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Abstract

Analysis of electrophysiological data from Purkinje cells (P-cells) of the cerebellum presents challenges
for spike detection. Complex spikes have waveforms that vary significantly from one event to the next,
raising the problem of misidentification. Even when complex spikes are detected correctly, the simple
spikes may belong to a different P-cell, raising the danger of misattribution. Here, we analyzed data
from over 300 P-cells in marmosets, macaques, and mice, using an open-source, semi-automated
software called P-sort that addresses the spike identification and attribution problems. Like other
sorting software, P-sort relies on nonlinear dimensionality reduction to cluster spikes. However, it also
uses the statistical relationship between simple and complex spikes to merge seemingly disparate
clusters, or split a single cluster. In comparison with expert manual curation, occasionally P-sort
identified significantly more complex spikes, as well as prevented misattribution of clusters. Three
existing automatic sorters performed less well, particularly for identification of complex spikes. To
improve development of analysis tools for the cerebellum, we provide labeled data for 313 recording
sessions, as well as statistical characteristics of waveforms and firing patterns.
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Introduction

Recording neuronal activity from the cerebellum presents both opportunities and challenges. The
principal cells of the cerebellum, Purkinje cells (P-cells), can be identified based on their unique
electrophysiological properties. Among cells in the cerebellum, only P-cells can produce simple and
complex spikes (Thach, 1967). This makes it possible to use statistical methods to measure the likelihood
that the recorded neuron is a P-cell: generation of a complex spike should be followed by suppression of
simple spikes (Eccles et al., 1966; Sato et al., 1992). However, detection of complex spikes is difficult
because these spikes are not only rare, but their waveforms also vary from one spike to the next. Thus,
it is common to detect the simple spikes but not the complex spikes, or alternatively, detect the
complex spikes but later realize that they are not followed with simple spike suppression and therefore
do not belong to the same P-cell. To address these issues, we developed a spike analysis software that
aids detection of simple and complex spikes, as well as quantifies whether the two events are generated
by a single P-cell.

Unlike simple spikes, the power spectrum of complex spikes tends to be greatest in the low-
frequency range (30-800 Hz). As a result, a typical complex spike can produce a “broad spike” in the low-
pass filtered representation of the data (local field potential, LFP). Indeed, two recent developments in
complex spike detection are novel algorithms that depend partly on the LFP waveform (Markanday et
al., 2020; Zur & Joshua, 2019). Once the simple and complex spikes are labeled, the final step is to
determine whether the simple spikes have been suppressed after a complex spike. If so, then one may
conclude that the two kinds of spikes were generated by a single P-cell. However, in some data sets
complex spikes do not have an LFP signature. Moreover, even if the complex spikes are detected, the
detected simple spikes may belong to a different P-cell, or even a non P-cell.

As a result, the problem is two folds: in the identification step, we need to label the simple and
complex spikes, whereas in the attribution step, we need to determine which group of complex spikes
was generated by the P-cell that produced a particular cluster of simple spikes. To consider these
challenges, we formed a collaboration that included laboratories which focused on marmosets,
macaques, and mice. Our software was developed using a database of over 300 P-cells recorded in three
species.

The diversity of species and recording electrodes helped us identify some of the critical issues
that are present in cerebellar electrophysiology. The presence of experts from the various laboratories
provided a diversity of opinions, helping us verify the algorithms, as well as highlight their limitations.
Here we report the results of this effort.

P-sort is an open-source, Python-based software that runs on Windows, MacQOS, and Linux
platforms. To cluster waveforms and identify simple and complex spikes, P-sort uses both a linear
dimensionality reduction algorithm and a novel nonlinear algorithm called UMAP (Uniform Manifold
Approximation and Projection) (Mclnnes et al., 2018). Importantly, it quantifies the probabilistic
interaction between complex and simple spikes, providing an objective measure that can split a single
cluster, or merge two different clusters, despite similarities or differences in their waveforms. Thus, P-
sort helps the user go beyond waveforms to improve clustering of spikes.

However, a limitation of P-sort is that it relies on user interaction. To encourage development of
more automated algorithms for the cerebellum, with this report we provide a large database of labeled
spikes from all three species. P-sort’s source code is available at:
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https://github.com/esedaghatnejad/psort. The labeled data are available at:
https://doi.org/10.17605/0sf.io/gjdm4.

Results

To illustrate the variety of challenges that we face in cerebellar neurophysiology, consider the data
shown in Fig. 1. Here, the LFP channel (10-200 Hz) is plotted in red, and the AP channel (50-5000 Hz) is
plotted in black. Occasionally, one is lucky enough to isolate a P-cell that exhibits easily identifiable
complex and simple spikes, as shown in Fig. 1A. In this example, LFP shows a large positive peak for the
complex spike. To confirm that the complex and simple spikes originate from the same cell, we compute
the conditional probabilities Pr(S(t)| C(0)), and Pr(S(t)|S(0)), over a domain of #50 ms. The term

Pr(S(t)| C(0)) indicates the probability that a simple spike occurred at time t, given that a complex spike
was generated at time zero. The term Pr(S(t)|S(0)) is the probability of a simple spike at time t, given
that another simple spike was generated at time zero. Spikes that originate from a single cell produce a
suppression period (Gao et al., 2012). Thus, Pr(S(t)|S(0)) exhibits a near zero probability period centered
at time zero. On the other hand, a complex spike coincides with the suppression of future (but not past)
simple spikes. As a result, Pr(S(t)| C(0)) is asymmetric, with a long period of near zero simple spike
probability following the time point zero. The presence of simple spike suppression following a complex
spike, as shown in Fig. 1A (right pannel), confirms that these two groups of spikes are generated by the
same P-cell.

Fig. 1B presents a more challenging example. Here, the complex spikes do not have an LFP
signature, and thus are unlikely to be detected in the LFP channel. However, analysis of the AP channel
using a novel nonlinear dimensionality reduction algorithm called UMAP (Mclnnes et al., 2018) identifies
potential complex spikes. The identified events are genuine complex spikes, as evidence by their
spikelets (more examples from the same cell are shown in Fig. 2A), and the fact that the simple spikes
have been suppressed after a complex spike (Fig. 1B, right panel).

In a well isolated P-cell, the complex spikes can produce spikelets that are similar to simple
spikes. For example, the complex spike in Fig. 1B exhibits large spikelets, events that may be difficult to
dissociate from ordinary simple spikes. This is evidenced by the fact that Pr(S(t)| C(0)) shows a small non-
zero probability between 0 and +10 ms (right panel of Fig. 1B), during the period in which we would
expect a near complete suppression.

Another example of the diversity of complex spike waveforms is shown in Fig. 1C. In this case,
the complex spike exhibits a negative LFP peak. Nevertheless, once the complex spikes are correctly
identified, the simple spikes followed a suppression period.

While detection of complex spikes may be challenging, a more crucial problem is attribution:
sometimes the prominent group of simple spikes belongs to one P-cell, while the complex spikes belong
to a different P-cell. An example of this problem is shown in Fig. 1D. Here, the LFP signal allows for
detection of the complex spikes. However, there are two groups of simple spikes, SS1 and SS2. The
spikes labeled SS2 are the larger amplitude events, but these spikes are not followed by a suppression
period after the complex spikes. Rather, the smaller amplitude events SS1 are the spikes that followed
by a suppression after the complex spikes.

A different form of the attribution problem is shown in Fig. 1E. In this case, the simple spikes are
easily identified, and the complex spikes have a negative LFP. Remarkably, despite the excellent
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isolation, the simple spikes have not been suppressed after the complex spikes. Rather, the two groups
of spikes in this recording are generated by two different P-cells.

Identification of complex spikes suffers from additional problems. There are variable number of
spikelets in the complex spike waveform (Burroughs et al., 2017; Davie et al., 2008; Ito & Simpson, 1971;
Monsivais et al., 2005; Najafi & Medina, 2013; Yang & Lisberger, 2014), and thus template matching may
have difficulty labeling all complex spikes (Markanday et al., 2020). Examples of the variable spikelets
are shown in Fig. 2A. Paradoxically, the better the P-cell’s isolation, the larger the impact of waveform
variations caused by spikelets, and thus the greater the risk that some complex spikes will be missed.

