

1 **Structural basis for backtracking by the SARS-CoV-2**
2 **replication-transcription complex**

3

4 **Brandon Malone^{1,8}, James Chen^{1,8}, Qi Wang², Eliza Llewellyn¹,**
5 **Young Joo Choi¹, Paul Dominic B. Olinares³, Xinyun Cao⁴,**
6 **Carolina Hernandez⁵, Edward T. Eng⁵, Brian T. Chait³,**
7 **David E. Shaw^{2,6}, Robert Landick^{4,7}, Seth A. Darst^{1,9},**
8 **Elizabeth A. Campbell^{1,9,10}**

9

10 ¹Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY,
11 10065 USA.

12 ²D. E. Shaw Research, New York, NY 10036 USA.

13 ³Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller
14 University, New York, NY, 10065 USA.

15 ⁴Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
16 53706 USA.

17 ⁵The National Resource for Automated Molecular Microscopy, Simons Electron
18 Microscopy Center, New York Structural Biology Center, New York, NY, 10027
19 USA.

20 ⁶Department of Biochemistry and Molecular Biophysics, Columbia University,
21 New York, NY 10032 USA.

22 ⁷Department of Bacteriology, University of Wisconsin-Madison, Madison, WI
23 53706 USA.

24 ⁸These authors contributed equally: Brandon Malone, James Chen.

25 ⁹Correspondence to: darst@rockefeller.edu, campbee@rockefeller.edu

26

27 **Author Contributions:** Conceptualization; B.M., J.C., Q.W., D.E.S., S.A.D.,
28 E.A.C. Protein purification, biochemistry; B. M., J.C., E.L., Y.J.C. Mass
29 spectrometry acquisition and analysis; P.D.B.O., B.C. Cryo-EM specimen
30 preparation; B.M., J.C. Cryo-EM data collection and processing: J.C., C.H.,
31 E.T.E. Model building, and structural analysis; J.C., B.M., S.A.D., E.A.C.
32 Molecular dynamics simulations and analysis; Q.W., D.E.S. Funding acquisition
33 and supervision; B.C., D.E.S., R.L., S.A.D, E.A.C. All authors contributed to the
34 writing of the manuscript.

35

36 **Competing Interest Statement:** The authors declare no conflict of interest.

37

38 **Classification:** Biological Sciences; Biophysics and Computational Biology.

39

40 **Keywords:** backtracking; coronavirus; cryo-electron microscopy; molecular
41 dynamics; RNA-dependent RNA polymerase

42

43 **Data deposition:** The cryo-EM density maps have been deposited in the
44 EMDataBank: EMD-23007 (nsp13₁-BTC₅), EMD-23008 (nsp13₂-BTC₅), EMD-
45 23009 [BTC₅(local)]. Atomic coordinates have been deposited in the Protein Data
46 Bank: 7KRN (nsp13₁-BTC₅), 7KRO (nsp13₂-BTC₅), 7KRP [BTC₅(local)] and will
47 be released upon peer-review publication. Please contact Elizabeth Campbell, if
48 you require the data before. The molecular dynamics trajectories described in
49 this work are available at
50 https://www.deshawresearch.com/downloads/download_trajectory_sarscov2.cgi/.

51

52 **This PDF file include:**

53 Main Text
54 Figures 1 to 6
55 Main Text References
56 Supplementary text and methods
57 Figures S1 to S6
58 Tables S1
59 SI References

60

61

62 **Abstract**

63 **Backtracking, the reverse motion of the transcriptase enzyme on the**
64 **nucleic acid template, is a universal regulatory feature of transcription in**
65 **cellular organisms but its role in viruses is not established. Here we**
66 **present evidence that backtracking extends into the viral realm, where**

67 **backtracking by the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp)**
68 **may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp**
69 **bound to the essential nsp13 helicase and RNA suggested the helicase**
70 **facilitates backtracking. We use cryo-electron microscopy, RNA-protein**
71 **crosslinking, and unbiased molecular dynamics simulations to characterize**
72 **SARS-CoV-2 RdRp backtracking. The results establish that the single-**
73 **stranded 3'-segment of the product-RNA generated by backtracking**
74 **extrudes through the RdRp NTP-entry tunnel, that a mismatched nucleotide**
75 **at the product-RNA 3'-end frays and enters the NTP-entry tunnel to initiate**
76 **backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking**
77 **may aid proofreading, a crucial process for SARS-CoV-2 resistance against**
78 **antivirals.**

79

80 **Significance Statement**

81 The COVID-19 pandemic is caused by the severe acute respiratory syndrome
82 coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 genome is replicated and
83 transcribed by its RNA-dependent RNA polymerase (RdRp), which is the target
84 for antivirals such as remdesivir. We use a combination of approaches to show
85 that backtracking (backwards motion of the RdRp on the template RNA) is a
86 feature of SARS-CoV-2 replication/transcription. Backtracking may play a critical
87 role in proofreading, a crucial process for SARS-CoV-2 resistance against many
88 antivirals.

89

90 **Introduction**

91 SARS-CoV-2 is the causative agent of the current COVID-19 pandemic (1, 2).
92 The SARS-CoV-2 genome is replicated and transcribed by its RNA-dependent
93 RNA polymerase holoenzyme [holo-RdRp, subunit composition
94 nsp7/nsp8₂/nsp12 (3, 4)] in a replication-transcription complex (RTC), which is
95 the target for antivirals such as remdesivir [Rdv; (5)]. The holo-RdRp is thought to
96 coordinate with many co-factors to carry out its function (6, 7). Some of these co-
97 factors, such as the nsp13 helicase (8) and the nsp10/nsp14 proofreading
98 assembly (9, 10), are also essential for viral replication and are antiviral targets
99 (11–13).

100 We recently reported the first views of the SARS-CoV-2 RTC in complex with
101 the nsp13 helicase [cryo-electron microscopy structures at a nominal resolution
102 of 3.5 Å; (14)]. The overall architecture of the nsp13-RTC places the nucleic acid
103 binding site of nsp13 directly in the path of the downstream template-strand RNA
104 (t-RNA), and cryo-electron microscopy (cryo-EM) difference maps revealed the
105 5'-single-stranded t-RNA overhang engaged with nsp13 before entering the
106 RdRp active site (14). The nsp13 helicase translocates on single-stranded
107 nucleic acid in the 5'->3' direction (15–22). Thus, this structural arrangement
108 presents a conundrum: The RdRp translocates in the 3'->5' direction on the t-
109 RNA strand, while nsp13 translocates on the same strand in the opposite
110 direction. Translocation of each enzyme opposes each other, and if the helicase
111 prevails it is expected to push the RdRp backward on the t-RNA (14). This

112 reversible backward sliding, termed backtracking, is a well-studied feature of the
113 cellular DNA-dependent RNA polymerases [DdRps; (23–30)].

114 Backtracking by the cellular DdRps plays important roles in transcription
115 regulation, including the control of DdRp pausing during transcription elongation,
116 termination, DNA repair, and transcription fidelity (25). In backtracking, the DdRp
117 and associated transcription bubble move backwards on the DNA, while the RNA
118 transcript reverse threads through the complex to maintain the register of the
119 RNA-DNA hybrid (23–30). This movement generates a single-stranded 3'-
120 segment of the RNA transcript which is extruded out the secondary or NTP-entry
121 tunnel that branches off from the primary DdRp active-site cleft around the
122 conserved bridge helix (27–31).

123 Although evolutionarily unrelated to the DdRps, a secondary channel, formed
124 by the RdRp motif F β -hairpin loop and proposed to serve as an NTP-entry
125 tunnel, branches off from the main SARS-CoV-2 RdRp active site channel (32).
126 This NTP-entry tunnel is well positioned to receive the single-stranded 3'-
127 segment of backtracked RNA, a structural architecture analogous to the DdRps
128 (14). We envisaged that translocation by the helicase could mediate backtracking
129 of the RdRp, an otherwise energetically unfavorable process, enabling the key
130 viral functions such as proofreading (9, 10, 12, 33) and template switching during
131 subgenomic transcription (7, 34). Here we outline the structural basis for SARS-
132 CoV-2 RTC backtracking and describe the role of nsp13 in stimulating
133 backtracking.

134

135

136 **Results**

137 **SARS-CoV-2 RdRp backtracked complexes for cryo-electron microscopy.**

138 Previously, DdRp backtracked complexes (BTCs) were generated for structural
139 studies by direct incubation of the DdRp with DNA-RNA scaffolds containing
140 mismatched nucleotides at the RNA 3'-end (27, 28, 30); these BTC-scaffolds
141 bind with the downstream Watson-Crick base pairs of the RNA-DNA hybrid
142 positioned in the DdRp active site and the single-stranded 3'-segment of
143 mismatched RNA extruding out the DdRp NTP-entry tunnel. To study RdRp
144 BTCs, we therefore designed and tested RNA scaffolds based on our original
145 SARS-CoV-2 RTC-scaffold but with three or five mismatched cytosine
146 nucleotides added to the product-RNA (p-RNA) 3'-end (BTC₃- and BTC₅-
147 scaffolds; Fig. 1A).

148 Native electrophoretic mobility shift assays revealed that although the holo-
149 RdRp (nsp7/nsp8₂/nsp12) bound the RTC-scaffold as observed previously [Fig.
150 1B, lane 1; SI Appendix, Fig. S1A; (14)], nsp13 was required for efficient binding
151 to the BTC-scaffolds (Fig. 1B). Stable nsp13-holo-RdRp complexes with BTC-
152 scaffolds were also observed by native mass-spectrometry (Fig. S1B and C).

153 To determine the structural organization of the SARS-CoV-2 BTC, we
154 assembled nsp13(ADP-AlF₃) and holo-RdRp with the BTC₅-scaffold (Fig. 1A;
155 hereafter called BTC₅) and analyzed the samples by single-particle cryo-EM. The
156 sample comprised two major classes: nsp13₁-BTC₅ (3.4 Å nominal resolution),
157 and nsp13₂-BTC₅ (3.6 Å; Fig. 1C; SI Appendix, Fig. S2 and S3). To eliminate
158 structural heterogeneity in the nsp13 subunits and obtain a higher-resolution view

159 of the BTC, the particles from both classes were combined and locally refined
160 inside a mask applied around the holo-RdRp and RNA (excluding the nsp13
161 subunits), leading to the BTC₅(local) combined map (3.2 Å; Fig. 1C; SI Appendix,
162 Fig. S2 and S3, Table S1).

163 The cryo-EM maps (Fig. 1C and 2) revealed two significant differences with
164 the nsp13-RTC structures (14): 1) The single-stranded downstream template-
165 RNA (t-RNA) engaged with nsp13.1 was resolved (Fig. 2A), and 2) a single-
166 stranded p-RNA 3'-segment was extruded into the RdRp NTP-entry tunnel (Fig.
167 2B).

168

169 **Nsp13 binds the downstream single-stranded t-RNA.** In the nsp13₁-BTC₅ and
170 nsp13₂-BTC₅ cryo-EM maps, the single-stranded 5'-segment of the t-RNA was
171 engaged with nsp13.1. This region of the cryo-EM density was well-resolved (Fig.
172 2A), allowing identification of the t-RNA segment engaged within the helicase as
173 +14 to +8 (numbering defined in Figure 1A), 5'CCCAUGU³'. The five-nucleotide
174 segment connecting the t-RNA between the helicase and the RdRp (+7 to +3)
175 was disordered and not modeled.

176

177 **The SARS-CoV-2 RdRp NTP-entry tunnel accommodates the backtracked**
178 **RNA.** The cryo-EM maps also resolved a single-stranded p-RNA 3'-segment of
179 the BTC₅-scaffold extruding into the RdRp NTP-entry tunnel (Fig. 2B), confirming
180 the formation of a BTC (Fig. 3A). The overall architecture of the SARS-CoV-2

181 BTC is analogous to DdRp BTCs [Fig. 3; (14)]. The DdRp bridge helix [BH; (35)]
182 separates the DdRp active site cleft into a channel for the downstream template
183 DNA (over the top of the BH; Fig. 3B) and the NTP-entry tunnel (underneath the
184 BH; Fig. 3B). Similarly, the viral RdRp motif F [SI Appendix, Fig. S4A; (32)]
185 serves as the strand separating structural element for the backtracked RNA (Fig.
186 3A). The downstream t-RNA passes over the top of motif F, while the
187 backtracked RNA extrudes out the NTP-entry tunnel underneath motif F (Fig.
188 3A).

189 The RdRp NTP-entry tunnel provides a steric and electrostatic environment
190 conducive to channeling the backtracked RNA out of the active site without
191 specific polar protein-RNA interactions that could hinder the RNA movement (Fig.
192 3C and 4). Comparing the electrostatic surface potential of the NTP-entry tunnels
193 of the SARS-CoV-2 RdRp with eukaryotic and bacterial DdRps reveals a similar
194 overall electrostatic surface environment that may facilitate backtracked RNA
195 entry (Fig. 3C; SI Appendix, Fig. S4B), including a 'track' of conserved positively-
196 charged Arg and Lys residues of motif F (SARS-CoV-2 nsp12 K545, K551, R553,
197 and R555; Fig. 4; SI Appendix, Fig. S4A). Conserved residues of RdRp motifs C
198 and E complete the active-site/NTP-entry tunnel environment surrounding the
199 backtracked RNA (Fig. 4; SI Appendix, Fig. S4A).

200 In the nsp13-RTCs, the RTC-scaffold (Fig. 1A) is bound in a post-
201 translocated state (14); the 3' p-RNA A is base-paired to the t-RNA U at the -1
202 site near the catalytic nsp12-D760 (Fig. 5A). The next t-RNA base (A at +1) is
203 positioned to receive the incoming nucleoside-triphosphate (NTP) substrate, but

204 the site for the incoming NTP substrate is empty (Fig. 5A). By contrast, the BTC
205 structures were translocated by one base pair compared to the RTCs; the base
206 pair corresponding to the A-U Watson-Crick base pair at the 3'-end of the p-RNA
207 (located in the -1 site of the RTCs) was in the -2 position of the BTCs (Fig. 1A, 4,
208 and 5B). The -1 position of the BTC was occupied by the first C-A mismatch; the
209 p-RNA -1C made a non-Watson-Crick hydrogen bond with the opposing t-RNA A
210 (Fig. 4 and 5B). The next three mismatched p-RNA nucleotides (+1C, +2C, +3C)
211 trailed into the NTP entry tunnel (Fig. 4 and 5B). The 3'-nucleotide of the BTC₅-
212 scaffold p-RNA (+4C; Fig. 1A) was solvent-exposed at the outward-facing end of
213 the NTP-entry tunnel, lacked density and was therefore not modelled (Fig. 2B).
214 The trajectory of the backtracked nucleotides at positions +1/+2 was sharply bent
215 due to spatial constraints of motif F residues (Fig. 4A).

