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Abstract

Large-scale biophysical circuit models can provide mechanistic insights into the fundamental
micro-scale and macro-scale properties of brain organization that shape complex patterns of
spontaneous brain activity. By allowing local synaptic properties to vary across brain regions,
recent large-scale circuit models have demonstrated better fit to empirical observations, such
as inter-regional synchrony averaged over several minutes, i.e. static functional connectivity
(FC). However, most previous models do not capture how inter-regional synchrony patterns
vary over timescales of seconds, i.e., time-varying FC dynamics. Here we developed a
spatially-heterogeneous large-scale dynamical circuit model that allowed for variation in
local circuit properties across the human cortex. We showed that parameterizing local circuit
properties with both anatomical and functional gradients was necessary for generating
realistic static and dynamical properties of resting-state fMRI activity. Furthermore, empirical
and simulated FC dynamics demonstrated remarkably similar sharp transitions in FC patterns,
suggesting the existence of multiple attractors. We found that time-varying regional fMRI
amplitude tracked multi-stability in FC dynamics. Causal manipulation of the large-scale
circuit model suggested that sensory-motor regions were a driver of FC dynamics. Finally,
the spatial distribution of sensory-motor drivers matched the principal gradient of gene
expression that encompassed certain interneuron classes, suggesting that heterogeneity in

excitation-inhibition balance might shape multi-stability in FC dynamics.
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Introduction

Spontaneous fluctuations in large-scale brain activity exhibit complex spatiotemporal
patterns across animal species (Hutchison et al., 2013; Gozzi and Schwarz, 2016; Ma et al.,
2016; Betzel, 2020). Inter-regional synchrony of resting-state brain activity averaged over
several minutes (i.e., time-averaged static functional connectivity) has informed our
understanding of brain network organization (Damoiseaux et al., 2006; Smith et al., 2009;
Gratton et al., 2018), individual differences in behavior (Finn et al., 2015; Kong et al., 2019)
and mental disorders (Xia et al., 2018; Kebets et al., 2019). Recent studies have shown that
additional important insights can be gained from studying moment-to-moment variation in
inter-regional synchronyi, i.e., time-varying dynamic functional connectivity (Allen et al.,
2014; Zalesky et al., 2014; Vidaurre et al., 2017; Liegeois et al., 2019; Lurie et al., 2020).
However, it is currently unclear how anatomical and functional heterogeneity in local circuit
properties contribute to both time-averaged and time-varying properties of large-scale brain
dynamics.

Large-scale spontaneous brain activity is thought to arise from the reverberation of
intrinsic dynamics of local circuits interacting across long-range anatomical connections
(Deco et al., 2011; Breakspear, 2017). Simulations of large-scale biophysically plausible
models of coupled brain regions have provided mechanistic insights into spontaneous brain
activity (Honey et al., 2007; Ghosh et al., 2008; Deco et al., 2014; Hansen et al., 2015).
However, most previous large-scale circuit models assumed that local circuit properties (e.g.,
local synaptic strength, etc.) are identical across brain regions, which is not biologically
plausible. Recent studies in both humans and macaques (Chaudhuri et al., 2015; Demirtas et
al., 2019; Wang et al., 2019) have demonstrated that allowing local circuit properties to vary
along the brain’s hierarchical axis yielded significantly more realistic static functional
connectivity (FC). However, these heterogeneous models have not been shown to recapitulate
time-varying FC dynamics.

In this study, we developed a spatially-heterogeneous mean field model (MFM) to
realistically capture time-varying FC dynamics. Local circuit heterogeneity can be informed

by in-vivo structural and functional neuroimaging measures. For example, T1-weighted/T2-
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weighted (T1w/T2w) MRI estimates of intracortical myelin and the principal resting-state FC
gradient have been shown to index anatomical (Burt et al., 2018) and functional (Margulies et
al., 2016) hierarchies respectively. Parameterization of local circuit properties with T1w/T2w
maps led to more realistic static FC than a spatially-homogeneous mean field model
(Demirtas et al., 2019). However, local circuit properties might be more strongly associated
with the principal FC gradient than the T1w/T2w map (Wang et al., 2019). Thus, we
hypothesized that parameterizing local circuit properties with both the T1w/T2w map and the
principal FC gradient might lead to a more realistic computational model, which we will refer
to as the parametric mean field model (p)MFM). Using data from the Human Connectome
Project (HCP), we demonstrated that pMFM achieved markedly more realistic static FC and
FC dynamics in new out-of-sample participants, confirming the importance of functional and
anatomical gradients to fully capture brain dynamics.

Both empirical and pMFM-simulated FC dynamics demonstrated remarkably similar
sharp transitions in FC patterns, suggesting the existence of multiple FC states or attractors.
Previous studies have suggested that multi-stability in nonlinear brain systems might arise
from noise driven transitions between dynamic states or attractors (Freyer et al., 2012;
Hansen et al., 2015; Deco et al., 2017). These noise-driven transitions might be reflected in
the amplitude of regional brain activity. Therefore, we further investigated the relationship
between the amplitude of regional fMRI signals and transitions in functional connectivity
dynamics in both empirical and pMFM-simulated data. We also performed causal
perturbations of the large scale circuit model to better understand the origins of FC multi-
stability. Finally, the amplitude of regional fMRI signals have been linked with the gene
expression markers of parvalbumin (PVALB) and somatostatin (SST) inhibitory interneurons
(Anderson et al., 2020a), in line with rodent studies suggesting that differential interneuron
abundance may underlie regional variability in local cortical function (Kim et al., 2017).
Thus, we also investigated the spatial relationship among FC dynamics, fMRI signal
amplitude and gene expression patterns from the Allen Human Brain Atlas (AHBA).

The contributions of this study are multi-fold. First, we showed that local circuit
properties, parameterized by both anatomical and functional gradients, are important for

generating realistic models of static FC and FC dynamics. Second, in both pMFM-
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112 simulations and empirical fMRI data, the amplitude of regional fMRI signals of sensory-

113 motor regions tracked state transitions in FCD. Causal perturbations of the pMFM provide
114  further evidence that sensory-motor regions might be drivers of FCD. Finally, the spatial

115  distribution of sensory-motor drivers appeared to match the differential expression of

116 PVALB and SST, as well as the first principal component of brain-specific genes. Overall,
117  this suggests a potential link between FC dynamics and heterogeneity in excitation/inhibition

118  balance across the cortex.

119
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122 Figure 1. Schematic of parametric mean field model (pMFM) optimization. (A) The pMFM
123 comprised ordinary differential equations (ODESs) at each cortical region coupled by a
124  structural connectivity (SC) matrix. The circuit-level parameters were allowed to vary across
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125  cortical regions, parameterized by a linear combination of resting-state functional

126  connectivity (FC) gradient and T1w/T2w spatial maps. The pMFM was used to generate
127  simulated static FC and functional connectivity dynamics (FCD). The Covariance Matrix
128  Adaptation Evolution Strategy (CMA-ES) was used to estimate the pMFM by minimizing a
129  cost function of disagreement with empirically observed FC and FCD. (B) The CMA-ES
130  algorithm was applied to the Human Connectome Project (HCP) training set (N = 351) to
131 generate 5000 candidate parameter sets. The top 10 candidate parameter sets were then

132 selected from the 5000 candidate sets based on the model fit in the validation set (N = 350).
133 These top 10 candidate sets were then evaluated in the HCP test set (N = 351).

