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Abstract

Spatial transcriptomics (ST) is a new technology that measures mRNA expression across thousands

of spots on a tissue slice, while preserving information about the spatial location of spots. ST is typically

applied to several replicates from adjacent slices of a tissue. However, existing methods to analyze ST

data do not take full advantage of the similarity in both gene expression and spatial organization across

these replicates. We introduce a new method PASTE (Probabilistic Alignment of ST Experiments) to

align and integrate ST data across adjacent tissue slices leveraging both transcriptional similarity and

spatial distances between spots. First, we formalize and solve the problem of pairwise alignment of ST

data from adjacent tissue slices, or layers, using Fused Gromov-Wasserstein Optimal Transport (FGW-

OT), which accounts for variability in the composition and spatial location of the spots on each layer.

From these pairwise alignments, we construct a 3D representation of the tissue. Next, we introduce the

problem of simultaneous alignment and integration of multiple ST layers into a single layer with a low

rank gene expression matrix. We derive an algorithm to solve the problem by alternating between solving

FGW-OT instances and solving a Non-negative Matrix Factorization (NMF) of a weighted expression

matrix. We show on both simulated and real ST datasets that PASTE accurately aligns spots across ad-

jacent layers and accurately estimates a consensus expression matrix from multiple ST layers. PASTE

outperforms integration methods that rely solely on either transcriptional similarity or spatial similarity,

demonstrating the advantages of combining both types of information.
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1 Introduction

Spatial transcriptomics (ST) is a new technology for measuring RNA expression in tissues while preserv-

ing spatial information [42]. ST involves placing a thin slice of tissue on an array covered by a grid of

barcoded spots and sequencing the mRNAs of cells within the spots (Figure 1a). Early ST technologies

[42] measured mRNA in up to 1000 spots, each spot containing 10−200 cells, while newer technologies

such as the Visium technology from 10X Genomics [1] measure up to 5000 spots, each spot containing

up to 10 cells. ST has been used to study cancer tissue (e.g. breast [42], prostate [5], melanoma [45],

pancreas [34], carcinoma [25]), diseased tissues (e.g. Alzheimer’s [10] and gingivitis [31]) and healthy

tissues (e.g. mouse olfactory bulb [42], human heart [3], spinal cord [33]), as well as other applications.

Multiple computational methods have been introduced to analyze ST data, including the identification of

spatial patterns of gene expression [42, 30], spatially distributed differentially expressed genes [44, 5, 2]

and spatial cell-cell communication patterns [2, 9].

While many ST studies generate data from multiple adjacent tissue layers, nearly all current ST

analysis techniques either analyze only individual layers [34, 15] or pool only gene expression data

across layers without considering the spatial coordinates [5, 25]. However, by ignoring shared spatial

information across layers, such methods lose power in their analyses. A recently developed software

package named STUtility [4] aligned stacked ST experiments using their histological images by identi-

fying transformations of the images that match the tissue edges. However, STUtility does not consider

the gene expression data or locations of spots. Thus, depending on the topology of the tissue, STUtility

may fail to automatically align the images and the user must resort to manual image alignment. More

importantly though, STUtility does not output a mapping between spots that can be used for downstream

analysis.

Multiple methods have been introduced to integrate data from single-cell assays such as scRNA-seq,

ATAC-seq, etc. [22, 43, 23, 32, 13, 48], that do not include spatial information. While these methods

could be applied to ST data by ignoring the spatial coordinates of the spots, the spatial coordinates

provide a rigid structure to the ST data and cannot simply be treated as additional features. Moreover,

due to differences in the dissection of the tissue layers and their placement on the array, the absolute

values of the spatial coordinates cannot be easily compared across layers. Therefore, integration of ST

that preserve both gene expression and spatial data is nontrivial.

We introduce PASTE (Probabilistic Alignment of ST Experiments), a method to align and integrate

multiple tissue layers from an ST experiment using information from both gene expression and spatial

coordinates. First, we formalize the problem of probabilistic pairwise alignment of adjacent layers based

on transcriptional and spatial similarity using Fused Gromov-Wasserstein Optimal Transport (FGW-OT)

[46]. This enables the reconstruction of a 3D spatial dataset by sequentially aligning multiple adjacent

ST layers. However, since the thickness of each layer is relatively small in comparison to the size of

spots and the spacing between spots, this 3D structure is limited. Therefore, we formalize the problem

of finding a “center” layer that integrates multiple ST layers by combining FGW-OT Barycenter formu-

lation [46] with an assumption that the gene expression matrix is low rank. We prove that the restricted

optimization problems reduce to either an FGW-OT problem or a Non-negative Matrix Factorization

(NMF) [28] problem, and give a block coordinate descent algorithm for finding a center layer. The com-

bined inference of a center layer has the potential to increase the power of downstream analysis relative

to many of the current ST analysis methods that analyze single layers individually.

We demonstrate the utility of PASTE on both simulated ST datasets and a recently published squa-

mous cell carcinoma dataset [25]. We show on simulated data that using both gene expression data and

spatial coordinates when aligning pairs of adjacent layers or combining multiple layers is superior to

using either data type alone. We show that PASTE provides better accuracy in aligning spots across

layers and in recovering the gene expression patterns of the tissue. Finally, we show on the squamous

cell carcinoma ST dataset that PASTE aligns layers while preserving the spatial relationships between

different cell type compositions, thus providing additional validation. Furthermore, we show that com-

bining multiple ST layers improves downstream analysis by enabling more spatially coherent clustering

than either ST layer alone.
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Figure 1: (a) A spatial transcriptomics (ST) experiment starts by dissecting a tissue into narrow (10 −
20µm) layers. Each layer is placed on a 2D grid of barcoded spots, and mRNA expression of each spot is

measured along with the spatial coordinates of each spot. Only a fraction of spots (green) contain tissue

cells, with other spots (blue) not covered by a tissue. (b) The PAIRWISE LAYER ALIGNMENT PROBLEM

aims to find a mapping Π = [πij ] between spots in one layer and spots in another layer while preserving

the gene expression and the spatial distances of mapped spots. (c) The CENTER LAYER INTEGRATION

PROBLEM aims to infer a “center” layer consisting of a low rank expression matrix X = WH and a

collection Π(1), . . .Π(t) of mappings from the spots of the center layer to the spots of each input layer.