216

217 **Nsp13 stimulates backtracking.** The SARS-CoV-2 wild-type holo-RdRp
218 required the nsp13 helicase to bind the BTC-scaffolds efficiently (Fig. 1B).
219 However, we observed that the holo-RdRp containing nsp12 with a single amino
220 acid substitution (D760A) did not require nsp13 to bind the BTC-scaffolds (SI
221 Appendix; Fig. S1A, lane 4). Nsp12-D760 is a conserved residue of the RdRp
222 motif C that chelates a crucial Mg²⁺ ion in catalytic complexes [SI Appendix; Fig.
223 S4A; (32)], but in RdRp structures lacking substrate (including the BTC
224 structures), the Mg²⁺ ions are absent (14, 36, 37). The catalytic Asp residues of
225 the DdRps typically chelate the Mg²⁺ ion even in the absence of substrate (31,
226 38), and this Mg²⁺ is retained in DdRp backtracked structures (27–30). Our RdRp

227 BTC structures suggest that in the absence of a Mg²⁺ ion, D760 presents an
228 electrostatic barrier to the phosphate backbone of the backtracked RNA (Fig.
229 5B), explaining the requirement for the helicase to surmount this barrier and why
230 removal of D760 stabilizes binding to the BTC-scaffolds.

231 To generate the SARS-CoV-2 BTCs for structural studies, we used the
232 BTC₅-scaffold with five mismatched C's at the p-RNA 3'-end (Fig. 1A). To study
233 the formation of SARS-CoV-2 BTCs from an RTC-scaffold (fully Watson-Crick
234 base paired p-RNA 3'-end), we analyzed UV-induced crosslinking from 4-thio-U
235 incorporated penultimate to the p-RNA 3'-end [RTC(4-thio-U)-scaffold; SI
236 Appendix, Fig. S5A; (39)]. Crosslinking was absolutely dependent on the
237 presence of 4-thio-U in the RNA, establishing specificity (SI Appendix; Fig. S5B).
238 RTCs assembled with wild-type nsp12 and the RTC(4-thio-U)-scaffold gave little
239 to no protein-RNA crosslinking upon UV exposure (SI Appendix; Fig. S5A, lane
240 2). These conditions favor a post-translocated RTC (14, 36, 37) with the 4-thio-U
241 sequestered in the RNA-RNA hybrid and thus not available for protein-RNA
242 crosslinking. Crosslinking of the p-RNA to nsp12 was substantially increased by
243 the addition of nsp13 (with 2 mM ATP, which is present in all the lanes;
244 SI Appendix; Fig. S5A, lane 3). Under these conditions, we propose that the
245 translocation activity of nsp13 backtracked a fraction of the complexes, freeing
246 the 4-thio-U from the RNA-RNA hybrid for crosslinking to nsp12. Replacing wild-
247 type nsp12 with nsp12-D760A (nsp12*; SI Appendix, Fig. S5A, lanes 6-8), which
248 is more prone to backtracking (SI Appendix; Fig. S1A), increased the protein-
249 RNA crosslinking under all conditions, with the maximal crosslinking occurring

250 under the conditions expected to favor backtracking the most (SI Appendix; Fig.
251 S5A, lane 7). These results affirm the view that nsp13 facilitates backtracking of
252 the SARS-CoV-2 RdRp.

253

254 **A mismatched nucleotide at the p-RNA 3'-end spontaneously frays and**
255 **enters into the RdRp NTP-entry tunnel.** The SARS-CoV-2 RTC is a highly
256 processive and rapid replicase/transcriptase, capable of replicating an ~1 kb RNA
257 template at an average rate of ~170 nt/s (40). However, studies of other viral
258 RdRps suggest that misincorporation slows the overall elongation rate and may
259 induce backtracking (41–43). We used molecular dynamics simulations to
260 explore the fate of a mismatched nucleotide incorporated at the p-RNA 3'-end.
261 Starting with the nsp13₂-BTC₅ structure, the -1C was mutated to U, and the +2 to
262 +4 C's were removed. The resulting pre-translocated p-RNA had a matched -1U
263 and a mismatched +1C (-1U+1C; Fig. 5C). In three 5 μs simulations we observed
264 the 3'-mismatched +1C alternating between two positions, either remaining in the
265 vicinity of the active site (RMSD < 3.5 Å) or fraying away from the p-RNA:t-RNA
266 hybrid towards or into the NTP-entry tunnel (RMSD > 3.5 Å; Fig. 5C). Based on
267 analysis of the aggregated -1U+1C simulations, the mismatched +1C spent
268 about 40% of the time near the active site and about 60% of the time frayed
269 towards or in the NTP-entry tunnel. In control simulations with a fully matched p-
270 RNA 3'-end (-1U+1U), the matched +1U at the p-RNA 3'-end did not fray and
271 spent 100% of the time in the active site pocket (SI Appendix; Fig. S6).

272

273 **Discussion**

274 Our results establish that the SARS-CoV-2 RTC backtracks, that backtracking is
275 facilitated by the nsp13 helicase, and that the resulting single-stranded 3'-
276 segment of the p-RNA extrudes out the RdRp NTP-entry tunnel in a manner
277 analogous to the evolutionarily unrelated cellular DdRps (Fig. 3). Thus, a
278 secondary tunnel to accommodate backtracked RNA, facilitating fidelity and
279 possibly other functions (Fig. 6), appears to be a crucial feature of transcriptase
280 enzymes that evolved independently.

281 Backtracking of Φ6 and poliovirus RdRps has been reported based on
282 analysis of single-molecule observations (41–43). The nsp13 helicase facilitates
283 efficient backtracking of the SARS-CoV-2 RTC (SI Appendix; Fig. S5). We note
284 that in bacteria, the UvrD helicase has been shown to induce DdRp backtracking,
285 suggesting that a role for helicases in backtracking may be widespread (44).

286 Our results are consistent with the view that a matched nucleotide at the pre-
287 translocated p-RNA 3'-end remains base paired to the t-RNA (Fig. 5; SI
288 Appendix, Fig. S6), facilitating translocation and subsequent NTP addition and
289 thus rapid elongation (at a maximum elongation rate of ~170 nt/s, a translocation
290 event would occur approximately every 6 msec, on average, explaining why
291 translocation was not observed in our 5 μs simulations; Fig. 5; SI Appendix, Fig.
292 S6). However, upon misincorporation, the pre-translocated, mismatched
293 nucleotide at the p-RNA 3'-end spends more than half the time frayed from the t-
294 RNA and towards or in the NTP-entry tunnel (Fig. 5C), a configuration that is
295 likely recalcitrant to translocation and subsequent elongation. The favorable

296 environment of the NTP-entry tunnel (Fig. 3 and 4) may further encourage
297 backtracking. The resulting inhibition of translocation may enable the tight
298 engagement of the nsp13.1 helicase with the downstream single-stranded t-RNA
299 (Fig. 2A), allowing the 5'->3' translocation activity of the helicase to more robustly
300 backtrack the complex (SI Appendix; Fig. S5).

301 Our findings have implications for the processes of subgenomic transcription
302 and proofreading in SARS-CoV-2 [Fig. 6; (14)]. Generation of mRNAs for the
303 viral structural proteins begins with transcription initiation at the 3'-poly(A) tail of
304 the (+)-strand RNA genome. The process, called sub-genomic transcription,
305 ultimately generates a nested set of transcripts that are both 5'- and 3'-co-
306 terminal with the viral genome and involves a remarkable template-switch from
307 the 3'-portion of the genome to the 5'-leader (7, 34). The template-switching
308 event is thought to involve base-pairing between the 3'-end of the nascent
309 transcript and a complementary sequence (the Transcription Regulatory
310 Sequence, or TRS) near the (+)-strand 5'-leader (45). Backtracking could extrude
311 the 3'-end of the nascent transcript out the NTP-entry tunnel, making it available
312 for base pairing to the 5'-TRS (Fig. 6). Our results establishing that the SARS-
313 CoV-2 RTC can backtrack validates a key prediction of this model for the
314 mechanism of template-switching during sub-genomic transcription (14).

315 Nucleotide analogs that function by being incorporated into product RNA by
316 viral RdRps are important antiviral therapeutics (46). Notably, their incorporation
317 may induce backtracking by the RdRp (43). Rdv, a nucleotide analog, is the only
318 FDA-approved drug for COVID-19 treatment (5). Our results support a model in

319 which RdRp misincorporation or incorporation of nucleotide analogs can pause
320 the RdRp, allowing nsp13 to engage with the downstream single-stranded t-RNA
321 to induce backtracking (14). The resulting exposure of the p-RNA 3'-end out the
322 NTP-entry tunnel (Fig. 3A and 6) could provide access for the SARS-CoV-2
323 proofreading machinery [nsp10/14; (9, 12)] to degrade the p-RNA 3'-end, thus
324 removing the misincorporation or analog. This proofreading activity, which is
325 unique to the nidovirus order to which CoVs belong (10), is a major determinant
326 for the resistance of CoVs against many nucleotide analog inhibitors (13). Thus,
327 understanding RdRp backtracking and its potential role in CoV proofreading can
328 facilitate the development of therapeutics.

329

330

331 **Materials and Methods**

332 Detailed descriptions of SARS-CoV-2 nsp12, 7, 8, and 13 protein purification,
333 assembly of the RTC complexes, Native EMSAs, native mass-spectrometry,
334 cross-linking, specimen preparation for cryo-EM, cryo-EM data acquisition and
335 processing, model building and refinement, and molecular dynamics simulations
336 are provided in the SI Appendix.

337

338 **Acknowledgments**

339 We thank M. Ebrahim, J. Sotiris, and H. Ng at The Rockefeller University Evelyn
340 Gruss Lipper Cryo-electron Microscopy Resource Center for help with cryo-EM.
341 Some of the work reported here was conducted at the Simons Electron
342 Microscopy Center (SEMC) and the National Resource for Automated Molecular
343 Microscopy (NRAMM) and National Center for CryoEM Access and Training
344 (NCCAT) located at the NYSBC, supported by grants from the NIH National
345 Institute of General Medical Sciences (P41 GM103310), NYSTAR, the Simons
346 Foundation (SF349247), the NIH Common Fund Transformative High Resolution
347 Cryo-Electron Microscopy program (U24 GM129539) and NY State Assembly
348 Majority. This work was supported by the Pels Family Center for Biochemistry
349 and Structural Biology (The Rockefeller University), and NIH grants P41
350 GM109824 and P41 GM103314 to B.T.C, R35 GM118130 to S.A.D, and
351 R01 GM114450 to E.A.C.

352

353 **References**

354 1. F. Wu, *et al.*, A new coronavirus associated with human respiratory disease in
355 China. *Nature* **579**, 265–269 (2020).

356 2. P. Zhou, *et al.*, A pneumonia outbreak associated with a new coronavirus of
357 probable bat origin. *Nature* **579**, 270–273 (2020).

358 3. L. Subissi, *et al.*, One severe acute respiratory syndrome coronavirus protein
359 complex integrates processive RNA polymerase and exonuclease activities.

360 361 *Proceedings of the National Academy of Sciences of the United States of America* **111**, E3900-9 (2014).

362 363 4. R. N. Kirchdoerfer, A. B. Ward, Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. *Nature Communications* **10**, 2342–9 (2019).

364 365 5. U. S. F. and D. Administration, Remdesivir-EUA-Letter-Of-Authorization.pdf. *undefined* (2020).

366 367 6. E. J. Snijder, E. Decroly, J. Ziebuhr, The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. *Adv Virus Res* **96**, 59–126 (2016).

368 369 7. I. Sola, F. Almazán, S. Zúñiga, L. Enjuanes, Continuous and Discontinuous RNA Synthesis in Coronaviruses. *Ann Rev Virol* **2**, 265–288 (2015).

370 371 372 8. K. C. Lehmann, E. J. Snijder, C. C. Posthuma, A. E. Gorbatenya, What we know but do not understand about nidovirus helicases. *Virus Res* **202**, 12–32 (2015).

373 374 375 9. E. Minskaia, *et al.*, Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. *Proc National Acad Sci* **103**, 5108–5113 (2006).

376 377 10. A. E. Gorbatenya, L. Enjuanes, J. Ziebuhr, E. J. Snijder, Nidovirales: Evolving the largest RNA virus genome. *Virus Res* **117**, 17–37 (2006).

378 379 11. R. Zhang, *et al.*, The nsp1, nsp13, and M proteins contribute to the hepatotropism of murine coronavirus JHM.WU. *J Virol* **89**, 3598–609 (2015).

380 381 382 12. M. R. Denison, R. L. Graham, E. F. Donaldson, L. D. Eckerle, R. S. Baric, Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity. *Rna Biol* **8**, 270–279 (2011).

383 384 385 386 13. E. C. Smith, H. Blanc, M. C. Surdel, M. Vignuzzi, M. R. Denison, Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. *Plos Pathog* **9**, e1003565 (2013).

387 388 14. J. Chen, *et al.*, Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. *Cell* **182**, 1560-1573.e13 (2020).

389 390 15. A. O. Adedeji, *et al.*, Mechanism of Nucleic Acid Unwinding by SARS-CoV Helicase. *Plos One* **7**, e36521 (2012).

391 16. E. M. Bautista, K. S. Faaberg, D. Mickelson, E. D. McGruder, Functional
392 Properties of the Predicted Helicase of Porcine Reproductive and Respiratory
393 Syndrome Virus. *Virology* **298**, 258–270 (2002).

394 17. K. A. Ivanov, J. Ziebuhr, Human Coronavirus 229E Nonstructural Protein 13:
395 Characterization of Duplex-Unwinding, Nucleoside Triphosphatase, and RNA 5'-
396 Triphosphatase Activities. *J Virol* **78**, 7833–7838 (2004).

397 18. N.-R. Lee, *et al.*, Cooperative translocation enhances the unwinding of duplex
398 DNA by SARS coronavirus helicase nsP13. *Nucleic Acids Res* **38**, 7626–36
399 (2010).

400 19. K. J. Mickolajczyk, *et al.*, Force-dependent stimulation of RNA unwinding by
401 SARS-CoV-2 nsp13 helicase. *Biophys J* (2020)
402 <https://doi.org/10.1016/j.bpj.2020.11.2276>.

403 20. A. Seybert, L. C. van Dinten, E. J. Snijder, J. Ziebuhr, Biochemical
404 Characterization of the Equine Arteritis Virus Helicase Suggests a Close
405 Functional Relationship between Arterivirus and Coronavirus Helicases. *J Virol*
406 **74**, 9586–9593 (2000).

407 21. A. SEYBERT, A. HEGYI, S. G. SIDDELL, J. ZIEBUHR, The human
408 coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding
409 activities with 5'-to-3' polarity. *Rna* **6**, 1056–1068 (2000).