134

135  Automatic optimization of the parametric mean field model (pMFM) yielded highly realistic
136  functional connectivity dynamics

137 1052 participants from the HCP S1200 release were randomly divided into training (N
138  =351), validation (N = 350), and test (N = 351) sets. The Desikan-Killiany anatomical

139  parcellation (Desikan et al., 2006) with 68 cortical regions of interest (ROIs) was used to

140  generate group-averaged structural connectivity (SC) and static functional connectivity (FC)
141  matrices from the training, validation and test sets separately. Analyses with a functional

142 parcellation yielded similar conclusions (see “Control analyses”). For each rs-fMRI run,

143 time-varying functional connectivity was computed using the sliding window approach

144  (Allen et al., 2014; Liegeois et al., 2017). Briefly, for each rs-fMRI run, a 68 x 68 FC matrix
145  was computed for each of 1118 sliding windows. Each window comprised 83 timepoints (or
146 59.76 seconds). The 68 x 68 FC matrices were then correlated across the windows, yielding a
147 1118 x 1118 functional connectivity dynamics (FCD) matrices for each run (Hansen et al.,
148  2015; Liegeois et al., 2017).

149 The dynamic mean field model (MFM) was used to simulate neural dynamics of the
150 68 cortical ROIs (Deco et al., 2013). Based on the simulated neural activity at each ROI, the
151  hemodynamic model (Stephan et al., 2007; Heinzle et al., 2016) was then used to simulate
152 blood oxygen level-dependent (BOLD) fMRI. Details of the model can be found in the

153  Methods section. Here we highlight the intuitions behind the MFM. In the MFM, the neural
154  dynamics of each ROI are driven by four components: (1) recurrent (intra-regional) input, (2)
155 inter-regional inputs, (3) external input (potentially from subcortical relays) and (4) neuronal

156  noise. There are “free” parameters associated with each component. First, a larger recurrent
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157  connection strength w corresponds to stronger recurrent input current. Second, the inter-

158  regional inputs depend on the neural activities of other cortical ROIs and the connectional
159  strength between ROIs. The inter-regional connectional strength is parameterized by the SC
160  matrices, scaled by a global scaling constant G. Third, I is the external input current. Fourth,
161  the neuronal noise is assumed to be Gaussian with standard deviation o.

162 In the current study, the recurrent connectional strength w, external input current /,
163  and noise amplitude ¢ are each parameterized as a linear combination of the principal

164  resting-state FC gradient (Margulies et al., 2016) and T1w/T2w myelin estimate (Glasser and
165  Van Essen, 2011), resulting in 10 unknown linear coefficients. We refer to the resulting

166  model as parametric MFM (pMEFM). The 10 unknown linear coefficients were automatically
167  estimated by minimizing disagreement between the empirical and simulated BOLD signal
168  (Figure 1A).

169 More specifically, the simulated fMRI was used to compute a 68 x 68 static FC matrix
170 and a 1118 x 1118 FCD matrix. The agreement between the simulated and empirical static
171 FC matrices was defined as the Pearson’s correlation (r) between the z-transformed upper
172 triangular entries of the two matrices. Larger r indicated more similar static FC. The

173  disagreement between the simulated and empirical FCD matrices was defined as the

174  Kolmogorov—Smirnov (KS) distance between the upper triangular entries of the two matrices
175  (Hansen et al., 2015). A smaller KS distance indicated more similar FCD. To optimize both
176  static FC and FCD, an overall cost was defined as (1 - r) + KS and minimized in the training
177  set. We considered three different minimization algorithms, each generating 5000 candidate
178  sets of model parameters from the training set. Covariance matrix adaptation evolution

179  strategy (CMA-ES; Hansen, 2006) performed the best in the validation set (Figure S1), so the
180 10 best CMA-ES parameter sets from the validation set were evaluated in the test set.

181 Figure 2A shows a representative empirical FCD from a participant in the test set.

182  Figure 2B shows a simulated FCD generated by the pMFM using the best model parameters
183  (from the validation set) using SC from the test set. Both empirical and simulated FCD

184  exhibited red off-diagonal blocks representing recurring FC patterns. Across the 10 best

185  candidate sets, KS distance between empirical and simulated FCD was 0.115 £ 0.031 (mean
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+ std). Correlation between empirical and simulated static FC was 0.66 £ 0.03. As a

reference, the correlation between SC and static FC in the test set was 0.28.
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Figure 2. Parametric mean field model (pMFM) generates more realistic static functional
connectivity (FC) and functional connectivity dynamics (FCD) than a previous spatially
heterogeneous MFM (Wang et al., 2019). (A) Empirical FCD from a participant from the
HCP test set. (B) Simulated FCD from the pMFM using the best model parameters from the
validation set using structural connectivity (SC) from the test set. (C) Agreement (Pearson’s
correlation) between empirically observed and pMFM-simulated static FC. (D) Simulated
FCD generated by the previous spatially heterogeneous MFM (Wang et al., 2019).

Figure 2C shows the simulated FCD using the MFM parameters from our previous
study (Wang et al., 2019). The almost constant values in off-diagonal elements suggests a
lack of realistic FC dynamics. KS distance between empirical and simulated FCD was 0.88.
Correlation between static empirical and simulated static FC was 0.48. Thus, the pMFM was

able to generate much more realistic static FC and FCD than the MFM (Wang et al., 2019).
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Anatomical & functional gradients are critical to generating functional connectivity
dynamics

In the previous section, we demonstrated that pMFM was able to generate realistic
static FC and FCD. To explore what aspects of pMFM are important for generating realistic
static FC and FCD, we performed a number of control analyses. First, we investigated the
importance of utilizing both anatomical and functional gradients in generating realistic static
FC and FCD. Most large-scale circuit model studies assume spatially homogeneous
parameters. When recurrent connectional strength w, external input current /, and noise
amplitude o were optimized by CMA-ES, but constrained to be spatially homogeneous
(Figure 3), then there was substantially weaker agreement with empirical static FC (r = 0.56 +
0.05) and FCD (KS = 0.50 £ 0.30). Similarly, spatial heterogeneity for all three parameters
(w, I and o) were necessary to generate the most realistic static FC and FCD in the test set
(Figures S2A to S2C).

Second, if recurrent connectional strength w, external input current I, and noise
amplitude o were parameterized with only T1w/T2w (i.e., Demirtas et al., 2019) or only FC
gradient, then the resulting static FC and FCD were less realistic in the test set (Figure 3C).
Furthermore, if recurrent connectional strength w, external input current I, and noise
amplitude o were allowed to be spatially heterogeneous across brain regions, but not
constrained by T1w/T2w or FC gradient (i.e., non-parametric), then simulations could
achieve realistic static FC, but not FCD (Figure S2D). One reason could be the large number
of “free” parameters leading to overfitting in the training set.

