) and nonredundancy, resulting in 70 antibody-RBD complex structures, representing different
antibody formats (heavy-light antibody, nanobody) and a range of IGHV genes (Table S1).
Notably, these complex structures include multiple therapeutic monoclonal antibodies that have
been under clinical investigation: REGN10933 and REGN10987 (casirivimab/imdevimab;
REGN-COV2) (Weinreich et al., 2021), LY-CoV555 (bamlanivimab) (Chen et al., 2021), and

S309 which is the basis for VIR-7831 (GSK4182136; sotrovimab) (Tuccori et al., 2020).
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To assess prevalent or shared binding modes in antibody-RBD recognition, pairwise root-mean-
square-distances (RMSDs) between antibody heavy chain and nanobody chain orientations were
calculated after superposition of RBD coordinates into a common reference frame, and the
RMSDs were input to hierarchical clustering analysis (Figure 1). This analysis identified a set of
17 complexes with a common binding mode and shared heavy chain germline genes (IGHV3-53,
IGHV3-66), a feature that has been noted in previous studies describing SARS-CoV-2 antibody-
RBD complex structures (Barnes et al., 2020b; Yuan et al., 2021). Other sets of co-clustered
antibodies within the 8 A RMSD cutoff were limited to antibody pairs, with the exception of a
set of five antibodies, of which three (2-15, Ab2-4, C121) share the IGHV1-2 heavy chain
germline gene, suggestive of another germline-mediated binding mode. However, other
antibodies possessing the IGHV1-2 germline gene exhibited distinct binding modes based on the
clustering analysis (298, S2E12), indicating that the heavy chain CDR3 sequence and light chain
are relevant factors for that orientation. An example of co-clustered antibodies based on this
analysis is shown in Figure 1B, showing a shared RBD binding mode (heavy chain orientation
RMSD: 2.9 A) for neutralizing antibodies S304 (Piccoli et al., 2020) and EY6A (Zhou et al.,

2020).

High resolution antibody footprinting and clustering analysis

To further delineate features underlying antibody-RBD recognition, we analyzed detailed
antibody footprints on the RBD with unsupervised clustering, using the number of atomic
contacts by an antibody to each RBD residue as input. Individual antibody footprints and
resultant clusters are shown in Figure 2, along with calculated and previously reported properties

of the antibodies for reference, including interface buried surface area (BSA), neutralization
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(SARS-CoV-2 neutralization or SARS-CoV-1/SARS-CoV-2 cross neutralization), ACE2
blocking, and capability to bind the RBD in the context of the closed (or down) spike
conformation. This separated the antibodies into four main clusters; these are similar but not
identical to previously described SARS-CoV-2 antibody classifications described by Barnes et
al. (Barnes et al., 2020a), which are shown as the “BBclass” colored sidebar in Figure 2.
Inspection of the heatmap indicates that Clusters 1 and 4 are most distinct, which is supported by
high bootstrap confidence levels (100% and 99% respectively; Figure S1), while Clusters 2 and
3 are more diverse, and have bootstrap confidence levels of 87% and 83% (Figure S1).
Visualization the distribution of the antibody positions on the RBD surface (Figure 3) shows that
Clusters 1 and 2 are spatially proximal and overlap with the ACE2 binding site, and the
relatively constrained positions of Cluster 1 antibodies are reflective of our RMSD-based
analysis and known conserved binding mode of that set. Cluster 3 extends to the RBD hinge and
N-glycan at RBD position N343, while Cluster 4 occupies a distinct region of the RBD. Principal
component analysis using the antibody atom contact data as input enabled visualization of the
antibody distributions along the first two principal components, which collectively represent

approximately 50% of the data (Figure S2), and generally supports the hierarchical clustering.