410 22. J. A. Tanner, *et al.*, The Severe Acute Respiratory Syndrome (SARS)
411 Coronavirus NTPase/Helicase Belongs to a Distinct Class of 5' to 3' Viral
412 Helicases. *J Biol Chem* **278**, 39578–39582 (2003).

413 23. N. Komissarova, M. Kashlev, RNA Polymerase Switches between Inactivated
414 and Activated States By Translocating Back and Forth along the DNA and the
415 RNA. *J Biol Chem* **272**, 15329–15338 (1997).

416 24. N. Komissarova, M. Kashlev, Transcriptional arrest: Escherichia coli RNA
417 polymerase translocates backward, leaving the 3' end of the RNA intact and
418 extruded. *Proc National Acad Sci* **94**, 1755–1760 (1997).

419 25. E. Nudler, RNA polymerase backtracking in gene regulation and genome
420 instability. *Cell* **149**, 1438–1445 (2012).

421 26. E. Nudler, A. Mustaev, E. Lukhtanov, A. Goldfarb, The RNA-DNA hybrid
422 maintains the register of transcription by preventing backtracking of RNA
423 polymerase. *Cell* **89**, 33–41 (1997).

424 27. D. Wang, *et al.*, Structural basis of transcription: backtracked RNA
425 polymerase II at 3.4 angstrom resolution. *Science* **324**, 1203–1206 (2009).

426 28. S. Sekine, Y. Murayama, V. Svetlov, E. Nudler, S. Yokoyama, The ratcheted
427 and ratchetable structural states of RNA polymerase underlie multiple
428 transcriptional functions. *Molecular Cell* **57**, 408–421 (2015).

429 29. A. C. M. Cheung, P. Cramer, Structural basis of RNA polymerase II
430 backtracking, arrest and reactivation. *Nature* **471**, 249–253 (2012).

431 30. M. Abdelkareem, *et al.*, Structural Basis of Transcription: RNA Polymerase
432 Backtracking and Its Reactivation. *Mol Cell* **75**, 298-309.e4 (2019).

433 31. G. Zhang, *et al.*, Crystal structure of *Thermus aquaticus* core RNA
434 polymerase at 3.3 Å resolution. *Cell* **98**, 811–824 (1999).

435 32. A. J. W. te Velthuis, Common and unique features of viral RNA-dependent
436 polymerases. *Cell Mol Life Sci Cmls* **71**, 4403–20 (2014).

437 33. M. L. Agostini, *et al.*, Coronavirus Susceptibility to the Antiviral Remdesivir
438 (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading
439 Exoribonuclease. *Mbio* **9**, e00221-18 (2018).

440 34. S. G. Sawicki, D. L. Sawicki, Advances in Experimental Medicine and
441 Biology. *Adv Exp Med Biol* **440**, 215–219 (1998).

442 35. W. J. Lane, S. A. Darst, Molecular Evolution of Multisubunit RNA
443 Polymerases: Structural Analysis. *Journal of Molecular Biology* **395**, 686–704
444 (2010).

445 36. Q. Wang, *et al.*, Structural Basis for RNA Replication by the SARS-CoV-2
446 Polymerase. *Cell* (2020) <https://doi.org/10.1016/j.cell.2020.05.034>.

447 37. H. S. Hillen, *et al.*, Structure of replicating SARS-CoV-2 polymerase. *Nature*,
448 1–6 (2020).

449 38. P. Cramer, *et al.*, Architecture of RNA polymerase II and implications for the
450 transcription mechanism. *Science* **288**, 640–649 (2000).

451 39. E. J. Sontheimer, Site-specific RNA crosslinking with 4-thiouridine. *Mol Biol
452 Rep* **20**, 35–44 (1994).

453 40. M. Seifert, *et al.*, Signatures and mechanisms of efficacious therapeutic
454 ribonucleotides against SARS-CoV-2 revealed by analysis of its replicase using
455 magnetic tweezers. *Biorxiv*, 2020.08.06.240325 (2020).

456 41. D. Dulin, *et al.*, Backtracking behavior in viral RNA-dependent RNA
457 polymerase provides the basis for a second initiation site. *Nucleic Acids Res* **43**,
458 10421–9 (2015).

459 42. D. Dulin, *et al.*, Elongation-Competent Pauses Govern the Fidelity of a Viral
460 RNA-Dependent RNA Polymerase. *Cell Reports* **10**, 983–992 (2015).

461 43. D. Dulin, *et al.*, Signatures of Nucleotide Analog Incorporation by an RNA-
462 Dependent RNA Polymerase Revealed Using High-Throughput Magnetic
463 Tweezers. *Cell Reports* **21**, 1063–1076 (2017).

464 44. V. Epshteyn, *et al.*, UvrD facilitates DNA repair by pulling RNA polymerase
465 backwards. *Nature* **505**, 372–377 (2014).

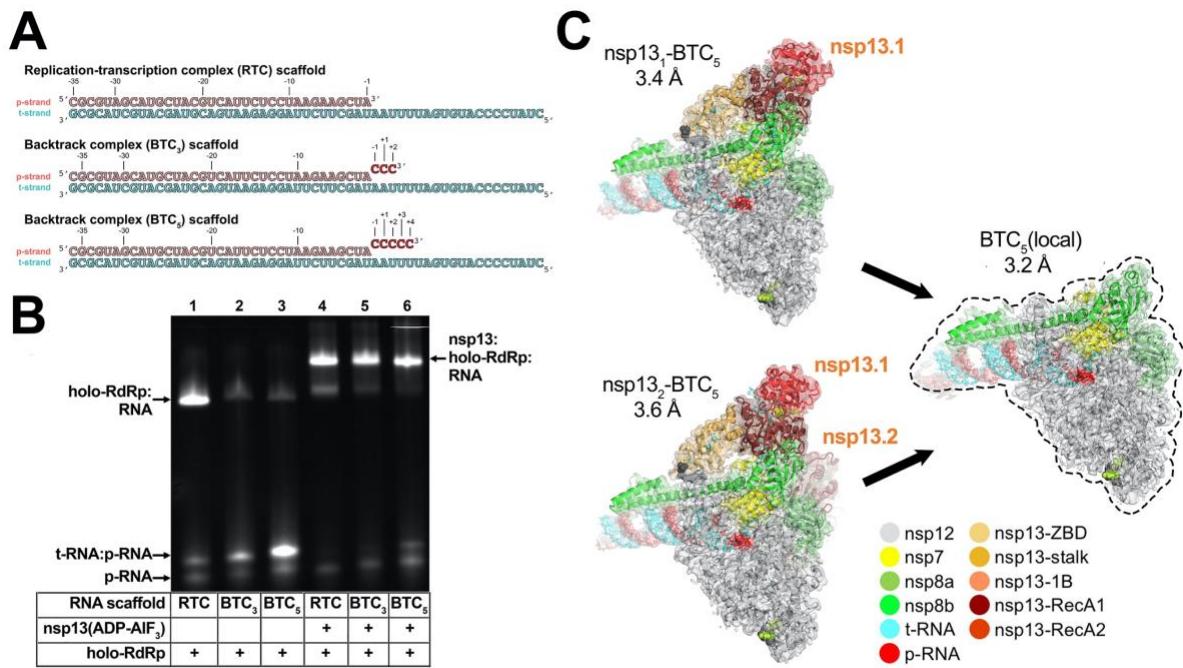
466 45. A. O. Pasternak, E. van den Born, W. J. M. Spaan, E. J. Snijder, Sequence
467 requirements for RNA strand transfer during nidovirus discontinuous subgenomic
468 RNA synthesis. *Embo J* **20**, 7220–7228 (2001).

469 46. E. D. Clercq, G. Li, Approved Antiviral Drugs over the Past 50 Years. *Clin
470 Microbiol Rev* **29**, 695–747 (2016).

471 47. G. Cardone, J. B. Heymann, A. C. Steven, One number does not fit all:
472 mapping local variations in resolution in cryo-EM reconstructions. *Journal of
473 structural biology* **184**, 226–236 (2013).

474 48. E. Jurrus, *et al.*, Improvements to the APBS biomolecular solvation software
475 suite. *Protein Sci* **27**, 112–128 (2018).

476 49. N. M. Luscombe, R. A. Laskowski, J. M. Thornton, NUCPLOT: A Program to
477 Generate Schematic Diagrams of Protein-Nucleic Acid Interactions. *Nucleic
478 Acids Res* **25**, 4940–4945 (1997).


479 50. E. C. Smith, N. R. Sexton, M. R. Denison, Thinking Outside the Triangle:
480 Replication Fidelity of the Largest RNA Viruses. *Ann Rev Virol* **1**, 111–132
481 (2014).

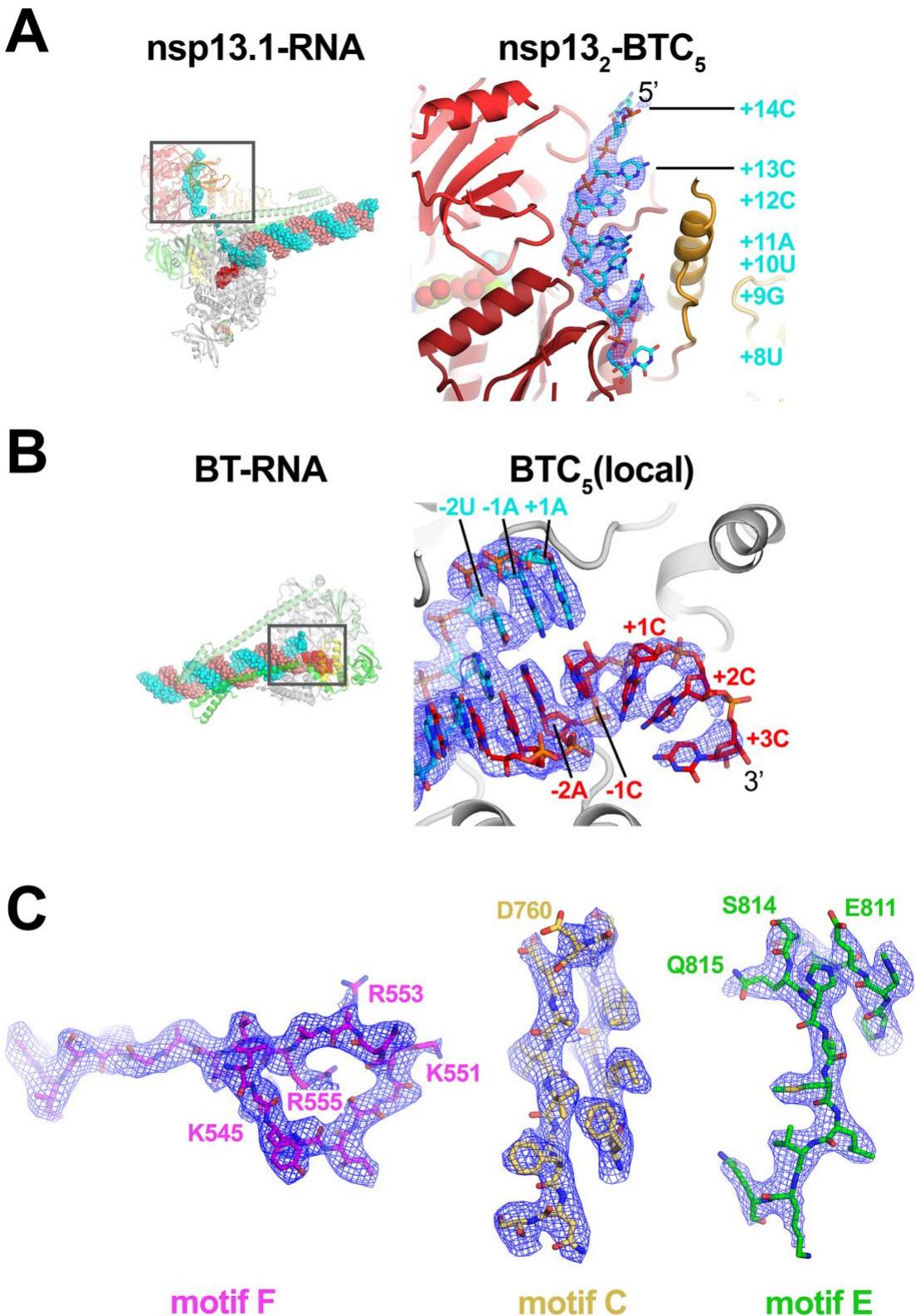
482

483

484

485 **Figures**

486 Figure 1


487 **Fig. 1. SARS-CoV-2 backtrack complex.**

488 **A. RNA scaffolds:** (*top*) replication-transcription complex (RTC) scaffold (14);
489 (*bottom*) backtrack complex scaffolds (BTC₃ and BTC₅).

490 **B.** A native gel electrophoretic mobility shift assay reveals that holo-RdRp
491 requires nsp13(ADP-AlF₃) to bind the BTC scaffolds efficiently.

492 **C.** Cryo-EM structures of SARS-CoV-2 BTCs. Shown is the transparent cryo-EM
493 density [local-resolution filtered; (47)] with the refined models superimposed
494 (Table S1). The models and density are colored according to the key.

