

Mendelian Randomization for causal inference accounting for pleiotropy and sample structure using genome-wide summary statistics

Xianghong Hu^{a,1}, Jia Zhao^{a,1}, Zhixiang Lin^b, Yang Wang^a, Heng Peng^c,
Hongyu Zhao^{d*}, Xiang Wan^{e*}, Can Yang^{a*}

^aDepartment of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China

^bDepartment of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China

^cDepartment of Mathematics, Hong Kong Baptist University, Hong Kong SAR, China

^dDepartment of Biostatistics, Yale School of Public Health, New Haven, CT 06520

^eShen Zhen Research Institute of Big Data, Shen zhen, 518172, China

Abstract

1 Mendelian Randomization (MR) is a valuable tool for inferring causal relationships among
2 a wide range of traits using summary statistics from genome-wide association studies (GWASs).
3 Existing summary-level MR methods often rely on strong assumptions, resulting in many false
4 positive findings. To relax MR assumptions, ongoing research has been primarily focused
5 on accounting for confounding due to pleiotropy. Here we show that sample structure is
6 another major confounding factor, including population stratification, cryptic relatedness,
7 and sample overlap. We propose a unified MR approach, MR-APSS, which (i) accounts for
8 pleiotropy and sample structure simultaneously by leveraging genome-wide information; and
9 (ii) allows to include more genetic variants with moderate effects as instrument variables (IVs)
10 to improve statistical power without inflating type I errors. We first evaluated MR-APSS using
11 comprehensive simulations and negative controls, and then applied MR-APSS to study the
12 causal relationships among a collection of diverse complex traits. The results suggest that
13 MR-APSS can better identify plausible causal relationships with high reliability. In particular,
14 MR-APSS can perform well for highly polygenic traits, where the IV strengths tend to be

¹Xianghong Hu and Jia Zhao contributed equally to this work.

*To whom correspondence may be addressed: Hongyu Zhao (hongyu.zhao@yale.edu), Xiang Wan (wanxiang@sribd.cn) or Can Yang (macyang@ust.hk).

15 relatively weak and existing summary-level MR methods for causal inference are vulnerable to
16 confounding effects.

17 Introduction

18 Inferring the causal relationship between a risk factor (exposure) and a phenotype of interest
19 (outcome) is essential in biomedical research and social science [1]. Although randomized
20 controlled trials (RCTs) are the gold standard for causal inference, RCTs can be very costly
21 and sometimes even infeasible or unethical (e.g., random allocation to prenatal smoking)
22 [2]. Mendelian randomization (MR) was introduced to mimic RCTs for causal inference in
23 observational studies [3, 4]. Recently, MR analysis has drawn increasing attention [5] because
24 it can take summary statistics from Genome-Wide Association Studies (GWASs) as input,
25 including SNP effect size estimates and their standard errors, to investigate causal relationship
26 among human complex traits.

27 MR is an instrumental variable (IV) method to infer the causal relationship between
28 an exposure and an outcome, where genetic variants, e.g., single-nucleotide polymorphisms
29 (SNPs), serve as IVs of the exposure [6, 7]. To eliminate the influence of confounding factors,
30 conventional MR methods rely on strong assumptions, including **(A-I)** IVs are associated with
31 the exposure; **(A-II)** IVs are independent of confounding factors; and **(A-III)** IVs only affect
32 the outcome through the exposure. However, assumptions **(A-II)** and **(A-III)** are often not
33 satisfied in practice due to confounding factors hidden in GWAS summary statistics, leading to
34 false positive findings [5, 8]. To perform causal inference with genetic data, it is indispensable
35 to distinguish two major confounding factors: pleiotropy [8] and sample structure [9, 10].

36 First, SNPs exhibit pervasive pleiotropic effects. Pleiotropy occurs when a genetic variant
37 directly affects both exposure and outcome traits or indirectly through an intermediate phe-
38 notype [11]. Pleiotropy can induce trait association or genetic correlation in the absence of
39 causality [11]. Due to the polygenicity of complex traits and linkage disequilibrium (LD) in the
40 human genome, pleiotropic effects can widely spread across the whole genome [12]. Therefore,
41 a substantial proportion of SNPs can carry pleiotropic effects and they fail to satisfy **(A-II)**
42 and **(A-III)** on IVs in conventional MR methods.

43 Second, sample structure can lead to bias in SNP effect size estimates and introduce
44 spurious trait associations. Here, sample structure encompasses population stratification,
45 cryptic relatedness, and sample overlap in GWASs of the exposure and outcome traits. In
46 the presence of population stratification and cryptic relatedness, SNPs can affect the outcome
47 through sample structure and thus they violate assumptions **(A-II)** and **(A-III)** on IVs.
48 Without correcting for sample structure, SNP effect size estimates can be severely biased, which
49 may lead to misinterpretation on trait association and thus many false positive discoveries in
50 causal inference. Sample overlap can also lead to spurious trait associations [13]. Although
51 principal component analysis (PCA) [14] and linear mixed models (LMM) [15] are widely used
52 to account for sample structure in GWASs, the results from LDSC [16] show that sample
53 structure is often unsatisfactorily corrected in publicly available GWAS summary statistics.

54 To maximize the usage of publicly available GWAS summary statistics for causal inference,
55 a number of summary-level MR methods have been developed, including Inverse Variance
56 Weighted regression (IVW) [17], Egger [18], RAPS [19], dIVW [20], Weighted-median [21],
57 Weighted-mode [22], MRMix [23], CML-MA [24], and CAUSE [25]. Despite these efforts, there

58 are two major limitations in existing summary-level MR methods. First, most of them only
59 use a small subset of SNPs passing the genome-wide significance (p -value $\leq 5 \times 10^{-8}$) for
60 causal inference. To account for pleiotropy (including correlated pleiotropy and uncorrelated
61 pleiotropy [25]), it is challenging to fit a flexible model with limited information from genome-
62 wide significant SNPs. Second, existing summary-level MR methods presume that PCA or
63 LMM-based approaches have satisfactorily accounted for sample structure and thus they largely
64 ignore the influence of sample structure in GWAS summary statistics. Due to the complexity of
65 human genetics, sample structure driven by socioeconomic status [26] or geographic structure
66 [27] may not be fully corrected by routine adjustment and it may remain as a major confounding
67 factor hidden in GWAS summary statistics.

68 In this paper, we develop MR-APSS, a unified approach to MR Accounting for Pleiotropy
69 and Sample Structure simultaneously. Specifically, we propose a foreground-background
70 model to decompose the observed SNP effect sizes, where the background model accounts for
71 confounding factors hidden in GWAS summary statistics, including correlated pleiotropy and
72 sample structure, and the foreground model performs causal inference while accounting for
73 uncorrelated pleiotropy. MR-APSS differs from existing methods in the following aspects. First,
74 under the assumptions of LD score regression (LDSC) [16], the background model accounts
75 for pleiotropy and sample structure using genome-wide summary statistics. In contrast, most
76 summary-level MR methods only use SNPs passing the genome-wide significance (p -value
77 $\leq 5 \times 10^{-8}$). Second, MR-APSS allows us to include more SNPs without achieving the genome-
78 wide significance as IVs to improve statistical power. With the pre-estimated background
79 model, MR-APSS can inform whether an SNP belongs to the background component or the
80 foreground component. Even in the presence of many invalid IVs, the type I error will not be
81 inflated because only the foreground signals are used for causal inference. As more SNPs are
82 included, the increasing amount of the foreground signal can improve the statistical power.

83 To demonstrate the effectiveness of MR-APSS, we have performed a comprehensive sim-
84 ulation study and analyzed 640 pairs of exposure and outcome traits from 26 GWASs. In
85 the simulation study, we showed that MR-APSS still had satisfactory performance when the
86 assumptions of IVs were violated. We examined MR-APSS on a wide spectrum of complex
87 traits using GWAS summary statistics, including psychiatric/neurological disorders, social
88 traits, anthropometric traits, cardiovascular traits, metabolic traits, and immune-related traits.
89 Real data results indicate that pleiotropy and sample structure are two major confounding
90 factors. By rigorous statistical modeling of these confounding factors, MR-APSS not only avoids
91 many false positive findings but also improves the statistical power of MR. When inferring
92 causal relationships among highly polygenic traits, such as psychiatric disorders and social
93 traits, the strengths of IVs tend to be relatively weak and causal inference is vulnerable to
94 confounding effects. Thus, existing MR methods will suffer from either low statistical power or
95 inflated type I errors. The empirical results indicate that MR-APSS is particularly useful in
96 this scenario because it accounts for confounding factors and allows for incorporating many
97 IVs with moderate effects, demonstrating its advantage over existing MR methods.

98 Results

99 **Overview of MR-APSS.** Causality, pleiotropy, and sample structure are three major sources
100 to induce correlation between GWAS estimates of exposure-outcome traits. To distinguish
101 causality from correlation, it is indispensable to eliminate the possibility that correlation is
102 induced by confounding factors, such as pleiotropy and sample structure (including population
103 stratification, cryptic relatedness, and sample overlap).

104 MR-APSS takes GWAS summary statistics of exposure and outcome traits as its input and
105 performs causal inference based on a proposed foreground-background model (see an overview
106 in Fig. 1 and details in the Materials and Methods section). Under the assumptions of LDSC
107 [16] (see details in SI Appendix, section 1.1), the background model can effectively account for
108 confounding factors by disentangling pleiotropy (Fig. 1B) and sample structure (Fig. 1C). This
109 is because the pleiotropic effects can be tagged by LD and the influence of sample structure is
110 uncorrelated with LD [16]. In addition to the LDSC assumptions in the background model,
111 we have made two key assumptions for causal inference. First, we assume that the correlated
112 pleiotropy effects can be approximately characterized by the genetic correlation which can be
113 estimated from genome-wide summary statistics. Second, we assume that the direct effect
114 is independent of the instrument strength in our foreground model (known as the InSIDE
115 condition). This is reasonable because correlated pleiotropy effects have been accounted for
116 using genome-wide genetic correlation. By further accounting for selection bias [28] due to
117 selection of IVs (see Materials and Methods section), the foreground model can use the classical
118 causal diagram to perform causal inference (Fig. 1A). In summary, our method requires the
119 LDSC assumptions for the background model and the InSIDE condition for the foreground
120 model to relax assumptions **(A-II)** and **(A-III)**.

121 **Compared methods.** Because MR-APSS uses the GWAS summary statistics as its input, we
122 mainly compare MR-APSS with nine summary-level MR methods and grouped them (including
123 MR-APSS) into three groups based on their assumptions, including IVW from group 1; Egger,
124 RAPS and dIVW from group 2; and Weighted-median, Weighted-mode, MRMix, CML-MA,
125 CAUSE and MR-APSS from group 3 (see Table 1). We provide a review of them in SI Appendix,
126 sections 2.1-2.2. We show theoretically that the IVW estimator and the dIVW estimator can
127 be biased in the presence of pleiotropy and sample structure (SI Appendix, section 2.6). To
128 establish a better connection with causal literature, we also provide a review of individual-level
129 MR methods in SI Appendix, section 2.3 and Table S1. We conducted comparisons between
130 summary-level MR methods and individual-level MR methods. Detailed results are provided
131 in SI Appendix, sections 3.3 and 4.4, Figs. S1, S6, and S16-S21.