Finally, the complex spike waveform can be distorted because of the proximity of a simple spike,
as shown in Fig. 2B (Markanday et al., 2020; Servais et al., 2004). This is because simple and complex
spikes are driven by different inputs to the P-cell, one is from a climbing fiber that generates a dendritic
complex spike, while the other is from granule cells that generate somatic simple spikes. As a result, a
simple spike can be generated up to a fraction of a millisecond before a complex spike (middle plot of
Fig. 2B). Here, the complex spike that follows the simple spike at short latency lacks the sharp
component that initiated more typical complex spikes. As a result, the complex spike waveform is
distorted by the proximity of the simple spike (lower plot, Fig. 2B).

In summary, identification of complex spikes may be difficult because they can lack an LFP
signature, their waveforms can be distorted because of nearby simple spikes, or their waveforms can
incorporate variable number of spikelets. After the simple and complex spikes are identified, one still
faces the problem of finding the simple spike cluster that belongs to the P-cell that generated the
complex spikes. We built P-sort to help with these identification and attribution problems.

Clustering waveforms

The diversity of complex spike waveforms suggests that it may be difficult to find a single mathematical
technique that could identify these spikes in all situations. For example, in some cases it is possible to
identify the complex spikes from the LFP channel (Fig. 1A), whereas in other cases it is necessary to
search the AP channel (Fig. 1B). In the case where two types of simple spikes are present, often the
larger amplitude simple spikes get suppressed after the complex spikes (Fig. 1C), but occasionally the
smaller amplitude spikes are the correct choice (Fig. 1D). P-sort provides tools for clustering as well as
hypothesis testing. The tools include traditional dimensionality reduction methods such as principal
component analysis (PCA), as well as novel algorithms such as UMAP (Mclnnes et al., 2018). As the user
identifies putative groups of simple and complex spikes, the software provides immediate statistical
feedback regarding the probability that the spikes are from the same P-cell. Thus, the main idea of P-
sort is to merge the identification and attribution steps into a single framework.

P-sort works best with the raw, broad-spectrum recording such as the data generated by widely
used Open Ephys, an open-source data acquisition software (Siegle et al., 2017). However, P-sort also
works with data in which the LFP and AP channels are acquired separately. Upon loading the data, the
user is provided with a GUI to specify how the data should be chunked into “slots”. Each slot is a region
of data that is analyzed in turn, but once a slot is analyzed, other subsequent slots inherit features such
as spike templates. In case of broad-spectrum data, the user can specify the filter properties for the LFP
and AP channels (Fig. 3A, part 1). Once these filters are selected, P-sort automatically selects a threshold
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for each channel (Fig. 3, part 2, see Methods) and displays the statistics of the resulting simple and
complex spikes (Fig. 3, parts 3 and 4).

In the example shown in Fig. 3, P-sort automatically selected thresholds for LFP and AP channels
and identified simple and complex spike candidates. The UMAP space indicated a single simple spike
cluster (Fig. 3, part 3), which was confirmed by Pr(S(t)|S(0)), illustrating that the simple spikes had
around 10 ms suppression period (centered at zero). However, the UMAP space was not homogeneous
for the complex spikes (Fig. 3, part 4), meaning that there was variability in the waveforms. Regardless,
Pr(S(t)| C(0)) exhibited around 15 ms suppression period. Thus, there was statistical confirmation that
the simple spikes were well isolated, and they have been suppressed after the complex spikes.

Of course, in most cases the data are not as easily sorted as the case shown in Fig. 3. Another
frequent case is one in which the complex spikes do not have an LFP signature (Fig. 4A), and thus one
must focus the search on the AP channel. However, in this recording the simple and complex spike
waveforms happen to be quite similar (Fig. 4C). As a result, in the PCA space the data present a single
cluster (Fig. 4B, left subplot). Thus, if we were to rely on PCA alone, we might conclude that only simple
spikes are present.

P-sort utilizes a novel dimensionality reduction algorithm called UMAP (Mclnnes et al., 2018).
UMAP is a nonlinear technique that, in our experience, is particularly powerful for clustering waveforms
and identifying complex spikes, as also shown by the work of Markanday et al. (2020). Indeed, in the
case of the data in Fig. 4, projecting the waveforms onto the UMAP space unmasks two clusters (Fig. 4B,
right subplot). Using the graphical user interface (GUI) we select the smaller group of spikes and
tentatively label them as complex spikes. Immediately, P-sort updates the probability Pr(S(t)|C(0))
window, as shown in Fig. 4C, illustrating that these putative complex spikes were followed by simple
spike suppression.

One of the issues in identifying complex spikes is that the waveform can be significantly
distorted by a preceding simple spike. Indeed, a P-cell can produce a complex spike at a fraction of a
millisecond following a simple spike, as shown in Fig. 2B. The simple spike proximity distorts the complex
spike waveform, making it difficult to correctly locate onset of the complex spikes. If the distortion is
small, template matching can still identify the onset of the complex spikes (Fig. 3, parts 4). However, as
we will see below, template matching can sometimes produce an incorrect alignment of complex spikes.

An example of this situation is shown in Fig. 5A. Initially, the putative complex spikes are aligned
by P-sort based on a sodium peak which resembles simple spikes (see Methods). This alignment results
in two groups of complex spikes (shown by black and red traces in Fig. 5A). Next, the user defines a new
template based on the mean waveform of the correctly aligned complex spikes (Fig. 5A, black traces)
and resort the data (Fig. 5B). Despite significant improvement in the performance of the complex spike
alignment, the problem of aligning the deformed complex spikes still persists. Indeed, the UMAP space
indicates presence of two groups of complex spikes (red and black dots in Fig. 5B). However, because
both complex spike groups coincided with simple spike suppression, they are likely a single cluster that
need to be merged. To correct the error, P-sort provides the Dissect Module. The Dissect Module is a
semi-manual platform to re-label the onset of the distorted complex spikes (Fig. 5C), and correctly
identify the simple spikes that precede them. Following this re-labeling, the complex spikes are correctly
aligned (Fig. 5D).
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Merging clusters or splitting them using statistical interactions between simple and complex spikes

A unique challenge in cerebellar neurophysiology is finding the simple and complex spike clusters that
belong to a single P-cell. P-sort provides cluster labeling and statistical tools to help with this problem.
However, the main strength of P-sort is to go beyond waveform clustering and use the statistical
relationship between complex and simple spikes to identify an additional feature that can help merge
clusters, or even split a single cluster.

To illustrate this, let us begin with a particularly challenging example as shown in Fig. 6A. Here, a
visual inspection of the waveforms suggests presence of multiple neurons. Indeed, UMAP clustering
produces numerous groups of simple (Fig. 6B) and complex spikes (Fig. 6C). The task is to find the
clusters that are signal and not noise, and more importantly, determine which simple spike cluster(s)
can be attributed to which complex spike cluster(s).

The reason for the numerous clusters in the simple spike UMAP space (Fig. 6B) is because the
electrode is picking up signals from multiple neurons, and sometimes spikes from one neuron can distort
the spike from another neuron. For example, the cluster labeled SS1-1 in Fig. 6B is due to simple spikes
from neuron 1 (Fig. 6D, SS1-1). The nearby cluster SS1-2 in Fig. 6B is due to simple spikes from neuron 1
that are in close temporal proximity with a spike from another neuron (Fig. 6D, SS1-2). There are also
clusters associated with spikes from neuron 2 that occur in isolation (Fig. 6D, SS2-1), or in close temporal
proximity with a spike from another neuron (Fig. 6D, SS2-2). Sometimes, SS1 and SS2 co-occur, resulting
in a larger spike, as labeled by cluster SS1&2-1. Finally, there are spikelets in the complex spike
waveform that can be mis-labeled as simple spikes. The spikelets are noted in Fig. 6D.