The contact-based clusters in Figure 2 highlight several notable features within and between sets
of RBD-targeting antibodies. Cluster 1 antibodies all neutralize SARS-CoV-2, block ACE2
binding, can only bind the spike in its open conformation, and have relatively high RBD
interface buried surface area (BSA). Cluster 2 contains antibodies that can bind the closed spike,
some of which can engage multiple RBDs in that context, and all are predicted or confirmed to

block ACE2 binding. Cluster 3 is dominated by antibodies that can bind the closed spike, and
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most are predicted block ACE2 binding through steric hindrance and/or binding site overlap. In
Cluster 4, which is mapped closer to the N- and C-termini and the hinge that connects the RBD
to the spike (Figure 3), multiple antibodies are confirmed to be cross-neutralizing between
SARS-CoV-2 and SARS-CoV-1 (Liu et al., 2020; Lv et al., 2020; Piccoli et al., 2020), and no
antibodies are predicted to recognize spike in the RBD-closed conformation. The mapped
antibody footprints show varying degrees of overlap with ACE2 binding site residues (gray bars
at top of Figure 2) among the clusters. Residues highlighted in Figure 2 that are associated with
viral variants of concern (E484, K417, N501) show that Cluster 2 is primarily associated with
E484 engagement, while Cluster 1 is associated with engagement of K417 and N501. Antibodies
in Clusters 3 and 4 exhibit few or no contacts with those residues, suggesting that they are less

susceptible to binding disruption and viral resistance due to variability at those sites.

Binding energetic features and hotspots

To provide a more detailed and comprehensive view of key residues and energetic features
underlying antibody-RBD recognition, all interface structures were analyzed for hydrogen bonds
with RBD residues (Figure 4) and energetically important RBD residues based on computational
alanine scanning (Figure 5). Hydrogen bonding patterns in RBD-targeting antibodies (Figure 4)
showed clear preferences for hydrogen bond RBD residue interactions among Cluster 1
antibodies, with frequently observed interactions with residues R403, K417, D420, Y421, N487,
and Y505. Many Cluster 2 antibodies exhibit hydrogen bond interactions with residue E484
and/or Q493, whereas antibodies from Clusters 3 and 4 have limited shared RBD residues

involved in hydrogen bond interactions.
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To map key RBD sites and energetic hotspots in the set of antibody-RBD interfaces, we
performed computational alanine scanning (Figure 5) using a predictive protocol in Rosetta
(Kortemme et al., 2004). The protocol used for this analysis was selected based on predictive
performance from benchmarking of nine computational methods using approximately 350
experimentally determined alanine mutant AAG values for antibody-antigen interfaces (Table
S2). While many energetically important residues identified by this analysis are reflective of the
key residues identified by hydrogen bond analysis, including residues N487 and E484 (Cluster 1)
and E484 (Cluster 2), numerous hydrophobic RBD residues were additionally identified as
important for binding within antibody clusters. These residues include Y505 (Cluster 1), F486
and Y489 (Clusters 1 and 2), and Y449 and F490 (Clusters 2 and 3). As with the analysis of
RBD residue contacts, analysis of hydrogen bonds and computational alanine scanning support
the overall importance of N417 and Y501 for Cluster 1 antibodies, and E484 for Cluster 2

antibodies.

Epitope conservation and targeting of escape variants

To assess the degree to which antibodies and antibody classes to target sites that are conserved
among sarbecoviruses, the fraction of RBD epitope residues conserved between SARS-CoV-2
and SARS-CoV-1 was calculated for each antibody-RBD interface (Figure 6). Clusters 1-3
exhibit limited conservation (approximately 50% or lower conserved antibody contact residues),
with the exception of S309, which shows over 80% epitope residue conservation; this result is in
accordance with the observed cross-neutralizing capability for that antibody (Pinto et al., 2020).
In contrast with the other antibody clusters, antibodies in Cluster 4, which includes three

confirmed cross-neutralizing antibodies (Figure 2), exhibit markedly higher epitope
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conservation, with all values 78% or higher. This highlights the potential importance of this
conserved site, which is not accessible in the closed spike structure, in targeting of and immunity

to emerging sarbecoviruses.

To directly assess the effects of RBD mutations present in recently described SARS-CoV-2
variants of concern, we performed computational mutagenesis to gauge whether antibody
binding affinities are predicted to be disrupted by individual RBD substitutions. For these
simulations, we utilized the same protocol that was used for computational alanine scanning; we
found this method to have similar predictive performance for point residue substitutions to all
residue types in comparison with performance for alanine-only substitutions (Pearson
Correlation Coefficient (PCC) with experimental AAGs of 0.5 for all residues, versus 0.53 for
alanine-only; Table S2). RBD substitutions K417N, K417T, E484K, and N501Y were modeled
in all interfaces and assessed for antibody AAGs; these substitutions are collectively represented
in variants B.1.1.7 (N501Y), B.1.351 (501Y.V2; K417N, E484K, N501Y), P1 (484K.V2;
K417T, E484K, N501Y), B.1.525 (E484K), and a recently reported variant of concern, B.1.526
(E484K) (Annavajhala et al., 2021). Comparison of predicted AAGs (Figure 7) shows that
K417N, K417T, and to a lesser extent N501Y, are predicted to predominantly affect antibodies
in Cluster 1, whereas disruptive effects of E484K are primarily observed for antibody Cluster 2,
with the exception of two antibodies with predicted AAG values of over 1 Rosetta Energy Unit
(REU), in Cluster 3. In contrast, antibodies in Cluster 3 and 4 exhibit little overall effects from
those variant RBD substitutions. We also tested predicted binding effects using a different
modeling tool (FoldX), which uses a distinct modeling and scoring protocol from Rosetta, and