495

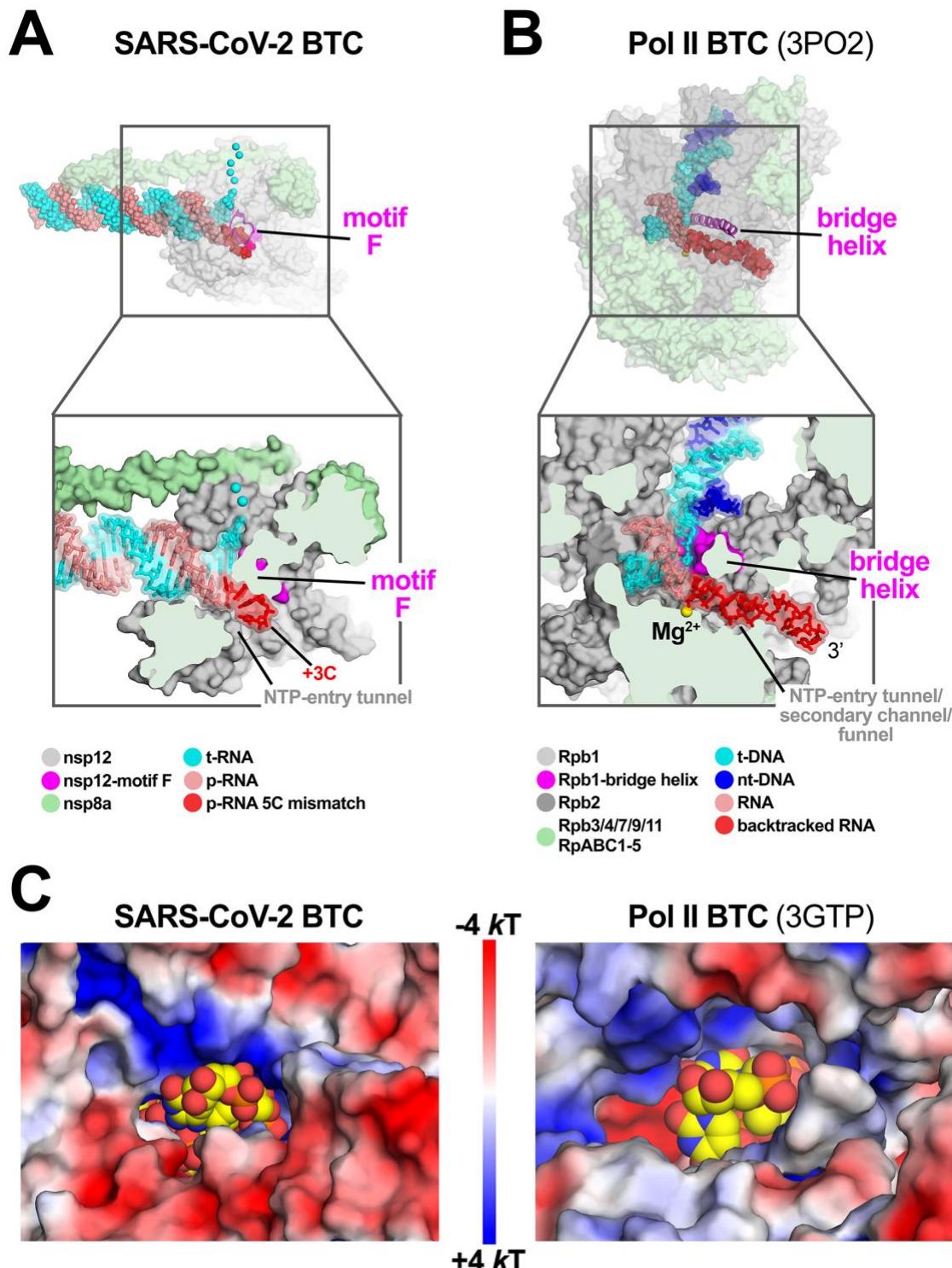
Figure 2

497 **Fig. 2. Cryo-EM density maps.**

498 **A.** (*left*) Overall view of nsp13₁-BTC₅. The boxed region is magnified on the right.

499 (*right*) Magnified view of the t-RNA segment (+14-5'-CCCAUGU-3'-+8) enclosed
500 in the nsp13.1 helicase subunit. The cryo-EM density map (from the nsp13₂-BTC
501 structure) for the RNA is shown (blue mesh).

502 **B.** (*left*) Overall view of the BTC structure. The boxed region is magnified on the
503 right.


504 (*right*) Magnified view of the region around the RdRp active site, showing the t-
505 RNA (cyan) and p-RNA (red) with the backtracked RNA segment. The cryo-EM
506 density map for the RNA [from BTC₅(local)] is shown (blue mesh).

507 **C.** BTC₅(local) cryo-EM density maps around nsp12 conserved motifs F, C, and
508 E. Selected residues are labeled.

509

510

511

Figure 3

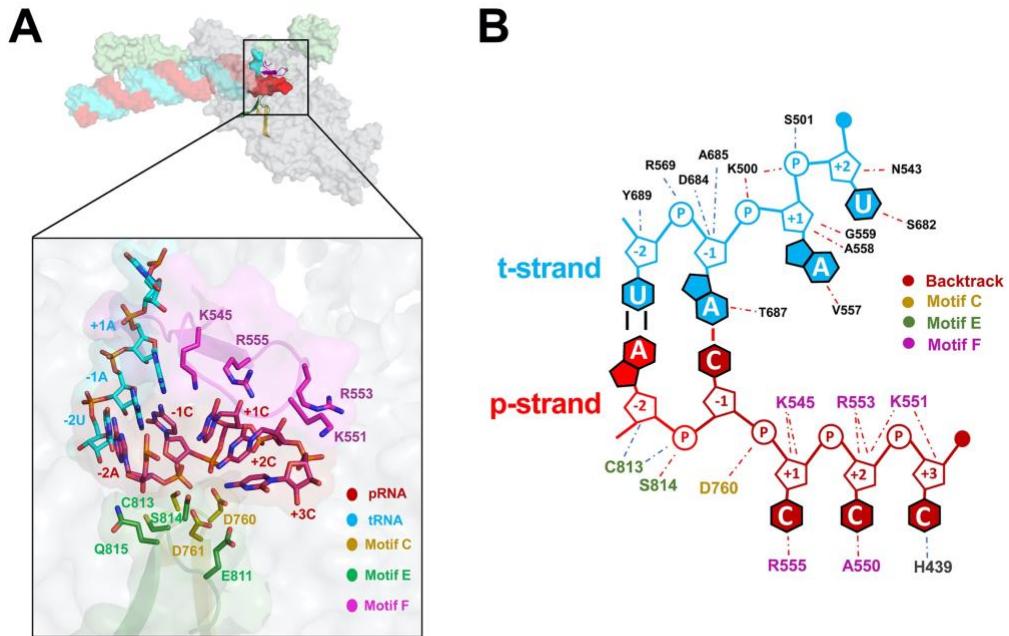
512

513 **Fig. 3. SARS-CoV-2 RdRp and DdRp BTCs.**

514 **A, B.** SARS-CoV-2 RdRp (**A**) and DdRp (**B**) BTCs.

515 (*top*) Proteins are shown as transparent molecular surfaces, nucleic acids as
516 atomic spheres. The boxed regions are magnified on the bottom.

517 (*bottom*) Magnified, cross-sectional view. Proteins are shown as molecular
518 surfaces, nucleic acids in stick format with transparent molecular surface.

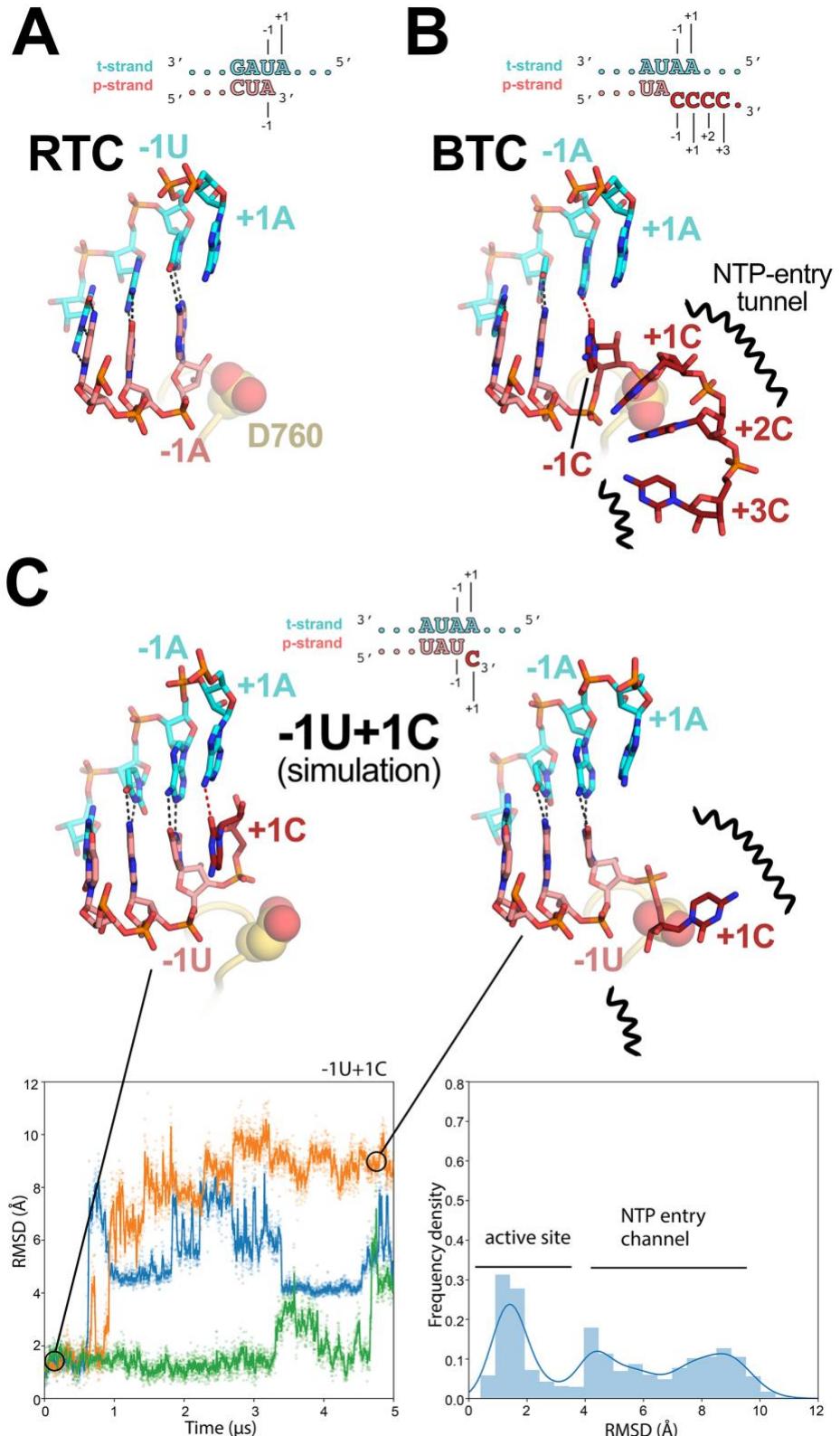

519 **A.** The SARS-CoV-2 BTC₅(local). Nsp8a and nsp12 are shown (nsp7 and nsp8b
520 are removed for clarity). Nsp12 motif F is shown as a magenta backbone ribbon
521 (*top*). Backtracked RNA (+1C to +3C of the BTC₅-scaffold; Figure 1A) extrude out
522 the NTP-entry tunnel.

523 **B.** A DdRp (*Saccharomyces cerevisiae* Pol II) BTC [PDB ID: 3PO2; (29)]. The
524 bridge helix is shown as a magenta backbone ribbon. The backtracked RNA
525 extrudes out the NTP-entry tunnel/secondary channel/funnel.

526 **C.** Views from the outside into the NTP-entry tunnels of the SARS-CoV-2 (*left*)
527 and an *S. cerevisiae* DdRp [PDB ID: 3GTP; (27) BTC. Protein surfaces are
528 colored by the electrostatic surface potential [calculated using APBS; (48)].
529 Backtracked RNA is shown as atomic spheres with yellow carbon atoms.

530

531


532 **Figure 4**

533 **Fig. 4. Protein-RNA interactions in the BTC.**

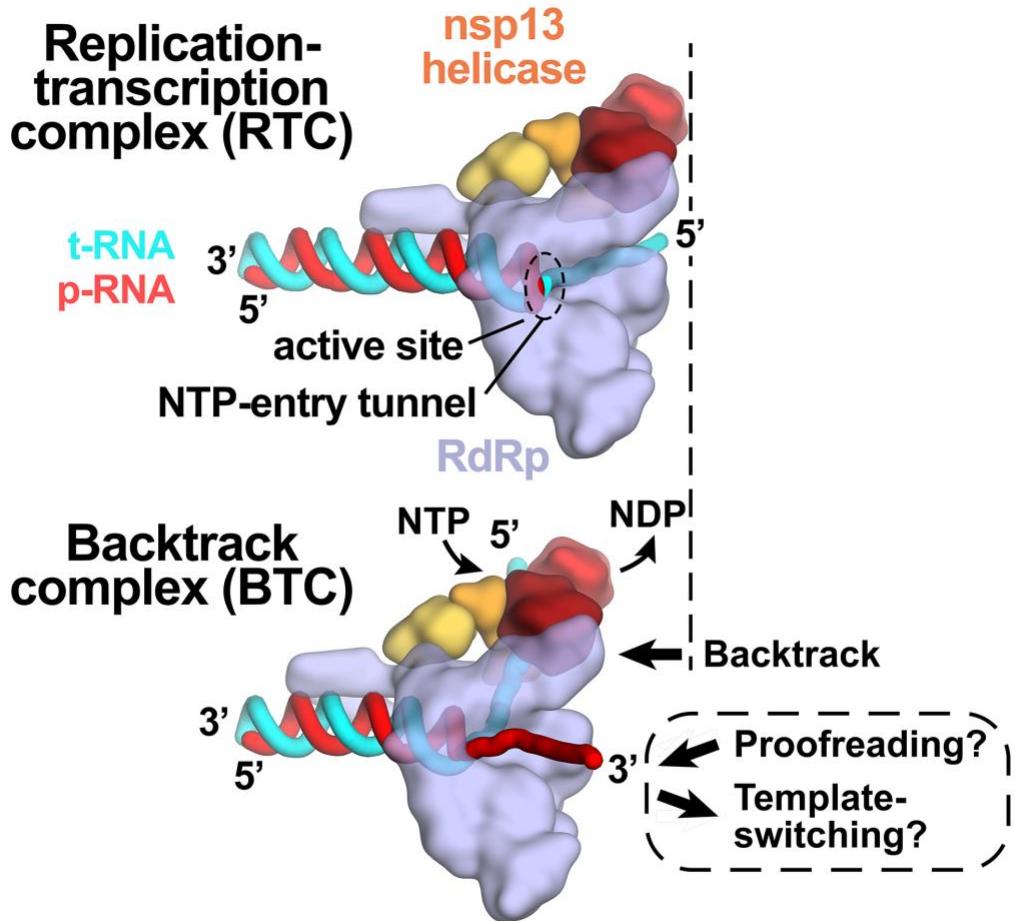
534 **A. (top)** Overall view of BTC₅(local). Proteins are shown as transparent molecular
535 surfaces, nucleic acids as atomic spheres. Nsp8a and nsp12 are shown (nsp7
536 and nsp8b are removed for clarity). Nsp12 motifs C, E, and F are shown as
537 backbone ribbons (colored according to the key on the bottom. The boxed region
538 is magnified below.

539 **(bottom)** RNA is shown from -2 to +3. Proteins are shown as transparent
540 molecular surfaces. RdRp motifs C, E, and F are shown as transparent backbone
541 ribbons (colored according to the key) with side chains of residues that approach
542 the backtracked RNA ($\leq 4.5 \text{ \AA}$) shown.

543 **B.** Schematic illustrating the same protein-RNA interactions as **(A)**. Drawn using
544 Nucplot (49).