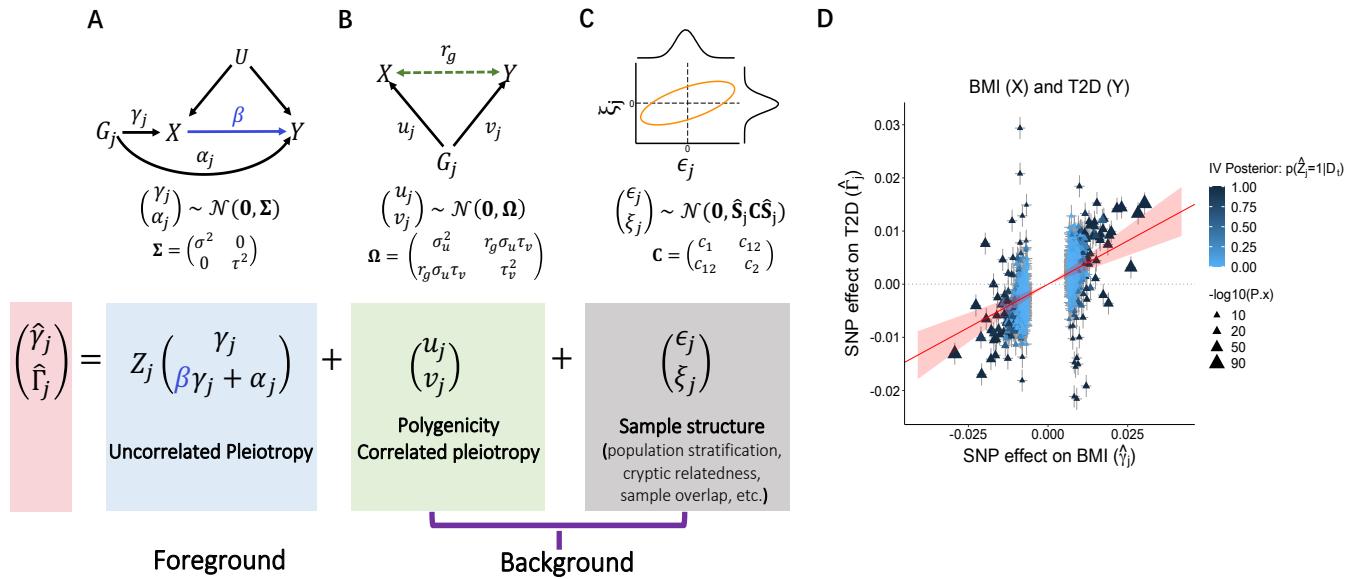


Figure 1: The MR-APSS approach. To infer the causal effect β between exposure X and outcome Y , MR-APSS uses a foreground-background model to characterize the estimated effects of SNPs G_j on X and Y ($\hat{\gamma}_j$ and $\hat{\Gamma}_j$) with standard errors ($\hat{s}_{X,j}$, $\hat{s}_{Y,j}$), where the background model accounts for polygenicity, correlated pleiotropy (B) and sample structure (C), and the foreground model (A) aims to identify informative instruments and account for uncorrelated pleiotropy to perform causal inference. (D) We consider inferring the causal relationship between BMI and T2D as an illustrative example of MR-APSS. The estimated causal effect is indicated by a red line with its 95% confidence interval indicated by the shaded area in transparent red color. Triangles indicate the observed SNP effect sizes ($\hat{\gamma}_j$ and $\hat{\Gamma}_j$). The color of triangles indicates the posterior of a valid IV, i.e., the posterior of an IV carrying the foreground signal ($Z_j = 1$, dark blue) or not ($Z_j = 0$, light blue).

Table 1: Summary of ten summary-level MR methods

Method	(A-II)	(A-III)	Key assumptions	Sample structure	Selection bias
IVW [17]	✓	✓	All IVs are valid; NOME.	✗	✗
Egger [18]	✓	✗	InSIDE; NOME; Directional pleiotropy ($\mathbb{E}(\alpha_j) = \mu$).	✗	✗
RAPS [19]	✓	✗	InSIDE; Balanced pleiotropy ($\alpha_j \sim \mathcal{N}(0, \tau^2)$).	✗	✗
dIVW [20]	✓	✗	InSIDE; Balanced pleiotropy ($\alpha_j \sim \mathcal{N}(0, \tau^2)$).	✗	✓
Weighted-median [21]	✗	✗	Majority valid; NOME.	✗	✗
Weighted-mode [22]	✗	✗	Plurality valid.	✗	✗
MRMix [23]	✗	✗	Plurality valid.	✗	✗
cML-MA [24]	✗	✗	Plurality valid.	✗	✗
CAUSE [25]	✗	✗	All IVs can be invalid, but majority of IVs should not be affected by correlated pleiotropy.	Sample overlap	✗
MR-APSS	✗	✗	All IVs can be invalid; Assumptions of LDSC; InSIDE in the foreground model.	✓	✓

IV: Instrumental Variable; Three IV assumptions: (A-I) IVs are associated with the exposure; (A-II) IVs are independent of confounders; and (A-III) IVs only affect the outcome through the exposure.

132 **Simulation studies.** To evaluate MR-APSS in various scenarios and compare it with nine
133 MR methods in Table 1, we first perform simulation studies under the MR-APSS model. After
134 that, we investigate the robustness of MR-APSS in the presence of model misspecification.

135 For exposure and outcome traits, we used 47,049 SNPs on chromosomes 1 and 2 of 20,000
136 individuals of white British ancestry randomly drawn from the UK Biobank (UKBB). SNP
137 effect sizes ($\gamma_j, \alpha_j, u_j, v_j$) were generated from the relationship shown in Fig. 1 and Eq. [1]
138 in Materials and Methods section. Based on real genotype data and simulated SNP effect
139 sizes, we generated both traits and obtained summary statistics (see details in SI Appendix,
140 section 3.1). The relationship shown in Fig. 1 is composed of the background signal and the
141 foreground signal. For the background signal, polygenic effects (u_j, v_j) of all SNPs were normally
142 distributed with variance components ($\sigma_u^2 = \tau_v^2 = 0.5/47,049$), such that the heritabilities of
143 both exposure X and outcome Y were specified at 0.5. The magnitudes of the error terms
144 (ϵ_j, ξ_j) were determined by the fixed sample sizes of 20,000. For the foreground signal, we
145 randomly assigned 500 out of 47,049 SNPs as IVs. As the instrument strength (γ_j) and the
146 magnitude of the direct effect (α_j) are given by variance components σ^2 and τ^2 (Fig. 1), we
147 specified $\sigma^2 : \sigma_u^2 = 20$ to mimic real data scenarios. We set $\tau^2 : \tau_v^2 = 1$, so the magnitude of the
148 direct effects in the foreground model is the same as that of the polygenic effects.

149 We compared MR-APSS with nine MR methods, including IVW, dIVW, RAPS, MRMix,
150 cML-MA, Egger, CAUSE, Weighted-median, and Weighted-mode. Note that the performance
151 of MR methods depends on the selected IVs. Using a stringent criterion, fewer SNPs will be
152 selected as IVs and MR methods tend to have lower power of detecting the causal effect and
153 lower false positive rate. When more SNPs are included using a loose criterion, MR methods
154 tend to have higher power but higher false positive rate because their model assumptions are
155 more likely to be violated. To evaluate the performance of MR methods under null ($\beta = 0$), we
156 used a stringent criterion (IV threshold $p = 5 \times 10^{-6}$) to select IVs for IVW, dIVW, RAPS,
157 MRMix, cML-MA, Egger, Weighted-median, and Weighted-mode. For CAUSE, we used its
158 default threshold $p = 1 \times 10^{-3}$ to include IVs. For MR-APSS, we used $p = 5 \times 10^{-4}$. For all
159 nine MR methods, we applied LD pruning ($r^2 = 0.01$) to the selected IVs to ensure that they
160 were nearly independent.

161 We first examined type I error control of different MR methods under null ($\beta = 0$) in
162 the presence of genetic correlation induced by pleiotropy. We simulated data with genetic
163 correlation but without correlation in estimation errors. Quantile-quantile plots of different
164 MR methods are shown in Fig. 2A, 2B, 2E for genetic correlation $r_g = 0.2$ (more results for
165 different genetic correlations are given in SI Appendix, Fig. S2). Clearly, MR-APSS is the only
166 method that produces well-calibrated p -values. To better examine how MR-APSS accounted
167 for polygenicity and pleiotropy, we manually set the variance component of MR-APSS to zero,
168 i.e., $\Omega = \mathbf{0}$. We denote this version of MR-APSS as MR-APSS ($\Omega = \mathbf{0}$). As shown in Fig.
169 2E, MR-APSS produced well-calibrated p -values while MR-APSS ($\Omega = \mathbf{0}$) produced overly
170 inflated p -values. This suggests that variance component Ω plays a critical role in accounting
171 for polygenicity and pleiotropy. We also noticed different performance of alternative MR
172 methods (Fig. 2A, 2B). In the presence of non-zero genetic correlation, MR methods, such as
173 IVW, dIVW, RAPS, MRMix, cML-MA, Weighted-median, and MR-APSS ($\Omega = \mathbf{0}$), tended to
174 produce inflated p -values. Different from other MR methods, CAUSE produced very deflated
175 p -values and thus CAUSE was very conservative in identifying causal effects.

176 Next, we examined the type I error control under null ($\beta = 0$) in the presence of correlation
177 between estimation errors due to sample structure. Specifically, we set genetic correlation $r_g = 0$
178 and simply generated correlation of estimation errors ($c_{12} = 0.15$) using 10,000 overlapped
179 samples in exposure and outcome studies (more results for different c_{12} are given in SI Appendix,
180 Fig. S3). We notice that correlation between estimation errors can also be induced by population
181 stratification and cryptic relatedness. To avoid unrealistic simulation of population stratification,
182 we investigated this issue when we performed real data analysis. The quantile-quantile plots of
183 different MR methods are shown in Fig. 2C, 2D, 2F. IVW, dIVW, RAPS, MRMix, cML-MA,
184 and Weighted-median produced overly inflated p -values. These results indicate that correlation
185 between estimator errors can be a major confounding factor leading to false positive findings.
186 Again, CAUSE produced very deflated p -values. To see how MR-APSS accounts for correlation
187 between estimation errors, we set $\mathbf{C} = \mathbf{I}$, i.e., $c_1 = c_2 = 1$ and $c_{12} = 0$. In such a way, MR-APSS
188 was forced to ignore the correlation between estimation errors. We denote this version of
189 MR-APSS as MR-APSS ($\mathbf{C} = \mathbf{I}$). As shown in Fig. 2F, MR-APSS ($\mathbf{C} = \mathbf{I}$) produced inflated
190 p -values. In contrast, MR-APSS produced well-calibrated p -values. These results suggest that
191 MR-APSS can satisfactorily account for correlation between estimation errors due to sample
192 structure.

193 Finally, we examined the power of MR methods. As shown above, IVW, dIVW, RAPS,
194 MRMix, cML-MA, and Weighted-median often produced overly inflated type I errors in the
195 presence of either pleiotropy or sample structure. Hence, we only compared MR-APSS with
196 Egger, Weighted-mode, and CAUSE. We simulated data with both genetic correlation ($r_g = 0.1$)
197 and correlation between estimation error ($c_{12} = 0.1$). We varied the causal effect size β from
198 0.05 to 0.45. MR-APSS was the overall winner in terms of power (Fig. 2 G). We further
199 compared the estimation accuracy of the causal effects using MR-APSS, Egger, Weighted-mode,
200 and CAUSE (Fig. 2 H). Consistent with the literature [29], we observed that Egger had a very
201 large estimation error. As discussed in SI Appendix, section 2.4, CAUSE often misinterprets
202 the causal effect as correlated pleiotropy, leading to underestimation of the true causal effect.
203 Consistently, we observed that the estimate of Weighted-mode and CAUSE was biased to the
204 null ($\beta = 0$). In the above simulations, the foreground-background variance ratio was fixed at
205 $\sigma : \sigma_u = 20 : 1$. We provide more results with different foreground-background variance ratios
206 ($\sigma : \sigma_u \in \{40, 10\}$) in SI Appendix, Figs. S4 and S5.