found similar trends among antibody classes for the effects of the variants (Figure S4). Finally,
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two additional RBD substitutions (L452R, S477N) from other described SARS-CoV-2 variants
that have unclear associations with transmissibility or antibody resistance (e.g. B.1.429+B.1.427,
which contains L452R) were tested for effects in the antibody-RBD interfaces; neither was

predicted to have a pronounced effect on recognition for any of the antibody clusters (Figure

S5).

DISCUSSION

Utilizing a curated set of experimentally determined antibody-RBD complex structures, we have
performed detailed mapping of antibody recognition determinants on the SARS-CoV-2 RBD,
which were used to generate antibody clusters that exhibit distinct structural and energetic
signatures. Notably, these clusters exhibited different destabilizing effects from RBD
substitutions found in circulating variants, underscoring and expanding upon previous
observations by others that indicate that specific groups of antibodies are affected by specific
substitutions, including E484K (Barnes et al., 2020a). We found that Cluster 2 antibodies, which
overlap with Class 2 antibodies reported by Barnes et al. (Figure 2), are susceptible to resistance
from viruses with the E484K substitution, which include B.1.351, P1, B.1.525, and B.1.526, but
not B.1.1.7, whereas other antibodies are not likely to be affected by that substitution. In
contrast, substitutions at residues K417 and N501, which are found in several variants of
concern, were primarily associated with binding disruption to Cluster 1 antibodies based on our
computational mutagenesis. Given that the E484K substitution appears specifically associated
with viral escape, as noted by others (Altmann et al., 2021) and supported by recent studies of

monoclonal and polyclonal antibody neutralization of variant viruses and specific mutants

10
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(Wang et al., 2021b; Wu et al., 2021), our work highlights the relative importance of Cluster 2

antibodies in the neutralizing response against SARS-CoV-2.

Though effects from RBD substitutions on ACE2 recognition were not considered in this study,
due to its focus on antibody recognition and mutational escape, others have reported
computational (Chen et al., 2020; Laurini et al., 2020) and experimental (Starr et al., 2020) RBD
substitutions associated with loss of, or improvement of, ACE2 binding. As ACE2 binding
effects can impact viral infectivity and fitness, a prospective combination of datasets from our
study and a profile of ACE2 binding effects can provide a more comprehensive view of the
landscape of viral fitness and immune escape. Such integrative work could identify SARS-CoV-
2 RBD variants with functional implications through computational structural analysis which are
not yet identified in circulating variants, and can be prioritized for experimental characterization,
and potentially with targeted therapies and updated vaccines, if they do appear. Additionally,
new viral variant sequences can be rapidly assessed for possible mutational escape using our

computational analysis pipeline.

This study is distinguished from other recently described structure-based (Barnes et al., 2020a)
and binding competition-based (Dejnirattisai et al., 2021; Piccoli et al., 2020) reports to compare
and classify antibodies, as we directly assessed detailed antibody binding footprints on the RBD
with structural analysis to generate the identified clusters. The unsupervised clustering used here
corroborated and expanded upon previously identified classes (Barnes et al., 2020a), though
several distinctions in classifications were also observed in our analysis. To provide an updated

reference to the community, we report these clusters on our CoV3D site of coronavirus protein
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structures (Gowthaman et al., 2021) (https://cov3d.ibbr.umd.edu/antibody_classification), which

includes the 70 complexes reported in this study as well as newly reported complexes. We also
provide a prototype interface on the CoV3D site for researchers to input new experimentally
determined structures or models of antibody-RBD or protein-RBD complexes to characterize the

binding footprint and provide the contact-based cluster.