Finally, instead of fitting to both static FC and FCD in the training set, we also tried
fitting only to static FC. Not surprisingly, the resulting model yielded unrealistic functional
connectivity dynamics (Figure S3; KS = 0.88 + 0.004). On the other hand, correlation
between static empirical and simulated static FC was 0.74 + 0.01, which was only slightly
better than when optimizing both static FC and FCD (Figure 2C). This suggests that the goals

of generating realistic static FC and FCD were not necessarily contradictory.
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Overall, these results suggest the importance of parameterizing recurrent connectional
strength w, external input current I, and noise amplitude o with spatial gradients that
smoothly varied from sensory-motor to association cortex. Furthermore, T1w/T2w and FC
gradient are complementary in the sense that combining the two spatial maps led to more

realistic static FC and FCD (Figure 3).
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Figure 3. Importance of multiple spatial gradients for generating realistic static functional
connectivity (FC) and functional connectivity dynamics (FCD). (A) Simulated FCD from a
mean field model (MFM) optimized using the same algorithm as pMFM, but with model
parameters constrained to be the same across cortical regions. (B) Agreement between
empirically observed and simulated static FC from MFM optimized using the same algorithm
as pMFM, but with model parameters constrained to be the same across cortical regions. (C)
Agreement (Pearson’s correlation) between simulated and empirically observed static FC, as
well as disagreement (KS distance) between simulated and empirically observed FCD across
different conditions. The pMFM utilizing both anatomical and functional gradients (FC
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247  gradient and T1w/T2w spatial maps) performed the best, suggesting that T1w/T2w and FC
248  gradient provided complementary contributions.
249

250

251  Opposite gradient directions in recurrent connection strength, noise amplitude and external
252  input

253 Figures 4B to 4D illustrate the spatial distribution of recurrent connection strength w,
254  external input current I, and noise amplitude o based on the best parameter estimate from
255  the validation set. The black lines indicate seven resting-state network boundaries (Figure
256  3A; Yeoetal., 2011). While the resting-state network boundaries do not exactly align with
257  the anatomically defined parcels, there was a striking correspondence between the resting-
258  state networks and estimated pMFM parameters. Given the parameterization of pMFM by a
259  linear combination of FC gradient (Margulies et al., 2016) and T1w/T2w spatial maps

260  (Demirtas et al., 2019), it was not surprising that the parameter estimates exhibited a

261  hierarchical gradient of values monotonically changing from sensory-motor to association
262  networks (right column of Figures 4B to 4D).

263 However, the gradient directions were different across the three parameters. In

264  particular, both recurrent connection strength and noise amplitude appeared to increase from
265  sensory-motor to association (limbic, control and default) networks. On the other hand,

266  external input current was the highest in sensory-motor networks and decreased towards the
267  default network. The directionalities of noise amplitude and external input current were

268  consistent across all the top ten parameter estimates from the validation set. In the case of
269  recurrent connection strength, one of the ten parameter sets exhibited the opposite direction
270  (i.e., decrease from sensory-motor regions to association networks; Figure S4), suggesting
271  potential degeneracy in the case of recurrent connection strength.

272
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Figure 4. Spatial distribution of recurrent connection strength w, external input current I,
and noise amplitude o, and their relationships with resting-state networks. (A) Seven resting-
state networks (Yeo et al., 2011). (B) Strength of recurrent connection w in 68 Desikan-
Killiany cortical ROIs (left) and seven resting-state networks (right). (C) Strength of external
input I in 68 Desikan-Killiany cortical ROIs (left) and seven resting-state networks (right).
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(D) Strength of noise amplitude o in 68 Desikan-Killiany cortical ROIs (left) and seven
resting-state networks (right). The bars represent the mean values across regions within each
network. The error bars show the standard error across regions within each network.
Recurrent connection strength and noise amplitude increased from sensory-motor to
association (limbic, control and default) networks. On the other hand, external input current
was the highest in sensory-motor networks and decreased towards the default network.

Time-varying amplitude of regional fMRI time courses tracks time-varying functional
connectivity

Given that the pMFM was able to generate realistic FCD, we now seek to use the
pMEM to provide further insights into mechanisms underlying FCD. Previous studies have
suggested that FCD might arise from switching between multi-stable states (Hansen et al.,
2015; Deco et al., 2017). Indeed, a magnified portion of the FCD matrix from a HCP test
participant (Figure SA) suggests the presence of at least two distinct states. In one state (white
asterisk in Figure 5A), the sliding window FC pattern appeared to be coherent over a period
of time. In a second state (black asterisk in Figure 5A), the sliding window FC patterns were
incoherent over a period of time, so the high correlations within the block were restricted to
the diagonals, and likely driven by autocorrelation in the fMRI signals and overlapping
sliding windows. We hypothesized that fMRI signals might be dominated by large coherent
amplitude fluctuations during the coherent state and dominated by noise during the
incoherent state (right panel in Figure 5A; see Cocchi et al., 2017 for a review of multi-
stability). If our hypothesis were true, we would expect large regional fMRI signal amplitude
during the coherent state and small regional fMRI signal amplitude during the incoherent

state.
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Figure 5. Correspondence between functional connectivity dynamics (FCD) and time-varying
amplitude of regional fMRI time courses. (A) Inspection of FCD from a HCP test participant
suggests at least two states. The first state (white asterisk) exhibits coherent FC patterns over
a period of time. The second state (black asterisk) exhibits incoherent FC patterns over a
period of time. The right panel illustrates our hypothesis that the coherent state might be
characterized by large coherent amplitude in regional fMRI signals, i.e., high standard
deviation (STD), while the incoherent state might be characterized by noise in regional fMRI
signals, i.e., low standard deviation (STD). (B) Top panel shows empirical FCD matrix of a
HCP test participant. The middle panel shows the FCD mean time course obtained by
averaging the rows of the FCD matrix from the top panel. The bottom panel shows the
standard deviation of each regional fMRI time course within each sliding window (SW-
STD). The color of the lines corresponds to the correlation between the first derivative of the
FCD mean time course and the first derivative of the SW-STD time courses. Sharp transitions
in SW-STD corresponded to sharp FCD transitions (red dashed lines). (C) Same as panel B,
but simulated from pMFM using the best model parameters from the validation set and
structural connectivity from the test set. (D) SW-STD during coherent (high FCD mean) and
incoherent (low FCD mean) states. Boxplots illustrate variation across HCP test participants.
Coherent states were characterized by large amplitude (STD) in fMRI signals (p = 2.4e-168).
(E) Same as panel D, but simulated from pMFM.

To test our hypothesis, the standard deviation of average fMRI signal of each cortical
ROI within each sliding window was computed. Figure 5B (top panel) shows the FCD matrix
of a single participant from the HCP test set. Figure 5C (top panel) shows the simulated FCD
matrix from the pMFM using the best model parameters from the validation set and structural
connectivity (SC) from the test set. The middle panels of Figures 5B and 5C show the FCD
mean time course obtaining by averaging the rows of the FCD matrices from the top panels.
Sharp transitions in the FCD mean time course reflected sharp transitions in the FCD matrix.
The bottom panel shows the sliding window standard deviation (SW-STD) of empirical and
simulated fMRI signals. There was striking correspondence between sharp transitions in the
FCD mean time course and SW-STD time courses in both empirical and simulated data (red
dashed lines in Figures 5B and 5C).

Consistent with our hypothesis, there was large signal amplitude during the coherent
state and low signal amplitude during the incoherent state (Figure 5B). To quantify this
phenomenon, for each run of each participant in the HCP test set, the top 10% of each FCD
mean time course was designated as the coherent state (high FCD mean) and the bottom 10%

of each FCD mean time course was designated as the incoherent state (low FCD mean). The
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SW-STD was then averaged across all cortical regions and across all runs of each participant.
As shown in Figure 5D, the SW-STD was significantly higher during the coherent state than
the incoherent state (p = 2.4e-168). Similar results were obtained for the pMFM simulations

(Figure SE).