207 To evaluate the robustness of MR-APSS in the presence of model misspecification, we also
208 conducted simulations with the CAUSE model. The main patterns of the performance of the
209 ten MR methods largely remained the same. We provide details in SI Appendix, section 3.2,
210 Figs. S6-S8.

211 **Real data analysis: negative control outcomes.** To fairly examine the type I errors of
212 MR methods, we use the negative control outcomes proposed by Sanderson et al. [9], where
213 confounding factors (e.g., pleiotropy and sample structure) naturally exist. The traits that can
214 serve as ideal negative control outcomes should satisfy two conditions. First, they should not be
215 causally affected by any of the exposures considered. Second, the exposure and outcome traits
216 could be affected by some unmeasured confounders, e.g., population stratification. Following
217 the same way of Sanderson et al. [9] to choose negative control outcomes, we considered natural
218 hair colors before greying (Hair color: black, Hair color: blonde, Hair color: light brown, Hair

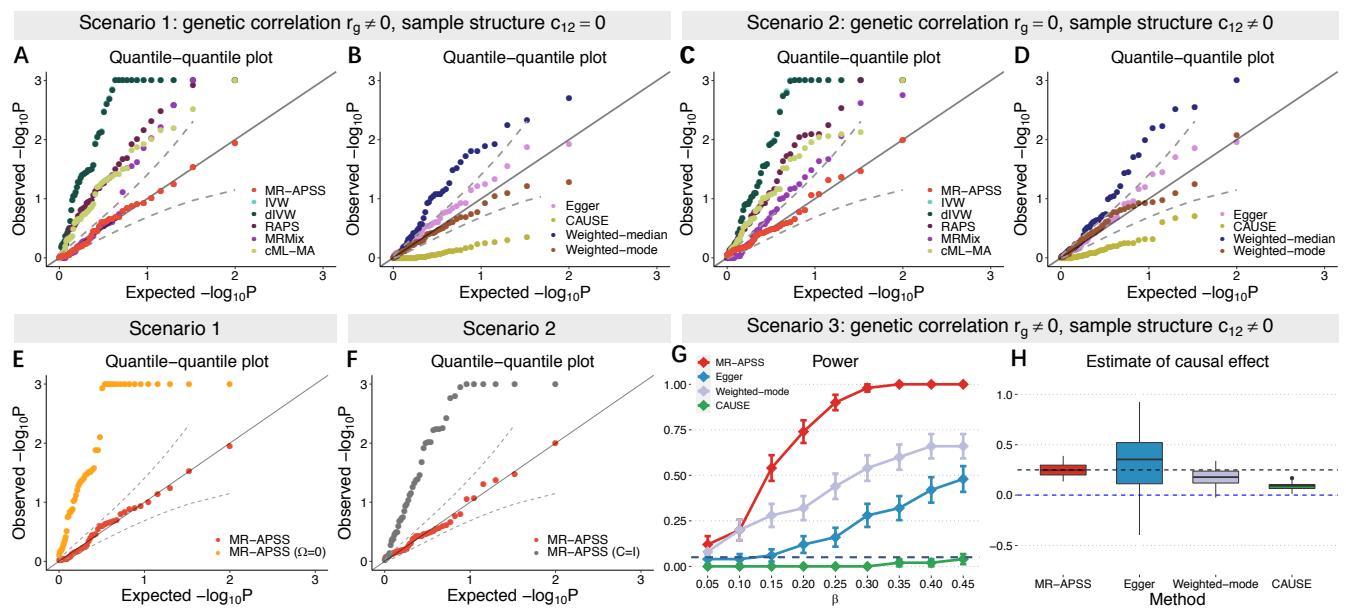


Figure 2: Comparison of ten summary-level MR methods on simulated data. (A-F) Quantile-quantile plots of $-\log_{10}(p)$ -values from different methods under null simulations in the absence of causal effect ($\beta = 0$). Null simulations were performed under different scenarios: (A, B, E) Null simulations with genetic correlation ($r_g = 0.2$) induced by pleiotropy, but without correlation in estimation errors ($c_{12} = 0$). (C, D, F) Null simulations in the presence of correlation in estimation errors ($c_{12} = 0.15$) due to sample structure, but in the absence of non-zero genetic correlation ($r_g = 0$). Based on results in A-D, MR-APSS, Egger, Weighted-mode, and CAUSE do not provide overly inflated p -values. (G,H) Comparison of MR-APSS, Egger, Weighted-mode, and CAUSE under alternative simulations ($\beta \neq 0$). (G) The power under the settings that the causal effect size β varied from 0.05 to 0.45. (H) Estimates of causal effect under the alternative simulations ($\beta = 0.25$). The results were summarized from 50 replications.

219 color: dark brown) and skin tanning ability (Tanning) from UKBB because they are largely
 220 determined at birth and they could be affected by sample structure.

221 We considered 26 exposure traits from UKBB and Genomics Consortiums (Details for the
 222 GWAS sources are given in SI Appendix, Table S2). These traits can be roughly divided
 223 into five categories, including psychiatric/neurological disorders, social traits, anthropometric
 224 traits, cardiometabolic traits, and immune-related traits. The data pre-processing steps for
 225 GWAS summary statistics are described in SI Appendix, section 4.1. The sample sizes of those
 226 GWASs range from 114,244 to 385,603, with a minimum of 15,954 for ASD and a maximum of
 227 898,130 for T2D. Given the large sample sizes of GWASs, we used the genome-wide significance
 228 threshold 5×10^{-8} as the IV threshold for IVW, dIVW, RAPS, Egger, MRMix, CML-MA,
 229 Weighted-mode, and Weighted-mode in real data analysis. This stringent criterion helps to
 230 exclude invalid IVs for these methods and thus reduce their false positive rates. Due to the
 231 stringent IV selection, we were not able to find enough SNPs (> 4) as IVs for four exposure
 232 traits, i.e., major depressive disorder (MDD), autism spectrum disorder (ASD), subject well-
 233 being (SWB), and the number of children Ever born (NEB). For CAUSE [25], we used its
 234 default p -value threshold $p = 1 \times 10^{-3}$ to select IVs. For MR-APSS, we used 5×10^{-5} as the

235 default IV threshold.

236 First, we applied MR-APSS and the nine summary-level MR methods to infer the causal
 237 effects between these 26 exposure traits and five negative control outcomes. To make the
 238 comparison fair, we focus on the results for 110 pairs where each method had sufficient IVs for
 239 MR analysis. Ideally, these p -values should be uniformly distributed between 0 and 1 under
 240 the null ($\beta = 0$). Fig. 3A shows the QQ-plots of $-\log_{10}(p)$ values of the six methods (red
 241 dots). Clearly, MR-APSS and Weighted-mode produced well-calibrated p -values. IVW, dIVW,
 242 RAPS, MRMix, cML-MA, and Weighted-median produced overly inflated p -values, while Egger

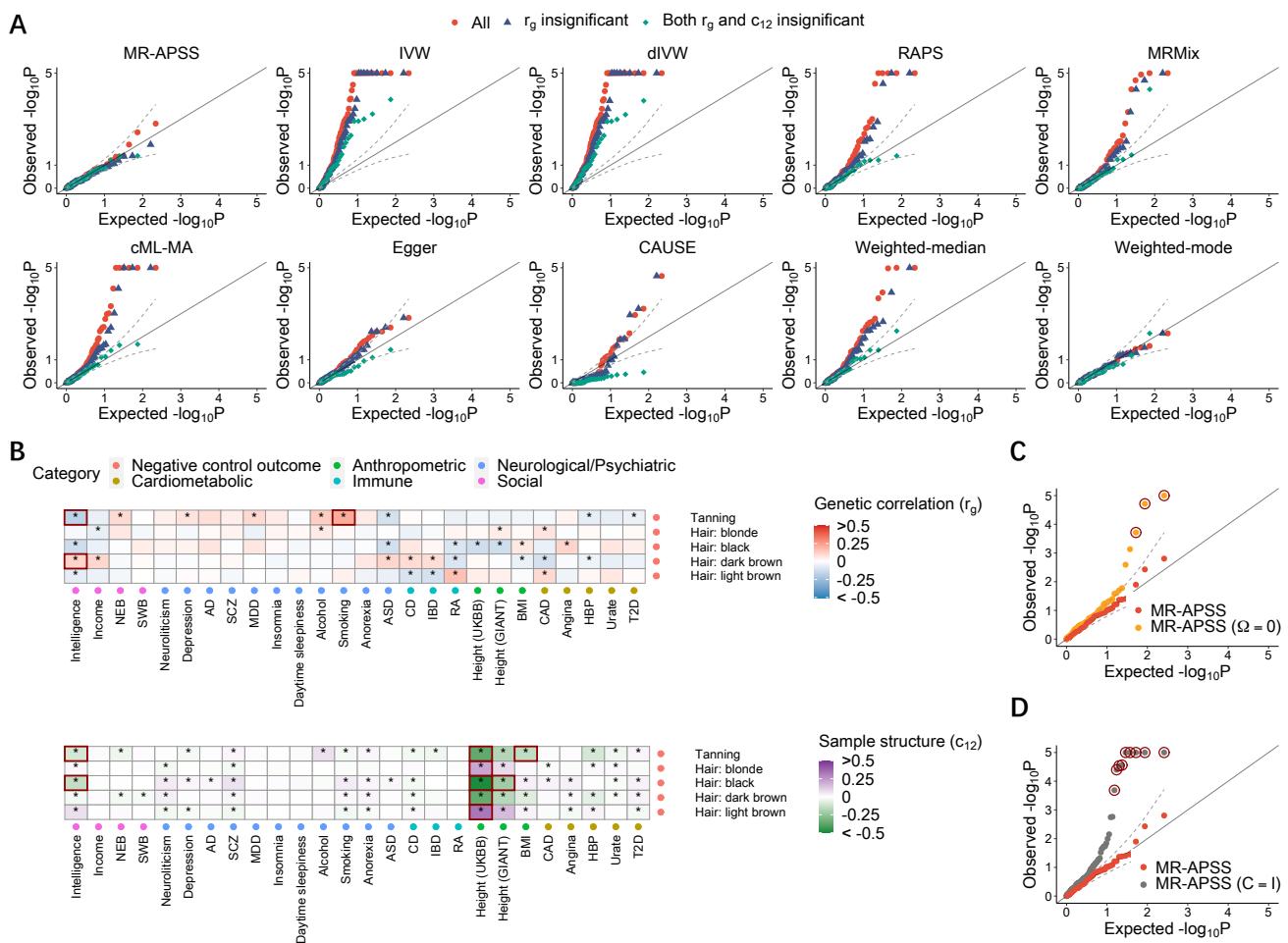


Figure 3: Evaluation of the type I error control of MR methods using negative control outcomes. (A) Quantile-quantile plots of $-\log_{10}(p)$ -values from ten summary-level MR methods for causal inference between complex traits and negative control outcome. Red dots represent all 110 trait pairs tested by each method. Blue triangles represent the 81 trait pairs with insignificant genetic correlation at the nominal level of 0.05. Green diamonds represent the 29 trait pairs whose genetic correlation r_g and c_{12} are both insignificant at the nominal level of 0.05. (B) Estimates of r_g and c_{12} for trait pairs between 26 complex traits and five negative control outcomes. (C) Quantile-quantile plots of $-\log_{10}(p)$ -values from MR-APSS, MR-APSS ($\Omega = 0$), and MR-APSS ($C = I$) for trait pairs between 26 complex traits and five negative control outcomes. The circled p -values correspond to the trait pairs marked by squares in (B), which are largely confounded by pleiotropy and sample structure.