545

546 **Fig. 5. Comparison of active-site proximal RNA in the RTC and BTC**
547 **structures, and from simulations of a mismatched nucleotide at the p-RNA**
548 **3'-end.**


549 **A-B**, Comparison of the active-site proximal RNA in the RTC [**A**; PDB ID: 6XEZ;
550 (14)], BTC₅(local) (**B**), and from selected snapshots of molecular dynamics
551 simulations of a -1U+1C complex (**C**). The schematics denote the nucleotides
552 shown in the context of the RTC- (**A**) and BTC₅-scaffolds (**B**; full scaffold
553 sequences shown in Figure 1A) or generated from the BTC₅-scaffold for the
554 simulations (**C**). Carbon atoms of the t-RNA are colored cyan, p-RNA are colored
555 salmon except in the case of mismatched C's at the 3'-end, which are colored
556 dark red. Watson-Crick base pairing hydrogen-bonds are denoted as dark gray
557 dashed lines, other hydrogen-bonds as red dashed lines. Nsp12 motif C is shown
558 as a yellow-orange backbone ribbon, and the side-chain of D760 is shown as
559 atomic spheres.

560 **A.** The RTC is in a post-translocated state, with the A-U base pair at the p-RNA
561 3'-end in the -1 position (14).

562 **B.** The BTC₅(local) RNA is translocated compared to the RTC; the base pair
563 corresponding to A-U at the 3'-end of the RTC RNA in the -1 position is in the -2
564 position of the BTC RNA. A C-A mismatch occupies the BTC -1 site. The +1, +2
565 and +3 mismatched C's trail into the RdRp NTP-entry tunnel (denoted by black
566 squiggly lines). The +4C (present in the BTC₅-scaffold; Figure 1A) is exposed to
567 solvent, disordered and not modelled.

568 **C.** Molecular dynamics simulations of the nsp13₂-BTC-₁U₁C complex. The
569 complex was simulated with 3 replicates. RMSD values plotted as a function of
570 time represent the heavy-atom RMSD of the +1C of the p-RNA compared with
571 the starting configuration (see Methods). The RMSD histograms (plotted on the
572 right) are an aggregate of all three replicates. Two structures taken from one of
573 the simulations are shown, one showing the +1C of the p-RNA in the active site
574 ($t = 0 \mu\text{s}$) and the other showing the +1C frayed into the NTP-entry tunnel
575 ($t = 4.5 \mu\text{s}$).

576

Figure 6

577

578

579 **Fig. 6. Role of backtracking in proofreading and template-switching during**
580 **sub-genomic transcription.**

581 Schematic illustrating the proposed model for backtracking of the SARS-CoV-2
582 RTC and its potential role in proofreading and template-switching during sub-
583 genomic transcription. The structural models are shown as cartoons (holo-RdRp,
584 light blue; nsp13 helicase, orange shades; RNA strands, colored tubes as
585 indicated).

586 (*top*) In the RTC, the elongating RdRp moves from left-to-right. The RdRp active
587 site holds the p-RNA 3'-end. The NTP-entry tunnel provides access from solution
588 to the RdRp active site. The downstream (5') single-stranded t-RNA is not
589 engaged with nsp13.

590 (*bottom*) In the BTC, nsp13 translocates on the downstream (5') single-stranded
591 t-RNA, pushing the RdRp backwards (right-to-left) on the RNA. This causes the
592 p-RNA to reverse-thread through the complex, with the resulting single-stranded
593 3'-fragment extruding out the NTP-entry tunnel. The exposure of the p-RNA 3'-
594 end could facilitate proofreading (9, 10, 12, 50) and also template-switching
595 during sub-genomic transcription (7, 34).

596

597 **Supplementary Information Text**

598

599 **METHODS**

600 Structural biology software was accessed through the SBGrid consortium (1).

601 **Protein expression and purification.**

602 *SARS-CoV-2 nsp12.* SARS-CoV-2 nsp12 was expressed and purified as
603 described (1). A pRSFDuet-1 plasmid expressing SARS-CoV-2 His₆-SUMO-
604 nsp12 (Addgene plasmid 159107) was transformed into *Escherichia coli* (*Eco*)
605 BL21-CodonPlus cells (Agilent). Cells were grown, followed by the addition of
606 isopropyl β-d-1-thiogalactopyranoside (IPTG) to induce protein expression
607 overnight. Cells were collected by centrifugation, resuspended and lysed in a
608 continuous-flow French press (Avestin). The lysate was cleared by centrifugation,
609 loaded onto a HiTrap Heparin HP column (Cytiva), and then eluted using a salt
610 gradient. The fractions containing nsp12 were pooled and loaded onto a HisTrap
611 HP column (Cytiva), washed, and eluted. Eluted nsp12 was dialyzed overnight in
612 the presence of His₆-Ulp1 SUMO protease. Cleaved nsp12 was passed through
613 a HisTrap HP column (Cytiva). Flow-through was collected, concentrated by
614 centrifugal filtration (Amicon), and loaded on a Superdex 200 HiLoad 16/600
615 (Cytiva) for size-exclusion chromatography. Glycerol was added to the purified
616 nsp12, aliquoted, flash frozen with liquid N₂, and stored at -80°C.

617 *SARS-CoV-2 nsp7/8.* SARS-CoV-2 nsp7/8 was expressed and purified as
618 described (1). The pCDFDuet-1 plasmid expressing SARS-CoV-2 His₆-ppx-
619 nsp7/8 (ppx is a Prescission Protease cleavage site; Addgene plasmid 159092)
620 was transformed into *Eco* BL21(DE3). Cells were grown and protein expression
621 was induced overnight by the addition of IPTG. Cells were collected by
622 centrifugation, resuspended, and lysed in a continuous-flow French press
623 (Avestin). The lysate was cleared by centrifugation, then loaded onto a HisTrap
624 HP column (Cytiva), washed, and eluted. Eluted nsp7/8 was dialyzed overnight in
625 the presence of His₆-Prescission Protease to cleave the His₆-tag. Cleaved nsp7/8
626 was passed through a HisTrap HP column (Cytiva). Flow-through was collected,
627 concentrated by centrifugal filtration (Amicon), and loaded onto a Superdex 75
628 HiLoad 16/600 (Cytiva). Glycerol was added to the purified nsp7/8, aliquoted,
629 flash frozen with liquid N₂, and stored at -80°C.

630 *SARS-CoV-2 nsp13*. SARS-CoV-2 nsp13 was expressed and purified as
631 described (1). The pet28 plasmid containing SARS-CoV-2 His₆-ppx-nsp13
632 (Addgene plasmid 159390) was transformed into *Eco* Rosetta(DE3) (Novagen).
633 Cells were grown, followed by the addition of IPTG to induce protein expression
634 overnight. Cells were collected by centrifugation, resuspended, and lysed in a
635 continuous-flow French press (Avestin). The lysate was cleared by centrifugation,
636 then loaded onto a HisTrap HP column (Cytiva), washed, and eluted. Eluted
637 nsp13 was dialyzed overnight in the presence of His₆-Prescission Protease to
638 cleave His₆-tag. Cleaved nsp13 was passed through a HisTrap HP column
639 (Cytiva). Flow-through was collected, concentrated by centrifugal filtration
640 (Amicon), and loaded onto a Superdex 200 Hiload 16/600 (Cytiva). Glycerol was
641 added to the purified nsp13, aliquoted, flash frozen with liquid N₂, and stored at -
642 80°C.

643

644 **Native electrophoretic mobility shift assays.** Nsp12 or nsp12-D760A were
645 incubated with 3-fold molar excess of nsp7/8 in transcription buffer (120 mM K-
646 acetate, 20 mM HEPES pH 8, 10 mM MgCl₂, 2 mM DTT) to assemble holo-RdRp
647 (2 μ M final). The resulting complex was incubated with 1 μ M of annealed RNA
648 scaffold (Horizon Discovery) for 5 minutes at 30°C. Nsp13 and pre-mixed ADP
649 and AlF₃ (Sigma-Aldrich) were added to a final concentration of 2 μ M and 2 mM,
650 respectively, and incubated for an additional 5 minutes at 30°C. Reactions were
651 analyzed by native gel electrophoresis on a 4.5% polyacrylamide native gel
652 (37.5:1 acrylamide:bis-acrylamide) in 1X TBE (89 mM Tris, 89 mM boric acid,
653 1 mM EDTA) at 4°C. The gel was stained with Gel-Red (Biotium).

654

655 **Native mass spectrometry (nMS) analysis.** The reconstituted sample
656 containing 4 μ M RTC and 8 μ M nsp13 incubated with 2 mM ADP-AlF₃ was
657 buffer-exchanged into 150 mM ammonium acetate, 0.01% Tween-20, pH 7.5
658 using a Zeba microspin desalting column with a 40 kDa MWCO (ThermoFisher
659 Scientific). For nMS analysis, a 2–3 μ L aliquot of the buffer-exchanged sample

660 was loaded into a gold-coated quartz capillary tip that was prepared in-house and
661 then electrosprayed into an Exactive Plus with extended mass range (EMR)
662 instrument (Thermo Fisher Scientific) with a static direct infusion nanospray
663 source (2). The MS parameters used: spray voltage, 1.2 kV; capillary
664 temperature, 150 °C; in-source dissociation, 0 V; S-lens RF level, 200; resolving
665 power, 17,500 at *m/z* of 200; AGC target, 1 x 10⁶; maximum injection time,
666 200 ms; number of microscans, 5; injection flatapole, 6 V; interflatapole, 4 V; bent
667 flatapole, 4 V; high energy collision dissociation (HCD), 200 V; ultrahigh vacuum
668 pressure, 7.2 × 10⁻¹⁰ mbar; total number of scans, at least 100. Mass calibration
669 in positive EMR mode was performed using cesium iodide. For data processing,
670 the acquired MS spectra were visualized using Thermo Xcalibur Qual Browser
671 (v. 4.2.47). MS spectra deconvolution was performed either manually or using
672 the software UniDec v. 4.2.0 (3, 4). The following parameters were used for the
673 UniDec processing: *m/z* range, 7,000 – 10,000 Th; background subtraction,
674 subtract curved at 100; smooth charge state distribution, enabled; peak shape
675 function, Gaussian; Beta Softmax distribution parameter, 20.

676 The expected masses for the component proteins based on previous nMS
677 experiments (1) include nsp7: 9,137 Da; nsp8 (N-terminal Met lost): 21,881 Da;
678 nsp13 (post-protease cleavage, has three Zn²⁺ ions coordinated with
679 9 deprotonated cysteine residues): 67,464 Da, and nsp12 (has two Zn²⁺ ions
680 coordinated with 6 deprotonated cysteine residues): 106,785 Da. The mass of
681 the assembled RNA duplex scaffold is 30,512 Da.

682 Experimental masses were reported as the average mass ± standard
683 deviation (S.D.) across all the calculated mass values within the observed charge
684 state series. Mass accuracies were calculated as the % difference between the
685 measured and expected masses relative to the expected mass. The observed
686 mass accuracies ranged from 0.016 – 0.035%.

687

688 **Preparation of SARS-CoV-2 nsp13-BTC₅ for Cryo-EM.** Purified nsp12 and
689 nsp7/8 were mixed in a 1:3 molar ratio and incubated at 22° C for 15 minutes.

690 The mixture was buffer-exchanged into cryo-EM buffer (20 mM HEPES pH 8.0,
691 150 mM K-acetate, 10 mM MgCl₂, 1 mM DTT) using Zeba desalting columns
692 (ThermoFisher Scientific) and incubated with annealed BTC₅-scaffold (Fig. 1A) in
693 a 1:1.5 molar ratio. Purified nsp13 was concentrated by centrifugal filtration
694 (Amicon) and buffer exchanged into cryo-EM buffer using Zeba desalting
695 columns. Buffer exchanged nsp13 was mixed with ADP and AlF₃ and then added
696 to nsp7/8/12/RNA scaffold at a molar ratio of 1:1 with a final concentration of
697 2 mM ADP-AlF₃. Complex was incubated for 5 minutes at 30° C and further
698 concentrated by centrifugal filtration (Amicon).

699

700 **Cryo-EM grid preparation.** Prior to grid freezing, 3-([3-
701 cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO,
702 Anatrace) was added to the sample (8 mM final), resulting in a final complex
703 concentration of 10 μM. The final buffer condition for the cryo-EM sample was
704 20 mM HEPES pH 8.0, 150 mM K-acetate, 10 mM MgCl₂, 1 mM DTT,
705 2 mM ADP-AlF₃, 8 mM CHAPSO. C-flat holey carbon grids (CF-1.2/1.3-4Au,
706 Electron Microscopy Sciences) were glow-discharged for 20 s prior to the
707 application of 3.5 μL of sample. Using a Vitrobot Mark IV (ThermoFisher
708 Scientific), grids were blotted and plunge-frozen into liquid ethane with 90%
709 chamber humidity at 4°C.

710

711 **Cryo-EM data acquisition and processing.** Structural biology software was
712 accessed through the SBGrid consortium (5). Grids were imaged using a 300 kV
713 Titan Krios (ThermoFisher Scientific) equipped with a K3 camera (Gatan) and a
714 BioQuantum imaging filter (Gatan). Images were recorded using Leginon (6) with
715 a pixel size of 1.065 Å/px (micrograph dimensions of 5,760 x 4,092 px) over a
716 nominal defocus range of -0.8 μm to -2.5 μm and 30 eV slit width. Movies were
717 recorded in "counting mode" (native K3 camera binning 2) with ~30 e-/px/s in
718 dose-fractionation mode with subframes of 50 ms over a 2.5 s exposure (50
719 frames) to give a total dose of ~66 e-/Å. Dose-fractionated movies were gain-

720 normalized, drift-corrected, summed, and dose-weighted using MotionCor2 (7).
721 The contrast transfer function (CTF) was estimated for each summed image
722 using the Patch CTF module in cryoSPARC v2.15.0 (8) Particles were picked
723 and extracted from the dose-weighted images with box size of 256 px using
724 cryoSPARC Blob Picker and Particle Extraction. The entire dataset consisted of
725 10,685 motion-corrected images with 4,961,691 particles. Particles were sorted
726 using cryoSPARC 2D classification (N=100), resulting in 2,412,034 curated
727 particles. Initial models (Ref 1: decoy 1, Ref 2: complex, Ref 3: decoy 2;
728 SI Appendix; Fig. S2) were generated using cryoSPARC *ab initio* Reconstruction
729 on a subset of 85,398 particles. Particles were further curated using Ref 1-3 as
730 3D templates for cryoSPARC Heterogeneous Refinement (N=6), resulting in the
731 following: class1 (Ref 1), 258,097 particles; class2 (Ref 1), 263,966 particles;
732 class3 (Ref 2), 668,743 particles; class4 (Ref 2), 665,480 particles; class5 (Ref
733 3), 280,933 particles; class6 (Ref 3), 274,815 particles. Particles from class3 and
734 class4 were combined and further curated with another round of Heterogeneous
735 Refinement (N=6), resulting in the following: class1 (Ref 1), 67,639 particles;
736 class2 (Ref 1), 61,097 particles; class3 (Ref 2), 553,368 particles; class4 (Ref 2),
737 554,581 particles; class5 (Ref 3), 42,114 particles; class6 (Ref 3), 55,424
738 particles. Curated particles from class3 and class4 were combined, re-extracted
739 with a box size of 320 px, and further classified using Ref 2 as a 3D template for
740 cryoSPARC Heterogeneous Refinement (N=4). Classes from this round of
741 Heterogeneous Refinement (N=4) were as follows: class1 (Ref 2), 871,163
742 particles; class2 (Ref 2), 77,769 particles; class3 (Ref 2), 61,489 particles; class4
743 (Ref 2), 64,026 particles. Particles from class1 and class2 were combined and
744 further sorted using Heterogeneous Refinement (N=4) using class maps as
745 templates, resulting in the following: class1, 134,536 particles; class2, 270,170
746 particles; class3, 294,162 particles; class4, 172,295 particles. Classification
747 revealed two unique classes: nsp13₁-BTC (class1 and class2) and nsp13₂-BTC
748 (class3 and class4). Particles within each class were further processed using
749 RELION 3.1-beta Bayesian Polishing(9, 10). Polished particles were refined
750 using cryoSPARC Non-uniform Refinement, resulting in structures with the

751 following particle counts and nominal resolutions: nsp13₁-BTC (404,706 particles;
752 3.40 Å) and nsp13₂-BTC (466,457 particles; 3.45 Å).