Sensory-motor regions drive switching behavior in functional connectivity dynamics

In the previous section, we found striking correspondence between the FCD mean
time course and the regional SW-STD time courses (Figures 5B & 5C). We note that the
FCD mean time course reflected cortex-wide fluctuations in FC patterns, while SW-STD
time courses were region-specific. Therefore, to investigate regional heterogeneity of FCD-
STD correspondence (Figure 5) across the cortex, correlation between the first derivative of
the FCD mean time course and the first derivative of the SW-STD time course was computed
for each cortical region. In the case of empirical observations, the FCD-STD correlations
were averaged across all runs of all participants in the test set yielding a final FCD-STD
correlational spatial map (Figure 6A). In the case of pMFM simulations, the correlations were
averaged across 1000 random simulations using the best model parameters from the
validation set using structural connectivity (SC) from the test set, yielding a final FCD-STD
correlational spatial map (Figure 6B).

Statistical significance was established using a permutation test (see Methods).
Almost all cortical regions were significant after correcting for multiple comparisons (FDR q
< 0.05; Figure S5). Across both pMFM simulations and empirically observed data, FCD-STD
correlations were the highest in sensory-motor regions and lowest in association cortex.
There was strong spatial correspondence between simulated and empirical results (r = 0.87;
Figure 6C). We note that the pMFM was optimized to yield realistic FCD with no regard for
spatial correspondence, so the high level of spatial correspondence suggests that the pMFM
was able to generalize to new unseen properties of FCD.

To explore the causal relationship between sensory-motor regions and FCD, we tested
whether perturbation of sensory-motor regions could “kick” the system from an incoherent
FCD state to a coherent FCD state. Among 1000 random simulations of pMFM, time

segments in the incoherent state (low FCD mean) lasting for at least 200 contiguous fMRI
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371  timepoints were selected. The neural signals of the top five FCD-STD regions (sensory-motor
372 drivers; Figure 6B) were then perturbed to increase their amplitude. The perturbation led to
373 the successful transition of the FCD into a more coherent state with higher FCD mean (p =
374  6e-14; Figure 7D). Perturbation of the bottom five FCD-STD regions (Figure 6B) did not

375 lead to an increase in FCD mean. Figure 7E illustrates example results of the perturbation

376  experiment. Similar results were obtained if we perturbed top 10 and bottom 10 regions.

377  Overall, this suggests that sensory-motor regions were a driver of switching behavior in FCD.

378
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380  Figure 6. Sensory-motor regions drive sharp transitions in functional connectivity dynamics
381 (FCD). (A) FCD-STD correlations obtained by correlating the first derivative of the FCD
382  mean time course and the first derivative of the SW-STD time course of each cortical region.
383  These correlations were performed for each HCP test participant and averaged across all runs
384  and participants. (B) Same as panel A but simulated from pMFM using the best model
385  parameters from the validation set and structural connectivity from the test set. The
386  correlations were averaged across 1000 random simulations. (C) Correlation between
387  empirical and simulated FCD-STD correlation spatial maps from panels B and C, showing
388  strong correspondence between empirical and simulated results. (D) Casual perturbation of
389  top 5 FCD-STD correlated regions (panel B) during the incoherent state (low FCD mean) led
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390 to transition into the coherent state (high FCD mean). As a control analysis, perturbation of
391  the bottom 5 FCD-STD correlated regions (panel B) during the incoherent state (low FCD
392 mean) did not lead to a state change (FCD mean remains low). (E) Example FCD from the
393  perturbation experiments. (Left) original incoherent state. (Middle) perturbation of top 5

394  FCD-STD correlated regions (sensory-motor drivers). (Right) perturbation of bottom 5 FCD-
395  STD correlated regions.

396

397  Parvalbumin-somatostatin and first genetic principal component correlate with sensory-

398  motor drivers of time-varying functional connectivity dynamics

399 Results from the previous sections suggest that time-varying amplitude of sensory-
400  motor regions tracks switching behavior in time-varying functional connectivity. A recent
401  study (Anderson et al., 2020a) demonstrated that difference in the spatial distribution of

402  molecular markers of parvalbumin and somatostatin interneurons (PVALB-SST) is linked
403  with the amplitude of regional fMRI signals (Figure 7A). This intriguing finding is in line
404  with data in rodents documenting the importance of these interneuron classes in local cortical
405  circuit function (Kim et al., 2017). Inspection of the cortical distribution of PVALB-SST

406  transcripts from the Allen Human Brain Atlas (AHBA) dataset (Figure 7A) suggests strong
407  similarity with the FCD-STD correlational spatial maps (Figure 6).

408 PVALB -SST (Figure 7A) was averaged within each cortical ROI and correlated with
409  the FCD-STD correlational spatial maps (Figure 6). The correlations were 0.72 and 0.65 for
410  the empirical (Figure 7B) and simulated (Figure 7C) data respectively. As shown in Figure
411 7D, both correlations were significant based on spin-tests preserving spatial autocorrelation
412 (Gordon et al., 2016; Alexander-Bloch et al., 2018). To test for specificity of PVALB-SST, a
413 null distribution was also generated based on random pairs of brain-specific genes. Both

414  correlations were again significant (Figure 7D). Overall, this suggests that the spatial

415  distribution of sensory-motor drivers was associated with the differential expression of

416 PVALB and SST

417 Given that previous studies have suggested the existence of multiple similar gene

418  expression gradients, the first principal component of AHBA brain-specific gene expression
419  data (Burt et al., 2018; Anderson et al., 2020b) was correlated with the FCD-STD

420  correlational spatial maps (Figure 6). The first gene expression principal component was also

421  correlated with both empirical and simulated FCD-STD spatial maps , although the
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correlations were slightly weaker than the correlations with PVALB-SST gene expression
map (Figure 7D).

The recurrent connection strength w and noise amplitude o were also correlated with
the PVALB-SST gene expression map under the spin-test, but not the random-gene-pair tests.
This suggests a lack of specificity to PVALB-SST (Figure 7D). The external input I was not

correlated with any gene expression pattern.
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Figure 7. Correlations between the spatial distribution of sensory-motor drivers (FCD-STD
correlational spatial maps) and gene expression spatial maps. (A) Difference in normalized
expressions of parvalbumin and somatostatin (PVALB-SST) from the Allen Human Brain
Atlas (AHBA). Panel is a re-rendering of (Anderson et al. 2020a). (B) Correlation between
empirical FCD-STD correlational map (Figure 6B) and PVALB-SST gene expression map.
(C) Correlation between simulated FCD-STD correlational map (Figure 6C) and
PVALB/SST gene expression map. (D) Table of correlations between FCD-STD
correlational spatial maps and two gene expression maps: PVALB-SST and first principal
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439  component of gene expression (Burt et al., 2018; Anderson et al., 2020b). The “spin test”
440 tested the significance of the correlations while controlling for spatial autocorrelation. The
441  “random gene pair” tested for the specificity of PVALB-SST by randomly sampling pairs of
442  brain-specific genes. P values that survived the false discovery rate (q < 0.05) are bolded.
443  Standard deviations reported in the table were obtained by bootstrapping.