There are also four clusters in the complex spike UMAP space (Fig. 6C). One large cluster is
associated with complex spikes labeled CS1 (Fig. 6E, CS1-1), while the other large cluster is associated
with a second group of complex spikes labeled CS2 (Fig. 6E, CS2-1). Near each of these large clusters
there are smaller clusters, reflecting the variability in the complex spike waveform. A source of
variability in the complex spike waveform is presence of simple spikes from multiple P-cells. Thus, the
complex spike will coincide with suppression of one group of simple spikes, but not all groups. As a
result, CS1 can be distorted by arrival of simple spike labeled SS2, and CS2 can be distorted by arrival of
simple spikes labeled SS1 (Fig. 6E, CS1-2 and CS2-1).

P-sort provides tools to label the clusters, examine their statistical properties, and determine
whether clusters should be merged or not. For example, both the conditional probabilities and the
statistics of the firing rates suggest that SS1 and SS2 are two different simple spikes, as shown in Fig. 6F,
first row. Furthermore, the complex spike cluster CS1 coincided with the suppression of simple spike
cluster SS1, but not SS2 (Fig. 6F, second row). Similarly, the complex spike cluster CS2 coincided with the
suppression of simple spike cluster SS2, but not SS1 (Fig. 6F, third row). As a result, in this recording we
have two distinct P-cells.

In a second example, let us show that the statistical interactions between simple and complex
spikes can provide evidence suggesting that a single cluster of spikes may in fact be composed of two
different cells. This data set is shown in Fig. 7. In this recording, the complex spike waveforms produce a
single cluster in the UMAP space (Fig. 7A). However, P-sort notes that only a part of this complex spike
cluster coincided with the suppression of the simple spikes. The sub-cluster that proceeded the
suppression of the simple spikes is labeled as CS1, and its waveform is shown in Fig. 7B. Notably, the
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sub-cluster CS2 has a waveform that is similar to CS1, but CS2 does not coincided with the suppression
of the simple spikes, as illustrated in Fig. 7C.

This example highlights the possibility that on occasion, the complex spike waveforms may
suggest presence of a single cluster, but a consideration of the statistical interactions can reveal that the
simple spikes have been suppressed by only a sub-group within that cluster. This interaction between
simple and complex spikes is a crucial feature that is utilized by P-sort to go beyond waveforms to help
correctly identify and attribute spikes of a P-cell.

In summary, P-sort provides clustering tools to identify simple and complex spikes. It relies on
template matching to find onset of spikes, but also provides tools to correct instances where template
matching can fail. A critical feature of P-sort is to provide tools for labeling and pairing of simple and
complex spikes, thus allowing the user to visualize the likelihood that specific groups of spikes are
generated by a single P-cell. This can lead to merging of nearby complex spike clusters because both
coincided with the suppression of the simple spikes, or splitting of a single cluster because only a sub-
group coincided with the suppression of the simple spikes.

Comparison of P-sort with expert manual curation

A common method currently employed for sorting of cerebellar data is via manual curation by an expert
user, for example via Spike2. To measure the quality of P-sort results, we analyzed data from
marmosets, mice, and macaques, and then compared the P-sort results with those generated by the
experts in each laboratory.

Fig. 8A presents results from an example data set from the macaque cerebellum. In this data
set, the expert and P-sort agreed on 25444 simple spikes (98.52% and 99.71%), and 555 complex spikes
(98.58% and 83.33%). The median difference between the two methods in determining the timing of the
spikes was 0.06+0.01 ms (mediantMAD) for simple spikes, and -0.12+0.05 ms for complex spikes. P-sort
labeled 74 (0.29%) simple spikes that were not identified by the expert. These are labeled as P-sort
exclusive simple spikes. The expert labeled 382 (1.48%) simple spikes that were not identified by P-sort.
These are labeled as expert exclusive simple spikes. P-sort’s rate of simple spikes was 45.5 Hz, while that
of the expert was 46.0 Hz.

For complex spikes, there were 111 (16.7%) events picked by P-sort that were not picked by the
expert, producing a complex spikes rate of 1.19 Hz for P-sort vs. 1.0 Hz for the expert. Thus, P-sort
identified 19% more complex spikes than the expert. The waveforms suggest that the P-sort exclusive
complex spikes are likely valid. However, the 8 complex spikes picked by the expert and not P-sort are
also likely valid, as indicated by their waveforms. The reason why P-sort missed these complex spikes is
because in some cases, a simple spike was in temporal proximity and distorted the complex spike
waveform. Thus, in this data set there was general agreement between the two methods.

In the macaque data set (34 sessions), a median of 2.53% of the complex spikes were detected
exclusively by the expert, and 2.79% of the complex spikes were detected exclusively by P-sort. For
simple spikes, 0.12% (median) of the spikes were detected only by the expert, as compared to 0.35% for
P-sort. The two methods converged in their estimates of complex spike firing rates, but P-sort identified
slightly more simple spikes (Fig. 8C, firing rate of P-sort spikes minus expert, Wilcoxon signed rank test,
SS: 7=3.94, p=8e-5, CS: Z=0.65, p=0.51). The resulting conditional probabilities of the data sorted by P-
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sort and the expert were indistinguishable. Some of the complex spikes missed by P-sort were due to
significant distortions that were present in the waveform. In general, agreement between P-sort and
expert were higher for better isolated recording data.

In the mice data set (16 sessions), a median of 4.10% of the complex spikes were detected
exclusively by the expert, and 3.53% of the complex spikes were detected exclusively by P-sort, as
shown in Fig. 8B. For simple spikes, the agreement between the two methods was better: on average
0.86% (median) of the simple spikes were detected only by the expert, as compared to 0.857% for P-
sort. Overall, there were no significant differences between P-sort and the expert in terms of rates of
simple and complex spikes (Fig. 8C, firing rate of P-sort spikes minus expert, Wilcoxon signed rank test,
SS: Z=-1.29, p=0.20, CS: Z=-0.82, p=0.41).

Importantly, in one recording session P-sort highlighted the possibility that the expert paired the
wrong sub-group of complex spikes with the simple spikes. In this data set (Fig. 7), the expert labeled a
single complex spike cluster, which is of course reasonable because of the similarity of the waveforms.
However, P-sort split this cluster into two, labeling them as CS1 and CS2, and only attributed the CS1
sub-group as the complex spikes that were generated by the P-cell that also produced the simple spikes.

Overall, a comparison of P-sort with expert manual curation suggested a general agreement: the
rates of simple and complex spikes were generally similar. However, for a few recording sessions P-sort
was able to identify more complex spikes (Fig. 8A), and correctly label spikelets. In one instance, P-sort
prevented pairing of the wrong subgroup of complex spikes with the simple spikes (Fig. 7).

Comparison of P-sort with automated spike sorting

A major limitation of P-sort is that it is not automated, thus relying on the user to select tools and
explore their efficiency in identifying and attributing spikes. In comparison, automated software can
identify spikes with little or no user intervention. We compared P-sort’s results with three automated
algorithms. In this comparison we included three data sets, one that was relatively easy, one that had
medium difficulty, and one that was very difficult. Because the automated algorithms did not attribute
pairs of simple and complex spikes, we manually performed this step following the conclusion of the
automated spike sorting.

The simple and complex spikes for the easy and medium difficulty data sets are shown in Fig. 9A
and Fig. 9B. The two kinds of spikes were easily separable in the first data set (Fig. 9A), but harder to
separate in the second data set (Fig. 9B).

In the easy data set, Kilosort2 (Pachitariu et al., 2016) found 10452 simple spikes and 146
complex spikes (first row of Fig. 9A), but mis-labeled a part of the complex spike waveform as a simple
spike. This led to the unusual probability distribution shown in the second row of Fig. 9A. For the
medium difficulty data set, Kilosort2 found the simple spikes, but did not identify any complex spikes
(first row of Fig. 9B), resulting in missed spikes shown in the second row of Fig. 9B. It also mis-labeled
many complex spikes as simple spikes (third row of Fig. 9B).