753 To improve the resolution of the RNA in the BTC, particles from both classes
754 were combined in a cryoSPARC Non-uniform Refinement and density
755 corresponding to nsp13 was subtracted. Subtracted particles were further refined
756 with cryoSPARC Local Refinement using a mask encompassing the BTC and a
757 fulcrum point defined on the backtracked RNA. This map, BTC₅(local), contained
758 871,163 particles with a nominal resolution of 3.23 Å.

759 To improve the density of nsp13.2 in the nsp13₂-BTC map, particles were
760 subtracted using a mask defined around nsp13.2, leaving residual signal for only
761 nsp13.2. Subtracted particles were classified (N=4) in RELION 3.1 beta using a
762 mask around nsp13.2, resulting in the following classes: class1, 71,607 particles;
763 class2, 163,540 particles; class3, 176,461 particles; class4, 54,849 particles.
764 Subtracted particles in class1 and class2 were combined and reverted back to
765 the original particles, followed by refinement using cryoSPARC Non-uniform
766 Refinement. The resulting map of nsp13₂-BTC contains 235,147 particles with
767 nominal resolution of 3.59 Å. Local resolution calculations were generated using
768 blocres and blocfilt from the Bsoft package (11).

769

770 **Model building and refinement.** Initial models were derived from PDB: 6XEZ
771 (1). The models were manually fit into the cryo-EM density maps using Chimera
772 (12) and rigid-body and real-space refined using Phenix real_space_refine (13).
773 For real-space refinement, rigid body refinement was followed by all-atom and B-
774 factor refinement with Ramachandran and secondary structure restraints. Models
775 were inspected and modified in Coot (14).

776

777 **4-thiouridine crosslinking.** Nsp12 or nsp12-D760A were incubated with 3-fold
778 molar excess of nsp7/8 to assemble holo-RdRp (2 μM final) in transcription
779 buffer. The resulting holo-RdRp was added to a modified RNA scaffold

780 (SI Appendix; Fig. S5A) containing a photoactivable 4-thiouridine base (Horizon
781 Discovery) which was 5'-labelled by T4-polynucleotide kinase (New England
782 Biolabs) with γ -³²P-ATP (Perkin-Elmer). The holo-RdRp/RNA complex was left to
783 incubate for 5 minutes at 30°C in the dark. Nsp13 and ATP were added to a final
784 concentration of 2 uM and 2 mM, respectively, and incubated for five minutes at
785 30°C in the dark. The reaction mixture was transferred to a Parafilm covered
786 aluminum block at 4°C and irradiated with a 365-nm handheld UV lamp.
787 Reactions were quenched with LDS sample loading buffer (ThermoFisher
788 Scientific) and analyzed by gel electrophoresis on a NuPAGE 4-12% Bis-Tris gel
789 (ThermoFisher) at 150 Volts for 1 hour and visualized by autoradioography.

790

791 **Molecular dynamics simulations**

792 *General simulation setup and parameterization.* Proteins, ADP, and ions were
793 parameterized with the DES-Amber SF1.0 force field (15). RNAs were
794 parameterized with the Amber ff14 RNA force field (16) with modified
795 electrostatic, van der Waals, and torsional parameters to more accurately
796 reproduce the energetics of nucleobase stacking (17). The systems were
797 solvated with water parameterized with the TIP4P-D water model (18) and
798 neutralized with 150 mM NaCl buffer. The systems each contained ~887,000
799 atoms in a 190×190×190 Å cubic box.

800 Systems were first equilibrated on GPU Desmond using a mixed NVT/NPT
801 schedule (19), followed by a 1 μ s relaxation simulation on Anton, a special-
802 purpose machine for molecular dynamics simulations (20). All production
803 simulations were performed on Anton and initiated from the last frame of the
804 relaxation simulation. Production simulations were performed in the NPT
805 ensemble at 310 K using the Martyna-Tobias-Klein barostat (21). The simulation
806 time step was 2.5 fs, and a modified r-RESPA integrator (22, 23) was used in
807 which long-range electrostatic interactions were evaluated every three time
808 steps. Electrostatic forces were calculated using the *u*-series method (24). A 9-Å
809 cutoff was applied for the van der Waals calculations.

810 *System preparation.* The nsp13₂-BTC-_{1U+1C} and the nsp13₂-BTC-_{1U+1U} complexes
811 were prepared from the cryo-EM structure of the nsp13₂-BTC₅. AlF₃ and
812 CHAPSO were removed. Cytosines at the +2 and +3 positions of the p-RNA
813 were removed, and the cytosine at -1 was mutated to uracil. The resulting p-
814 RNA had a matched -1U and a mismatched +1C in nsp13₂-BTC-_{1U+1C}, and a
815 matched -1U and +1U in nsp13₂-BTC-_{1U+1U}. Missing loops and termini in
816 proteins were capped with ACE/NME capping groups. The two complexes were
817 prepared for simulation using the Protein Preparation Wizard in Schrödinger
818 Maestro. After a 1 μ s relaxation simulation of the nsp13₂-BTC-_{1U+1C} complex, the
819 -1U of the p-RNA formed a Watson-Crick base pair with the -1A in the t-RNA,
820 and the +1C of p-RNA formed a non-Watson-Crick C-A hydrogen bond with the
821 +1A of the t-RNA in the active site. After a 1 μ s relaxation simulation of the
822 nsp13₂-BTC-_{1U+1U} complex, the -1U and +1U of the p-RNA formed Watson-Crick
823 base pairs with the -1A and +1A of the t-RNA respectively.

824 *Simulation analysis.* All simulations were visually inspected using the in-house
825 visualization software Firefly. The average root-mean-square deviation (RMSD)
826 was calculated for +1C (or +1U) of the p-RNA between the last frame of the 1 μ s
827 relaxation simulation and instantaneous structures from the trajectories, aligned
828 on the entire nps12 module.

829

830 **Quantification and statistical analysis.** The nMS spectra were visualized using
831 Thermo Xcalibur Qual Browser (versions 3.0.63 and 4.2.27), deconvolved using
832 UniDec versions 3.2 and 4.1 (3, 4) and plotted using the m/z software
833 (Proteometrics LLC, New York, NY). Experimental masses (SI Appendix;
834 Fig. S1B and C) were reported as the average mass \pm standard deviation across
835 all the calculated mass values obtained within the observed charge state
836 distribution.

837 The local resolution of the cryo-EM maps (SI Appendix; Fig. S3B-D) was
838 estimated using blocres (11) with the following parameters: box size 15, sampling
839 1.1, and cutoff 0.5. Directional 3D FSC (SI Appendix; Fig. S3H-J) were calculated

840 by 3DFSC (25). The quantification and statistical analyses for model refinement
841 and validation were generated using MolProbity (26) and PHENIX (13).

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861 **Table S1. Cryo-EM data collection, refinement, and validation statistics.**

862

nsp7/8/12/13/BTC_scaffold/ADP-AlF₃/CHAPSO

Sample ID	nsp13 ₁ -BTC	nsp13 ₂ -BTC	BTC (local)
EMDB	EMD-23007	EMD-23008	EMD-23009
PDB	7KRN	7KRO	7KRP

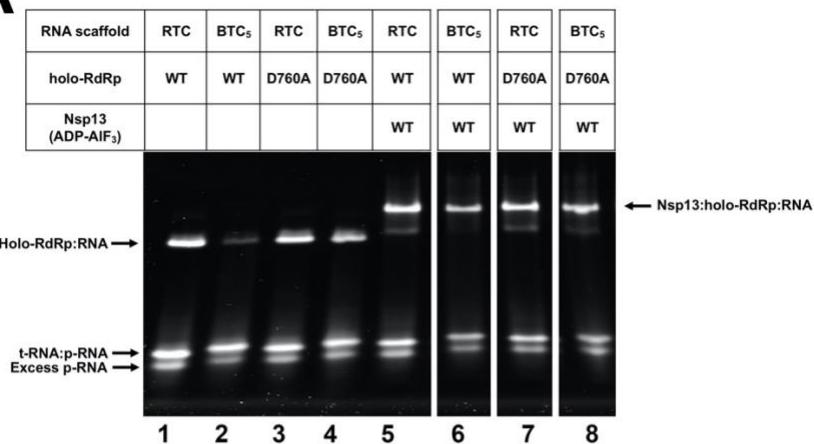
Data collection and processing

Microscope	TFS Titan Krios		
Voltage (kV)	300		
Detector	Gatan K3 Camera		
Electron exposure (e ⁻ /Å ²)	66		
Defocus range (μm)	-0.8 to -2.5		
Data collection mode	Counting Mode		
Nominal Magnification	81,000x		
Pixel size (Å)	1.065		
Symmetry imposed	C1		
Initial particle images (no.)	4,961,691		
Final particle images (no.)	404,706	235,147	871,163
Map resolution (Å) - FSC threshold 0.143	3.40	3.59	3.23
Map resolution range (Å)	2.5-5.0	2.5-5.0	2.5-5.1

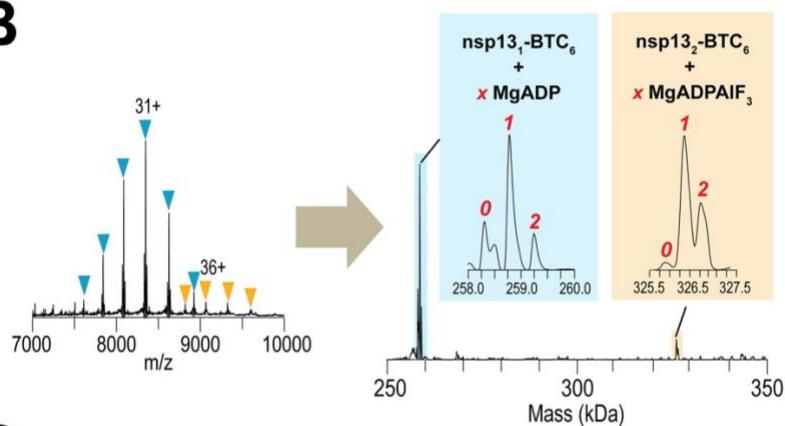
Refinement

Initial model used (PDB code)	6XEZ	6XEZ	6XEZ
Map sharpening B factor (Å ²)	-139.6	-127.6	-103.9

Model composition			
Non-hydrogen atoms	17351	21988	12561
Protein residues	1963	2553	1373
Nucleic acid residues	80	80	73
Ligands	5 Zn ²⁺ , 2 Mg ²⁺ , 3 CHAPSO, 2 ADP, 1 AlF ₃	8 Zn ²⁺ , 3 Mg ²⁺ , 3 CHAPSO, 3 ADP, 2 AlF ₃	2 Zn ²⁺ , 1 Mg ²⁺ , 3 CHAPSO, 1 ADP
B factors (Å ²)			
Protein	45.65	74.56	38.31
Nucleic acid	128.79	163.6	140.77
Ligands	59.03	78.99	46.55
R.m.s. deviations			
Bond lengths (Å)	0.007	0.007	0.004
Bond angles (°)	0.711	0.735	0.609
Validation			
MolProbity score	2.66	2.68	1.97
Clashscore	9.18	8.96	6.12
Poor rotamers (%)	7.54	9.4	4.18
Ramachandran plot			
Favored (%)	91.4	92.76	97.07
Allowed (%)	8.6	6.93	2.93
Disallowed (%)	0	0.31	0


863

864


865 **SUPPLEMENTAL FIGURES**

866

A

B

C

Mass assignments from nMS analysis of BTC₆ incubated with nsp13 and MgADPAIF₃

Protein Assembly	Measured Mass \pm SD (Da)*	Expected Mass (Da)	Δ Mass (Da)	% Mass Error
nsp13 ₁ -BTC ₆	258,307 \pm 2	258,264	42	0.02
nsp13 ₁ -BTC ₆ + 1 MgADP	258,782 \pm 3	258,716	66	0.03
nsp13 ₁ -BTC ₆ + 2 MgADP	259,246 \pm 4	259,167	78	0.03
nsp13 ₂ -BTC ₆	325,844 \pm 34	325,729	116	0.04
nsp13 ₂ -BTC ₆ + 1 MgADPAIF ₃	326,342 \pm 18	326,264	78	0.02
nsp13 ₂ -BTC ₆ + 2 MgADPAIF ₃	326,776 \pm 17	326,716	60	0.02

* Calculated from the average and S.D. of all the measured masses across the charge-state distribution ($n \geq 4$).

Figure S1

867

868 **Fig. S1. Native gel electrophoresis mobility shift assay and nMS analysis of the**
869 **BTC.**

870 **A.** A native gel electrophoretic mobility shift assay reveals that wt-holo-RdRp requires
871 nsp13(ADP-AlF₃) to bind the BTC₅-scaffold efficiently (compare lanes 1, 2, and 6) but
872 holo-RdRp with nsp12-D760A does not require nsp13 (lane 4).

873 **B.** The nMS spectrum and the deconvolved mass spectrum showing assembly of stable
874 nsp13-BTC₆ complexes. The peak for the nsp13₂-BTC₆ assembly is present at about
875 ~9% intensity relative to the predominant peak from nsp13₁-BTC₆.

876 **C.** Mass assignments of the deconvolved peaks from the nMS analysis.