2 Methods

We start by describing how we represent ST layers and define some required notations in Section 2.1.

We pose the problems of aligning a pair of ST layers or combining multiple layers into a single layer in

Sections 2.2 and 2.3.

2.1 Representing spatial transcriptomics layers

Let M = [mij ] be a matrix, let mi· be a vector corresponding to the ith row of M , and let m·j be a vector

corresponding to the jth column of M . We use 1n to denote a column vector of length n containing all

ones. For a vector v of length n, we denote by diag(v) an n×n matrix with diag(v)ii = vi and zero for

all other entries and denote by 1
v

an a vector with the element-wise inverse of the values of v. We denote

by Tr(M) =
∑

mii the trace of a square matrix M .

The result of an ST experiment is a pair (X,Z) of matrices, where X ∈ N
p×n is a p genes by n spots

expression matrix and Z ∈ R
2×n is the coordinate matrix of the spots. That is, xli ∈ N is the transcript

count for gene l in spot i and z·i is the coordinate vector of spot i on the array. Since the placement

and orientation of the tissue on the array are arbitrary, we find it more convenient to represent only the

relative location of the spots. Therefore, instead of the actual spots locations Z, we use the spot distance

matrix D ∈ R
n×n
+ , where dij = ‖z·i − z·j‖ is the spatial distance between spot i and j. While this

transformation is not reversible, it has an advantage of being invariant to the translation or rotation of the

tissue on the array.

In addition to the gene expression and distance matrices, we assume that each tissue spot i has a
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weight gi > 0 representing its relative importance compared to the other spots1. These weights encode

prior information on the spots such as the relative number of cells in the spot, the presence of a cell

surface marker in the spot or an importance score of the spot based on pathological examination of the

tissue. We assume these weights are normalized so
∑

i gi = 1 and thus g = (g1, . . . , gn) is a distribution

over the spots. If no prior information is given on the spots, we use a uniform distribution g = 1
n
1n over

the spots.

A spatial transcriptomics layer of n spots over p genes is described by a triplet (X,D, g) where

X ∈ N
p×n is a gene by spot expression matrix, D ∈ R

n×n
+ is the spot pairwise distance matrix and g is

a distribution over spots. We call the column vector x·i the expression profile of spot i.

2.2 Pairwise Alignment of ST layers

We start by defining the problem of mapping/aligning a pair of ST layers. Our goal in this problem is

to find a mapping between spots in the two layers such that spots mapped to one another have similar

expression profiles and the spatial relationship of spots within each layer is preserved by the mapping.

Ideally one would want a one-to-one mapping (or perfect matching) between spots in the different layers.

However, such a matching of the spots is not always feasible and may not even be a suitable due to the

intrinsic variations of the ST experiment. First, the number of spots and their locations in the tissue in

each layer may be different due to differences in dissections of the tissue, the placement on the array and

the sequencing coverage of spots. Therefore, there may be spots in one layer that have no direct match

to a spot in the other layer. Second, since the placement of the tissue with respect to the fixed position of

the spots on the array changes between layers, the true position in the tissue of some spots in one layer

may actually fall in between several spots in the other layer.

We propose to formalize the problem of aligning spots across layers as a many-to-many fractional

mapping problem where the weight of each spot in one layer is allowed to be split to several spots.

Inferring such a fractional mapping is the subject of the field of Optimal Transport (OT) Theory [49].

Recent advancements in optimal transport theory enable efficient algorithms [11, 12, 38] and flexible

formulations [39, 46], thus facilitating its use in numerous applications. In particular, OT has been

applied in single cell analysis to infer developmental trajectories [40], reconstruct spatial expression

[36], infer cell-cell communication [9] and integrate multi-omic datasets [13].

Let (X,D, g) and (X ′, D′, g′) be two layers of n and n′ spots respectively over the same p genes.

We say that a matrix Π=[πij ] ∈ R
n×n′

+ is a mapping between the two layers if for all spots i in the first

layer
∑

j πij = gi and for all spots j in the second layer
∑

i πij = g′j . We denote by Γ(g, g′) the set of

all mappings between the two layers. We say that a spot i in one layer and spot j in the other layer are

mapped/aligned if πij > 0.

We define the PAIRWISE LAYER ALIGNMENT PROBLEM as finding a mapping between spots in one

layer and spots in another layer that takes into account both the inter-layer transcriptional dissimilarity

and the intra-layer spatial distance structure (Figure 1b). We formalize this problem as a Fused Gromov-

Wasserstein Optimal Transport problem [46] with an expression cost function c : Rp
+ × R

p
+ → R+ that

measures a non negative cost between the expression profiles of two spots over all genes.