243 produced slightly inflated p -values. CAUSE produced deflated p -values in the beginning but
244 inflated p -values later. We investigated the reasons why the five MR methods performed
245 unsatisfactorily. As shown in Fig. 3B, we examined the estimates of two key parameters, r_g
246 and c_{12} , of our background model, where r_g is the genetic correlation capturing the overall
247 correlated pleiotropic effects and c_{12} captures the correlation of estimation errors due to sample
248 structure (e.g., population stratification, cryptic relatedness, and sample overlap). Among the
249 110 exposure-outcome trait pairs, 81 trait pairs had nearly zero genetic correlation and 29
250 trait pairs had nonzero genetic correlation at the nominal level of 0.05 (marked by *). We also
251 examined the correlation of estimation errors due to sample structure. Among the 110 trait
252 pairs, 63 pairs had significant nonzero \hat{c}_{12} at the nominal level 0.05 (marked by *). To identify
253 the major reason for the inflated p -values produced by the nine MR methods, we restricted
254 ourselves to the 81 trait pairs whose genetic correlation was nearly zero. For these 81 pairs,
255 we generated the QQ-plots of $-\log_{10}(p)$ values of the ten MR methods (blue triangles in Fig.
256 3A). Clearly, IVW, dIVW, RAPS, MRMix, cML-MA, and Weighted-median still produced
257 overly inflated p -values. Egger produced slightly better calibrated p -values. CAUSE produced
258 deflated p -values in the beginning but inflated p -values later. We further restricted ourselves to
259 trait pairs whose genetic correlation and correlation of estimation errors were both nearly zero.
260 For these trait pairs (green diamond), MR-APSS, Weighted-mode RAPS, MRMix, cML-MA,
261 Weighted-median, and Egger produced well-calibrated p -values. IVW and dIVW still produced
262 inflated p -values. CAUSE produced very conservative p values. These results suggest that
263 sample structure is another major confounding factor in addition to pleiotropy.

264 It is worthwhile to mention that nonzero c_{12} can be induced by either population stratification
265 or sample overlap. To see this, let us consider the relationship between Height (GIANT) [30]
266 and Tanning from UKBB. Recall that parameters c_1 and c_2 capture the bias in estimation
267 errors (ϵ_j, ξ_j) and parameter c_{12} captures their correlation (Fig. 1). By applying LDSC to
268 estimate our background model, we obtained $\hat{c}_1 = 1.34$ (s.e. = 0.022) for Height (GIANT) and
269 $\hat{c}_2 = 1.81$ (s.e. = 0.023) for Tanning, respectively. These results indicate that the publicly
270 released GWAS summary statistics are affected by confounding factors, such as population
271 stratification. By applying LDSC, we obtained $\hat{c}_{12} = -0.17$ (s.e. = 0.011). As we know,
272 the samples from GIANT do not overlap with UKBB [31]. Therefore, the nonzero \hat{c}_{12} value
273 should be mainly attributed to population stratification. As a comparison, we also considered
274 Height (UKBB) [32] and Tanning from UKBB. By applying LDSC, we obtained $\hat{c}_1 = 1.97$
275 (s.e. = 0.040) for Height (UKBB), suggesting that the released GWAS summary statistics of
276 Height (UKBB) might potentially suffer from population stratification. By applying LDSC, we
277 obtained $\hat{c}_{12} = -0.36$ (s.e. = 0.014) for Height (UKBB) and Tanning (UKBB). Such a nonzero
278 value could be attributed to both population stratification and sample overlap.

279 To better examine the role of MR-APSS in accounting for pleiotropy or sample structure,
280 we applied MR-APSS but fixed $\Omega = \mathbf{0}$ and $\mathbf{C} = \mathbf{I}$, respectively. We denote the two variations
281 as MR-APSS ($\Omega = \mathbf{0}$) and MR-APSS ($\mathbf{C} = \mathbf{I}$), where MR-APSS ($\Omega = \mathbf{0}$) does not account
282 for pleiotropy and MR-APSS ($\mathbf{C} = \mathbf{I}$) does not account for sample structure. As shown in
283 3C, both MR-APSS ($\Omega = \mathbf{0}$) and MR-APSS ($\mathbf{C} = \mathbf{I}$) reported inflated p -values. For example,
284 based on Bonferroni correction, several trait pairs (marked with black circles in Fig. 3C) were
285 falsely detected as causal by MR-APSS ($\Omega = \mathbf{0}$) and MR-APSS ($\mathbf{C} = \mathbf{I}$). As shown in Fig. 3B
286 (marked by squares), their corresponding \hat{r}_g and \hat{c}_{12} values were significantly different from

287 zero. By using negative control outcomes, we show that MR-APSS can produce well-calibrated
288 *p*-values by accounting for pleiotropy and sample structure.

289 **Inferring causal relationships among complex traits.** To perform causal inference, we
290 considered 26 complex traits from five categories including psychiatric/neurological disorders,
291 social trait, anthropometric traits, cardiometabolic traits, and immune-related traits. Before
292 applying MR methods, we examined the estimates of r_g and c_{12} in the background model of
293 MR-APSS for all 325 pairwise combination of the 26 traits. We found that genetic correlation
294 (r_g) of 198 pairs significantly differed from zero at the nominal level of 0.05 (marked by * in Fig.
295 4A). Among them, genetic correlation of 130 pairs remained to be significant after Bonferroni
296 correction with $p \leq 0.05/325$ (marked by ** in Fig. 4A). For the estimates of c_{12} , 126 pairs
297 had significant nonzero \hat{c}_{12} at the nominal level 0.05 (marked by * in Fig. 4B) and 76 pairs
298 of them remained to be significantly different from zero after Bonferroni correction (marked
299 by ** in Fig. 4B). Of note, 56 pairs of traits had significantly nonzero estimates of both \hat{r}_g
300 and \hat{c}_{12} after Bonferroni correction. The above results suggest that both pleiotropy and sample
301 structure are presented as major confounding factors for causal inference.

302 We considered inferring the causal relationship between traits X and Y in both directions,
303 i.e., $X \rightarrow Y$ (X as exposure and Y as outcome) and $Y \rightarrow X$ (Y as exposure and X as outcome).
304 To avoid causal inference between two very similar phenotypes (e.g., Angina and CAD), we
305 excluded several trait pairs which were marked in grey color as non-diagonal cells in Fig. 4C.
306 Therefore, 640 trait pairs remained for MR tests in total. We applied MR-APSS to these
307 trait pairs using IV threshold $p = 5 \times 10^{-5}$ and identified 34 significant causal relationships
308 after Bonferroni correction (Fig. 4C, marked by triangles). As shown in Fig. 4A, many
309 traits in social or neurological/psychiatric categories were observed to be genetically correlated
310 with a wide range of complex traits from different categories. After accounting for pleiotropy
311 and sample structure, the results from MR-APSS indicate that genetic correlation of many
312 trait pairs should not be attributed to the causal effects. An example is Depression which
313 was also genetically correlated with 18 complex traits from different categories, such as BMI
314 ($\hat{r}_g = 0.220$, s.e. = 0.024) from Anthropometric category, Insomnia ($\hat{r}_g = 0.454$, s.e. = 0.025),
315 and SCZ ($\hat{r}_g = 0.321$, s.e. = 0.027) from neurological/psychiatric category. MR-APSS only
316 confirmed the causal effect of Depression on Insomnia ($\hat{\beta} = 0.570$, *p*-value = 4.38×10^{-5}).
317 Clearly, MR-APSS can serve as an effective tool to distinguish causality from genetic correlation.
318

319 As a comparison, we also applied the nine compared methods to infer the causal relationships
320 for the 640 trait pairs. We used $p = 5 \times 10^{-8}$ as the IV selection threshold for IVW, dIVW,
321 RAPS, Egger, MRMix, CML-MA, Weighted-median, and Weighted-mode, and $p = 1 \times 10^{-3}$ for
322 CAUSE. For MR methods including IVW, dIVW, RAPS, Egger, MRMix, CML-MA, Weighted-
323 median, and Weighted-mode, only 541 trait pairs were tested because 99 trait pairs had less
324 than four SNPs as IVs. For CAUSE, all 640 trait pairs were included. A summary of the causal
325 relationships detected by the nine compared methods are given in SI Appendix, Figs. S22-S30.
326 RAPS reported 58 trait pairs with significant causal effects after Bonferroni correction. Among
327 them, 24 trait pairs were considered insignificant by MR-APSS after Bonferroni correction.
328 Notably, RAPS made a similar assumption with the foreground model of MR-APSS, however, it
329 has no background model to account for pleiotropy and sample structure. To better understand
the difference between RAPS and MR-APSS, we applied MR-APSS ($\Omega = \mathbf{0}$) or MR-APSS