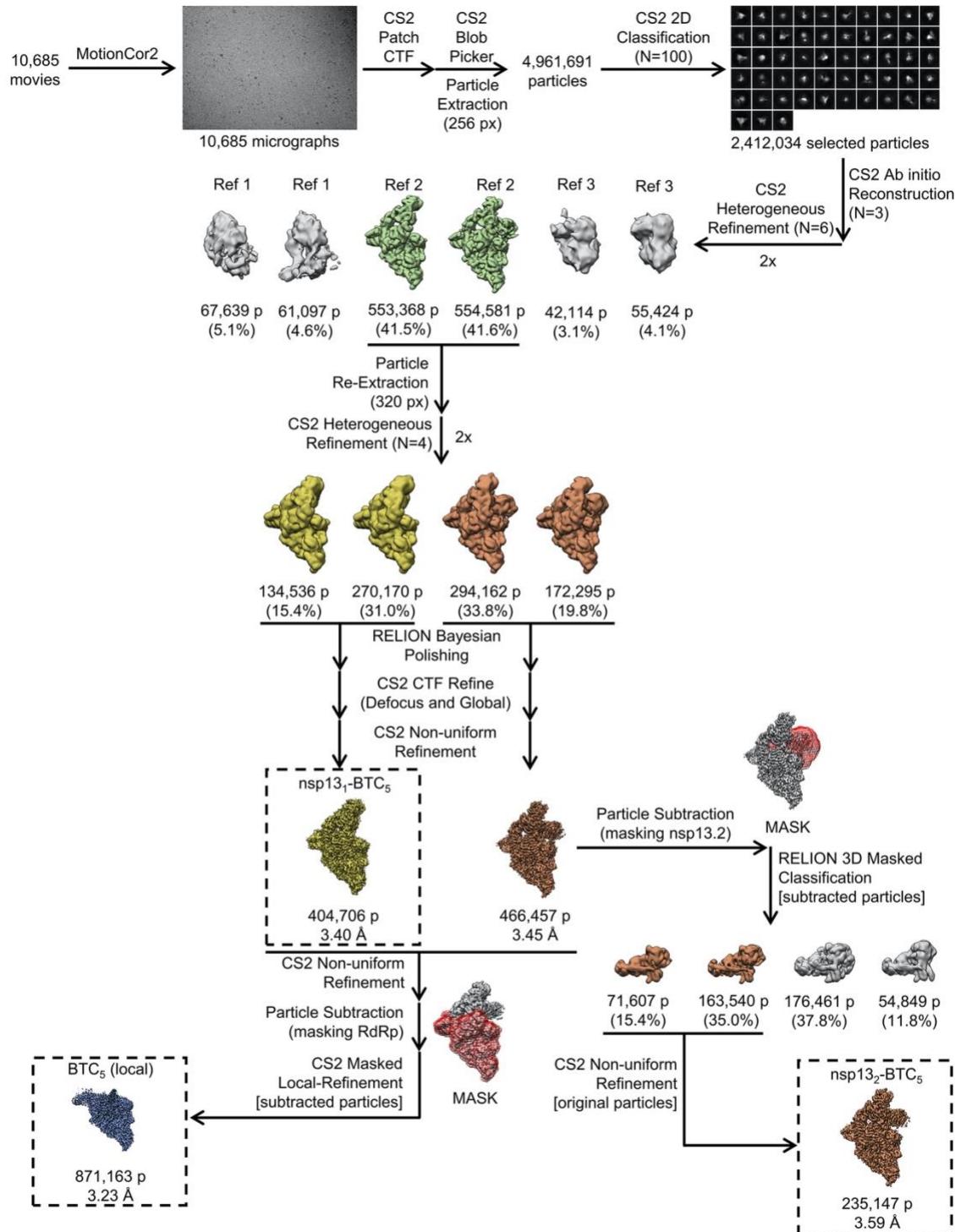
877

878

879

880

881


882

883

884

885

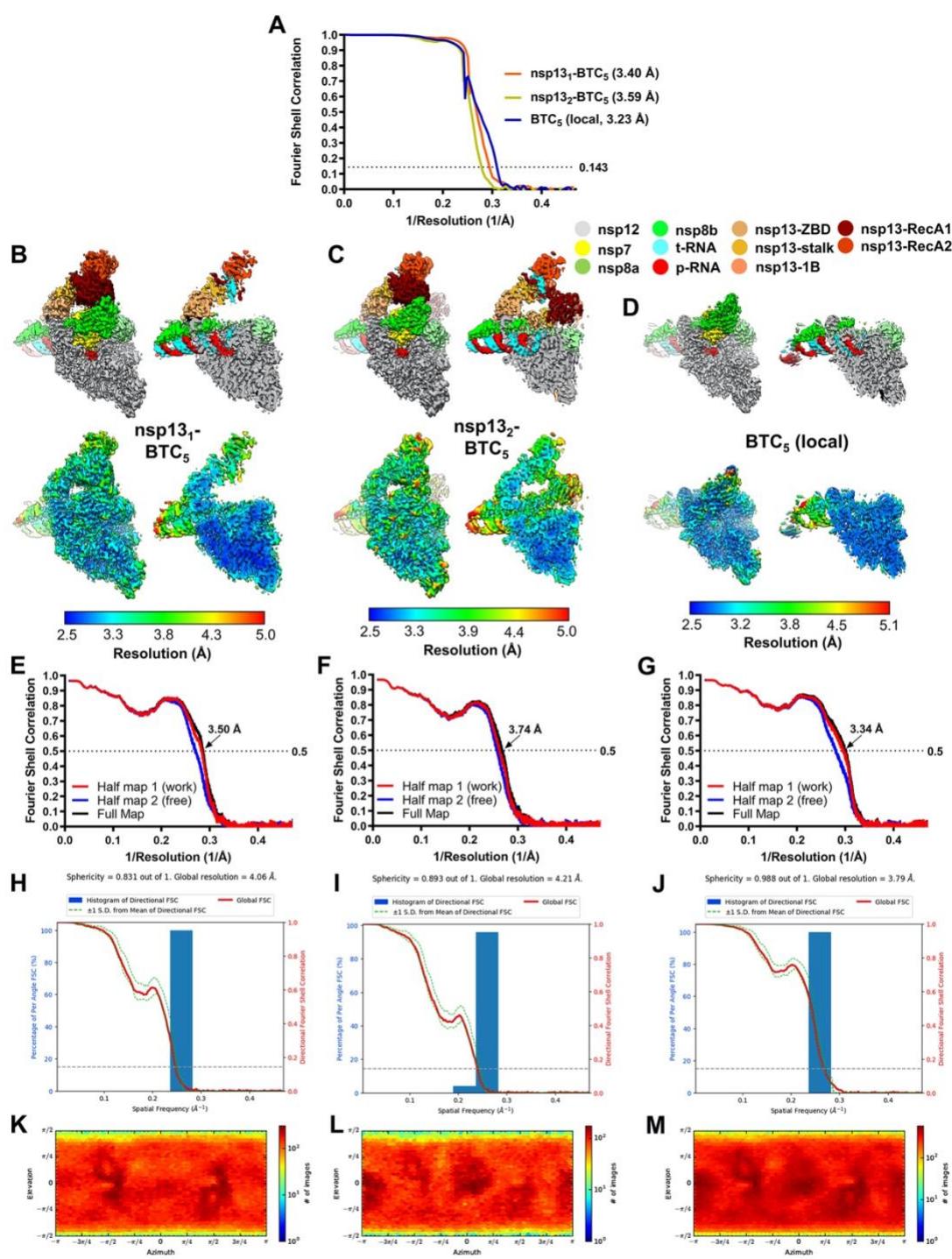

886

Figure S2

887

888 **Fig. S2. Cryo-EM processing pipeline.**

Figure S3

891 **Fig. S3. Cryo-EM analysis.**

892 **A.** Gold-standard FSC plots for nsp13₁-BTC₅, nsp13₂-BTC₅, and BTC₅(local), calculated
893 by comparing two independently determined half-maps from cryoSPARC (8). The
894 dotted line represents the 0.143 FSC cutoff.

895 **B-D.** Cryo-EM reconstructions filtered by local resolution(11). The view on the right is a
896 cross-section.

897 (*top*) Colored by subunit according to the color key.

898 (*bottom*) Color by local resolution (key on the bottom).

899 **B.** Nsp13₁-BTC₅.

900 **C.** Nsp13₂-BTC₅.

901 **D.** BTC₅(local).

902 **E – G.** FSC calculated between the refined structures and the half map used for
903 refinement (work, red), the other half map (free, blue), and the full map (black).

904 **E.** Nsp13₁-BTC₅.

905 **F.** Nsp13₂-BTC₅.

906 **G.** BTC₅(local).

907 **H - J,** Directional 3D Fourier shell correlation plots, calculated by 3DFSC(25).

908 **H.** Nsp13₁-BTC₅.

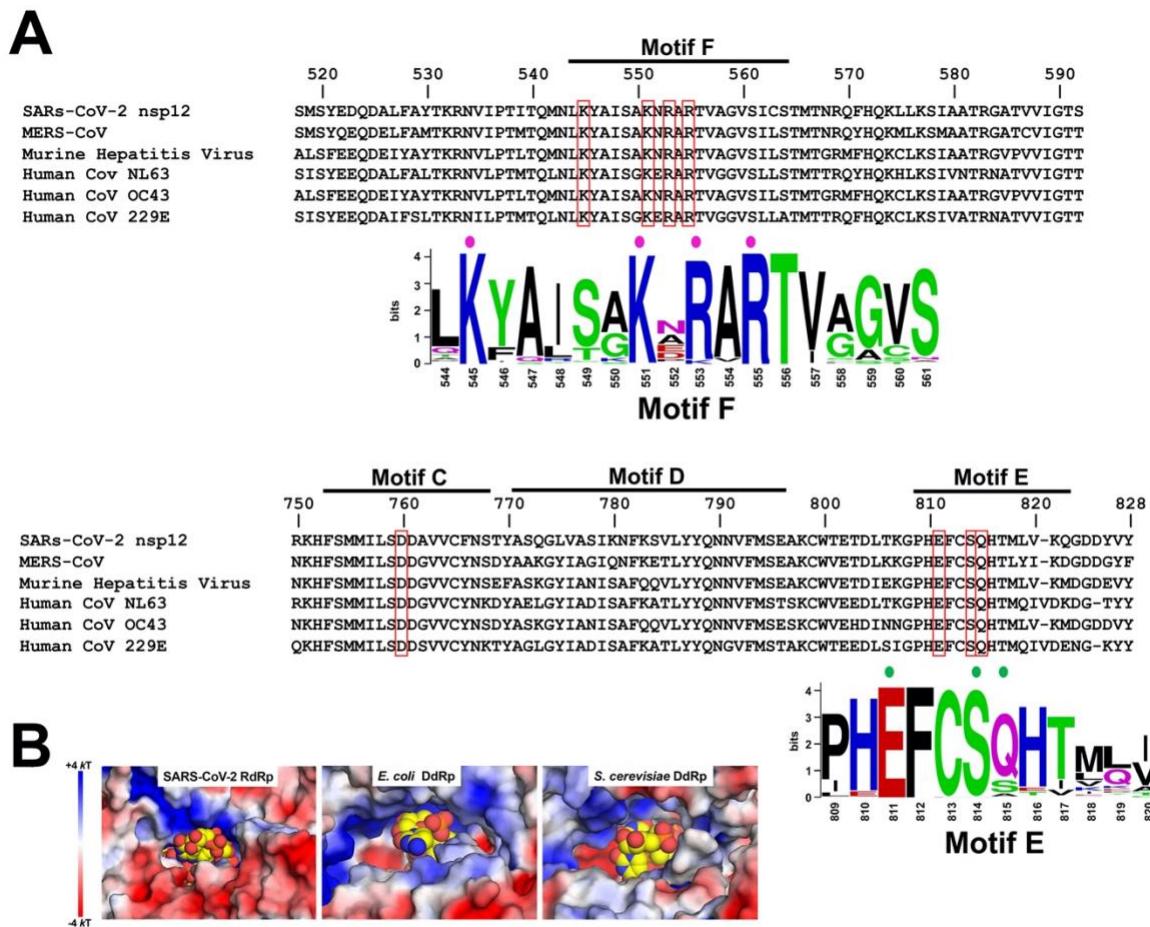
909 **I.** Nsp13₂-BTC₅.

910 **J.** BTC₅(local).

911 **K – M.** Particle angular distribution plots calculated in cryoSPARC. Scale shows the
912 number of particles assigned to a particular angular bin. Blue, a low number of particles;
913 red, a high number of particles.

914 **K.** Nsp13₁-BTC₅.

915 **L.** Nsp13₂-BTC₅.


916 **M.** BTC₅(local).

917

918

919

920

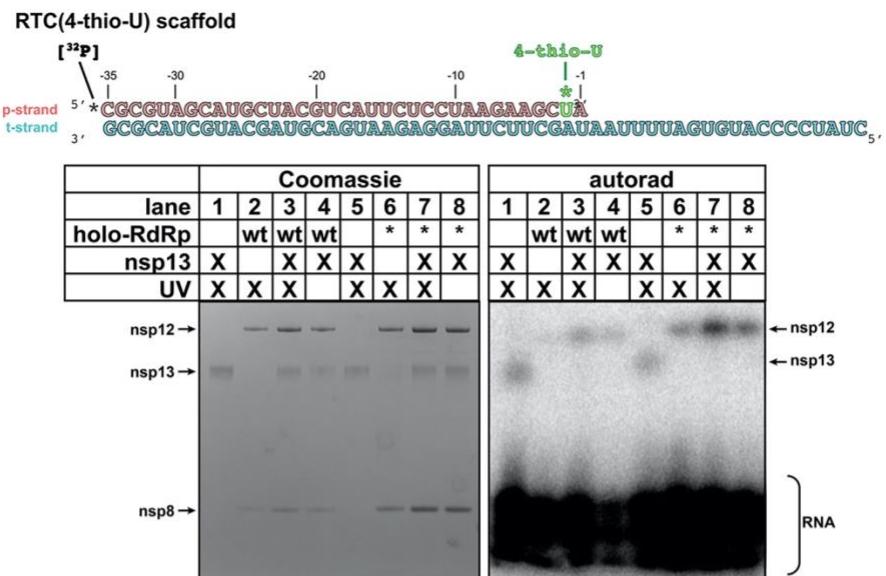
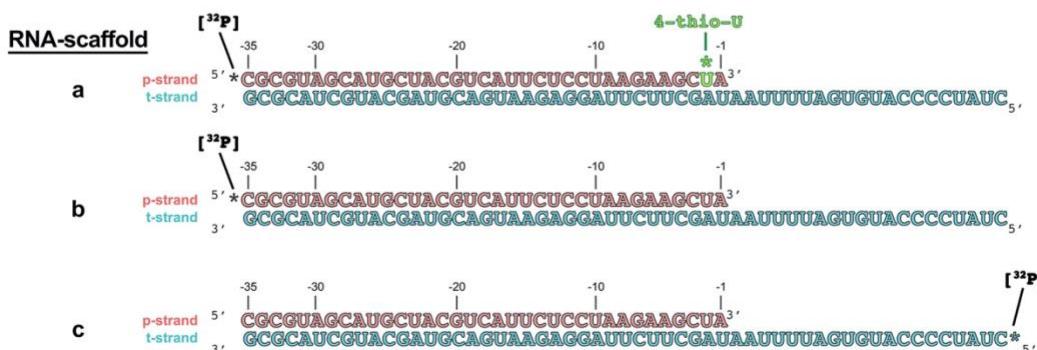
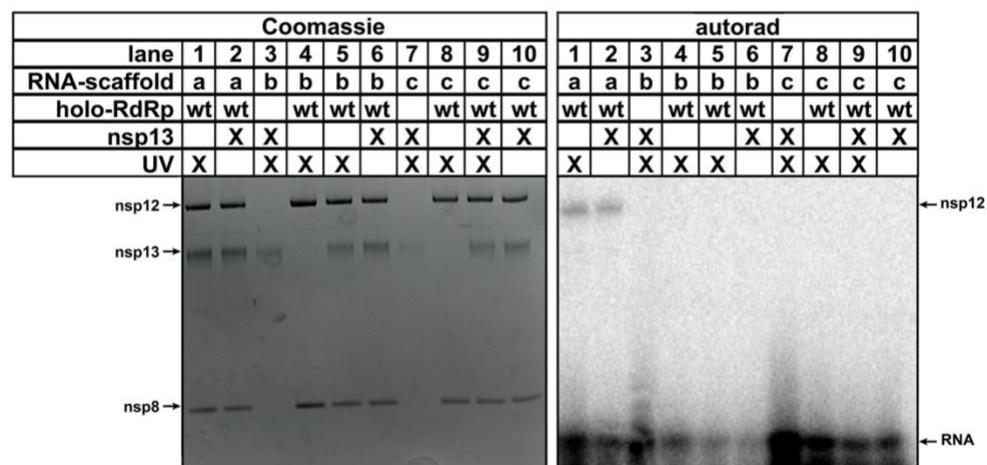

Figure S4

Fig. S4. Sequence conservation of nsp12 homologs and NTP-entry tunnel environment.