MountainSort4 (Chung et al., 2017) found 10460 simple spikes and 127 complex spikes in the
easy data set, which compared well with 10461 simple spikes and 147 complex spikes identified by P-
sort. In the medium difficulty data set, this automated algorithm found 70328 simple spikes and 996
complex spikes. For the simple spikes, the labeling was essentially identical with P-sort, but for the
complex spikes the labeling differed by 178 events (17.2%). There were 36 P-sort identified complex
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spikes that were not labeled by MountainSort4 (second row of Fig. 9B), and some simple spikes that
were labeled as complex spikes (third row of Fig. 9B). The labeling produced by P-sort resulted in a
cleaner suppression period (Fig. 9B, bottom row), suggesting that in the medium difficulty data set,
MountainSort4 mislabeled or missed around 15% of the complex spikes. The ability of MountainSort4 to
find the complex spikes, but not Kilosort2, may be because MountainSort4 uses a PCA branching
algorithm that is better in discrimination of local differences between waveforms in comparison to PCA.

SpyKING CIRCUS (Yger et al., 2018) found 10488 simple spikes and 198 complex spikes in the
easy data set (Fig. 9A). Some (43/198) of the complex spikes found by SpyKING were probably not valid,
as suggested by the relatively poor suppression period of simple spike illustrated by P(S(t)|C(0). In the
medium difficulty data set, SpyKING found 70381 simple spike and 796 complex spikes, missing 493
complex spikes (second row of Fig. 9B) that were found by P-sort, and mislabeled some complex spikes
as simple spikes (third row of Fig. 9B).

We also tested the algorithms on a very difficult data set that had multiple simple and complex
spikes on a single contact, labeled as SS1, SS2, CS1, and CS2 in Fig. 6. Sorting this type of data can benefit
significantly from the information in the statistical interactions between spike clusters. MountainSort4
found 48478 simple spikes SS1, and 51471 simple spikes SS2 (Supplementary Fig. 1A). This agreed with
98.6% of SS1 spikes labeled by P-sort, but only 67.4% of SS2 spikes. MountainSort4 found 1156 complex
spikes CS1 and 892 complex spikes CS2. This agreed with 88.9% of CS1 and 85.3% of CS2 spikes labeled
by P-sort. The complex spikes that were exclusively labeled by MountainSort4 or P-sort are shown on
the right panel of Supplementary Fig. 1A. Some MountainSort4 CS1 spikes were labeled as CS2 by P-sort.
Similarly, some MountainSort4 CS2 spikes were labeled as CS1 by P-sort. The conditional probabilities
(Fig. 10) provide a method to compare these results. For SS1 spikes, the probability Pr(S(t)|S(0)) for P-
sort (blue lines, Fig. 10, first row) exhibited a cleaner suppression period than MountainSort4. For the
complex spikes, the probability Pr(S(t)|C(0)) for P-sort for SS1 by CS1, and SS2 by CS2, both showed a
cleaner suppression for P-sort. Thus, the main disagreements in the two approaches were regarding the
smaller amplitude simple spikes SS2, and memberships of complex spikes in CS1 and CS2.

Kilosort2 found 56538 simple spikes SS1, and 117750 simple spikes SS2 (Supplementary Fig. 1B).
The smaller magnitude spikes SS2 formed a much larger group in Kilosort2 as compared to both
MountainSort4 and P-sort. For complex spikes, Kilosort2 found only 354 CS1, missing roughly 70% of the
CS1 complex spikes labeled by P-sort. In contrast, it found 1117 CS2 events, agreeing with 94.3% of CS2
events found by P-sort. Many of the CS2 complex spikes labeled by Kilosort2 were labeled as CS1 by P-
sort (right column, Supplementary Fig. 1B). In contrast, Kilosort2 missed many CS1 complex spikes
labeled by P-sort. The conditional probabilities (Fig. 10, third row) suggest a poor suppression period for
both SS1 and SS2 simple spikes labeled by Kilosort2. The Kilosort2 CS1 complex spikes demonstrate an
excellent suppression period, suggesting they were real. However, Kilosort2 missed a larger number of
complex spikes that were labeled by P-sort and exhibited good simple spike suppression (Fig. 10, first
row).

In the difficult data set, SpyKING CIRCUS produced SS labels that agreed somewhat better with
P-sort than other automated software. For simple spikes, 99.3% of the SS1 labels and 93.1% of SS2
labels in P-sort were also labeled by SpyKING CIRCUS. An important difference, however, were the
coincidence simple spike events, i.e., SS1 and SS2 spikes that occurred simultaneously. P-sort labeled
1640 events as coincidence of SS1 and SS2, but SpyKING CIRCUS labeled all of these as SS1 events.
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Another notable disagreement was among the complex spikes. While SpyKING CIRCUS found nearly the
same CS1 events as P-sort (95.4% agreement), the two approaches disagreed entirely regarding the CS2
events (2.1% agreement). As the traces in the right column of Supplementary Fig. 1C illustrate, the CS2
complex spikes labeled by SpyKING are likely to be simple spikes. This conjecture appears to be
confirmed by a lack of suppression in the probability traces in Fig. 10, right column, fourth row.

Because the main difference between P-sort and the automated algorithms was regarding
identification of complex spikes, we thought to further verify P-sort’s performance specifically on
complex spikes. We did this by comparing P-sort with a recently developed neural network (Markanday
et al., 2020) that was specifically trained on complex spike waveforms. Here we found near unanimous
agreement between the two approaches (Supplementary Fig. 1D). The neural network labeled 1178 CS1
and 885 CS2 events. This corresponded to 99.0% of the CS1 and 93.0% of the CS2 events labeled by P-
sort. The few disagreements in the labeled events are shown on the right column of Supplementary Fig.
1D. In almost all cases, the complex spikes were preceded by a temporally adjacent simple spike, thus
producing waveform distortions, making the labeling process particularly challenging.

In summary, we compared results of P-sort with automated algorithms in three data sets and
found that the main difference was in the identification of complex spikes. For example, in the medium
difficultly data set in which complex and simple spikes had similar waveforms, Kilosort2 missed the
complex spikes. Conditional probabilities suggested that in both the easy and the very difficult data set,
performance of MountainSort4 was close to P-sort, though it also could miss around 15% of the complex
spikes. In the medium difficulty data set, performances of MountainSort4 and SpyKING were close to P-
sort. In all three data sets, P-sort produced cleaner spike suppression periods, as well as more robust
suppression of simple spikes that coincided with the labeled complex spikes. Finally, there was near
unanimous agreement between P-sort and a neural network trained specifically to identify complex
spikes.

A database for testing and development of algorithms

Automated algorithms can analyze tens or hundreds of simultaneously recorded electrodes, making
them essential for use with high-density probes. Unfortunately, current automated algorithms may not
perform ideally in the cerebellum, as illustrated by the data here, and documented elsewhere (Hall et
al., 2021). Of course, P-sort is not a solution because in its current form it relies heavily on user
interaction. To facilitate development of automated algorithms for the cerebellum, we organized a large
database consisting of over 300 recordings from the marmosets, macaques, and mice cerebellums. We
then used P-sort to label and attribute the simple and complex spikes in each recording. Recordings in
the primates were from the vermis, lobules VI and VII. Recordings from the mice were from the eye
blink region of lobule V.

We found that on average, simple spike rate in the marmoset (Fig. 11A) was somewhat higher
than in the macaque (63.8+1.29 Hz vs. 55.9+2.45 Hz, Mean+SEM, independent samples t-test,
t(285)=2.75, p=0.006). In contrast, complex spike rate in the marmoset was somewhat lower than in the
macaque (0.88+0.013 Hz vs. 0.98+0.027 Hz, t(285)=-3.6678, p= 0.0003). For the simple spikes, the
conditional probability Pr(S(t) | S(0) was very similar in the two primate species (Fig. 11C), suggesting that
the simple spike suppression periods are similar.
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In contrast, the complex spikes in the macaque were followed by a somewhat longer period of
simple spike suppression (Fig. 11C). To measure the duration of simple spike suppression that followed a
complex spike, for each P-cell we computed the time T when the probability Pr(S(t) | C(0)) increased
beyond a threshold of 63% of the baseline before onset of the complex spike (Fig. 11D). In the
marmoset, P-cells had an average of 14.8+0.26 ms suppression period, significantly less than the
suppression duration of 20.4+0.89 ms we quantified in the macaque (t(285)=-8.0212, p= 3e-14).