New datasets reporting large-scale experimental mapping of antibody binding determinants can
expand upon our analysis and provide additional insights. While in this work we report
systematic computational alanine scanning to identify key energetic determinants of a large set
of monoclonal antibodies that target the SARS-CoV-2, other studies have reported experimental
global alanine scanning of antibody interactions with viral glycoproteins, such as hepatitis C
virus E1E2, to map binding determinants (Colbert et al., 2019; Gopal et al., 2017; Keck et al.,
2019; Pierce et al., 2016). These datasets were used to cluster antibodies and E1E2 positions by
binding profiles in several of those studies (Colbert et al., 2019; Keck et al., 2019; Pierce et al.,
2016). Though based on deep mutational scanning rather than direct measurement of binding
affinities, recent studies provide information on the impact of RBD substitutions to alanine and
other residues on recognition by sets of monoclonal antibodies (Greaney et al., 2021b; Starr et
al., 2021), and such data could be inspected with respect to residue and mutation-level impact on

antibody clusters identified here.

Certain elements of our analysis of antibody binding determinants can be expanded in future
studies. Some omissions from the calculation of antibody contacts and energetic determinants on

the RBD include lack of inclusion of certain non-protein atoms, such as water molecules and N-
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glycans, and lack of explicit calculation of adjacent RBD contacts, outside of noting likely closed
spike cross-protomer binding, which was the case for a small fraction of antibodies considered
here. Water molecules, which could mediate hydrogen bonds between antibody and RBD, were
not included here, to avoid bias due to varying experimental structural resolutions which in many
cases could not resolve water molecules, necessitating modeling of explicit water molecules
which would lead to additional uncertainties in subsequent calculations (Lensink et al., 2014).
Likewise, the N-glycans of the RBD, specifically the glycan at residue N343, has varying
occupancies in experimentally determined structures. Though this glycan is contacted by the
S309 antibody (Pinto et al., 2020), such antibody-RBD glycan contacts appear to be rare, at least
for structurally characterized neutralizing antibodies, of which most compete with ACE2 binding
and thus target regions sites that are not proximal to that N-glycan. One potential avenue for
expansion of this analysis includes antibodies that target other regions of the spike glycoprotein,
specifically the N-terminal domain (NTD). While the current set of experimentally determined
SARS-CoV-2 antibody-NTD complex structures (March, 2021) is currently limited to six
antibodies (4A8, FC05, DH1050.1, 2-51, COVOX-159, DH1052) (Cerutti et al., 2021; Chi et al.,
2020; Dejnirattisai et al., 2021; Li et al., 2021; Wang et al., 2021a), recent structural and
antigenic mapping studies of antibody recognition of this domain (Cerutti et al., 2021; McCallum
et al.) indicate that a focused computational analysis would be useful, particularly as more
structures of antibodies targeting this domain are reported. We currently represent this set in the

“non-RBD” antibody class on the CoV3D site.

In addition to providing a view of the detailed landscape of antibody-RBD recognition

determinants and key sites, our results indicate that certain sets of antibodies are associated with
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limited likely viral resistance from circulating variants (Clusters 3 and 4) as well as higher
epitope sequence conservation (Cluster 4). Many of the antibodies in these sets have been
experimentally confirmed to neutralize SARS-CoV-1 or cross-neutralize SARS-CoV-1 and
SARS-CoV-2. Prospective structure-based antigen design studies could potentially focus the
antibody response to the corresponding epitopes of the SARS-CoV-2 RBD, versus the epitopes
collectively targeted by antibodies in Clusters 1 and 2. As binding of Cluster 4 antibodies is
prevented in the context of the closed-RBD spike conformation, open spike antigen designs or
RBD-only antigens would facilitate elicitation of these antibodies. Several recent studies have
reported success using RBD displayed on self-assembling nanoparticles (Cohen et al., 2021;
Walls et al., 2020a; Zhang et al., 2020), and structure-guided RBD optimization in the context of
such a platform could lead to improved elicitation of desired antibody profiles. Integrating
computational structural analysis and design with experimental characterization is a promising

avenue toward effective combatting of SARS-CoV-2 variants and future emerging viruses.