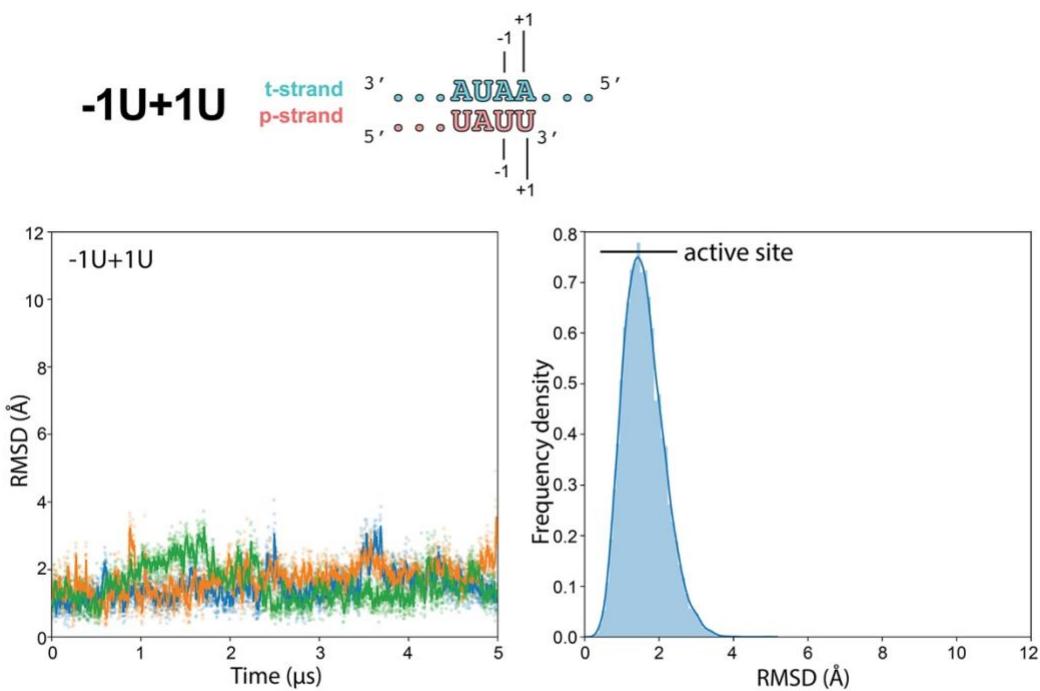


A. Sequence alignment of nsp12 homologs from six pathogenic and model CoV family members, covering RdRp motifs (27) (motifs F, C, D, and E denoted at the top of the sequence alignment) architecturally important for the NTP-entry tunnel. Selected residues discussed in the text are highlighted (red outlines). Sequence logos (28) for motif F and motif E are shown, with residues that interact with the backtracked RNA highlighted (colored dots above; see Figure 4). The sequence logos were generated from an alignment of 97 RdRp sequences from α -, β -, γ -, and δ -CoVs (Data S1).

B. Views from the outside into the NTP-entry tunnels of the SARS-CoV-2 BTC (left), an *E. coli* DdRp BTC [PDB ID: 6RI9; (29)] and an *S. cerevisiae* DdRp BTC [PDB ID: 3GTP; (30)]. Protein surfaces are colored by the electrostatic surface potential [calculated using APBS; (31)]. Backtracked RNA is shown as atomic spheres with yellow carbon atoms.

A

B

Figure S5



937

938 **Fig. S5. 4-thio-U crosslinking analysis.**

939 **A. Protein-RNA crosslinking analysis:** The 5'-[³²P]-labelled RTC(4-thio-U)-scaffold and
940 the indicated proteins were incubated along with 2 mM ATP (present in every lane),
941 exposed to UV as indicated, then analyzed by SDS polyacrylamide gel electrophoresis
942 and autoradiography. The positions of nsp8, nsp12, and nsp13 bands are indicated.
943 Lanes 1 and 5, containing nsp13 only, are identical controls indicating uniform UV
944 exposure across the samples. Holo-RdRp(*) denotes the nsp12-D760A substitution that
945 facilitates backtracking (see Figure S1A). The two panels show the same SDS
946 polyacrylamide gel (left panel, Coomassie stained; right panel, visualized by
947 autoradiography).

948 **B. Protein-RNA crosslinks are specific.** Lanes 1, 2; Analysis using the 5'-[³²P]-RTC(4-
949 thio-U)-scaffold (RNA-scaffold 'a' shown on the bottom). Crosslinking to nsp12 serves
950 as a positive control for the crosslinking reaction. Lanes 3-6; Analysis using RNA-
951 scaffold 'b' (RTC-scaffold with 5'-[³²P]-labelled p-RNA). Lanes 7-10: Analysis using
952 RNA-scaffold 'c' (RTC-scaffold with 5'-[³²P]-labelled t-RNA). The complete absence of
953 protein-RNA crosslinks in lanes 3-10 indicates that the observed protein-RNA crosslinks
954 arise from the 4-thio-U site-specifically incorporated in the p-RNA of the RTC(4-thio-U)-
955 scaffold.

956
957

Figure S6

958
959

960 **Fig. S6. Molecular dynamics simulations of nsp13₂-BTC_{1U+1C} vs.**

961 **nsp13₂-BTC-_{1U+1U}.**

962 Molecular dynamics simulations of the nsp13₂-BTC-_{1U+1C} (*top*) and nsp13₂-BTC-_{1U+1U} (*bottom*) complexes. The schematics illustrate the active-site proximal nucleotides in 963 each modeled complex. Each complex was simulated with 3 replicates. RMSD values 964 plotted as a function of time represent the heavy-atom RMSD of the +1 nucleotide of the 965 p-RNA (+1C for nsp13₂-BTC-_{1U+1C} or matched +1U for nsp13₂-BTC-_{1U+1U}) compared with 966 the starting configuration (see Methods). The RMSD histograms (plotted on the right) 967 are aggregates of all 3 replicates.

969 (*top*) Nsp13₂-BTC-_{1U+1C}. As shown in Figure 5C, the mismatched p-RNA +1C spends 970 about 60% of the time frayed from the t-RNA +1A and near or in the NTP-entry tunnel 971 (RMSD \geq \sim 3.5 Å).

972 (*bottom*) Nsp13₂-BTC-_{1U+1U}. With the p-RNA +1U matched with the t-RNA +1A for 973 Watson-Crick base pairing, the p-RNA +1U does not fray and spends all of its time in 974 the vicinity of the RdRp active site and base paired with the t-RNA.

975

976

977

978

979

980

981

982

983

984

985

986 **SUPPLEMENTAL DATA FILES**

987

988 **Data File S1.** Sequence alignment (Clustal format) of α - and β -CoV nsp12 sequences.

989

990

991

992

993

994 **SI References**

995

996 1. J. Chen, *et al.*, Structural basis for helicase-polymerase coupling in the SARS-CoV-2
997 replication-transcription complex. *Cell* **182**, 1560–1573.e13 (2020).

998 2. P. D. B. Olinares, B. T. Chait, Methods in Molecular Biology. *Methods Mol Biology*
999 *Clifton N J* **2062**, 357–382 (2019).

1000 3. D. J. Reid, *et al.*, High-Throughput Deconvolution of Native Mass Spectra. *J Am Soc*
1001 *Mass Spectrom* **30**, 118–127 (2019).

1002 4. M. T. Marty, *et al.*, Bayesian deconvolution of mass and ion mobility spectra: from
1003 binary interactions to polydisperse ensembles. *Analytical chemistry* **87**, 4370–4376
1004 (2015).

1005 5. A. Morin, *et al.*, Collaboration gets the most out of software. *eLife* **2**, e01456 (2013).

1006 6. C. Suloway, *et al.*, Automated molecular microscopy: the new Leginon system.
1007 *Journal of structural biology* **151**, 41–60 (2005).

1008 7. S. Q. Zheng, *et al.*, MotionCor2: anisotropic correction of beam-induced motion for
1009 improved cryo-electron microscopy. *Nature methods* **14**, 331–332 (2017).

1010 8. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: algorithms for
1011 rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290–296 (2017).

1012 9. S. H. W. Scheres, RELION: implementation of a Bayesian approach to cryo-EM
1013 structure determination. *Journal of structural biology* **180**, 519–530 (2012).

1014 10. J. Zivanov, *et al.*, New tools for automated high-resolution cryo-EM structure
1015 determination in RELION-3. *eLife* **7** (2018).

1016 11. G. Cardone, J. B. Heymann, A. C. Steven, One number does not fit all: mapping
1017 local variations in resolution in cryo-EM reconstructions. *Journal of structural biology*
1018 **184**, 226–236 (2013).

1019 12. E. F. Pettersen, *et al.*, UCSF Chimera--a visualization system for exploratory
1020 research and analysis. *Journal of computational chemistry* **25**, 1605–1612 (2004).

1021 13. P. D. Adams, *et al.*, PHENIX: a comprehensive Python-based system for
1022 macromolecular structure solution. *Acta Crystallographica Section D Biological
1023 Crystallography* **66**, 213–221 (2010).

1024 14. P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. *Acta
1025 Crystallographica Section D Biological Crystallography* **60**, 2126–2132 (2004).

1026 15. S. Piana, P. Robustelli, D. Tan, S. Chen, D. E. Shaw, Development of a Force Field
1027 for the Simulation of Single-Chain Proteins and Protein–Protein Complexes. *J Chem
1028 Theory Comput* **16**, 2494–2507 (2020).

1029 16. J. A. Maier, *et al.*, ff14SB: Improving the Accuracy of Protein Side Chain and
1030 Backbone Parameters from ff99SB. *J Chem Theory Comput* **11**, 3696–3713.

1031 17. D. Tan, S. Piana, R. M. Dirks, D. E. Shaw, RNA force field with accuracy
1032 comparable to state-of-the-art protein force fields. *Proc National Acad Sci* **115**,
1033 201713027 (2018).

1034 18. S. Piana, A. G. Donchev, P. Robustelli, D. E. Shaw, Water Dispersion Interactions
1035 Strongly Influence Simulated Structural Properties of Disordered Protein States. *J Phys
1036 Chem B* **119**, 5113–5123 (2015).

1037 19. K. J. Bowers, *et al.*, Scalable Algorithms for Molecular Dynamics Simulations on
1038 Commodity Clusters. *Acm Ieee Sc 2006 Conf Sc'06*, 43–43 (2006).

1039 20. D. E. Shaw, *et al.*, Anton 2: Raising the Bar for Performance and Programmability in
1040 a Special-Purpose Molecular Dynamics Supercomputer. *Sc14 Int Conf High Perform
1041 Comput Netw Storage Analysis*, 41–53 (2014).

1042 21. G. J. Martyna, D. J. Tobias, M. L. Klein, Constant pressure molecular dynamics
1043 algorithms. *J Chem Phys* **101**, 4177–4189 (1994).

1044 22. C. Predescu, *et al.*, Computationally efficient molecular dynamics integrators with
1045 improved sampling accuracy. *Mol Phys* **110**, 967–983 (2012).

1046 23. M. Tuckerman, B. J. Berne, G. J. Martyna, Reversible multiple time scale molecular
1047 dynamics. *J Chem Phys* **97**, 1990–2001 (1992).

1048 24. C. Predescu, *et al.*, The u -series: A separable decomposition for electrostatics
1049 computation with improved accuracy. *J Chem Phys* **152**, 084113 (2020).

1050 25. Y. Z. Tan, *et al.*, Addressing preferred specimen orientation in single-particle cryo-
1051 EM through tilting. *Nature methods* **14**, 793–796 (2017).

1052 26. V. B. Chen, *et al.*, MolProbity: all-atom structure validation for macromolecular
1053 crystallography. *Acta Crystallographica Section D Biological Crystallography* **66**, 12–21
1054 (2010).

1055 27. A. J. W. te Velthuis, Common and unique features of viral RNA-dependent
1056 polymerases. *Cell Mol Life Sci Cmls* **71**, 4403–20 (2014).

1057 28. T. D. Schneider, R. M. Stephens, Sequence logos: a new way to display consensus
1058 sequences. *Nucleic Acids Research* **18**, 6097–6100 (1990).

1059 29. M. Abdelkareem, *et al.*, Structural Basis of Transcription: RNA Polymerase
1060 Backtracking and Its Reactivation. *Mol Cell* **75**, 298-309.e4 (2019).

1061 30. D. Wang, *et al.*, Structural basis of transcription: backtracked RNA polymerase II at
1062 3.4 angstrom resolution. *Science* **324**, 1203–1206 (2009).

1063 31. E. Jurrus, *et al.*, Improvements to the APBS biomolecular solvation software suite.
1064 *Protein Sci* **27**, 112–128 (2018).

1065

1066

1067

1068