444

445

446  Control analyses

447 To ensure robustness of results, we performed several control analyses. First, we note
448  that the simulation of pMFM utilized 10ms time step. To ensure that this time step was

449  sufficiently small, the best model parameters from the validation set was applied to the test
450  setusing 1ms time step. KS distance between empirical and simulated FCD in the test set was
451  0.113 £ 0.047. Correlation between empirical and simulated static FC was 0.344 + 0.033.
452 Second, the previous analyses utilized sliding window comprising 83 timepoints for
453  computing FCD. To ensure the model parameters generalized to different window lengths,
454  empirical and simulated FCD was computed in the test set using window lengths of 43 and
455  125. KS distance between empirical and simulated FCD in the test set was 0.148 + 0.068 and
456  0.67 £ 0.040 for window lengths 43 and 125 respectively.

457 Third, we investigated whether the FCD-STD correlation maps (Figure 6) might be
458  influenced by global signal fluctuation. We repeated the analysis by restricting to 50 test

459  participants with the lowest global signal fluctuation. The resulting FCD-STD correlation
460  map were very similar to the original results (r = 0.82).

461 Finally, we replicated our results with a higher resolution parcellation with 100

462  cortical ROIs (Schaefer et al., 2018). Consistent with our main results, we found that pMFM
463  yielded more realistic simulated FC and FCD in the test set (Figure S6) compared with our
464  previous study (Wang et al., 2019). Across all 10 best parameter sets from the validation set,
465  noise amplitude increased from sensory-motor to association (limbic, control and default)
466  networks, while external input exhibited the opposite direction. In 8 of the 10 best parameter
467  sets, recurrent connect strength increased from sensory-motor to association (limbic, control

468  and default) networks, thus again suggesting potential degeneracy (Figure S7).
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469 In the Schaefer parcellation, time-varying amplitude of sensory-motor time courses
470  tracks switching behavior in time-varying functional connectivity (Figures S8 and S9).

471  Causal perturbation analysis also confirmed that sensory-motor regions appeared to drive
472  transitions in FCD (Figure S9). Both simulated and empirical FCD-STD correlation maps
473  were correlated with PVALB-SST gene expression maps (Table S1). Both correlations were
474  significant under the spin-test and random gene-pair tests. The simulated, but not the

475  empirical, FCD-STD correlation maps were correlated with the first principal component of
476  gene expression.

477
478
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Discussion

By incorporating anatomical and functional gradients into the parameterization of
local circuit properties, the resulting large-scale circuit model generated realistic time-
averaged (static) and time-varying (dynamic) properties of large-scale spontaneous brain
activity. Both empirical and simulated fMRI data exhibited multi-stable properties, in which
there was spontaneous switching between a high coherent state and a low coherent state. The
multi-stability was tracked by time-varying amplitude of regional fMRI signals. By
performing causal perturbations of the large-scale circuit model, we demonstrated that
spontaneous amplitude fluctuations of sensory-motor regions were a driver of the observed
switching behavior. Furthermore, the relationship between regional fMRI amplitude and
functional connectivity dynamics was also associated with PVALB-SST and the first
principal component of gene expression, suggesting that heterogeneity in excitation-

inhibition balance might shape multi-stability in FC dynamics.

Anatomical and functional gradients contribute to spontaneous brain dynamics

Previous studies have proposed a dominant gradient of cortical organization with
sensory-motor and association regions at opposing ends (Huntenburg et al., 2018).
Supporting this idea of a dominant axis, many studies have emphasized similarities among
gradients estimated from diverse sources, including resting-state FC principal gradient,
T1w/T2w myelin estimate, gene expression data, functional task activation and
computational modeling (Margulies et al., 2016; Huntenburg et al., 2017; Burt et al., 2018;
Wang et al., 2019; Gao et al., 2020). Yet, there are clear differences among the gradients and
a growing number of studies have suggested dissociations among multiple spatially similar
gradients (Paquola et al., 2019; Shafiei et al., 2020; Valk et al., 2020). Here, we showed that
by parameterizing local circuit parameters with both anatomical (T1w/T2w) and functional
(FC) gradients, the resulting mean field model was able to generate dramatically more
realistic static FC and FC dynamics than either gradient alone (Figure 3).

The optimized mean field model exhibited opposing gradient directions across local

circuit parameters (Figure 4). Across all top ten parameter sets, noise amplitude increased
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508 from sensory-motor to association cortex, while external input decreased from sensory-motor
509 to association cortex. The higher external input in sensory-motor regions might reflect the
510 flow of sensory information from the external environment via subcortical relays. In the case
511  of the recurrent connection strength, nine of the ten best parameter sets exhibited increasing
512  values from sensory-motor to association cortex, but one parameter set exhibited the opposite
513  direction. Thus, recurrent connection strength might exhibit potential degeneracies in mean
514  field models, thus explaining contradictions in the literature (Demirtas et al., 2019; Wang et
515 al, 2019).

516

517  Multi-stability in spontaneous brain dynamics

518 The spontaneous ebb and flow observed in FC dynamics is an intriguing property that
519  has fascinated the field (Allen et al., 2014; Hansen et al., 2015; Wang et al., 2016; Liegeois et
520 al., 2017; Vidaurre et al., 2017; Reinen et al., 2018). As shown in Figure 5A, there are

521  periods of brain activity with strong coherent FC and periods with incoherent FC. We found
522  that the coherent FC state was characterized by larger fMRI signal amplitude across brain
523  regions, while the incoherent FC state was characterized by smaller fMRI signal amplitude
524  (Figure 5). Intriguingly, transitions in the regional amplitude of sensory-motor regions

525  appeared to track switching behavior in FC dynamics (Figure 6). Perturbations of the mean
526  field model suggests that this relationship might be causal.

527 Regional fMRI amplitude has been previously linked with the differential expression
528 of PVALB and SST across the cortex (Anderson et al., 2020a). PVALB and SST

529 interneurons preferentially target perisomatic regions and dendrites of pyramidal cells

530 respectively, and are thought to regulate synaptic outputs and inputs respectively (Wang et
531 al.,, 2004). Thus the spatially heterogeneous distribution of PVALB and SST interneurons
532  (Kim et al., 2017) might modulate regional neural signal amplitude (Anderson et al., 2020a).
533  Here, we found that PVALB-SST gene expression map correlates with the spatial distribution
534  of sensory-motor drivers whose time-varying amplitude tracks functional connectivity

535  dynamics (Figure 7).

536 However, we note that this association cannot be solely attributed to PVALB-SST

537  given that the gradients of PAVLB-SST expression are embedded within a broader pattern of
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538  gene expression variation across the cortex (Burt et al., 2018; Anderson et al., 2020b).

539 Indeed, the spatial distribution of sensory-motor drivers were also correlated with the first
540 principal component of cortical genes (Figure 7). The first gene principal component has

541  been shown to strongly correlate with the spatial distribution of genes coding for different
542  excitatory and inhibitory neurons (Burt et al., 2018), which might reflect spatial heterogeneity
543  in excitation-inhibition balance (Wang, 2020). Overall, this suggests a potential link between
544  FC dynamics and heterogeneity in excitation/inhibition balance across the cortex.