These differences are difficult to interpret because spike rates and suppression durations
depend on the precise location of the P-cell. For example, P-cells located in zebrin negative regions
display higher frequency simple spikes than those located in neighboring zebrin positive stripes (Zhou et
al., 2014). Furthermore, the simple spike suppression following a complex spike is longer in zebrin
positive zones. In both marmoset and macaque, a fraction of a millimeter difference in the recording site
along the medial-lateral direction can change the zebrin band characteristics, particularly in lobule VII of
the vermis (Fujita et al., 2010). Thus, the differences in rates and suppression duration between species
may be due to small differences in sites of recordings.

In the mouse data the complex spike rate was somewhat higher than the marmoset, 1.42+0.07
Hz (t(254)= 12.0275, p= 1e-26), and also somewhat higher than the macaque (t(81)= 7.1277, p= 4e-10).
Furthermore, the complex spikes in the mouse were followed by a shorter suppression period
(12.96+0.80 ms) than in the macaque (t(81)=-5.2055, p= 1e-6) and in the marmoset (t(254)=-2.2462, p=
0.026).

Finally, in all three species we observed a consistent pattern in the distribution of inter-spike
intervals (ISl). To compute the ISl distribution, we first measured the average ISI for each type of spike
for each P-cell and then normalized the distribution by setting the average ISI to one. The resulting
simple and complex spike normalized ISls were different from each other, but nearly identical in the
three species (Fig. 11E). These patterns may be useful priors that can aid identification of these spikes in
an automated software.

In summary, we labeled simple and complex spikes in over 300 recordings in three species and
guantified their statistical properties. To encourage development of automated algorithms for the
cerebellum, we made the raw data as well as the P-sort labels available for 313 P-cells at
https://doi.org/10.17605/osf.io/gidm4.

Discussion

Spike sorting in the cerebellum can be a joy, something akin to a treasure hunt: finding the correct
clusters of waveforms produces a satisfying statistical pattern in which the complex spikes are followed
with suppression of the simple spikes. However, identifying spikes that belong to a P-cell can be difficult
both for those who prefer manual curation and those who employ automatic algorithms. While most
complex spikes leave an LFP signature (Zur & Joshua, 2019), some complex spikes can lack this
characteristic (Fig. 1B). Moreover, their waveforms can differ from one event to the next because of
their temporal proximity to simple spikes (Markanday et al., 2020), because of spikelets (Burroughs et
al., 2017; Davie et al., 2008; Ito & Simpson, 1971; Monsivais et al., 2005), or because of intrusion of
spikes from neighboring neurons. Even after the spikes are identified based on their waveforms, the
simple spikes may belong to one P-cell, while the complex spikes may belong to another (Fig. 1E).
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To help with the identification and attribution problems, we organized a set of clustering and
labeling tools in a GUI based cross-platform analysis software called P-sort. Like other sorting software,
P-sort clusters spikes based on their waveform properties. However, P-sort emphasizes the statistical
relationship between complex and simple spike clusters. This statistical interaction can justify merging of
seemingly disparate clusters, for example when spike waveforms are distorted (Fig. 6), or justify splitting
of a single cluster, for example when spikes from two different cells have similar waveforms (Fig. 7).
Thus, P-sort attempts to go beyond waveform-based clustering by providing statistical information
regarding how spikes interact with each other.

Our development of P-sort was aided by a diverse collection of data from marmosets,
macaques, and mice cerebellums. The evaluation of the results was aided by comparison to manual
curation performed by the experts in the various laboratories. In addition, we compared P-sort with
automatic algorithms MountainSort4 (Chung et al., 2017), Kilosort2 (Pachitariu et al., 2016), and
SpyKING CIRCUS (Yger et al., 2018), as well as a neural network trained to identify complex spikes
(Markanday et al., 2020). On the easy data sets, the performances of these automated algorithms were
generally good, but on medium and high difficulty data sets, they occasionally missed large groups of
complex spikes, or mis-labeled them as simple spikes. A comparison of P-sort selected complex spikes
with a neural network trained to identify complex spikes produced near unanimous agreement.

P-sort follows the traditional approach in which features of the spike waveforms are identified
and then clustered. It relies on a recently developed algorithm called UMAP (Mclnnes et al., 2018), a
nonlinear dimensionality reduction technique that, in our experience, is particularly powerful for
clustering waveforms. UMAP has certain advantages over other non-linear dimensionality reduction
algorithms such as t-SNE (t-distributed stochastic neighborhood embedding) (van der Maaten & Hinton,
2008). Unlike t-SNE, UMAP returns an invertible transform onto which new data can be projected
without having to re-compute the map. This has the unique advantage of allowing for cross validation,
which can be employed by semi-supervised learning methods in which the expert labels a subset of the
data and leaves it to UMAP to make predictions on the unlabeled data set. Indeed, UMAP was recently
adopted by Markanday et al. (2020) to cluster complex spikes from the cerebellum, and by Lee et al.
(2021) to cluster spikes from the cerebral cortex.

However, UMAP has a number of disadvantages. In UMAP space, cluster sizes and distances
between them do not contain information regarding the waveform structures; this issue can be resolved
by viewing clusters in the PCA space, which is also provided in P-sort. Moreover, UMAP relies on a
stochastic optimization process that produces non-deterministic outcomes of different runs. To help
with this problem, P-sort supports a GPU implementation of UMAP that provides results for a typical 5
minute recording session in around 1-2 seconds. This rapid response makes it possible for the user to
evaluate the same data set multiple times, perhaps with different waveform window sizes. In addition,
in most cases UMAP can reproduce the same number of clusters with similar topological relationships.
Thus, although UMAP is not deterministic, it can extract clusters that are reproducible. Regardless, there
remains a possibility of overfitting in noisy recording scenarios. To help with this, the Cluster Module
depicts waveforms of each cluster, as well as their statistical relationship to other spike clusters.

Once the clusters are identified, P-sort provides automated tools to find cluster boundaries. One
way to improve this step is to use Louvain clustering, i.e., finding community of spikes that are highly
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inter-connected in the UMAP space. This approach was recently demonstrated by Lee et al. (2021) in
sorting of cortical spikes.

Finding cluster boundaries, however, is not the only method to sorting, as illustrated by SpyKING
CIRCUS (Yger et al., 2018). That work uses a template to define the centroid of each cluster, not their
precise borders. In our tests, this approach produced good results on the large amplitude simple and
complex spikes, but poor results on the smaller amplitude spikes, as illustrated by the conditional
probabilities (Fig. 10).

The development of high-density electrodes highlights the need for automatic sorters. These
sorters have addressed many issues including cluster matching between different channels, as well as
multi-unit sorting. Moreover, their software features GUI-based visualization and manual curation
toolboxes, thus allowing the user to post-process the results. However, the automated approaches
currently lack GUIs for identification of dependent spikes, i.e., simple and complex spikes. In contrast, P-
sort was designed to efficiently illustrate and interactively handle the simultaneous sorting and
attribution of complex and simple spikes. The addition of features like multi-unit sorting opens the way
for automatic sorters to be used as an initial starting point, followed by clustering and attribution by P-
sort.

The rapidly evolving silicon probe technology makes it essential that we encourage development
of automated sorters for the cerebellum. Thus, we used P-sort to label spikes in recordings made from
over 300 P-cells in various species, and provide this labeled database to help software developers test
and improve their algorithms. P-sort software is available at https://github.com/esedaghatnejad/psort.
The labeled neurophysiological data are available at https://doi.org/10.17605/0sf.io/gjdm4.
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Methods

Subjects

Neurophysiological data were collected from two marmosets (Callithrix Jacchus, male and female, 350-

370 g, subjects M and R, 4 years old), six rhesus macaques (Macaca mulatta; males; 5.0-7.4 kg, subjects
B, F, K, P, S, and W), and ten mice (Mus musculus; male C57BL/6J mice at least 12 weeks of age, subjects
N082, NO83, N086, N089, T029, T052, T083, T101, T122, T124).