PAIRWISE LAYER ALIGNMENT PROBLEM. Given layers (X,D, g) and (X ′, D′, g′) containing n

and n′ spots respectively over the same p genes, an expression cost function c and a parameter 0 ≤ α ≤
1, find a mapping Π ∈ Γ(g, g′) minimizing the following transport cost:

F (Π ; X,D,X ′, D′, c, α) = (1− α)
∑

i,j

c(x·i, x
′
·j)πij + α

∑

i,j,k,l

(dik − d′jl)
2πijπkl. (1)

The parameter α balances between the transcriptional dissimilarity between spots induced by the

mapping and the spatial distance similarity of the spots induced by the mapping. When α = 0 only the

gene expression data is taken into account, while when α = 1 only the spatial coordinates are taken into

account. Note that the problem is invariant to translation or rotation of the coordinates of any layer since

the transport cost depends only on distances D and D′ within a layer and not on the absolute spatial

1Without loss of generality, we assume that a distribution gi is strictly positive, since spots i with gi = 0 can be removed.
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coordinates. In addition, note that if α = 0, n = n′ and g = g′ = 1
n
1n, the problem reduces to finding a

minimum weight bipartite perfect matching of the spots across layers [6].

We solve the PAIRWISE LAYER ALIGNMENT PROBLEM using the iterative conditional gradient

algorithm described in [46] for the fused Gromov-Wasserstein optimal transport problem. This algorithm

takes O(n2n′ + nn′2) operations per iteration.

Solving the PAIRWISE LAYER ALIGNMENT PROBLEM between a adjacent layers is useful for recon-

structing a 3D spatial representation of tissue. Namely, given a series (X(1), D(1), g(1)), . . . , (X(t), D(t), g(t))
of sequential layers we find the mapping Π(k) between adjacent layers k and k + 1 for every k =
1, . . . , t − 1. To project all layers to the same spatial coordinate system we use the mappings to solve

a generalized weighted Procrustes problem [50, 27]. That is, we seek to project the spatial coordinates

Z(k+1) of layer k + 1 to the spatial coordinates Z(k) of layer k by finding a translation vector v̂ and

rotation matrix R̂ that minimize the weighted distances between mapped spots (Supplementary Section

S1.2). Formally, we solve

R̂, v̂ = min
R∈R

2×2,v∈R
2

RTR=I

∑

i,j

π
(k)
ij

∥∥∥z(k)·i −Rz
(k+1)
·j − v

∥∥∥
2

. (2)

The projected spatial coordinates of spot j in layer k + 1 are then R̂z
(k+1)
·j + v̂. To solve the weighted

Procrustes problem given by Equation 2 we use SVD (Supplementary Section S1.2).

2.3 Integration of multiple ST layers

A natural generalization of pairwise alignment of two layers is the integration of multiple layers into

a single consensus layer. This integration leverages transcriptional and spatial similarities simultane-

ously across all layers, and thus can overcome variability in individual layers due to varying sequencing

coverage, tissue dissection, or tissue placement on the array. A potential disadvantage is that a single

consensus layer does not yield a 3D reconstruction of the tissue. However, in current ST datasets the

thickness of each tissue slice (10-20 microns) is smaller than the diameter of spots (100 microns in

ST and 55 microns in Visium) and the spacing between spots (100-200 microns). Thus, the additional

information obtained from a 3D reconstruction is relatively limited, and in practice the advantages of

multi-layer integration may outweigh the disadvantage of not obtaining a 3D reconstruction.

We define the problem of integrating multiple ST layers (e.g. from replicate experiments or adjacent

tissue slices) into a single center layer that is similar to the individual layers in both gene expression

and spatial relationships between spots (Figure 1c). This problem is analogous to the “star alignment”

problem in multiple sequence alignment [21], but with added complexity resulting from the two dissim-

ilarity measures. The combined inference of a center layer has the potential to increase the power of

downstream analysis of ST relative to many of the current ST analysis methods that analyze single lay-

ers individually. Furthermore, summarizing the ST layers into one consensus layer can pool information

across layers and overcome errors in individual layers.

We define the integration problem under a few reasonable biological and computational assumptions.

First, we assume that the given ST layers are very similar to each other and thus can be summarized with

a single layer. This assumption is again motivated by the fact that the thickness of an ST layer is small

relative to the diameter of a spot and the spacing between spots. Therefore, ST layers from the same

tissue are often referred to as technical replicates [5, 34, 25]. Second, we assume that spatial coordinates

and the distribution over spots in our center layer are known in advance, up to rotation or translation. This

is a reasonable assumption since the spatial coordinates on the array are fixed by the technology. Finally,

we assume that the expression matrix of the center layer is low rank. This is a widely used assumption

in both in single cell RNA-seq analysis and ST analysis and corresponds to the biological assumption

that cells/spots often occupy a limited number of cell types or cell states [29, 35, 24]. In addition, in

most ST experiments, the number of ST layers per tissue is small (2-4) and the gene expression matrices

are relatively sparse (≥75% zeros), and thus estimation of a full rank gene expression matrix would be

prone to overfitting.

We formalize the problem of finding a center ST layer by combining the ideas of fused Gromov-

Wasserstein barycenter [46] and Non-Negative Matrix Factorization [28]. NMF has been shown to be
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useful in single-cell RNAseq analysis both as a method to impute missing values (“dropouts”) and as

a dimensionality reduction technique [41, 53, 17]. In the CENTER LAYER INTEGRATION PROBLEM–

similar to the fused Gromov-Wasserstein barycenter problem – we seek to find a center ST layer that min-

imizes the weighted sum of distances to a given set of input ST layers, where the distance between layers

is calculate by the minimum value of the PAIRWISE LAYER ALIGNMENT PROBLEM objective across

all mappings. However, unlike the fused Gromov-Wasserstein barycenter problem, we also require the

consensus gene expression matrix to be non-negative and low rank (Figure 1c).