545

546
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Methods

Data

We considered 1052 participants from the Human Connectome Project (HCP) S1200
release (Van Essen et al., 2013). All participants were scanned on a customized Siemens 3T
Skyra using a multi-band sequence. Four resting-state fMRI (rs-fMRI) runs were collected
for each participants in two sessions on two different days. Each rs-fMRI run was acquired
with a repetition time (TR) of 0.72s at 2mm isotropic resolution and lasted for 14.4 min. The
diffusion imaging consisted of 6 runs, each lasting approximately 9 minutes and 50 seconds.
Diffusion weighting consisted of 3 shells of b = 1000, 2000, and 3000 s/mm?2 with an
approximately equal number of weighting directions on each shell. Details of the data
collection can be found elsewhere (Van Essen et al., 2013). The 1052 subjects were randomly

divided into training (N=351), validation (N=350) and test (N=351) sets.

Preprocessing

Details of the HCP preprocessing can be found in the HCP S1200 manual. We utilized
rs-fMRI data, which had already been projected to fSLR surface space, denoised with ICA-
FIX and smoothed by 2mm. For each run of each participant. the fMRI data was averaged
within each Desikan-Killiany (Desikan et al., 2006) ROI to generate a 68 x 1200 matrix. Each
68 x 1200 matrix was used to compute 68 x 68 FC matrix by correlating the time courses
among all pairs of time courses. The FC matrices were then averaged across runs of
participants within the training (or validation or test) set, resulting in a group-averaged
training (or validation or test) FC matrix.

Functional connectivity dynamics (FCD) was computed as follows. For each run of
each participant, FC was computing within each of 1118 sliding windows. The length of each
sliding window was 83 time points (60 seconds) as recommended by previous studies
(Leonardi and Van De Ville, 2015; Liegeois et al., 2017). We note that our results were
robust to window length (see “Control analysis” in the Results section). Each sliding window
FC matrix was then vectorized by only considering the upper triangular entries. The

vectorized FCs were correlated with each other generating a 1118 x 1118 FCD matrix.
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In the case of diffusion MRI, generalized Q-sampling imaging (GQI) was used to
reconstruct the white matter pathways, allowing for complex diffusion fiber configurations
and streamline tractography (van den Heuvel and Sporns, 2011). A 68 x 68 structural
connectivity (SC) matrix was generated for each subject, where each entry corresponded to
the number of streamlines between two ROIs. To generate a group-level SC matrix, a
thresholding procedure was employed to remove false positives. More specifically, if less
than 50% of participants had a non-zero value in a particular entry in the SC matrix, then the
entry is set to zero in all individual-level SC matrices. For each SC entry, the number of
streamlines was averaged across participants with non-zero streamlines. Separate group-level

SC matrices were computed for the training, validation and test sets.

Dynamic mean field model (MFM)
The MFM was derived by the mean-field reduction of a detailed spiking neuronal
network model (Deco et al., 2013). For each cortical ROI, the neural activity obeys the

following nonlinear stochastic differential equations:
. Si
Si = _T_l + T(l — Sl)H(Xl) + O'Vi(t)
S
ax; — b

Hx) = 1-— exp(—d(axi — b))

J

where S;, H(x;) and x; denote the average synaptic gating variable, population firing rate
and total input current of the i-th cortical ROI. The total input current x; is the superposition
of three inputs. The first input, the intra-regional input, is controlled by the recurrent
connection strength w. The second input, the inter-regional input, is controlled by the SC
matrix (Cj; is the SC between regions i and j), as well as a global scaling factor G. The
third input is the external input current I, which might include inputs from subcortical relays.
Following previous studies (Deco et al., 2013; Wang et al., 2019), the synaptic coupling |
was set to 0.2609 (nA). The parameter values of the input-output function H(x;) were set to

a = 270(n/C), b = 108(Hz) and d = 0.154(s). The kinetic parameters for synaptic


https://doi.org/10.1101/2021.03.15.435361
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435361; this version posted March 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

602  activity were setto r = 0.641 and 7, = 0.1(s). v;(t) is uncorrelated standard Gaussian
603  noise and the noise amplitude is controlled by &.

604 The simulated neural activities S; are fed to the Balloon-Windkessel hemodynamic
605  model (Stephan et al., 2007; Heinzle et al., 2016) to simulate the fMRI BOLD signals for
606  each ROI. The equations and parameters are exactly the same as our previous study (Wang et
607  al., 2019). More specifically, the MFM and hemodynamic model were simulated using

608  Euler’s integration with time step of 10ms. The starting values of S; in the MFM were

609  randomly initialized. Simulation length for the fMRI signals was 16.4 min. The first 2

610  minutes of the fMRI signals were discarded and the time series were downsampled to 0.72s
611  to have the same temporal resolution as the empirical fMRI signals in the HCP. The

612  simulated fMRI signals could then be used to generate simulated FC and FCD matrices.

613

614  Parametric Mean Field Model (pMFM)

615 In our previous study (Wang et al., 2019), the recurrent connection strength w,

616  external input current /, global constant G and noise amplitude o were optimized by fitting
617  to static FC. The recurrent connection strength w and external input current I were allowed
618  to vary independently across cortical ROIs, while ¢ and o were assumed to be constant. On
619  the other hand, (Demirtas et al., 2019) parameterized the recurrent connection strengths with
620  the T1w/T2w myelin map.

621 In this study, recurrent connection strength w, external input current [ and noise

622 amplitude o were allowed to vary across brain regions, while G was kept as a constant.

623  Instead of allowing w, I and o to vary independently (Wang et al., 2019), we parameterized
624 w, I and o as linear combinations of group-level T1w/T2w myelin maps (Glasser and Van

625  Essen, 2011) and the first principal gradient of functional connectivity (Margulies et al.,

626  2016):
627 w; = a,,Mye; + b,,Grad; + c,,
628 I; = a;Mye; + b;Grad; + ¢;

629 o; = a;Mye; + b,Grad; + ¢,
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where w;, I; and o; denoted the recurrent connection strength, external input current and
noise amplitude respectively of the i-th cortical region. Mye; and Grad; were the average
values of the T1w/T2w myelin map and the first FC principal gradient within the i-th cortical
ROL Both T1w/T2w myelin maps and first principal gradient of functional connectivity were
computed from the HCP training set. Therefore, there are a total of 10 unknown parameters:
G and linear coefficients (a,,, by, ¢\, a5, by, €1, @y, bg, C5). These unknown parameters were

be estimated from the HCP training set (see next section).

Cost function to minimize disagreement with empirical static FC and FCD

The 10 unknown parameters in the pMFM were estimated by maximizing fit to static
FC and FCD in the HCP training set. For a particular set of parameters, the pMFM could be
used to generate simulated FC and FCD matrices. The agreement between the simulated and
empirical static FC matrices was defined as the Pearson’s correlation (r) between the z-
transformed upper triangular entries of the two matrices. Larger r indicates more similar static
FC.

The disagreement between the simulated and empirical FCD matrices was defined as
the Kolmogorov—Smirnov (KS) distance between the probability distribution functions (pdfs)
constructed from the upper triangular entries of the two matrices (Hansen et al., 2015). A
smaller KS distance indicated more similar FCD. To optimize fit to both static FC and FCD,
an overall cost was defined as (1 - r) + KS. Thus lower cost implies better fit to static FC and
FCD.