The marmosets were born and raised in a colony that Prof. Xiaogin Wang has maintained at the
Johns Hopkins School of Medicine since 1996. The procedures on the marmosets were evaluated and
approved by Johns Hopkins University Animal Care and Use Committee in compliance with the
guidelines of the United States National Institutes of Health.

The procedures on the macaques were performed in accordance with the Guide for the Care
and Use of Laboratory Animals (2010) and exceeded the minimal requirements recommended by the
Institute of Laboratory Animal Resources and the Association for Assessment and Accreditation of
Laboratory Animal Care International. The procedures were approved by the local Animal Care and Use
Committee at the University of Washington.

The procedures on the mice were approved by the Baylor College of Medicine Institutional
Animal Care and Use Committee based on the guidelines of the US National Institutes of Health. The
experimental mice were singly housed on a reverse light/dark cycle (8:00 lights-off to 20:00 lights-on).

Marmoset data acquisition
Following recovery from head-post implantation surgery, the monkeys were trained to make saccades
to visual targets and rewarded with a mixture of applesauce and lab diet (Sedaghat-Nejad et al., 2019).
Using MRI and CT imaging data for each animal, we designed an alignment system that defined
trajectories from the burr hole to various locations in the cerebellar vermis, including points in lobule VI
and VII. We used a piezoelectric, high precision microdrive (0.5 micron resolution) with an integrated
absolute encoder (M3-LA-3.4-15 Linear smart stage, New Scale Technologies) to advance the electrode.
We recorded from the cerebellum using three types of electrodes: quartz insulated 4 fiber
(tetrode) or 7 fiber (heptode) metal core (platinum/tungsten 95/05) electrodes (Thomas Recording), and
64 contact high density silicon probes (Cambridge Neurotech). We connected each electrode to a 32 or
64 channel head stage amplifier and digitizer (Intan Technologies, USA), and then connected the head
stage to a communication system (RHD2000, Intan Technologies, USA). Data were sampled at 30 kHz
and band-pass filtered (2.5 - 7.6k Hz). We computed a common average reference signal (median of all
simultaneously recorded channels, computed at 30 kHz) and subtracted this signal from each channel.
We used OpenEphys (Siegle et al., 2017), an open-source extracellular electrophysiology data acquisition
software, for interfacing with the RHD2000 system and recording of signals.

Macaque data acquisition

The data were collected during previous studies (Kojima et al., 2010a, 2010b; Soetedjo et al., 2008).
Following recovery from surgery, the monkeys were trained to make saccades to visual targets and
rewarded with applesauce. A recording chamber was implanted on the midline of the cerebellum
(14.5mm posterior of the interaural axis and directed straight down), providing access to the
oculomotor vermis (lobule VI and VII). Single-unit activity was recorded with homemade tungsten
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electrodes with an iron-particle coating (100 kQ impedance at 1 kHz). Neurophysiology data was
sampled at 50 kHz by a Power 1401 digitizer (Cambridge Electronic Design, Cambridge, UK) and
subsequently band-pass filtered (30 - 10k Hz). Data were displayed in real-time on a computer monitor
running Spike2 and saved for offline analysis (Soetedjo & Fuchs, 2006).

Mice data acquisition

Single-unit extracellular recording was performed as previously described (Heiney et al., 2018). In brief,
a 2-3 mm diameter craniotomy was opened over the right side of the cerebellum (6.5 mm posterior and
2.0 mm lateral from bregma) to access lobule V and the eyeblink microzone, and the dura was protected
by a layer of Kwik-Sil (WPI). A custom 3D printed recording chamber and interlocking lid (NeuroNexus)
was secured over the craniotomy with dental acrylic to provide additional protection. After 5 days of
recovery, the mouse was fixed in place on a treadmill via a previously implanted headplate, and Purkinje
cell simple spikes and complex spikes were isolated using a tetrode (Thomas Recording, ANO00968)
acutely driven into the cerebellar cortex with microdrives mounted on a stereotactic frame (Narishige
MMO-220A and SMM-100). The voltage signal was acquired at a 24,414-Hz sampling rate, and band-
pass filtered between 100 - 10k Hz (AP channel) and between 2 - 300 Hz (LFP channel) using an
integrated Tucker-Davis Technologies and MATLAB system (TDT RZ5, medusa, RPVdsEx) running custom
code (github.com/blinklab/neuroblinks). The data include Purkinje cells from a previously collected
dataset (Achilly et al., 2020; Ohmae & Medina, 2015).

P-sort main window

To allow P-sort to run on Windows, MacOS, and Linux, the code was written using Python-based
libraries (Behnel et al., 2011; Harris et al., 2020; Pedregosa et al., 2011; Virtanen et al., 2020). The GUI
was written using PyQt5 (The Qt Company and Riverbank Computing Ltd.) and PyQtGraph to provide a
fast and intuitive interaction for the user. To facilitate further development of P-sort by the user
community, we used object-oriented coding. P-sort’s source code is available for download at:
https://github.com/esedaghatnejad/psort.

A process starts by loading the data and dividing it into one or more periods of time (called
slots). The slot framework helps the user to account for potential drift and fluctuation in spike quality
and shape over time. After sorting one slot, the parameters and waveform templates will be copied to
the next slot to facilitate the sorting, but the user can further change the parameters independently in
each slot.

The sorting process starts by filtering the signal into two channels, Action Potential (AP) and
Local Field Potential (LFP). The default is a 4™ order Butterworth filter with the 50-5000 and 10-200 Hz
range for AP and LFP channels, respectively. However, these parameters can be modified using the GUI
to better fit the specific conditions of the data. The default assumption is that simple spikes generate
negative peaks in AP channel and complex spikes generate positive peaks in the LFP channel. However,
this assumption can be changed via the GUI. Once the respective peaks are detected, the next question
is what should be the threshold to reject or accept a peak as being a potential spike. P-sort computes
the histogram of the peaks and fits a Gaussian Mixture Model (GMM) with two basis functions to the
histogram for each channel. The lower bound Gaussian is considered the noise and the upper bound
Gaussian is the signal of interest. Based on this assumption, the intersection of the two fitted Gaussians
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is used as the default threshold to prune the detected peaks. However, the user is provided with a GUI
to manually change the SS and CS thresholds, either by using the interactive plots, or directly by
assigning their values.

The next question is how to relate a peak in the LFP channel, which may potentially be a
complex spike, to its waveform in the AP channel. In a typical recording, a CS waveform consists of an
initial sharp negative peak and a broad positive bump. The peak in LFP happens due to the broad
positive bump but its timing is variable. Thus, using the LFP peak to align the CS waveform is unreliable.
P-sort provides three different methods to align complex spikes: SS index, SS template, and CS template.
Initially, it uses the detected sharp negative peak (SS index) to align CS waveforms. This provides a
reliable set of waveforms to calculate the CS template. However, due to variability in CS waveforms, not
all CSs express the initial sharp negative peak. To address this problem, after forming a CS template, that
template will be used to align CS waveforms. For the alignment, we move the 3.5 ms template signal
along 1 ms past and 4ms before the LFP peak on the AP signal and select the point of time which results
in maximum correlation between the two signals. For the recordings in which the LFP peak is later than
4 ms after the sharp negative peak, this default value should be adjusted using the Preferences
interface. Alignment of the simple spikes relies on the timing of the peak value of the waveform.

P-sort ensures that a candidate spike is labeled as either a simple spike, or a complex spike, but
not both. Moreover, due to biological refractory period in a spiking neuron, two arbitrary spikes cannot
happen closer than 0.5 ms with respect to each other. Based on these constraints, P-sort addresses
potential conflicts between CS-CS, CS-SS, and SS-SS candid events. The default values for each scenario
can be changed using the Preferences interface.