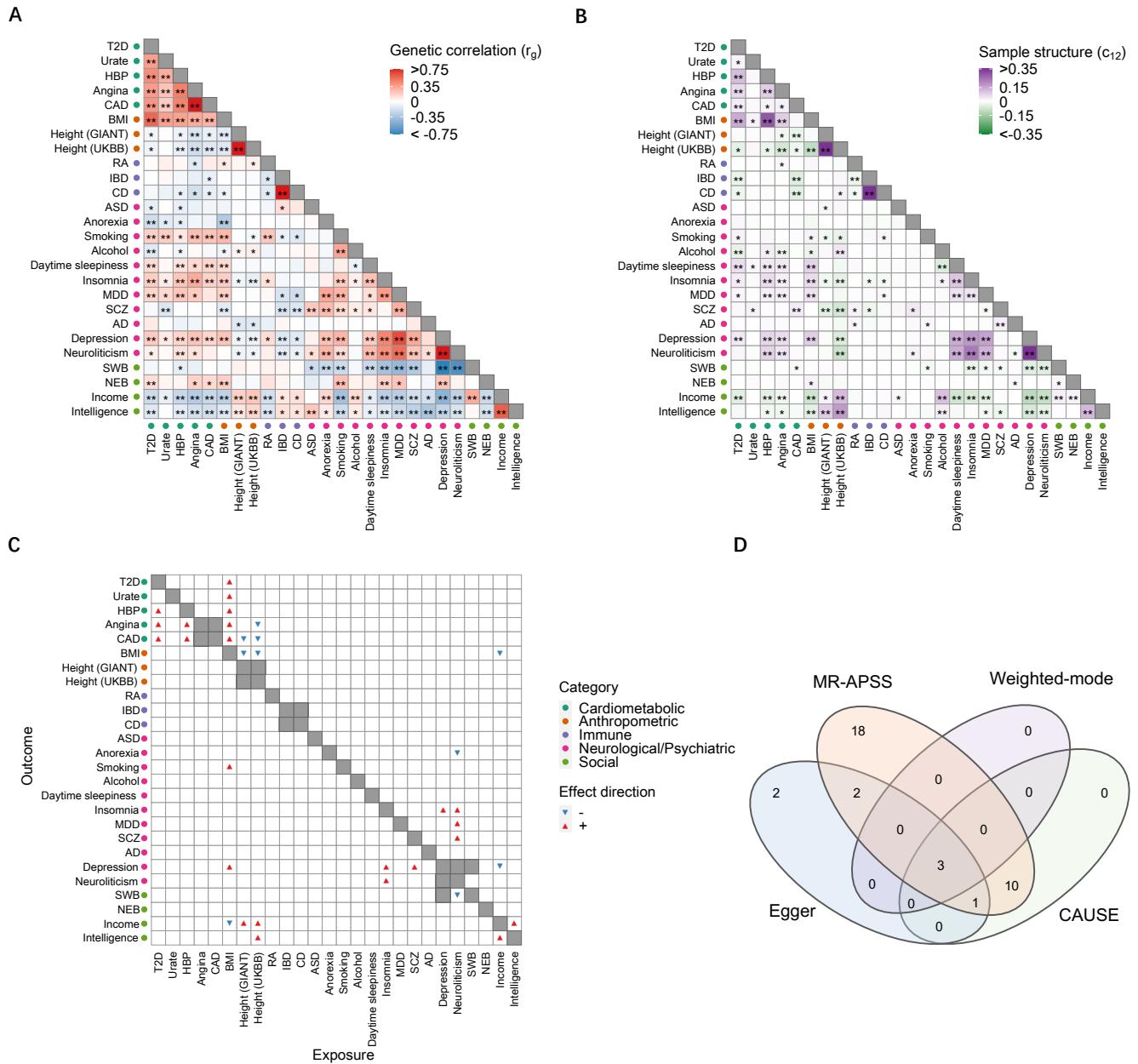


Figure 4: Application of MR-APSS to infer causal relationships between 26 complex traits. **(A)** Estimates of genetic correlation between 26 complex traits. Positive and negative estimates of genetic correlation \hat{r}_g are indicated in red and blue, respectively. Trait pairs with significant \hat{r}_g at the nominal level of 0.05 are marked by *. Trait pairs that remain to be significant after Bonferroni correction with $p \leq 0.05/325$ are marked by **. **(B)** Estimates of c_{12} between 26 complex traits. Positive and negative estimates of c_{12} are shown in purple and green, respectively. Trait pairs with significant \hat{c}_{12} at the nominal level of 0.05 are marked by *. Trait pairs remain to be significant after Bonferroni correction with $p \leq 0.05/325$ are marked by **. **(C)** Causal relationships detected by MR-APSS. The positive and negative estimates of causal effects of the exposure on the outcome are indicated by red up-pointing triangles and blue down-pointing triangles, respectively. **(D)** The Venn diagram shows the causal effects detected by MR-APSS, CAUSE, Egger, and Weighted-mode after Bonferroni correction.

330 ($\mathbf{C} = \mathbf{I}$) to those trait pairs. The testing p -values of 18 trait pairs became significant based
331 on Bonferroni correction. An example was BMI and Insomnia (SI Appendix, Table S3) with
332 $\hat{r}_g = 0.184$ (s.e. = 0.025) and $\hat{c}_{12} = 0.058$ (s.e. = 0.010). RAPS produced $\hat{\beta} = 0.07$ with p -value
333 3.04×10^{-9} . Without accounting for pleiotropy or sample structure, MR-APSS ($\mathbf{\Omega} = \mathbf{0}$) and
334 MR-APSS ($\mathbf{C} = \mathbf{I}$) reported $\hat{\beta} = 0.070$ with p -value = 1.70×10^{-7} and $\hat{\beta} = 0.063$ with p -value =
335 1.01×10^{-4} , respectively. After accounting for both pleiotropy and sample structure, MR-APSS
336 estimated causal effect between BMI and Insomnia as $\hat{\beta} = 0.0337$ with p -value = 0.128. The
337 results indicate that RAPS was likely affected by pleiotropy and sample structure.

338 Since IVW, dIVW, RAPS, MRMix, cML-MA, Weighted-median tended to have higher
339 type I errors than the nominal level, we mainly compared statistical power of MR-APSS with
340 Egger, CAUSE, and Weighted-mode (Fig. 4D). A complete list of causal relationship among
341 these traits detected by MR-APSS, Egger, CAUSE, and Weighted-mode are summarized in
342 SI Appendix, Table S4. Based on Bonferroni correction, MR-APSS detected 18 significant
343 causal effects which were not reported by CAUSE, Egger, and Weighted-mode, showing higher
344 statistical power of MR-APSS. For example, MR-APSS detected significant causal effects of
345 BMI on eight traits. Five of them were supported with evidence of causality from previous
346 literature, including T2D [33], serum urate (Urate) [34], and three cardiovascular diseases (high
347 blood pressure (HBP), Angina and CAD) [35]. For these five supported trait pairs, Egger only
348 detected three significant causal relationships (BMI on CAD, T2D, and HBP), and CAUSE
349 only detected three significant causal relationships (BMI on Urate, HBP, and T2D), and further
350 Weighted-mode detected two significant causal relationships (BMI on T2D; BMI on HBP).
351 In addition to the confirmed findings, MR-APSS detected significant causal effects of BMI
352 on Depression ($\hat{\beta} = 0.07$, p -value = 2.09×10^{-5}), ever smoked regularly (Smoking) ($\hat{\beta} = 0.11$,
353 p -value = 1.36×10^{-6}) and Income ($\hat{\beta} = -0.17$, p -value = 1.83×10^{-11}). Those findings are
354 consistent with results from previous MR studies [36, 37, 38], suggesting that being overweight
355 not only increases the risk of depression and tobacco dependence but also suffers from reduced
356 income. Our results also revealed Neuroticism as an important health indicator especially for
357 human psychiatric health. Neuroticism is one of the big five personality traits, characterized
358 by negative emotional states including sadness, moodiness, and emotional instability. Higher
359 neuroticism is associated with premature mortality and a wide range of mental illnesses or
360 psychiatric disorders [31, 39]. There is growing evidence that neuroticism plays a causal role in
361 psychiatric disorders, such as SCZ [40] and MDD [41]. Evidence from MR-APSS also supported
362 the significant causal effect of Neuroticism on SCZ ($\hat{\beta} = 0.57$, p -value = 7.02×10^{-7}) and
363 MDD ($\hat{\beta} = 0.18$, p -value = 2.06×10^{-5}). None of the three methods, CAUSE, Egger and
364 Weighted-mode detected significant causal effects of Neuroticism on MDD or SCZ. MR-APSS
365 also revealed that Neuroticism could be causally linked to Insomnia ($\hat{\beta} = 0.29$, p -value =
366 2.7×10^{-10}) and Anorexia ($\hat{\beta} = 0.4$, p -value = 6.90×10^{-7}). Weighted-mode and Egger did
367 not report these two cases, and CAUSE only detected a significant causal effect between
368 Neuroticism and Insomnia ($\hat{\beta} = 0.14$, p -value = 3.89×10^{-6}).

369 **Type I error control and statistical power with different IV thresholds.** Existing
370 summary-level MR methods select IVs based on a p -value threshold (or an equivalent t value).
371 In this section, we would like to highlight the advantages of our method. Regarding the type I
372 error control, our method is insensitive to the choice of threshold. Regarding the improvement

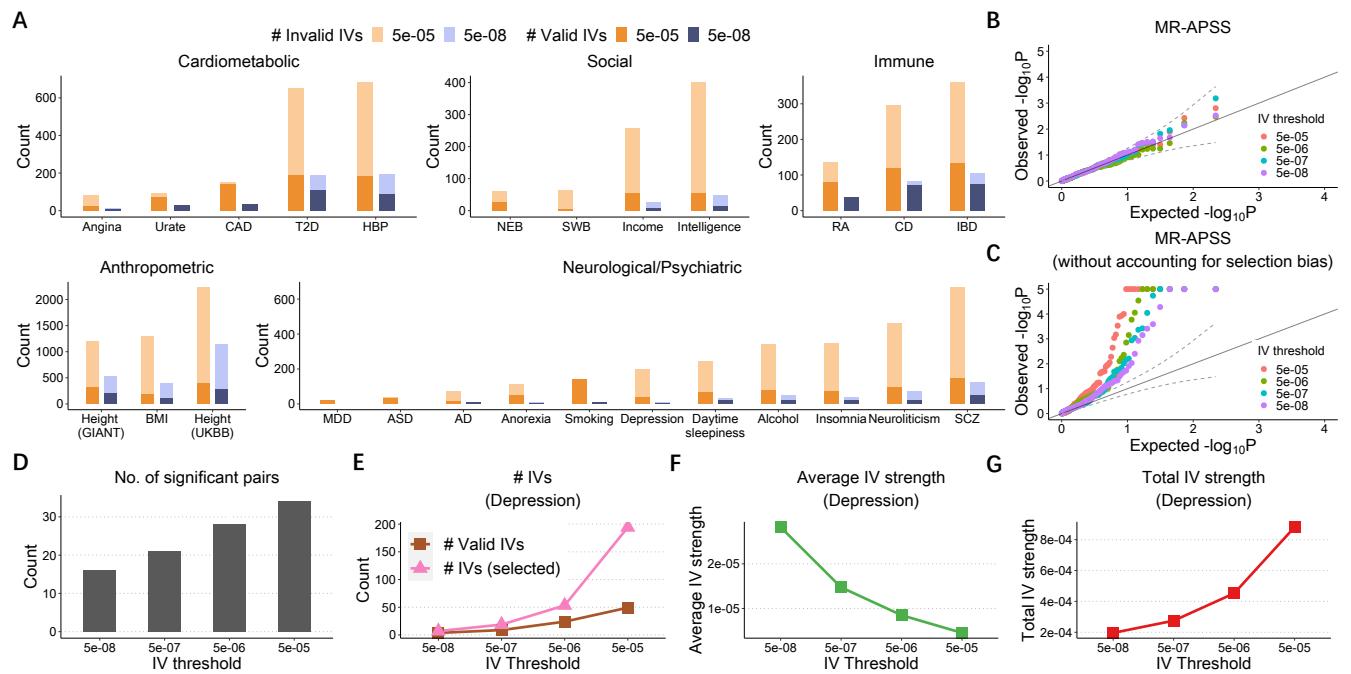


Figure 5: Evaluation of the performance of MR-APSS under different IV selection thresholds. (A) The average estimated number of valid IVs (dark color) and invalid IVs (light color) for traits from each category using IV thresholds $p = 5 \times 10^{-5}$ and $p = 5 \times 10^{-8}$. (B-C) Quantile-quantile plots of $-\log_{10}(p)$ -values from MR-APSS (B) and MR-APSS without accounting for selection bias (C) when applied to between 26 complex traits and five negative control outcomes. (D) The number of significant trait pairs between 26 complex traits identified by MR-APSS with different IV thresholds. (E-G): An illustrative example of exposure: Depression. (E) The number of selected IVs M_t at threshold t and the estimated number of valid IVs. (F) and (G) The estimated average and total IV strengths.

373 of statistical power, our method prefers a loose threshold and we use p -value 5×10^{-5} as the
 374 default setting in real applications. More details regarding the default IV threshold in real
 375 applications is given in SI Appendix, section 4.3.

376 To examine the type I error control of MR-APSS when varying the IV thresholds, we
 377 varied the IV threshold from 5×10^{-8} to 5×10^{-5} when applying MR-APSS to infer the causal
 378 relationships between 26 complex traits and the five negative control outcomes. As more IVs
 379 involved with a looser IV threshold, the number of invalid IVs increases because they are prone
 380 to the violation of MR assumptions. However, most of IVs were detected by MR-APSS as
 381 invalid IVs (Fig. 5A). Since MR-APSS only uses the valid instrument strength in the foreground
 382 model for causal inference ($Z_j = 1$), the type I error will not be inflated when more invalid
 383 IVs are included. As shown in Fig. 5B, the p -values from MR-APSS for trait pairs between
 384 26 complex traits and five negative control outcomes remain well-calibrated at different IV
 385 thresholds. These results confirm that the type I error of MR-APSS is insensitive to the IV
 386 threshold. It is important to note that correction of the selection bias is a critical step to
 387 control type I errors in MR-APSS. Without accounting for the selection bias, the magnitude of
 388 the true effect of a selected SNP is largely overestimated and it tends to falsely contribute to
 389 the foreground signal ($Z_j = 1$) for causal inference, thus produces false positives. To verify

390 this, we modified MR-APSS to ignore selection bias and applied this modified version to the
391 same trait pairs with negative control outcomes. Without accounting for the selection bias,
392 the p -values produced by the MR-APSS model given in Eq. [6] become inflated (Fig. 5C).
393 When the threshold varies from 5×10^{-8} to 5×10^{-5} , the inflation of p -values becomes more
394 severe because more SNPs will falsely contribute to the foreground signal. As a comparison,
395 we ran other summary-level MR methods to the same trait pairs. The QQ-plots are shown
396 in SI Appendix, Fig. S32. Clearly, p -values produced by most summary-level MR methods
397 (except Weighted-mode) become more inflated when the IV threshold becomes less stringent.