To minimize the cost function in the training set, we seek to compute an “average”
FCD matrix. We note that FCD matrices could not be directly averaged across rs-fMRI runs
and participants because there was no temporal correspondence across runs during the
resting-state. Because the goal here was to compute the KS distance, we simply averaged the
pdfs from the FCD matrices all the runs of all participants within the training set, which we
referred to as average FCD pdf. When evaluating KS distance in the validation and test sets,

average FCD pdfs were also computed using the same approach.
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659  Optimization procedure

660 To optimize the cost function, we considered three algorithms: covariance matrix

661  adaptation evolution strategy (CMA-ES; Hansen, 2006), self-organising migrating algorithm
662  (SOMA; Davendra and Zelinka, 2016) and hyperparameter optimization using radial basis
663  functions and dynamic coordinate search (HORD; Ilievski et al., 2017).

664 Given a particular random initialization of the 10 unknown parameters, the three

665  algorithms (CMA-ES, SOMA, HORD) were applied to the HCP training set. Each algorithm
666  was iterated 500 times, generating 500 candidate parameter sets. This procedure was repeated
667 10 times, yielding 5000 candidate parameter sets. For each algorithm, the 5000 candidate

668  parameter sets were evaluated in the validation set to obtain top 10 candidate parameter sets.
669  Across the three algorithms, CMA-ES performed the best in the validation set (Figure S1), so
670  this study focused on CMA-ES.

671 The top 10 candidate parameter sets from CMA-ES were then applied to the HCP test
672  set SC. For each parameter set, 1000 simulations were performed, yielding 1000 simulated
673  static FC and FCD matrices. The 1000 simulated FC and FCD pdfs were then averaged,

674  yielding an average simulated FC and an average simulated FCD pdf. Pearson’s correlation
675  was then computed between the average simulated FC and the average empirical FC from the
676  HCP test set. Similarly, KS statistics was computed between the average simulated FCD pdf
677  and the average empirical FCD pdf from the HCP test set.

678

679  Statistical test of correlation between first derivatives of FCD mean and SW-STD

680 To quantify the correspondence between FCD mean and SW-STD (Figure 5),

681  correlation between the first derivative of the FCD mean time course and the first derivative
682  of the SW-STD time course was computed for each cortical region (Figure 6). To compute
683 the statistical significance of the correlations, fMRI runs were permuted across participants.
684  For each ROI, the FCD-STD correlations were recomputed and averaged across runs and

685  participants, yielding a single null correlation value. This permutation procedure was

686  repeated 10000 times, so that a null distribution of correlations was obtained for each ROI.

687
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Causal perturbations of pMFM

To more directly link sensory-motor regions with FCD, we tested whether
perturbation of sensory-motor regions can “kick” the system from an incoherent FCD state to
a coherent FCD state. Among 1000 random simulations of the pMFM, time segments in the
incoherent (low FCD mean) state lasting for at least 200 contiguous fMRI timepoints (TRs)
were selected, yielding 300 time segments. Low FCD mean was defined as being less than
0.6.

Perturbation was applied to the neural signals (synaptic gating variable S;) of the top
5 regions whose SW-STD correlated with FCD (Figure 6B). We note that during the
incoherent state, the values of the synaptic gating variables could be low or high. To increase
the amplitude of the neural signals, we would decrease (or increase) the synaptic gating
variables if they were high (or low). More specifically, let S;,4, and S;,;;, be the maximum
and minimum synaptic gating variable values across all cortical regions. When neural signal
was low, we set Syy5: =S¢ + 0.8 (Sppax — St), Where 8t corresponded to the resolution of
the simulations, which is 0.01 seconds in the current study. When neural signal was high, we
set Siyse = S¢ — 0.8 (S¢ — Spuin)- The perturbations was applied for 72 iterations,

corresponding to 1 TR in the simulated fMRI signal.

Gene expression analysis

Publicly available human gene expression data from six postmortem donors (1 female),
aged 24-57 years (42.5 + 13.4) were obtained from the Allen Institute (Hawrylycz et al., 2012).
Processing followed the pipeline from Anderson and colleagues (Anderson et al., 2020a;

https://github.com/HolmesLab/2020 NatComm interneurons_cortical function schizophren

1a), yielding 17,448 brain-expressed genes and 1683 analyzable cortical samples. Our analyses
in turn focused on 2413 brain-specific genes (Genovese et al., 2016; Burt et al., 2018). Z-
normalized gene expression values of parvalbumin (PVALB) and somatostatin (SST) were
averaged within each cortical region and the difference was computed. The FCD-STD
correlation maps (Figure 6) were correlated with the PVALB-SST spatial map (Figure 7).

To establish statistical significance, we considered two approaches. First, we

considered the spin test. The parcellations were randomly rotated. For each rotated
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718  parcellation, we re-computed the PVALB-SST difference and correlated the resulting gene
719  expression maps with the FCD-STD correlation maps, yielding a single null correlation

720  value. This was repeated 1000 times yielding a complete null distribution.

721 To test the specificity of PVALB-SST, we performed a random-gene-pair tests. A

722 random pair of genes was selected from the 2413 brain-specific genes (Burt et al., 2018).

723 Gene expression difference between the random gene pairs was computed and correlated with
724  the STD-FCD correlation maps generating a null correlation value. This was repeated 10,000
725  times yielding a complete null distribution.

726

727  Code and data availability

728 This study followed the institutional review board guidelines of corresponding institutions.
729 The HCP diffusion MRI, rs-fMRI and TI1w/T2w data are publicly available

730  (https://www.humanconnectome.org/). The code used in this paper is publicly available at

731 https://github.com/ThomasYeoLab/CBIG/tree/master/stable projects/fMRI dynamics/Kong?2

732 021 pMFEM. The code was reviewed by one of the co-authors (SZ) before merging into the

733 GitHub repository to reduce the chance of coding errors.

734
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Supplementary Results
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Figure S1. Comparison of three different algorithms: covariance matrix adaptation evolution strategy
(CMA-ES; Hansen, 2006), self-organising migrating algorithm (SOMA; Davendra and Zelinka, 2016)
and hyperparameter optimization using radial basis functions and dynamic coordinate search (HORD;
[lievski et al., 2017) in the HCP validation set. Each algorithm was run on the training set generating
5000 candidate sets of model parameters. The 5000 candidate sets were evaluated in the validation set.
The top 10 candidate sets from each algorithm (based on the validation set) are shown in this plot.
Thus, CMA-ES performs the best among the three algorithms in the validation set. Box plots utilized
default Matlab parameters, i.e., box shows median and inter-quartile range (IQR). Whiskers indicate
1.5 IQR. Red crosses represent outliers.
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Figure S2. Comparison between the original pMFM (main text) and (A) constraining recurrent
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connection strength w to be constant across ROIs, (B) constraining external input / to be constant
across ROIs, (C) constraining noise amplitude o to be the same across ROIs, and (D) allowing local

circuit parameters to vary independent (i.e., not parameterized by anatomical and/or functional

gradients). Across all panels, agreement between simulated and empirical static FC was measured

using Pearson’s correlation, while disagreement between simulated and empirical FCD was measured
using KS distance. Across all analyses, top ten model parameter sets were selected from the validation
set and applied to the test set. The error bars correspond to standard error across the 10 parameter sets.
Across all four panels, the original pMFM yielded the best results.


https://doi.org/10.1101/2021.03.15.435361
http://creativecommons.org/licenses/by/4.0/