CENTER LAYER INTEGRATION PROBLEM. Given layers (X(1), D(1), g(1)), . . . , (X(t), D(t), g(t))
containing n1, . . . , nt spots, respectively over the same p genes, a spot distance matrix D ∈ R

n×n
+ ,

a distribution g over n spots, an expression cost function c, a distribution λ ∈ R
t
+, and parameters

0 ≤ α ≤ 1, m ∈ N and , find an expression matrix X = WH where W ∈ R
p×m
+ and H ∈ R

m×n
+ , and

mappings Π(q) ∈ Γ(g, g(q)) for each layer q = 1, . . . , t that minimize the following objective:

R(W,H,Π(1), . . .Π(t)) =
∑

q

λqF (Π(q) ; WH,D,X(q), D(q), c, α)

=
∑

q

λq

[
(1− α)

∑

i,j

c(x·i, x
(q)
·j )π

(q)
ij + α

∑

i,j,k,l

(dik − d
(q)
jl )

2π
(q)
ij π

(q)
kl

]
.

(3)

We solve the CENTER LAYER INTEGRATION PROBLEM, we propose a Block Coordinate Descent al-

gorithm (Algorithm 1). This algorithm alternates between optimizing the mappings Π(1), . . . ,Π(t) given

the current values of W,H and optimizing W,H given the current mappings Π(1), . . .Π(t). The problem

of finding the optimal mappings Π(1), . . .Π(t) given W and H reduces to solving the PAIRWISE LAYER

ALIGNMENT PROBLEM between the center layer (WH,D, g) and each layer (X(q), D(q), g(q)) sepa-

rately. Similarly, the problem of finding the optimal W and H given the current mappings Π(1), . . . ,Π(t)

reduces to a new problem we call the CENTER MAPPING NMF PROBLEM. We show below that the

CENTER MAPPING NMF PROBLEM can be interpreted as a maximum likelihood optimization and

prove it is equivalent to a weighted NMF problem.

Algorithm 1: BCD for CENTER LAYER INTEGRATION PROBLEM

1 Initialize W,H and set r ←∞
2 repeat

3 r′ ← r

4 for q ← 1 to t do

5 Solve PAIRWISE LAYER ALIGNMENT PROBLEM: Π(q) ← argmin
Π∈Γ(g,g(q))

F (Π ; WH,D,X(q), D(q), c, α)

6 end

7 Solve CENTER MAPPING NMF PROBLEM: W,H ← argmin
W≥0,H≥0

∑
q λq

∑
i,j c(x·i, x

(q)
·j )π

(q)
ij

8 r ← R(W,H,Π(1), . . .Π(t))

9 until r′ − r < ε;

CENTER MAPPING NMF PROBLEM. Given t expression matrices X(1) ∈ R
p×n1

+ , . . . , X(t) ∈

R
p×nt

+ , t mapping matrices Π1 ∈ Γ(g, g(1)), . . .Π(t) ∈ Γ(g, g(t)) , an expression cost function c, a

distribution λ ∈ R
t
+ and parameters 0 ≤ α ≤ 1, m ∈ N find two low rank matrices W ∈ R

p×m
+ and

H ∈ R
m×n
+ such that X = WH minimizing the following objective:

S(W,H) =
∑

q

λq

∑

i,j

c(x·i, x
(q)
·j )π

(q)
ij (4)

We analyze the CENTER MAPPING NMF PROBLEM for two commonly used expression cost func-

tions [28]: (1) the Euclidean distance c(u, v) = ‖u− v‖
2

and (2) the KL divergence c(u, v) = KL(v||u) =∑
l vl log

vl
ul
− vl + ul. While the KL divergence is not symmetric and therefore not a distance measure,

it has the advantage of having a probabilistic interpretation as the likelihood of a Poisson count model
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[20]. Thus, it has been used in the analysis of count data matrices such as sc-RNAseq [14, 47, 16].

Hence, solving the CENTER MAPPING NMF PROBLEM is motivated by finding a low rank expression

matrix X = WH that maximizes the likelihood of the following generative model when g = 1
n
1n and

λ = 1
k
1k:

• The random variables of the number of transcripts x
(q)
lj of a gene l in spot j in layer q are indepen-

dent given X,Π(1), . . . ,Π(t).

• The number of transcripts x
(q)
lj of a gene l in spot j in layer q given that it was generated from spot

i in the consensus layer has a distribution x
(q)
lj |X,π

(q)
ij ∼ Poisson(nπ

(q)
ij xli). Therefore, the total

number x
(q)
lj of transcripts of a gene l in spot j in layer q is x

(q)
lj |X,Π(q) ∼ Poisson(n

∑
i π

(q)
ij xli).

The negative log likelihood of the model is

− log(Pr(X(1), . . . , X(t) ; W,H,Π(1), . . . ,Π(t))) =
∑

q

∑

j

∑

l

[∑

i

nxliπ
(q)
ij − x

(q)
lj log(n

∑

i

π
(q)
ij xli)

]
+ β

≤
∑

q

∑

j

∑

l

[∑

i

nxliπ
(q)
ij −

∑

i

nπ
(q)
ij x

(q)
lj log(xli)

]
+ β

= nS(W,H) + β′

where β and β′ are constants independent of W and H . The second transition follows from Jensen’s

inequality. Therefore, minimizing S(W,H) with respect to W,H maximizes the likelihood of this prob-

abilistic model.

The CENTER MAPPING NMF PROBLEM is equivalent to the problem of finding a weighted NMF

[7] of the matrix X̄ =
∑

q λqX
(q)Π(q)T diag( 1

g
) as stated in the following theorem:

Theorem 1. Let X̄ =
∑

q λqX
(q)Π(q)T diag( 1

g
) and X = WH . We have,

S(W,H) =
∑

i

gic(x·i, x̄·i) + τ

where c(u, v) = ‖u− v‖
2

or c(u, v) = KL(v||u) =
∑

l vl log
vl

ul
− vl + ul, and τ is a constant that

does not depend on W,H .