398 As p -values of MR-APSS are well-calibrated when the IV threshold varies from 5×10^{-5} to
399 5×10^{-8} , we can examine the statistical power of MR-APSS with different IV thresholds. We
400 applied MR-APSS to infer the causal relationships among 26 complex traits by varying the IV
401 threshold at 5×10^{-5} , 5×10^{-6} , 5×10^{-7} , and 5×10^{-8} . In general, we find that the average IV
402 strength (defined in Eq. [11]) decreases with the IV threshold becomes looser, and the total IV
403 strength (defined in Eq. [12]) increases as more IVs are included in the analysis. We provide
404 two concrete examples to illustrate these points (see details in SI Appendix, section 4.2, Fig
405 S14). As a result, the statistical power of MR-APSS can be improved by including SNPs with
406 moderate effects. These results are confirmed in Fig. 5D, where the number of significant pairs
407 identified by MR-APSS increases from 16 to 34 when the IV threshold becomes looser from
408 5×10^{-8} to 5×10^{-5} .

409 When investigating the causal relationship among 26 complex traits, the number of valid
410 IVs as well as the total IV strength increased a lot by changing the IV threshold from 5×10^{-8}
411 to 5×10^{-5} (Fig. 5A). We found that the social and neurological/psychiatric traits can benefit
412 a lot from this property. Despite the large sample sizes for these traits, the number of IVs is too
413 small to perform powerful MR analysis when using the IV threshold $p = 5 \times 10^{-8}$. For example,
414 Depression only had a very small number of IVs using a stringent IV threshold $p = 5 \times 10^{-8}$.
415 When the IV thresholds became looser, the number of selected IVs and the number of valid IVs
416 increased a lot (Fig. 5E). Although the average IV strength decreased as IV threshold became
417 looser (Fig. 5F), the total IV strength increased dramatically (Fig. 5G). We also observed
418 that, due to the limited number of IVs using a stringent IV threshold $p = 5 \times 10^{-8}$, MR-APSS
419 could not detect a significant causal effect of Depression on Insomnia ($\hat{\beta} = 0.197$, s.e. = 0.214,
420 p -value = 0.358). By using a looser IV threshold, MR-APSS detected a significant causal
421 relationship between Depression and Insomnia ($\hat{\beta} = 0.569$, s.e. = 0.139, p -value = 4.38×10^{-5}).

422 Discussion

423 In this paper, we have developed a summary-level MR method, namely MR-APSS, to
424 perform causal inference. To account for the confounding bias due to pleiotropy and sample
425 structure, the background model of MR-APSS inherits the assumptions of LDSC. MR-APSS
426 also assumes the InSIDE condition in the foreground model to infer the causal effect, i.e.,
427 $r_f = \text{Corr}(\gamma_j, \alpha_j) = 0$. In other words, we assume that the association between the exposure and
428 the outcome should be induced by their causal relationship rather than r_f after accounting for
429 confounding factors (e.g., correlated pleiotropy and sample structure) in the background model.
430 Although our method relies on this assumption to infer the causal effect, we can empirically
431 check the influence of this assumption via the following sensitivity analysis. Specifically, we can
432 evaluate how the estimated causal effect $\hat{\beta}$ changes when $\text{Corr}(\gamma_j, \alpha_j)$ varies. In this way, users

433 can obtain useful information about their inferred causal relationship under the perturbation
434 of assumptions. We provide more details on sensitivity analysis in SI appendix, section 1.5,
435 Fig. S13.

436 Besides the development of summary-level MR methods, we are aware of recent developments
437 of individual-level MR methods, including sisVIVE [42], TSHT [43], GENIUS [44], GENIUS-
438 MAWII [45], and MR-MiSTERI [46]. We believe that summary-level MR methods and
439 individual-level MR methods are complementary to each other. On the one hand, summary-
440 level methods relying on linear models only require marginal estimates and their standard errors.
441 Therefore, they are widely applicable to screen causal relationship between an exposure and an
442 outcome. This is important because the access to individual-level data may be restricted due to
443 privacy protection [47]. On the other hand, individual-level methods can be more powerful than
444 summary-level MR methods when individual-level data is accessible. First, individual-level MR
445 methods can allow for a more flexible model to handle nonlinearity in causal inference. We are
446 aware of several nonlinear MR methods using individual-level data [48, 49]. Unlike linear MR
447 methods which approximate a population-averaged causal effect, the nonlinear MR methods
448 estimate the localized average causal effects in each stratum of population using individual-level
449 data. For example, a very recent MR study applies a nonlinear MR method to investigate
450 whether a nonlinear model is a better fit for the relationship between diastolic blood pressure
451 (DBP) and cardiovascular disease (CVD) [50]. Second, individual-level MR methods can utilize
452 more information, which is only available in individual-level GWAS datasets. For example, the
453 individual-level methods, GENIUS [44] and GENIUS-MAWII [45], require heteroscedasticity of
454 the exposure but this kind of information is not available in GWAS summary statistics. We
455 find that GENIUS and GENIUS-MAWII are robust in the presence of pleiotropy and sample
456 structure. The estimation efficiency of GENIUS and GENIUS-MAWII depends on their IV
457 strengths which are related to heteroscedasticity of the exposure. In this regard, GENIUS and
458 GENIUS-MAWII relax classical MR assumptions by requiring heteroscedasticity of the exposure,
459 while MR-APSS relaxes classical MR assumptions by imposing the LDSC assumptions in its
460 background model and the InSIDE condition in its foreground model. Through simulation
461 studies and real data analyses, we find GENIUS, GENIUS-MAWII and MR-APSS are quite
462 complementary to each other. We provide more detailed results in SI Appendix, sections 2.3,
463 3.3 and 4.4. In summary, we believe that summary-level methods and individual-level MR
464 methods are complementary to each other, and they jointly contribute to the MR literature
465 for causal inference. Summary-level MR methods are often preferred for large-scale screening
466 of causal relationships and individual-level MR methods can provide a closer examination for
467 causal relationships of interest.

468 Similar to existing summary-level MR-methods, we consider linear models to perform causal
469 inference even for binary traits. To have better interpretation of the causal effect estimates for
470 binary traits, we show that the output from the observed 0-1 scale based on linear models can
471 be transformed to the liability scale based on the probit models. We provide the details in SI
472 Appendix, section 1.7.

473 Despite the improvement of MR-APSS over many existing MR methods, more research
474 is needed for causal inference with genetic data. First, the background model is proposed to
475 account for pleiotropy and sample structure hidden in GWASs of complex traits. The direct
476 application of this model in some other contexts may not be suitable. For example, it is of great

477 interest to infer the causal relationship between gene expression and complex diseases based on
 478 transcriptome-wide Mendelian randomization. However, it remains unclear what kind of signals
 479 should be considered as the background signals. The development of new statistical methods
 480 for transcriptome-wide Mendelian randomization is highly desirable. Second, multivariate
 481 Mendelian randomization (MVMR) is drawing more and more attention [51, 52]. As some risk
 482 factors are known to be related to a certain type of disease, it is more interesting to ask what
 483 other risk factors can be inferred conditioning on the known ones. We hope that MR-APSS
 484 can motivate more researchers to uncover more reliable causal relationships using rich genetic
 485 data resources.

486 Materials and Methods

487 The MR-APSS approach

488 MR-APSS takes GWAS summary statistics $\{\hat{\gamma}_j, \hat{\Gamma}_j, \hat{s}_{X,j}, \hat{s}_{Y,j} \mid |\hat{\gamma}_j/\hat{s}_{X,j}| \geq t\}_{j=1,\dots,M_t}$ as input to
 489 perform causal inference, where $\hat{\gamma}_j$ and $\hat{\Gamma}_j$ are the estimated j -th SNP's effects on exposure
 490 X and outcome Y , respectively, and $\hat{s}_{X,j}$ and $\hat{s}_{Y,j}$ are their standard errors, $|\hat{\gamma}_j/\hat{s}_{X,j}| \geq t$ is
 491 the selection criterion to ensure that SNP j is associated with X , and M_t is the number of
 492 SNPs selected as IVs using a threshold t of z -values. To infer the causal effect β of exposure X
 493 on outcome Y , we propose to decompose the observed SNP effect sizes into background and
 494 foreground signals (Fig. 1):

$$\begin{pmatrix} \hat{\gamma}_j \\ \hat{\Gamma}_j \end{pmatrix} = Z_j \underbrace{\begin{pmatrix} \gamma_j \\ \beta\gamma_j + \alpha_j \end{pmatrix}}_{\substack{\text{Uncorrelated} \\ \text{pleiotropy}}} + \underbrace{\begin{pmatrix} u_j \\ v_j \end{pmatrix}}_{\substack{\text{Polygenicity} \\ \text{Correlated} \\ \text{pleiotropy}}} + \underbrace{\begin{pmatrix} \epsilon_j \\ \xi_j \end{pmatrix}}_{\substack{\text{Sample structure} \\ (\text{Population stratification,} \\ \text{cryptic relatedness,} \\ \text{sample overlap etc.})}}$$

(1)

495 where u_j and v_j are the polygenic effects of SNP j on X and Y , ϵ_j and ξ_j are the estimation
 496 errors of SNP effect sizes, γ_j is the remaining SNP effect on exposure X as the instrument
 497 strength, α_j is the direct SNP effect on outcome Y , and Z_j is a Bernoulli variable indicating
 498 whether SNP j has a foreground component ($Z_j = 1$) or not ($Z_j = 0$).

499 The background model of MR-APSS

500 To model polygenic effects and their correlation induced by pleiotropy (Fig. 1b), we assume a
 501 variance component model

$$p(u_j, v_j | \Omega) = \mathcal{N} \left(\begin{pmatrix} u_j \\ v_j \end{pmatrix} \middle| \mathbf{0}, \Omega \right), \text{ with } \Omega = \begin{pmatrix} \sigma_u^2 & r_g \sigma_u \tau_v \\ r_g \sigma_u \tau_v & \tau_v^2 \end{pmatrix}, \quad (2)$$

502 where (u_j, v_j) are random effects from a bivariate normal distribution with mean vector $\mathbf{0}$ and
 503 covariance matrix Ω , r_g is the genetic correlation induced by pleiotropic effects between X and
 504 Y , and σ_u^2 and τ_v^2 are the variance of polygenic effects on X and Y , respectively. To account
 505 for bias and correlation in estimation errors due to sample structure, we consider the following
 506 model:

$$p(\epsilon_j, \xi_j | \mathbf{C}, \hat{\mathbf{S}}_j) = \mathcal{N} \left(\begin{pmatrix} \epsilon_j \\ \xi_j \end{pmatrix} \middle| \mathbf{0}, \hat{\mathbf{S}}_j \mathbf{C} \hat{\mathbf{S}}_j \right), \quad (3)$$

507 where $\hat{\mathbf{S}}_j = \begin{pmatrix} \hat{s}_{X,j} & 0 \\ 0 & \hat{s}_{Y,j} \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} c_1 & c_{12} \\ c_{12} & c_2 \end{pmatrix}$, and the parameters c_1 and c_2 are used to adjust the
 508 bias in estimator errors and c_{12} accounts for the correlation between the estimation errors. In
 509 the presence of population stratification and cryptic relatedness, c_1 and c_2 will deviate from
 510 one (typically larger than one). Moreover, either population stratification or sample overlap
 511 can induce covariance between the estimation errors, resulting in nonzero c_{12} .