MATERIALS AND METHODS

Structure assembly and curation

Structures of antibody-RBD complexes were downloaded from the CoV3D database
(Gowthaman et al., 2021), which identifies and antibody-RBD structures in the Protein Data
Bank (Rose et al., 2011) on a weekly basis through sequence similarity to coronavirus reference
protein sequences in conjunction with identification and annotation of antibody chains. The set
of antibody-RBD structures (downloaded in February 2021) was filtered for antibody
nonredundancy based on antibody name and sequence identity, as well as resolution (< 4.0 A). In

cases of an antibody present in multiple antibody-RBD complex structures, the structure with
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highest resolution was selected for analysis. To permit consistency among antibody-RBD
complex structures, and to facilitate calculations, antibodies were truncated to include variable
domains, and full spike glycoproteins were truncated to include only RBD residues (residues
330-530) of the sole or major target of the antibody. To provide uniform input structures for
atomic contact and other calculations, non-amino acid HETATMs were removed prior to
structural analysis, and to resolve double occupancies and add missing side chain atoms,
structures were pre-processed by the “score” application in Rosetta version 3.12 (Leman et al.,
2020). Two complexes with missing side chain atoms in the experimental PDB coordinates were
processed using the FastRelax protocol in Rosetta (Khatib et al., 2011), to perform constrained
local minimization and to resolve unfavorable energies due to clashes from rebuilt side chains.
These complexes Parameter flags used in FastRelax (“relax” executable in Rosetta 3.12) are:
-relax:constrain_relax to start coords

-relax:coord constrain_sidechains

-relax:ramp_constraints false

-ex1

-ex2aro

-no_optH false

-flip HNQ

-renumber_pdb F

-nstruct 1

Antibody-RBD structures were aligned into a common reference frame through superposition of
RBD coordinates using least-squares fitting in PyMOL (Schrodinger, Inc.). This set of pre-

processed and aligned structures is available through the CoV3D site (Gowthaman et al., 2021),

15


https://doi.org/10.1101/2021.03.21.436311
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436311; this version posted March 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

at: https://cov3d.ibbr.umd.edu/download (“Nonredundant RBD-antibody complex structures”

link).

Information regarding neutralization of SARS-CoV-2 and SARS-CoV-1 was obtained from the
CoV-AbDab site (Raybould et al., 2020), as well as references from the literature for certain

antibodies, where noted in Table S1.

Computational structural analysis

RMSD values between antibody heavy chain or nanobody orientations were determined by
superposition of one antibody variable domain onto another using the FAST structure alignment
tool (Zhu and Weng, 2005), and calculation of backbone RMSD between superposed and non-
superposed variable domain (in the context of a common RBD reference frame, as noted above).
Interface contacts are defined as inter-atomic distance between non-hydrogen atoms of less than
5 A, and antibody-RBD residue contact maps were generated based on the total number of
antibody atom contacts with each RBD residue. Hierarchical clustering of antibody RMSDs was
performed in R version 4.0.3 (www.r-project.org) with the distance matrix of RMSDs as input,
and Ward’s minimum variance method (“ward.D2” method in hclust). Hierarchical clustering of
antibodies and RBD positions based on contact data was performed in R, using Manhattan
distance to compute differences in contact profiles between antibodies or RBD positions, and
Ward’s minimum variance method for clustering. Hierarchical clustering of RBD positions based
on hydrogen bond or calculated AAG values, for the respective heatmap figures, was likewise
performed in R, using Manhattan distances and Ward’s clustering algorithm. RBD residue

dimension reduction for representation in heatmap (Figure 2) was performed by selecting
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exemplar residues from 100 hierarchical clusters, which removed residues with highly similar
contact profiles with respect to those shown in the heatmap. Generally, the omitted residues had
low numbers of total antibody contacts, as Manhattan distances, based on total atomic contacts
with each antibody, were used for contact-based distance calculations between RBD residues.
The pvclust method (Suzuki and Shimodaira, 2006), as implemented in R, was used to calculate
bootstrap confidence of contact-based hierarchical clusters of antibodies, using 20,000 bootstrap
replicates. Principal component analysis of antibody-RBD contact profile data was performed

with the scikit-learn Python module.

Buried surface areas (BSAs) were calculated using the naccess program (v. 2.1.1) (Hubbard and
Thornton, 1993), subtracting the solvent accessible surface area of the antibody-RBD complex
structure from the total solvent accessible surface area of the separate antibody and RBD
structures, dividing by two to avoid double-counting interface area and to make BSA values
commensurate with those from other tools including PISA
(http://www.ebi.ac.uk/pdbe/prot_int/pistart.html). Antibody-RBD interface hydrogen bonds were
calculated using the hbplus program (v. 3.15) (McDonald and Thornton, 1994), with default

parameters.