The proof of Theorem 1 is given in supplementary Section S1.

As a result of Theorem 1 we can solve the CENTER MAPPING NMF PROBLEM using an algorithm

for weighted NMF such as the iterative update scheme of [7]. When the distribution g of the spots in the

center layer is a uniform distribution, i.e. g = 1
n
1n, the CENTER MAPPING NMF PROBLEM reduces to

a traditional NMF [28] of the matrix X̄ = n
∑

q λqX
(q)Π(q)T . While in our problem formulations we

assumed the low rank matrices W,H are non-negative, Theorem 1 does not use this assumption. There-

fore, we can use other factorization techniques such as PCA or generalized PCA [47] in our problems

and algorithms.

2.4 Implementation details and parameter selection

We implemented the algorithms described in Sections 2.2 and 2.3 in a software package called PASTE.

To solve the PAIRWISE LAYER ALIGNMENT PROBLEM, we use the fused Gromov-Wasserstein optimal

transport algorithm implementation from the Python Optimal Transport library [19]. To solve the CEN-

TER LAYER INTEGRATION PROBLEM, we implemented Algorithm 1 in Python. We initialize W,H in

Algorithm 1 by running NMF on one of the input layers and stop the iterations when the improvement

in the objective function is less than ε = 10−3. In all analyses described below, we use a uniform dis-

tribution g = 1
n
1n for the spots in a layer with n spots, give all layers an equal weight λ = 1

t
1t in

the CENTER LAYER INTEGRATION PROBLEM and use m = 15 dimensions for NMF. We use the KL

divergence to calculate the expression cost between spots. For both problems, we use α = 0.1 (unless

otherwise specified) based on our performance on simulated data (Supplementary Figure S2). Before
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running the algorithms, layers are preprocessed such that genes with non-zero expression in fewer than

15 spots or genes that are not expressed in all input layers are removed.

Pairwise layer alignment using PASTE takes ≈ 9-12 seconds on layers with 260-270 spots and 8000

genes. The center layer integration takes≈ 90 seconds to integrate three layers with the same numbers of

spots and genes. PASTE was run on an Alienware Aurora R9 with an Intel R© CoreTM i9-9900 processor.

3 Results

We evaluate PASTE on both simulated ST data and ST data from squamous cell carcinoma (SCC) [25].

In Section 3.1, we describe our ST simulation and show that using both transcriptional and spatial data

enables PASTE to correctly align and integrate ST layers. In Section 3.2, we apply PASTE to SCC data

and show that it is able to map spots across layers while preserving spot cluster annotations.

3.1 Analysis on Simulated Data

We first evaluated PASTE on simulated ST data where the correspondence between spots across layers is

known. To ensure that the both expression and topology of the simulated data are biologically reasonable

we used real samples of ST from four layers of a breast tumor [42] to generate our simulated ST data.

Each layer in this dataset consists of 251-264 spots and 7453-7998 genes (Supplementary Figures S1

and S9).

We simulate a new ST experiment (X ′, Z ′) with n′ tissue spots from a given ST experiment (X,Z)
with n tissue spots by perturbing both the gene expression and spatial data as follows. First, we assume

that the locations Y ∈ R
2×N of all spots on the array are known and that tissue spots will only be gener-

ated from these locations. This is a reasonable assumption since the spot locations on the array are fixed.

For each spot i in the original ST experiment we generate new transcript counts and spatial coordinates

using the following procedure which is governed by a coverage variability factor η controlling the vari-

ance of the number of read counts per spot and a parameter θ controlling the spatial rotation of the tissue

on the array.

1. Select ki total read counts according to ki ∼ NegativeBinomial(µ, νη), where µ = 1
n

∑
li xli is

the empirical mean spot total read count, ν = 1
n

∑
i(µ−

∑
l xli)

2 is the empirical variance of the

spots total read count.

2. Generate an expression profile x′
·i for spot i according to x′

·i ∼ DirichletMultinomial(ki,
x·i+δ1p∑
l
xli+δp

),

where δ = 1 is a small pseudo-count.

3. Generate rotated coordinates v·i = z·iΘ, where Θ is a rotation matrix with an angle θ. Then,

coordinates z′·i = y·ĵ are mapped to the closest spot on the array grid ĵ = argminj ‖v·i − y·j‖. If

the grid spot y·ĵ was already mapped to a previous tissue spot, spot i is discarded.

Note that step 3 may result in a simulated layer with fewer spots than the original layer. For instance, the

original layer 1 (Figure 2a) contains a total of 254 spots while a simulated layer with θ = π
3 (Figure 2b)

contains only 220 spots. We denote by i ∼ j a spot i in the original layer and a spot j in the simulated

layer that are mapped to one another.

We first evaluated the performance of PASTE on the PAIRWISE LAYER ALIGNMENT PROBLEM by

aligning a real breast cancer layer (X,Z) to simulated layers (X ′, Z ′) with a constant rotation of θ = π
3

and increasing coverage variability factor η (Figure 2ab). Since the exact alignment of spots is known,

we measured performance by computing
∑

i∼j πij , the percentage of spots correctly aligned between

the original layer and simulated layer. We tested the performance of PASTE using only gene expression

data (α = 0), using only spatial data (α = 1) and using both types of data (α = 0.1). When running

PASTE, we used uniform distributions g = 1
n
1n and g′ = 1

n′1n′ over spots in each layer.

We observe that PASTE achieves highest accuracy when using both gene expression and spatial

information (α = 0.1), outperforming the alignment when using either expression or spatial information

alone (Figure 2c and Supplementary Figure S3). Note that because the number of populated spots in

each layer are not identical, perfect alignment corresponds to only n′

n
≈ 86% of spots being aligned.