512 Under the assumptions of LDSC [16], we can exploit the LD structure of human genome to
 513 account for confounding factors in the background model. Let $\ell_j = \sum_k r_{jk}^2$ be the LD score of
 514 SNP j , where r_{jk} is the correlation between SNP j and SNP k . The key idea to adjust LD
 515 effects is based on the fact: the true genetic effects are tagged by LD while the influence of
 516 sample structure is uncorrelated with LD. Then we show that our background model ($Z_j = 0$)
 517 can be written as (see SI Appendix, section 1.1)

$$p(\hat{\gamma}_j, \hat{\Gamma}_j | \Omega, \mathbf{C}, \hat{\mathbf{S}}_j, \ell_j) = \mathcal{N} \left(\begin{pmatrix} \hat{\gamma}_j \\ \hat{\Gamma}_j \end{pmatrix} \middle| \mathbf{0}, \ell_j \Omega + \hat{\mathbf{S}}_j \mathbf{C} \hat{\mathbf{S}}_j \right), \quad (4)$$

518 where pleiotropy and sample structure are captured by the first-order and zero-order terms of
 519 LD score, respectively. Therefore, both Ω and \mathbf{C} in the background model are pre-estimated
 520 by LDSC using genome-wide summary statistics (see SI Appendix, section 1.4.1). As observed
 521 in real data analysis, pleiotropy and sample structure are two major confounding factors for
 522 causal inference. We provide more discussion about the asymptotic distribution of summary
 523 statistics after principal component adjustment in SI Appendix, section 1.9.

524 The foreground model of MR-APSS

525 By accounting for confounding factors using the background model, we only need three mild
 526 assumptions on instrument strength γ_j and direct effect α_j to infer causal effect β , as shown in
 527 Fig. 1(a). First, there exist some nonzero values in $\{\gamma_j\}_{j=1,\dots,M_t}$. Second, the strengths of in-
 528 struments $\{\gamma_j\}_{j=1,\dots,M_t}$ are independent of confounding factors. Third, the instrument strengths
 529 are independent of the direct effects (InSIDE condition), i.e., $(\gamma_1, \dots, \gamma_{M_t}) \perp\!\!\!\perp (\alpha_1, \dots, \alpha_{M_t})$.
 530 Although our assumptions seem similar to those of existing methods, they are only imposed to
 531 the foreground signal and thus they are much weaker than existing MR methods. Specifically,
 532 we assume that γ_j and α_j are normally distributed and independent of each other:

$$p(\gamma_j, \alpha_j | \Sigma) = \mathcal{N} \left(\begin{pmatrix} \gamma_j \\ \alpha_j \end{pmatrix} \middle| \mathbf{0}, \Sigma \right), \text{ where } \Sigma = \begin{pmatrix} \sigma^2 & 0 \\ 0 & \tau^2 \end{pmatrix}. \quad (5)$$

533 The foreground-background model of MR-APSS

534 Now we combine the background model and the foreground model to characterize the observed
 535 SNP effect sizes $(\hat{\gamma}_j, \hat{\Gamma}_j)$. Let $\pi_0 = p(Z_j = 1)$ be the probability that SNP j carries the
 536 foreground signal. Combining Eqs. [1,2,3,5] and integrating out γ_j , α_j , u_j , v_j , ϵ_j , ξ_j , and Z_j ,

537 we have the following probabilistic model:

$$\begin{aligned}
 & p(\hat{\gamma}_j, \hat{\Gamma}_j | \pi_0, \beta, \Sigma, \Omega, \mathbf{C}, \hat{\mathbf{S}}_j, \ell_j) \\
 &= \pi_0 \mathcal{N} \left(\begin{pmatrix} \hat{\gamma}_j \\ \hat{\Gamma}_j \end{pmatrix} \middle| \mathbf{0}, \ell_j \mathbf{A}(\beta) \Sigma \mathbf{A}(\beta)^T + \ell_j \Omega + \hat{\mathbf{S}}_j \mathbf{C} \hat{\mathbf{S}}_j \right) + \\
 & \quad (1 - \pi_0) \mathcal{N} \left(\begin{pmatrix} \hat{\gamma}_j \\ \hat{\Gamma}_j \end{pmatrix} \middle| \mathbf{0}, \ell_j \Omega + \hat{\mathbf{S}}_j \mathbf{C} \hat{\mathbf{S}}_j \right), \tag{6}
 \end{aligned}$$

538 where $\mathbf{A}(\beta) = \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix}$. A detailed derivation for Eq. [6] is given in SI Appendix, section 1.2.

539 The theoretical justification of the uniformity of the approximated distribution for $(\hat{\gamma}_j, \hat{\Gamma}_j)$ in
540 Eq. [6] for $j = 1, \dots, M_t$ is given in SI Appendix, section 1.8.

541 Accounting for selection bias in MR-APSS

542 Recall that SNPs are selected based on a p -value threshold or equivalently a threshold t of z -score,
543 i.e., $|\hat{\gamma}_j/\hat{s}_{X,j}| \geq t$. This selection process introduces non-ignorable bias, i.e., $\mathbb{E}(\hat{\gamma}_j \mid |\hat{\gamma}_j/\hat{s}_{X,j}| \geq
544 t) \neq \gamma_j$, which has been known as winner's curse in GWAS [53, 28]. To correct the selection bias
545 in MR, we further take into account the selection condition $|\hat{\gamma}_j/\hat{s}_{X,j}| \geq t$. After some derivations
546 (SI Appendix, section 1.3), model (6) becomes a mixture of truncated normal distributions:

$$\begin{aligned}
 & p \left(\hat{\gamma}_j, \hat{\Gamma}_j \middle| |\hat{\gamma}_j/\hat{s}_{X,j}| \geq t, \pi_t, \beta, \Sigma, \Omega, \mathbf{C}, \hat{\mathbf{S}}_j, \ell_j \right) \\
 &= (1 - \pi_t) \frac{\mathcal{N} \left(\begin{pmatrix} \hat{\gamma}_j \\ \hat{\Gamma}_j \end{pmatrix} \middle| \mathbf{0}, \ell_j \Omega + \hat{\mathbf{S}}_j \mathbf{C} \hat{\mathbf{S}}_j \right)}{2\Phi \left(\frac{-t\hat{s}_{X,j}}{\sqrt{\ell_j \sigma_u^2 + \hat{s}_{X,j}^2}} \right)} + \\
 & \quad \pi_t \frac{\mathcal{N} \left(\begin{pmatrix} \hat{\gamma}_j \\ \hat{\Gamma}_j \end{pmatrix} \middle| \mathbf{0}, \ell_j \mathbf{A}(\beta) \Sigma \mathbf{A}(\beta)^T + \ell_j \Omega + \hat{\mathbf{S}}_j \mathbf{C} \hat{\mathbf{S}}_j \right)}{2\Phi \left(\frac{-t\hat{s}_{X,j}}{\sqrt{\ell_j \sigma^2 + \ell_j \sigma_u^2 + \hat{s}_{X,j}^2}} \right)}, \tag{7}
 \end{aligned}$$

547 where $\pi_t = p(Z_j = 1 \mid |\hat{\gamma}_j/\hat{s}_{X,j}| \geq t)$ is the probability that the j -th SNP carries the foreground
548 signal after selection.

549 Parameter estimation and statistical inference

550 In MR-APSS, the parameters of $\hat{\Omega}$ and $\hat{\mathbf{C}}$ in the background model are estimated by LDSC
551 using genome-wide summary statistics. Given $\hat{\Omega}$ and $\hat{\mathbf{C}}$, the log-likelihood function of the

552 observed data $\mathcal{D}_t = \{\hat{\gamma}_j, \hat{\Gamma}_j, \hat{s}_{X,j}, \hat{s}_{Y,j} \mid |\hat{\gamma}_j/\hat{s}_{X,j}| \geq t\}_{j=1,\dots,M_t}$ can be written as:

$$L(\boldsymbol{\theta}|\mathcal{D}_t) = \sum_{j=1}^{M_t} \log \left[(1 - \pi_t) \frac{\mathcal{N} \left(\begin{pmatrix} \hat{\gamma}_j \\ \hat{\Gamma}_j \end{pmatrix} \mid \mathbf{0}, \ell_j \hat{\Omega} + \hat{\mathbf{S}}_j \hat{\mathbf{C}} \hat{\mathbf{S}}_j \right)}{2\Phi \left(\frac{-t\hat{s}_{X,j}}{\sqrt{\ell_j \sigma_u^2 + \hat{c}_1 \hat{s}_{X,j}^2}} \right)} + \right. \\ \left. \pi_t \frac{\mathcal{N} \left(\begin{pmatrix} \hat{\gamma}_j \\ \hat{\Gamma}_j \end{pmatrix} \mid \mathbf{0}, \ell_j \mathbf{A}(\beta) \Sigma \mathbf{A}(\beta)^T + \ell_j \hat{\Omega} + \hat{\mathbf{S}}_j \hat{\mathbf{C}} \hat{\mathbf{S}}_j \right)}{2\Phi \left(\frac{-t\hat{s}_{X,j}}{\sqrt{\ell_j \sigma_u^2 + \ell_j \sigma^2 + \hat{c}_1 \hat{s}_{X,j}^2}} \right)} \right]. \quad (8)$$

553 To obtain the maximum likelihood estimate of model parameters $\theta = \{\beta, \pi_t, \Sigma\}$, we then derive
 554 an efficient expectation-maximization (EM) algorithm (see details in SI Appendix, section
 555 1.4.2). As a byproduct, we can estimate the numbers of valid IVs and invalid IVs as $\hat{\pi}_t M_t$
 556 and $(1 - \hat{\pi}_t) M_t$, respectively. Real data results of the estimated numbers of valid and invalid
 557 IVs are shown in Fig. 5 A. The posterior of SNP j serving as a valid IV can be estimated as
 558 $p(\hat{Z}_j = 1|\mathcal{D}_t)$, as shown in dark blue in Fig. 1D. The likelihood ratio test can be conducted to
 559 examine the existence of the causal effect. Considering the following hypothesis test:

$$H_0 : \beta = 0 \quad \text{v.s.} \quad H_1 : \beta \neq 0, \quad (9)$$

560 the likelihood-ratio test statistic (LRT) is given by

$$T = 2 \left(L(\hat{\boldsymbol{\theta}}|\mathcal{D}_t) - L(\hat{\boldsymbol{\theta}}_0|\mathcal{D}_t) \right), \quad (10)$$

561 where $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\theta}}_0$ are the parameter estimates obtained under hypotheses H_1 and H_0 , respectively.
 562 Under the null hypothesis H_0 , the test statistic T is asymptotically distributed as $\chi_{df=1}^2$ and its
 563 p -value can be obtained accordingly.