Structure-based calculations of antibody blocking of ACE2 binding to RBD were calculated
using the ACE2-RBD complex structure (PDB code 6LZG) (Wang et al., 2020). After
superposition of ACE2-RBD and antibody-RBD complexes by RBD, the number of inter-atomic
clashes, defined as non-hydrogen atom pairs with distances < 2.5 A, was calculated between

ACE2 and each antibody structure. Antibodies with > 20 atomic clashes with ACE2 were
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classified as likely to block ACE2 binding. Structure-based calculations of antibody binding to
the closed spike structure were performed using the SARS-CoV-2 closed spike structure reported
by Walls et al. (PDB code 6VXX) (Walls et al., 2020b). Antibodies with < 100 atomic clashes
with spike atoms outside of the target RBD structure and chain after superposition of the
antibody-RBD complex onto the 6VXX structure were classified as predicted to bind the closed
spike. Clash thresholds were selected based on agreement with structures and experimental data
regarding ACE2 blocking and closed spike binding, when available. Four antibodies that
engaged the closed spike and exhibited cross-protomer binding, as confirmed by inspection of
antibody-spike complex structures (S2M11, C144, mNb6, LY-CoV555; PDB codes 7K43, 7K90,
7KKL, 7L3N) (Barnes et al., 2020a; Jones et al., 2020; Schoof et al., 2020; Tortorici et al.,

2020), were annotated accordingly in the contact heatmap.

Computational mutagenesis

Computational modeling and prediction of antibody binding energy changes (AAGs) for alanine
and other residue point substitutions was performed using Rosetta version 2.3 (Kortemme et al.,
2004), Rosetta version 3.12 (Leman et al., 2020), and FoldX version 4 (Schymkowitz et al.,
2005). Benchmarking of computational alanine scanning predictive performance was performed
using a subset of the AB-Bind dataset (Sirin et al., 2016) that contains alanine point substitutions
with quantified experimental AAG measurements and known wild-type complex structures (347
mutants and AAG values). A larger set with all point substitutions (including non-alanine
substitutions) was also tested (531 mutants and AAG values). Pearson correlation coefficients
(PCC) between measured and predicted AAG values, and receiver operating characteristic area

under the curve (AUC) values for prediction of hotspot residues (measured AAG for alanine
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residue substitution > 1 kcal/mol), were calculated using scipy and scikit-learn (sklearn) Python

libraries, respectively.

Prior to running AAG calculations in Rosetta, antibody-RBD complex structures were pre-
processed using Rosetta’s FastRelax protocol (Khatib et al., 2011), using the flags noted above,
to perform backbone and side chain constrained minimization to resolve unfavorable energies
and anomalies that would bias energetic calculations. Rosetta 2.3 AAG calculations were
performed using the “interface” protocol (Kortemme and Baker, 2002; Kortemme et al., 2004).
An example command line is:

rosetta.mactel -interface -intout pdb.ddgs.out -ignore unrecognized res -safety check -
skip_missing_residues -mutlist pdb.muts.txt -extrachi_cutoff 1 -ex1 -ex2 -ex3 -constant seed -
jran 12 -yap -s input.pdb

The input files specified on the command line denote the input PDB file (“input.pdb”) and the
list of mutations (“pdb.muts.txt”). The default protocol only models the mutant residue for AAG
calculation (“Ros2.3 norepack™ in Table S2), and additional flags were used on the command
line to perform minimization of mutation-proximal side chains (“-min_interface -int chi” flags;
“Ros2.3_minint_chi” in Table S2), minimization of mutation-proximal side chains and backbone
(“~min_interface -int bb -int chi” flags; “Ros2.3 minint bb chi” in Table S2), and rotamer-

based packing of mutation-proximal side chains (“-repack” flag, “Ros2.3 repack” in Table S2).