After resolving the potential conflicts, P-sort provides sets of potential simple and complex
spikes. For each set of spikes, P-sort represents spike waveforms, instant-firing-rate distribution, peak
distribution, conditional probabilities, and feature scatter plots. Numerous features can be used for
clustering of these data, including UMAP, principal components, timing of the spikes, relative time with
respect to next or previous spike, similarity to templates, peak value, and instantaneous firing rate.
Using the interactive plots, the user can select subset of the spikes based on the waveform plot or
feature scatter plot and further prune the data or even change their label from simple to complex spikes
and vice versa. As these clusters are manipulated, P-sort provides real-time feedback on their statistical
features, thus allowing the user to determine whether the simple and complex spikes are likely to have
been generated by a single P-cell, and whether the latest manipulations of the clusters improved the
probabilities.

Overall, P-sort’s main window aims to provide a balance between the ability to visualize each
spike waveform, and the ability to cluster the spikes and visualize their interactions. From this main
window P-sort branches into two additional windows: the Cluster Module, and the Dissect Module.

Cluster Module

A unique challenge in cerebellar neurophysiology is finding the simple and complex spike clusters that
belong to a single P-cell. It is possible that on certain recordings, one or more neurons will contribute to
the signals that are recorded by a single contact. For example, it is possible that the large amplitude
simple spikes are not produced by the P-cell that has produced the complex spikes in the recording (Fig.
1D). Rather, the smaller amplitude simple spikes should be attributed to the complex spikes.
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The Cluster Module gives the user the ability to assign labels to each waveform cluster (or part
of a cluster), and immediately assess the statistical interactions between the labels. To use this module,
the user will select the spikes of interest either from the feature scatter plot or the waveform plot and
assign a label to the selection. Cluster Module provides four interactive subpanels for representing (1)
color-coded feature scatter plot of spikes, (2) spike waveforms of each label, (3) peak histogram of each
label including the firing rates information, and (4) cross and auto correlograms of chosen labels.

For example, let us assume that the user has assigned SS-1, SS-2, and CS-1 cluster labels. Then,
the user can address the attribution problem of potential simple spikes with the candidate complex
spike by checking the correlogram plots.

Cluster Module toolbox includes manual and automatic labelling tools to label datasets based on
their features or waveforms. The automatic algorithms implemented for clustering include: (1) Gaussian
Mixture Models (GMM), which requires the user to specify the number of clusters and their initial
centroids, (2) Iso-split algorithm (Chung et al., 2017; Magland & Barnett, 2016), which is automatic and
determines the number of clusters based on bimodality tests, and (3) HDBSCAN algorithm (Campello et
al., 2013), which is also automatic and requires no user inputs. We implemented a post-processing layer
for HDBSCAN'’s outputs and restricted the number of clusters to less than 10. We did this by setting
extra clusters with least number of members as noise (assigned as label -1). In addition to automatic
clustering algorithms, an outlier detection method was implemented based on Local Outlier Factor
density (Pedregosa et al., 2011) which receives the quantile threshold as input. All these algorithms use
the selected elements of the feature scatter plot by default; however, the user can perform multi-
dimensional clustering by selecting the multiple features from the feature list in the GUI.

Dissect Module

P-sort dissect module is designed to provide more tools for reviewing individual spikes. In some
scenarios, looking at the individual spikes and their surrounding events provides a better insight than
the average features. Dissect module provide a tool set to move between spike events and look at each
one over time. This module also provides the tool to manually overwrite a spike or change its alignment.

Comparison with expert curation

50 sessions (34 in the macaque and 16 in mouse) were sorted using Spike2 and P-sort by different
experts. For Spike2 data, we ensured that a given spike was not labeled as both a CS and a SS and
removed the overlapping labels. Next, we compared P-sort data with Spike2 data by finding shared
complex/simple spikes that happened in a 0.5/5.0 ms window of each other. We used the window of
time to account for the variability in alignments of Spike2 data due to lack of template matching. If a
given spike was not shared between the two datasets, it was labeled as an exclusive spike. In order to
compare the number of exclusive spikes over datasets, we normalized the number of the exclusive
spikes by the total number of the spikes in each dataset. We considered the Spike2 and P-sort results as
separate datasets and other than finding the shared spikes, we did not crossed the results.

Comparison with automatic sorters
We quantified performance of various automatic sorting algorithms on three different cerebellar data,
ranging from easy to medium to hard. The hard data set was named the “P-sort challenge”. Each dataset
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included around 15 minutes of recording from the marmoset oculomotor vermis, and contained some of
the challenges that are present in cerebellar neurophysiology, including diverse patterns of spikes from
neighboring cells. Thus, sorting of the data required isolating different spike types, as well as addressing
the CS-SS attribution problems. The same 0.5/5.0 ms window was used to detect shared and exclusive
spikes between automatic sorters and P-sort data.

For automatic sorters, P. Yger sorted the data using SpyKING CIRCUS (Yger et al., 2018), and A.
Markanday sorted the data using a neural network (Markanday et al., 2020). In addition, we used
Mountainsort4 (Chung et al., 2017) and KiloSort2 (Pachitariu et al., 2016). We post-processed the
outputs by merging and associating simple spikes, complex spikes, and multi-unit activity (MUA) based
on rates and cross correlograms to arrive at the best match. For Mountainsort4, we used the default
parameters and then the output units were manually merged and labelled as SS1, SS2, CS1, CS2, and
MUA. Similarly, for Kilosort2, we used the default parameters and manually merged and labeled the
outputs using the Phy2-interface correlograms and rates.
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Fig. 1. Examples of challenges in cerebellar spike sorting. In the left column, LFP channel (10-200 Hz) is plotted in
red, and the AP channel (50-5000 Hz) is plotted in black. The middle column displays the conditional probability of
a simple spike at time t, given that a complex spike occurred at time zero, labeled as Pr(S(t) | C(0). Note the
asymmetric suppression following a complex spike. The conditional probability Pr(S(t) | S(0)) indicates the
probability of a simple spike at time t, given that another simple spike occurred at time zero. The right column
includes individual complex spike traces, as well as the average trace. A. In this recording, complex spikes have a
positive LFP peak. B. Here, complex spikes cannot be identified from their LFP waveform as they lack an LFP
signature. C. In this recording, complex spikes have a negative LFP peak. D. Here, complex spikes coincided with
the suppression of one group of simple spikes (SS1), but not a second group (SS2). The probability pattern (right
column) suggests that SS2 is likely not a P-cell. E. In this recording, complex spikes do not coincide with
suppression of the simple spikes. Thus, the two groups of spikes are not generated by the same P-cell. Bin size is 1
ms for the probability plots.
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Fig. 2. Additional challenges in identification of complex spikes. A. Complex spike waveforms vary because of the
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deformed waveforms.
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misaligned. C. P-sort provides a Dissect Module with which the user can change the spike alighment to compensate
for the deformation. D. Final complex spike alignment. Note the deformation in the complex spikes caused by the
proximity of the simple spikes (red traces).

[EEN
N

24


https://doi.org/10.1101/2021.03.16.435644
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435644; this version posted March 17, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

CooNOTUTS WN -

available under aCC-BY-NC-ND 4.0 International license.