PASTE with α = 0.1 correctly aligns > 73% of spots even when the coverage variability factor is large.

When using only spatial data (α = 1), optimal transport does not recover any matched pair of spots,
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ca bOriginal Rotation π/3

Figure 2: PASTE results for pairwise alignment of a simulated ST layer and an ST layer 1 from the breast

cancer dataset from [42]. (a) Spatial organization of 254 spots from layer 1 of breast cancer dataset. (b)

Spatial organization of 220 spots from simulated layer with a rotation of π
3 . (c) Average percentage of spots

correctly aligned by PASTE using α = 0 (gene expression data only), α = 1 (spatial information only), and

α = 0.1 (both) as a function of the coverage variability factor η. Results are averaged over 10 simulations.

demonstrating that the rotation used in the simulation perturbs the spatial data to a desirable degree.

The mappings produced by PASTE are sparse and every spot in the first layers is mapped with non-zero

coefficients to an average of 1.86 spots in the other layer (Supplementary Table S8). To demonstrate

that PASTE’s use of both expression and spatial data in computing the alignment is beneficial, we also

compared PASTE to applying optimal transport to integrated expression matrices using the single-cell

RNA-seq integration method Scanorama [23] and found that PASTE had consistently higher accuracy

(Supplementary Section S2.1).

Next, we evaluated the performance of PASTE on the CENTER LAYER INTEGRATION PROBLEM.

First, we used the same simulation procedure described above to simulate three ST layers {(X(q), Z(q)) ; q =
1, 2, 3} from a real ST experiment (X,Z). We simulate the gene expression information of each layer

independently and simulate the spatial information by a rotation of either π
6 ,

π
3 ,

2π
3 for each of the layers

(Supplementary Figure S4). Since the exact alignment of spots from the center layer (X,Z) to each of

the generated layers is known, we evaluated the performance of PASTE by computing 1
3

∑
q

∑
i∼j π

(q)
ij ,

the average percentage of spots correctly aligned between the center layer and each of the three simu-

lated layers. In addition, we compared the KL divergence between the gene expression matrix X of the

true center layer and the low rank gene expression matrix WH inferred by PASTE.

We find that PASTE has both high accuracy and low difference reconstructing the true expression

matrix. PASTE (α = 0.1) correctly aligns 49−54 % of spots (compared to maximum possible accuracy

of 86% maximum accuracy) even with large values of η (Figure 3a and Supplementary Figure S5). In

contrast, center layer integration using only gene expression data (α = 0) or using only spatial data

(α = 1) performed poorly with accuracy below 2%. We also compared PASTE to the single cell

RNAseq integration method Scanorama [23]. To do so, we ran Scanorama on the three simulated gene

expression matrices of the ST layers to obtain X̃(q), a batch corrected expression matrix for each layer q.

Next, we compared the average difference between the true center expression matrix X and the corrected

expression matrices X̃(q) from Scanorama to the difference between the true expression matrix X and the

integrated layer computed by PASTE; in both cases the difference between the matrices was computed

using the KL divergence. We find that PASTE infers a center layer expression matrix that is much

closer to truth than the integrated gene expression matrices from Scanorama (Figure 3b). Moreover, the

results for Scanorama are actually an upper bound on performance since we used the true correspondence

between layers when computing the KL divergence between spots. At the same time, Scanorama was

not designed to utilize spatial data, and so the better performance shown by PASTE does not indicate

a deficiency of Scanorama on the scRNA-seq integration problem for which is was designed. Finally,

we tested our assumption that that the integrated gene expression matrix X is low rank. To that end,
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ba

Figure 3: PASTE results on center layer alignment of simulated ST data from layer 2 of breast cancer

dataset [42]. (a) Average percentage of spots correctly aligned between the original center layer and the

simulated layers. (b) Difference between the gene expression matrix of the true center layer and the gene

expression matrix inferred by PASTE and Scanorama. Differences are computed using KL divergence and

for Scanorama, we computed the average KL divergence between the gene expression matrix of each of

the three batch corrected simulated layers and the true center layer. PASTE without NMF dimensionality

reduction was substantially worse than PASTE or Scanorama.

we ran PASTE without the use of NMF in each iteration of Algorithm 1 and set the inferred integrated

matrix as X̄ = n
∑

q λqX
(q)Π(q)T . We see that PASTE with low rank assumption infers the center layer

expression matrix more accurately than PASTE without NMF (Figure 3b and Supplementary Figure S6).

3.2 Analysis on Real Data

We applied PASTE to analyze ST datasets from four patients with cutaneous squamous cell carcinoma

(SCC) [25]. Each patient in this dataset has three layers of ST data, with each layer containing ≈
600 − 700 captured tissue spots. For each patient, [25] used independent component analysis to cluster

the spots jointly across all three layers (Figure 4ab); this approaches uses only the gene expression data

and does not utilize the spatial relationships between spots.

We first used PASTE to solve the PAIRWISE LAYER ALIGNMENT PROBLEM for adjacent tissue

slices. The mappings produced by PASTE between pairs of adjacent layers were sparse having on

average 1.7-2.1 mapped spots for each spot of the first layer (Supplementary Table S8). Under the

assumption that spots adjacent to each other in 3D are likely to contain the same cell types (and thus the

same expression cluster), we examined how frequently pairs of aligned spots determined by PASTE have

the same cluster labels using the published cluster labels from [25]. Specifically, let `(i) be the cluster

labels of spot i and let Π be an alignment produced by PASTE between a pair of layers. We calculate∑
i,j;`(i)=`(j) πij : the fraction of aligned spots that have the same cluster labels in both layers.