(A) (B) o
[]JFC + FCD 1.0 5 FCD (Optimize FC Only)
OFc 1
0.8 0.8 =
2
S 0.6@ o S
= - n = 549 3
2 g £ v
= 0.6' 04 3 = (@]
Q o F 8
© )
_ 0.2 Q
- 1042 0.2
4 .
0 Static FC FCD KS 0.0 42 542 1042

Time (TR)

Figure S3. Comparison between the original pMFM (optimized using both static FC and FCD) and
pPMFEM optimized using only static FC. (A) Agreement (Pearson’s correlation r) between simulated and
empirically observed static FC, as well as disagreement (KS distance) between simulated and
empirically observed FCD. (B) Simulated FCD from the pMFM optimized only using static FC. The
simulated FCD was a lot less realistic than the original pMFM (Figure 2B). In terms of KS distance,
there is a large improvement when optimizing both static FC and FCD (KS = 0.12 versus 0.88).
However, when optimizing only static FC, the resulting simulated static FC was only slightly better
than the original pMFM (r = 0.74 versus 0.66). This suggests that the goals of generating realistic
static FC and FCD were not necessarily contradictory. We note that across all analyses, top ten model
parameter sets were selected from the validation set and applied to the test set. The error bars

correspond to standard error across the 10 parameter sets.
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Figure S4. For one of the top ten parameter sets, recurrent connection strength exhibited the opposite
direction from the remaining nine parameter sets. The layout of this figure is the same as Figure 4. (A)
Strength of recurrent connection w in 68 Desikan-Killiany cortical ROIs (left) and seven resting-state
networks (right). (B) Strength of external input [ in 68 Desikan-Killiany cortical ROIs (left) and seven
resting-state networks (right). (C) Strength of noise amplitude o in 68 Desikan-Killiany cortical ROIs
(left) and seven resting-state networks (right). The bars represent the mean values across regions
within each network. The error bars show the standard error across regions within each network. Noise
amplitude increased from sensory-motor to association (limbic, control and default) networks. On the
other hand, external input current and recurrent connection strength decreased from sensory-motor to
association networks.
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Figure S5. Sensory-motor regions drive sharp transitions in functional connectivity dynamics (FCD).
(A) FCD-STD correlations obtained by correlating the first derivative of the FCD mean time course
and the first derivative of the SW-STD time course of each cortical region. These correlations were
performed for each HCP test participant and averaged across all runs and participants. Regions that
survived a false positive rate of q<0.05 are shown in the brain map. (B) Same as panel A but simulated
from pMFM using the best model parameters from the validation set and structural connectivity from
the test set. Regions that survived a false positive rate of q<0.05 are shown in the brain map.
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Figure S6. Parametric mean field model (p)MFM) generates more realistic static functional
connectivity (FC) and functional connectivity dynamics (FCD) than the previous spatially
heterogeneous MFM (Wang et al., 2019) in the 100-region Schaefer parcellation. This figure is similar
to Figure 2 but utilizes the 100-region Schaefer parcellation. (A) Agreement (Pearson’s correlation)
between empirically observed and pMFM-simulated static FC. (B) Agreement (Pearson’s correlation)
between empirically observed and simulated static FC from Wang 2019. (C) Empirical FCD from a
participant from the HCP test set. (D) Simulated FCD from the pMFM using the best model
parameters from the validation set using structural connectivity (SC) from the test set. (E) Simulated
FCD generated by the previous spatially heterogeneous MFM (Wang et al., 2019).
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Figure S7. Spatial distribution of recurrent connection strength w, external input current /, and noise
amplitude o, and their relationships with resting-state networks in the 100-region Schaefer parcellation.
This figure is similar to Figure 4 but utilizes the 100-region Schaefer parcellation. (A) Strength of
recurrent connection w in 100 Schaefer cortical ROIs (left) and seven resting-state networks (right). (B)
Strength of external input / in 100 Schaefer cortical ROIs (left) and seven resting-state networks
(right). (C) Strength of noise amplitude o in 100 Schaefer cortical ROIs (left) and seven resting-state
networks (right). The bars represent the mean values across regions within each network. The error
bars show the standard error across regions within each network. Recurrent connection strength and
noise amplitude increased from sensory-motor to association (limbic, control and default) networks.
On the other hand, external input current was the highest in sensory-motor networks and decreased
towards the default network.
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Figure S8. Correspondence between functional connectivity dynamics (FCD) and time-varying
amplitude of regional fMRI time courses using the 100-region Schaefer parcellation. This figure is
similar to Figure 5 but utilizes the 100-region Schaefer parcellation. (A) Top panel shows empirical
FCD matrix of a HCP test participant. The middle panel shows the FCD mean time course obtained by
averaging the rows of the FCD matrix from the top panel. The bottom panel shows the standard
deviation of each regional fMRI time course within each sliding window (SW-STD). The color of the
lines corresponds to the correlation between the first derivative of the FCD mean time course and the
first derivative of the SW-STD time courses. Sharp transitions in SW-STD corresponded to sharp FCD
transitions (red dashed lines). (B) Same as panel A, but simulated from pMFM using the best model
parameters from the validation set and structural connectivity from the test set. (C) SW-STD during
coherent (high FCD mean) and incoherent (low FCD mean) states. Boxplots illustrate variation across
HCP test participants. Coherent states were characterized by large amplitude (STD) in fMRI signals (p
=4.4e-115). (D) Same as panel C but simulated from pMFM.
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Figure S9. Sensory-motor regions drive sharp transitions in functional connectivity dynamics (FCD) in
the 100-region Schaefer parcellation. This figure is similar to Figure 6 but utilizes the 100-region
Schaefer parcellation (A) FCD-STD correlations obtained by correlating the first derivative of the
FCD mean time course and the first derivative of the SW-STD time course of each cortical region. (B)
Same as panel A but simulated from pMFM (C) Correlation between empirical and simulated FCD-
STD correlation spatial maps from panels B and C, showing strong correspondence between empirical
and simulated results. (D) Casual perturbation of top 5 FCD-STD correlated regions (panel B) during
the incoherent state (low FCD mean) led to transition into the coherent state (high FCD mean). As a
control analysis, perturbation of the bottom 5 FCD-STD correlated regions (panel B) during the
incoherent state (low FCD mean) did not lead to a state change (FCD mean remains low). (E)
Example FCD from the perturbation experiments. (Left) original incoherent state. (Middle)
perturbation of top 5 FCD-STD correlated regions (sensory-motor drivers). (Right) perturbation of
bottom 5 FCD-STD correlated regions.
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Table S1. Table of correlations between FCD-STD correlational spatial maps and two gene expression
maps: PVALB-SST and first principal component of gene expression (Burt et al., 2018; Anderson et
al., 2020b). P values that survived the false discovery rate (q < 0.05) are bolded. Standard deviations
reported in the table were obtained by bootstrapping.

p-value p-value p-value
PVALB-SST (spin test)  (random gene pair) Gene PC1 (spin test)

FCD:S.TD 0.433+0.010 0.026 0.027 0.405+0.011 0.058
Empirical
FC D-STD 0.544+0.007 0.006 0.021 0.556+0.007 0.005
Simulated

w -0.508 0.005 0.060 -0.550 0.004

I 0.320 0.042 0.118 0.330 0.037

o -0.479 0.005 0.067 -0.514 0.004
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