>
§ I 44 8Hz| 74 9Hz 3.4Hz, 13.1Hz
© 581-1 $S2-1 S5182-1 Noise V
: 0.04Hz
ss12 SS2210 ss1822|  spikelet !
2.8Hz 0.6Hz 0.5Hz
s51-3 ss2-3| ! 55182-3'V

10 ms

. - SS1-4 1 :
Simple spike —
space LJV\/’—
SS1-5
E cs1 cs2

3
gl 0.93Hz 1.16Hz
B Cs1-1 Ccs2-1

Distortion by SS2
7

.02Hz 0.18Hz
Cs1-2 \ CS2-2

Distortion by SS1

-10 - T T T T 1

S81
0.1 4 Pr(SS1(1)[SS1(0))

04

Pr(SS1(t)|CS1(0))

0.1- suppression

S$82

Pr(SS2(t)|SS2(0))

SS

[]
0.05-
0

UMAP 2
()
)
3
©
o
x
)
°
2
o
)
°
o
Q
o
(o

Pr(SS2(1)|CS2(0))

0.1 4 Pr(SS1(1)|CS2(0))

Pr(SSZ(t)lCS‘](0))/nosuppression
no suppression
0.054

/suppression
04

-50 0 50 -50 0 50
Time (ms) Time (ms)

CSs2

UMAP 1

Fig. 6. Finding clusters of simple and complex spikes that are likely generated by the same P-cell. A. This recording
includes at least four groups of spikes: two that appear to be complex spikes, and two that are simple spikes. B.
UMARP clustering of the simple spike space. The two major clusters are SS1 and SS2. Their waveforms are shown by
SS1-1 and SS2-1 in part D. The smaller clusters are distorted spikes that are due to the temporal proximity of these
major spikes, as well as other spikes, as shown in part D. A smaller cluster of spikes are labeled as spikelets of
complex spikes. C. UMAP clustering of the complex spike space. The two major clusters are CS1 and CS2. Their
waveforms are labeled as CS1-1 and CS2-1 in part E. Their waveforms can be distorted by simple spikes, as shown
by CS1-2 and CS2-2. D. Waveforms of various clusters labeled in the simple spike space. E. Waveforms of the four
clusters labeled in the complex spike space. F. Suppression period of SS1 and SS2 is quantified by the probability
Pr(SS1(t)|SS1(0)) and Pr(SS2(t)|SS2(0)). The probability Pr(SS1(t)|CS1(0)) quantifies the suppression following CS1.
Thus, CS1 coincides with suppression of SS1 but not SS2. CS2 coincides with suppression of SS2 but not SS1. Bin
size is 1 ms.
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Fig. 8. Comparison of P-sort with expert curation on mice and macaque data sets. A. Data from a macaque
recording session. P-sort picked out 74 simple spikes that were not identified by the expert (0.29% of total),
labeled as P-sort exclusive. Expert picked 382 simple spikes that were not identified by P-sort (1.48% of total),
labeled as expert exclusive. Complex spikes that were exclusive to P-sort and the expert are also plotted. B.
Summary statistics on the mice (n=16 sessions) and macaque (n=34 sessions) data sets. Percentage of exclusive
simple and complex spikes are plotted for the expert and P-sort. The central mark indicates median of the
distribution, and the bottom and top edges of the box indicate the 25" and 75" percentiles. The thin line indicates
the range of the data excluding the outliers. C. Difference between P-sort and expert in terms of firing rate. Right
columns show the likelihoods, normalized to the baseline simple spike probability in each session, averaged over
all recording sessions for each species (bin size is 1 ms). Error bars are SEM.
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Fig. 9. Comparison of P-sort with automated spike sorting algorithms on two data sets. A. Easy data set. The
simple and complex spike waveforms are illustrated in the first row. The conditional probability for simple spikes
Pr(S(t)|S(0)) is plotted in blue. The conditional probability for simple spike suppression following a complex spike
Pr(S(t)| C(0)) is plotted in yellow. All algorithms identified the simple and complex spikes. Kilosort mislabeled the
onset of the complex spike as a simple spike. B. More difficult data set. First row shows the spikes identified by
each algorithm. Kilosort did not identify the complex spikes. Second row shows the complex spikes missed by each
algorithm, with respect to P-sort. Third row shows the spikes that were identified by each algorithm but not P-sort.
Fourth row is the conditional probabilities for the labeled spikes. Error bars are standard deviation.
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Fig. 10. Performance of the automated algorithms on a difficult data set (Figs. 6). The plots show conditional
probabilities for the simple and complex spikes identified by the automated algorithms and P-sort for the labels
summarized in Fig. 10. Left column is the SS1 and CS1 relationship. Right column is the SS2 and CS2 relationship.
For simple spikes, the suppression period is particularly poor for Kilosort2 for both SS1 and SS2. For complex
spikes, SpyKING CIRCUS and Kilosort2 produce little or no suppression of simple spikes SS2. Bin size is 1 ms.
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Fig. 11. Statistical properties of simple and complex spikes in three species. A. Distribution of average firing rates.
B. Waveform of simple and complex spikes. Simple and complex spikes of each P-cell were both normalized by
setting to -1 the negative peak of the simple spike waveform. Error bars are standard deviation. C. Suppression
period of simple spikes (blue, SS|SS) and the suppression coincided with complex spikes (red, SS|CS). SS|SS
indicates the rate of simple spikes at time t when another simple spike occurs at time zero. SS|CS indicates the

rate of simple spikes at time t when a complex spike occurs at time zero. Simple and complex spike rates for each
P-cell were normalized with respect to average simple spike firing rate. Error bars are standard deviation. D.
Suppression period of simple spikes following arrival of a complex spike. Suppression period for each P-cell was
defined as the duration of time after a complex spike that was required before the simple spike rate recovered
63% of its pre-complex spike value. The red line indicates mean. E. Inter-spike interval distribution for simple (blue)
and complex spikes (red). ISI data for each spike type in each cell was normalized so that the average IS, defined as
the inverse of the average firing rate, was equal to one. Error bars are standard deviation.

30


https://doi.org/10.1101/2021.03.16.435644
http://creativecommons.org/licenses/by-nc-nd/4.0/

O LVWOONOOULIPD WNE

[EEN

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435644; this version posted March 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MountainSort4

[72]
© - < (]
-~ N~ © o 2
ws s 23 n o ‘»
Ng N =2 O = 2 3
SS81 ©
cst 3
PURNRALES] 41300
5 1151
® SS2|o2% (XA 2
o 71601| 143 [RPREN 3 o
overlap EEXEA 10.5% 0.2% C52] 2en MACE 58
P Egd 10-5% 0.2% 918| 116 783 =
1640 [RUELE 172 a5
o
(2]
B Kilosort2 >
) 2
—® R Q 3
w8 P S
ne = oy
[J]
SS1 EIRVACA cs1 VAGE
PREEE] 40395 25751 - %
- 1151 168 ®
° SS2| 96% EEEFA g
b t
D 71601 6905 I =
o cs2 23
(OVENETe) 7529, 85.9% 918 &g
P 1282 1409 ]

[0}
(]
SpyKING CIRCUS i 4
- ~ - ~ NI W []
L 1 Lo 0 R RYE VeIt V) ) =
-9 w LS <« = — ~ <O <« = )mv“ "‘"-yfﬁw °
Hhe B 3% 28 nY HR 3k 28 ‘ ,‘\‘ x
nid KR =¥ =8 O O& 2 =38 | o

SS1EEEY 02% 4.7% csi ] .

£ 41083 GUELEY 64 1974 2047 G L
5 1151 966 955 @
¢ SS2 CERVA 33.7%  10.8% 2
o 71601 [(IIXLY 24004 7728 S 4
overla 77 0.1% 11.6% 34.1% ©82| 26% s “3
P EEXSY 0.1% 11.6% 34. 018 . . %

1640 REEIM 2 191

D Neural network f

pg it ij;:ﬂ‘w i

4 ‘W‘ i 1
[

= ==

?‘ u{s
—
exclusives

Psort
exclusives

Supplementary Fig. 1. Comparison of P-sort with automated spike sorting algorithms on a difficult data set (P-sort
challenge data set). The data are from a marmoset recording that contained multiple clusters of simple and
complex spikes (the same data were presented in Fig. 6). A. Comparison to MountainSort4. The right column
shows complex spikes CS1 and CS2 that were labeled exclusively by each algorithm. B. Kilosort2 missed roughly
70% of the CS1 complex spikes labeled by P-sort. C. SpyKING CIRCUS disagreed entirely with P-sort regarding
complex spike CS2 cluster. D. Comparison of P-sort complex spike identification with a neural network trained to
identify complex spikes (Markanday et al., 2020).
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