We find that PASTE preserves cluster labels well in patient 2, but not as accurately in patients 5, 9,

10 (Figure 4a). For patient 2, around 70% of the spots in one layer are aligned to spots in the other layer

with the same cluster labels. In contrast, for patients 5, 9, 10 only 20%-50% of aligned spots have the

same cluster labels. There are multiple explanations for this result. First, it is possible that the published

clusters for patients 5, 9, 10 are less reliable due to the fact that the sequence coverage for these patients

was less than half of the sequence coverage in layers of patient 2. Second, it is possible that the published

clusters and cluster labels are accurate, but there is less spatial structure in the tumors from patients 5, 9

and 10. Indeed there is a qualitative visual difference between the spatial coherence of clusters in patient

2 (Figure 4b) vs. the other patients (Figure 4c and Supplementary Figure S11). Since PASTE relies

on spatial information to align layers, PASTE’s performance may decrease in datasets with less spatial

coherence.

To quantify the observed differences in spatial coherence of clusters in different patients, we com-
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a b cPatient 2, Layer 1 Patient 9, Layer 1

Figure 4: PASTE results on pairwise layer alignment of squamous cell carcinoma (SCC) ST dataset [25].

(a) Performance of PASTE in aligning spots from adjacent layers to same cluster as a function of the spatial

coherence score. PASTE pairwise alignment shows greatest agreement with published cluster labels for

patient 2 whose cluster labels also have the highest spatial coherence. (b) Published cluster labels of spots

in layer 1 of patient 2 show moderate spatial coherence. (c) Published cluster labels of spots in layer 1 of

patient 9 show low spatial coherence.

puted the spatial entropy of the cluster labels using O’Neil’s spatial entropy [37], which is the Shannon

entropy of the observed distribution of pairs of cluster labels at adjacent spots in an ST layer (Supple-

mentary Section S2.2). Since the range of spatial entropy values depends on both the number of clusters

and the total number of spots, spatial entropy values are not directly comparable across patients or layers

having different number of clusters and spots. Therefore, we compute a Z-score for spatial entropy by

permuting cluster labels across the spots in a layer (Supplementary Figure S7), and define the spatial co-

herence score of a cluster labeling of a layer as the absolute value of the Z-score. This spatial coherence

score gives a normalized quantity to compare spatial entropy values across patients and layers; a high

spatial coherence score indicates that adjacent spots have the same cluster label more frequently than

expected. Finally, we define the spatial coherence score for an aligned pair of layers to be the average

spatial coherence score of the two layers.

We find that patient 2 has significantly higher spatial coherence scores than the other 3 patients,

quantifying the observation that the cluster labels in patient 2 are the most spatially coherent (Figure 4a).

While it is possible that the other three patients (5, 9 and 10) have less spatially coherent tumors, the fact

that patients 5, 9 and 10 have less than half of the sequence coverage of patient 2 strongly suggests that

the published clusters for these three patients may be problematic.

We constructed a 3D spatial representation of the SCC tumor from each patient using the pairwise

alignments of adjacent layers computed by PASTE and projecting all layers to the same coordinate

system by solving a generalized weighted Procrustes problem. We observe that PASTE recovers the

3D structure of the tumor despite the different placements and orientations of each tissue slice on the

ST array (Figure 5 and Supplementary Figure S10). We further observe that the spatial distribution of

clusters in patient 2 is indeed more coherent in 3D than the other patients.

Next, we used PASTE to solve the CENTER LAYER INTEGRATION PROBLEM and infer a single

center layer that integrate the multiple ST layers from each SCC patient. To evaluate the inferred center

layer, we computed clusters from the inferred center layer expression matrix X = WH and evaluated

the spatial coherence of these clusters, reasoning that expression clusters (representing cell types/states)

should exhibit moderate spatial coherence in a tissue. Specifically, we applied k-means clustering to

cluster spots according to the log normalized coordinates in the lower-dimensional space given by H .

We set the number k of clusters equal to the published analysis of each patient [25].

We find that for all patients the clusters obtained using the center layer computed by PASTE have

higher spatial coherence scores than the spatial coherence scores of the published clusters (Figure 6a and

Supplementary Figure S11). Moreover, we see that the improvement in spatial coherence score is greatest

in patients 5, 9, and 10 that have lower sequence coverage ST data. As one example, we note that while

the the published cluster labels on layer 1 of patient 5 do not display much cluster coherence (Figure
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Figure 5: A 3D reconstruction of SCC tumors produced by PASTE using pairwise alignments of adjacent

layers. Layers are colored according to published cluster labels [25]. (a) Aligned layers of patient 2. (b)

Aligned layers of patient 9.

a b cPatient 5, Layer 1 Inferred Center Layer

Figure 6: PASTE results on integration of multiple layers from SCC ST dataset [25] into a center layer. (a)

Spatial coherence scores for the clusters obtained from the center layer inferred by PASTE (green) and the

published clusters from [25] on the individual layers from each patient. The center layer inferred by PASTE

has substantially high spatial coherence. (b) Published cluster labels of spots in layer 1 of patient 5. (c)

Cluster labels C1, . . . , C7 of spots obtained from PASTE’s inferred center layer for patient 5.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435604doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435604
http://creativecommons.org/licenses/by-nc-nd/4.0/


6b), the cluster labels obtained from PASTE (Figure 6c) are visually much more spatially coherent.

This shows that integrating multiple ST layers can recover subtle gene expression patterns which should

improve downstream analysis of ST data.