Rosetta 3 AAG calculations were performed with two available computational mutagenesis
protocols. One Rosetta 3 computational alanine scanning protocol was downloaded from a public

resource containing benchmarks and Rosetta tools (S et al., 2015), and represents a separate
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implementation of the Rosetta 2.3 mutagenesis protocol noted above (Kortemme and Baker,
2002; Kortemme et al., 2004). This protocol was recently used to predict TCR-peptide-MHC
interface AAG values (Wu et al., 2020). In addition to the default protocol that does not repack
neighboring side chains (“Ros3 norepack™ in Table S2), we also tested this protocol with
repacking of neighboring side chains (“Ros3_repack” in Table S2).

An example command line for running this protocol is:

rosetta_scripts.static.linuxgccrelease -s input.pdb -parser:protocol alascan.xml -parser:view -
inout:dbms:mode sqlite3 -inout:dbms:database name rosetta output.db3 -no optH true -

parser:script_vars pathtoresfile=input.resfile chainstomove=1,2 -ignore zero_occupancy false

We additionally tested the alanine scan using the flex ddG protocol, which was developed
recently in Rosetta 3 (Barlow et al., 2018). This protocol uses the backrub algorithm (Smith and
Kortemme, 2008) to sample protein backbone conformations at the interface, and the average
AAG values are calculated over a number of models. We tested two sets of AAG scores that are
output by flex ddG, representing different scoring functions reported by the authors (Barlow et
al., 2018); they are shown as “flex_ddG-fa talaris2014” and “flex_ddG-fa talaris2014-gam” in
Table S2.

An example command line used for flex ddG calculations in this study is:

rosetta_scripts.linuxgccrelease -s input.pdb -parser:protocol flexddg.xml -parser:script vars

chainstomove=1,2 mutate resfile relpath=input.resfile number_backrub_trials=35000
max_minimization_iter=5000 abs_score convergence thresh=1.0
backrub_trajectory stride=7000 -restore_talaris_behavior -in:file:fullatom -

ignore_unrecognized res -ignore zero occupancy false -ex1 -ex2

20


https://doi.org/10.1101/2021.03.21.436311
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436311; this version posted March 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

For AAG calculations in FoldX (Schymkowitz et al., 2005), complex structures were pre-
processed using the FoldX RepairPDB protocol, and AAG values were calculated using the

FoldX PSSM protocol.

Sequence conservation

Assessment of sequence conservation of SARS-CoV-2 RBD positions in the SARS-CoV-1
sequence was performed using SARS-CoV-2 (GenBank: QHD43416) and SARS-CoV-1
(GenBank: AAP13441) spike reference sequences aligned with BLAST (Altschul et al., 1990).
The epitope residues of each antibody were defined as any SARS-CoV-2 residue within 5 A of
any antibody residue. An in-house Perl script was used to analyze SARS-CoV-2 antibody-

antigen interfaces and calculate epitope conservation.

Figures

Figures of structures were generated using PyMOL version 1.8 (Schrodinger, Inc.). Boxplots and
dendrograms were generated using the ggplot2 (Wickham, 2016) and factoextra (Kassambara
and Mundt, 2020) packages in R, and heatmaps were generated using the ComplexHeatmap

package (Gu et al., 2016) in R.
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FIGURE LEGENDS

Figure 1. Hierarchical clustering of SARS-CoV-2 RBD antibody binding modes. (A) Pairwise
root mean square distances (RMSDs) between heavy chain or nanobody binding orientations
were determined for 70 antibody-RBD complex structures and used to perform hierarchical
clustering. Boxes denote clusters containing multiple antibodies at distance cutoff of 7 A (shown
as dashed horizontal line). (B) Example of co-clustered antibodies S304 (PDB code 7JX3)
(Piccoli et al., 2020) and EY6A (PDB code 6ZCZ) (Zhou et al., 2020) with a shared RBD
binding mode (2.9 A heavy chain orientation RMSD; far right cluster in panel (A)). Structures
are superposed by RBD (gray), and S304 and EY6A heavy and light chains are colored

separately as indicated.