Finally, we evaluated PASTE on an additional SCC patient from [25] that has two layers of ST data

obtained using the newer, higher-resolution Visium platform [1]. The dataset has a higher number of

spots per layer (722 and 674) and a higher number of transcripts per spot (16847 median) compared

to the earlier ST platform used in patients 2, 5, 9, and 10. Consistent with the ST analysis of the first

four patients, we find that the center layer inferred by PASTE gives more spatially coherent clusters than

the clusters obtained on individual layers (Supplementary Figure S12). This demonstrates the ability of

PASTE to scale to ST experiments from the latest ST technologies.

4 Discussion

In this paper, we introduce PASTE (Probabilistic Alignment of ST Experiments), a method to align

and integrate replicate ST experiments by leveraging both transcriptional similarity and spatial distances

between spots. We formalize and solve the PAIRWISE LAYER ALIGNMENT PROBLEM of mapping spots

across adjacent ST layers and the CENTER LAYER INTEGRATION PROBLEM of integrating multiple ST

layers by finding a center layer with a low rank expression matrix and mappings of its spots to all other

layers. We show these problems can be solved using fused Gromov-Wasserstein optimal transport (FGW-

OT) for the pairwise problem, and alternating between solving instances of the FGW-OT problem and

performing NMF of a weighted expression matrix for the center problem. On simulated data, we show

that PASTE’s use of both transcriptional and spatial data outperforms using either data modality alone.

On real ST from squamous cell carcinoma, we show that the center layer inferred by PASTE has higher

spatial coherence than published clusters that were inferred from ST data without considering spatial

coordinates of spots. Interestingly, we see that while published clusters inferred from patients with high

coverage ST data showed high spatial coherence, clusters inferred from patients with low coverage ST

data had low spatial coherence. In comparison, clusters inferred on the center expression matrix inferred

PASTE had high spatial coherence across all patients. Furthermore, by stacking adjacent layers one on

top of the other we see that the spatial coherence within each layer is preserved also in 3D for patients

with high sequencing coverage. We applied PASTE to data from ST technology and the newer Visium

technology from 10X Genomes, but note that PASTE can also be applied to other spatial technologies

such as smFISH [26], seqFISH+ [18], and STARmap [51].

PASTE has some limitations and can be improved in several ways. First, in cases were the tissue is

symmetrical, our alignment may be ambiguous since spots may be equally mapped to several locations.

Second, our model assumes that each spot in one layer is represented as a convex combination of spots

in the other layer, whereas the true mapping may in fact be non-linear. Third, our model does not use

the histological images that often accompany the ST tissues in order to align and merge layers. In

contrast, a recent software package, STUtility [4], aligns the histological images without considering the

accompanying gene expression data. We anticipate PASTE could be further improved by utilizing the

histological images and using methods from the realm of image registration [8].

The aligned and integrated ST layers produced by PASTE can be used to increase the statistical power

in multiple downstream analyses including: identification of spatial expression patterns [42, 30], spatial

cell type annotation [5], tumor/normal spot classification [52], spatial cell-cell communication patterns

[2, 9], identification of genomic copy number aberrations [17], and more. In addition, PASTE could be

applied to ST experiments from different patients in order to find conserved patterns of gene expression

across different patients. Finally, newer versions of the Visium platform are now able to measure protein

immunofluorescence in conjunction to gene expression, thus opening new analysis opportunities.
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José Fernandez Navarro, Jonas Maaskola, Maria J Eriksson, Bengt Persson, et al. Spatial detection

of fetal marker genes expressed at low level in adult human heart tissue. Scientific reports, 7(1):1–

10, 2017.
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Mancuso, Evgenia Salta, Sriram Balusu, An Snellinx, Sebastian Munck, Aleksandra Jurek,

Jose Fernandez Navarro, Takaomi C. Saido, Inge Huitinga, Joakim Lundeberg, Mark Fiers,

and Bart De Strooper. Spatial transcriptomics and ¡em¿in situ¡/em¿ sequencing to study

alzheimer&#x2019;s disease. Cell, 182(4):976–991.e19, 2020/10/26 2020.

[11] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems, volume 26, pages 2292–2300. Curran Associates, Inc., 2013.

[12] Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. volume 32

of Proceedings of Machine Learning Research, pages 685–693, Bejing, China, 22–24 Jun 2014.

PMLR.

[13] Pinar Demetci, Rebecca Santorella, Björn Sandstede, William Stafford Noble, and Ritambhara

Singh. Gromov-wasserstein optimal transport to align single-cell multi-omics data. bioRxiv, 2020.

[14] Ghislain Durif, Laurent Modolo, Jeff E Mold, Sophie Lambert-Lacroix, and Franck Picard.

Probabilistic count matrix factorization for single cell expression data analysis. Bioinformatics,

35(20):4011–4019, 03 2019.

[15] Marc Elosua, Paula Nieto, Elisabetta Mereu, Ivo Gut, and Holger Heyn. Spotlight: Seeded nmf

regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. bioRxiv,

2020.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435604doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435604
http://creativecommons.org/licenses/by-nc-nd/4.0/


[16] Rebecca Elyanow, Bianca Dumitrascu, Barbara E. Engelhardt, and Benjamin J. Raphael. netnmf-

sc: leveraging gene–gene interactions for imputation and dimensionality reduction in single-cell

expression analysis. Genome Research, 30(2):195–204, 2020.

[17] Rebecca Elyanow, Ron Zeira, Max Land, and Benjamin Raphael. STARCH: Copy number and

clone inference from spatial transcriptomics data. Physical Biology, oct 2020.

[18] Chee-Huat Linus Eng, Michael Lawson, Qian Zhu, Ruben Dries, Noushin Koulena, Yodai Takei,

Jina Yun, Christopher Cronin, Christoph Karp, Guo-Cheng Yuan, et al. Transcriptome-scale super-

resolved imaging in tissues by rna seqfish+. Nature, 568(7751):235–239, 2019.
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