Figure 2. High resolution mapping and clustering of SARS-CoV-2 RBD antibody binding. RBD
residue contact profiles were generated for each antibody based on number of antibody atomic
contacts for each RBD residue within a 5 A distance cutoff. RBD residues and antibodies are
ordered using hierarchical clustering analysis, with dendrograms shown on top and left. The
antibodies are separated into four major clusters based on contact profiles, and cluster numbers
(1-4) are indicated on left. Contacts in heatmap are colored by number of RBD residue antibody
atomic contacts, as indicated in the key. For reference, antibody type (Antibody: heavy-chain
antibody, Nanobody: single-chain antibody), binding to RBD-closed spike conformation (Closed
spike), ability to block ACE2 binding (ACE2 block), SARS-CoV-2 neutralization or SARS-
CoV-2/SARS-CoV-1 cross-neutralization (“Y” and “Cross”, respectively, under Neutralization),
interface buried surface area (BSA, A?), and antibody classifications from a recent study

(BBclass, with ND: antibody-RBD complex structure not described in the study)(Barnes et al.,
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2020a) are shown on the left sidebars. Closed spike binding and ACE2 blocking were calculated
based on the structures, as described in the Methods. The top bar above the heatmap indicates
RBD residues contacted by ACE2 (5 A distance cutoff) in an ACE2-RBD complex structure
(PDB code 6L.ZG) (Wang et al., 2020). For clarity, 100 RBD residues are shown in heatmap; a
heatmap with the full set of 139 contacted RBD residues which was used to cluster the antibodies
in this figure is shown in Figure S1. RBD residues that are mutated in SARS-CoV-2 variants of

concern (K417, E484, N501) are labeled at bottom and highlighted with gray boxes in heatmap.

Figure 3. Distribution of antibody clusters on the receptor binding domain. Each antibody is
represented as a sphere at the paratope center (centroid of all non-hydrogen atoms within 5A of
the RBD), and colored by contact-based antibody cluster (1: blue, 2: green, 3: red, 4: magenta).
A representative RBD structure (from PDB code 7KN5Y) is shown in gray, and the N-glycan at
residue N343 from that structure is shown as orange sticks. For reference, the superposed RBD-

bound ACE2 structure (PDB code 6L.ZG) is shown as tan cartoon.

Figure 4. RBD hydrogen bond contacts of SARS-CoV-2 antibodies. Hydrogen bonds to RBD
residue side chains were calculated for all antibody-RBD complexes using the hbplus program
(McDonald and Thornton, 1994). Each hydrogen bond contact is colored by number of hydrogen
bond interactions, as indicated on the key, and RBD positions are ordered by hierarchical
clustering based on hydrogen bond profile similarities, with corresponding dendrogram shown at
top. Antibodies (rows) are ordered and clustered as in Figure 2, based on the RBD contact

profile similarities.
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Figure 5. Computational mapping of SARS-CoV-2 RBD hotspot residues. Computational
alanine scanning of RBD residues in antibody-RBD interfaces was performed using Rosetta
(Kortemme et al., 2004), to generate binding energy change (AAG) values for alanine
substitutions at each RBD position based on modeling of residue substitutions and scoring using
an energy-based function. AAG values are in Rosetta Energy Units (REU) which are comparable
to energies in kcal/mol. Alanine residues in the native complex were mutated to glycine for AAG
calculations, and glycine RBD residues were omitted from the analysis. In order to highlight
substantial predicted binding energy changes, only AAGs with absolute values > 0.5 REU are
represented. RBD residues are ordered by hierarchical clustering based on AAG profile
similarities, with corresponding dendrogram shown at top. Antibodies (rows) are ordered and

clustered as in Figure 2, based on the RBD contact profile similarities.

Figure 6. Epitope residue conservation in SARS-CoV-1 by antibody cluster. Epitope
conservation, defined as the fraction of RBD epitope residues (< 5 A distance to antibody)
conserved between SARS-COV-1 and SARS-COV-2, was calculated for 70 antibody-RBD
complex structures, and conservation values are shown as a boxplot grouped by antibody
clusters, with all conservation values shown as points. The outlier point for Cluster 3 (S304
antibody) is labeled, and the total numbers of points are 17 (Cluster 1), 32 (Cluster 2), 9 (Cluster

3), and 12 (Cluster 4).

Figure 7. Profiling antibody binding disruption of RBD substitutions from circulating SARS-
CoV-2 variants. Computational mutagenesis in Rosetta (Kortemme et al., 2004) was used to

predict binding affinity effects (AAGs) of RBD variant substitutions K417N, K417T, E484K,
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and N501Y for 70 antibodies that target the RBD. AAG values are in Rosetta Energy Units
(REU), which are comparable to energies in kcal/mol, and shown as boxplots grouped by

antibody clusters, with all AAG values shown as points. The total numbers of points are 17

(Cluster 1), 32 (Cluster 2), 9 (Cluster 3), and 12 (Cluster 4).
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