564 IV strength

565 The performance of MR methods depend on the instrument strength. For MR-APSS, we define

$$\text{average strength of IVs} = \mathbb{E} \left[\frac{1}{M_t} \sum_{j=1}^{M_t} Z_j \gamma_j^2 \mid t \right], \quad (11)$$

$$\text{total strength of IVs} = \mathbb{E} \left[\sum_{j=1}^{M_t} Z_j \gamma_j^2 \mid t \right], \quad (12)$$

566 which measure the average/total IV strength for those M_t SNPs with the selection criterion
 567 ($|\hat{\gamma}_j/\hat{s}_{X,j}| \geq t$). Given the observed summary statistics and the selection criterion t , we can
 568 use MR-APSS to obtain the posterior distributions of (γ_j, Z_j) . Therefore, we can obtain the
 569 estimates of average IV strength and total IV strength defined in Eq. [11] and Eq. [12].
 570 According to the above definitions, the average and total IV strengths depend on both the IV
 571 threshold and sample size. In general, we find that the average IV strength decreases when the
 572 IV threshold becomes looser, and the total IV strength increases as more IVs are included in
 573 the analysis. Our definitions of IV strengths for the MR-APSS model are closely connected to
 574 the IV strengths defined in MR literature (see details in SI Appendix, section 2.5).

576 Data availability

577 All the GWAS summary statistics used in this paper are public available. The URLs for
578 downloading the datasets are summarized in SI Appendix, Table S2.

579 Code availability

580 The MR-APSS software is available at <https://github.com/YangLabHKUST/MR-APSS>.

581 Acknowledgements

582 We thank the editor and two anonymous reviewers for their very detailed and constructive
583 comments, which have greatly helped to improve our manuscript. We also thank Prof. Lin
584 S. Chen, Prof. Lan Wang, Prof. Baolin Wu, Prof. Zhigang Bao, and Prof. Dong Xia for
585 their helpful comments and insightful discussions. This work is supported in part by Hong
586 Kong Research Grant Council [16307818, 16301419, 16308120, 12303618, 24301419, 14301120],
587 Hong Kong Innovation and Technology Fund [PRP/029/19FX], the Hong Kong University of
588 Science and Technology [startup grant R9405, Z0428 from the Big Data Institute], the Chinese
589 University of Hong Kong direct grants [4053360, 4053423], the Chinese University of Hong Kong
590 startup grant [4930181], the Chinese University of Hong Kong's Project Impact Enhancement
591 Fund (PIEF) and Science Faculty's Collaborative Research Impact Matching Scheme (CRIMS),
592 Key-Area Research and Development Program of Guangdong Province [2020B0101350001], and
593 the Open Research Fund from Shenzhen Research Institute of Big Data [2019ORF01004]. The
594 computational task for this work was partially performed using the X-GPU cluster supported
595 by the RGC Collaborative Research Fund: C6021-19EF.

596 References

- 597 [1] Kenneth J Rothman and Sander Greenland. Causation and causal inference in epidemiology.
598 *American journal of public health*, 95(S1):S144–S150, 2005.
- 599 [2] Lars Bondemark and Sabine Ruf. Randomized controlled trial: the gold standard or an
600 unobtainable fallacy? *European Journal of Orthodontics*, 37(5):457–461, 2015.
- 601 [3] George Davey Smith and Shah Ebrahim. ‘Mendelian randomization’: can genetic epidemi-
602 ology contribute to understanding environmental determinants of disease? *International
603 Journal of Epidemiology*, 32(1):1–22, 2003.
- 604 [4] George Davey Smith and Gibran Hemani. Mendelian randomization: genetic anchors for
605 causal inference in epidemiological studies. *Human Molecular Genetics*, 23, 2014.
- 606 [5] Jean-Baptiste Pingault, Paul F O’reilly, Tabea Schoeler, George B Ploubidis, Frühling
607 Rijsdijk, and Frank Dudbridge. Using genetic data to strengthen causal inference in
608 observational research. *Nature Reviews Genetics*, 19(9):566–580, 2018.
- 609 [6] Stephen Burgess, Adam Butterworth, and Simon G Thompson. Mendelian randomization
610 analysis with multiple genetic variants using summarized data. *Genetic epidemiology*,
611 37(7):658–665, 2013.

612 [7] Michael Baiocchi, Jing Cheng, and Dylan S Small. Instrumental variable methods for
613 causal inference. *Statistics in medicine*, 33(13):2297–2340, 2014.

614 [8] Gibran Hemani, Jack Bowden, and George Davey Smith. Evaluating the potential role of
615 pleiotropy in Mendelian randomization studies. *Human Molecular Genetics*, 27, 2018.

616 [9] Eleanor Sanderson, Tom G Richardson, Gibran Hemani, and George Davey Smith. The use
617 of negative control outcomes in Mendelian Randomisation to detect potential population
618 stratification or selection bias. *International Journal of Epidemiology*, 50(4):1350–1361,
619 2021.

620 [10] Hyun Min Kang, Jae Hoon Sul, Susan K Service, Noah A Zaitlen, Sit-yee Kong, Nelson B
621 Freimer, Chiara Sabatti, and Eleazar Eskin. Variance component model to account for
622 sample structure in genome-wide association studies. *Nature Genetics*, 42(4):348–354,
623 2010.

624 [11] Nadia Solovieff, Chris Cotsapas, Phil H Lee, Shaun M Purcell, and Jordan W Smoller.
625 Pleiotropy in complex traits: challenges and strategies. *Nature Reviews Genetics*, 2013.

626 [12] Daniel M. Jordan, Marie Verbanck, and Ron Do. The Landscape of Pervasive Horizontal
627 Pleiotropy in Human Genetic Variation is Driven by Extreme Polygenicity of Human
628 Traits and Diseases. *SSRN Electronic Journal*, 2018.

629 [13] Stephen Burgess, Neil M. Davies, and Simon G. Thompson. Bias due to participant overlap
630 in two-sample Mendelian randomization. *Genetic Epidemiology*, 40(7), 2016.

631 [14] Alkes L Price, Nick J Patterson, Robert M Plenge, Michael E Weinblatt, Nancy A Shadick,
632 and David Reich. Principal components analysis corrects for stratification in genome-wide
633 association studies. *Nature Genetics*, 38(8):904–909, 2006.

634 [15] Po-Ru Loh, George Tucker, Brendan K Bulik-Sullivan, Bjarni J Vilhjálmsson, Hilary K
635 Finucane, Rany M Salem, Daniel I Chasman, Paul M Ridker, Benjamin M Neale, Bonnie
636 Berger, Nick Patterson, and Alkes L Price. Efficient Bayesian mixed-model analysis
637 increases association power in large cohorts. *Nature Genetics*, 47(3):284–290, 2015.

638 [16] Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang,
639 Nick Patterson, Mark J Daly, Alkes L Price, and Benjamin M Neale. LD Score regression
640 distinguishes confounding from polygenicity in genome-wide association studies. *Nature
641 genetics*, 47(3):291–295, 2015.

642 [17] Vanessa Didelez and Nuala Sheehan. Mendelian randomization as an instrumental variable
643 approach to causal inference. *Statistical methods in medical research*, 16(4):309–330, 2007.

644 [18] Jack Bowden, George Davey Smith, and Stephen Burgess. Mendelian randomization
645 with invalid instruments: effect estimation and bias detection through Egger regression.
646 *International journal of epidemiology*, 44(2):512–525, 2015.

647 [19] Qingyuan Zhao, Jingshu Wang, Gibran Hemanı, Jack Bowden, and Dylan S Small.
648 Statistical inference in two-sample summary-data mendelian randomization using robust
649 adjusted profile score. *The Annals of Statistics*, 48(3):1742–1769, 2020.

650 [20] Ting Ye, Jun Shao, and Hyunseung Kang. Debiased inverse-variance weighted estimator in
651 two-sample summary-data mendelian randomization. *The Annals of Statistics*, 49(4):2079–
652 2100, 2021.

653 [21] Jack Bowden, George Davey Smith, Philip C Haycock, and Stephen Burgess. Consistent
654 estimation in mendelian randomization with some invalid instruments using a weighted
655 median estimator. *Genetic epidemiology*, 40(4):304–314, 2016.

656 [22] Fernando Pires Hartwig, George Davey Smith, and Jack Bowden. Robust inference
657 in summary data mendelian randomization via the zero modal pleiotropy assumption.
658 *International Journal of Epidemiology*, (6):6, 2017.

659 [23] Guanghao Qi and Nilanjan Chatterjee. Mendelian Randomization Analysis Using Mixture
660 Models (MRMix) for genetic effect-size-distribution leads to robust estimation of causal
661 effects. *bioRxiv*, page 367821, 2018.

662 [24] Haoran Xue, Xiaotong Shen, and Wei Pan. Constrained maximum likelihood-based
663 Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects.
664 *The American Journal of Human Genetics*, 108(7):1251–1269, 2021.

665 [25] Jean Morrison, Nicholas Knoblauch, Joseph H. Marcus, Matthew Stephens, and Xin He.
666 Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects
667 using genome-wide summary statistics. *Nature Genetics*, 2020.

668 [26] Abdel Abdellaoui, David Hugh-Jones, Loic Yengo, Kathryn E. Kemper, and Peter M.
669 Visscher. Genetic correlates of social stratification in great britain. *Nature Human
670 Behaviour*, 3(12), 2019.

671 [27] Simon Haworth, Ruth Mitchell, Laura Corbin, Kaitlin H. Wade, Tom Dudding, Ashley
672 Budu-Aggrey, David Carslake, Gibran Hemanı, Lavinia Paternoster, and George Davey and
673 Smith. Apparent latent structure within the UK Biobank sample has implications for
674 epidemiological analysis. *Nature Communications*, 10(1), 2019.

675 [28] Sebastian Zollner and Jonathan K Pritchard. Overcoming the winner’s curse : Estimating
676 penetrance parameters from case-control data. *American Journal of Human Genetics*,
677 80(4):605–615, 2007.

678 [29] Stephen Burgess and Simon G. Thompson. Interpreting findings from Mendelian random-
679 ization using the MR-Egger method. *European Journal of Epidemiology*, 2017.

680 [30] Andrew R Wood, Tonu Esko, Jian Yang, Sailaja Vedantam, Tune H Pers, Stefan Gustafsson,
681 Audrey Y Chu, Karol Estrada, Zoltán Kutalik, Najaf Amin, et al. Defining the role of
682 common variation in the genomic and biological architecture of adult human height. *Nature
683 genetics*, 46(11):1173–1186, 2014.

684 [31] Loic Yengo, Julia Sidorenko, Kathryn E Kemper, Zhili Zheng, Andrew R Wood, Michael N
685 Weedon, Timothy M Frayling, Joel Hirschhorn, Jian Yang, Peter M Visscher, and the
686 GIANT Consortium. Meta-analysis of genome-wide association studies for height and
687 body mass index in ~700000 individuals of European ancestry. *Human Molecular Genetics*,
688 27(20):3641–3649, 08 2018.

689 [32] Kyoko Watanabe, Sven Stringer, Oleksandr Frei, Maša UmićevićMirkov, Christiaan
690 de Leeuw, Tinca J. C. Polderman, Sophie van der Sluis, Ole A. Andreassen, Benjamin M.
691 Neale, and Danielle Posthuma. A global overview of pleiotropy and genetic architecture in
692 complex traits. *Nature Genetics*, 51(9):1339–1348, 2019.

693 [33] Michael L Ganz, Neil Wintfeld, Qian Li, Veronica Alas, Jakob Langer, and Mette Hammer.
694 The association of body mass index with the risk of type 2 diabetes: a case–control
695 study nested in an electronic health records system in the united states. *Diabetology and*
696 *Metabolic Syndrome*, 6(1):50, 2014.

697 [34] Kentaro Tanaka, Soshiro Ogata, Haruka Tanaka, Kayoko Omura, Chika Honda, Osaka
698 Twin Research Group, and Kazuo Hayakawa. The relationship between body mass index
699 and uric acid: a study on japanese adult twins. *Environmental health and preventive*
700 *medicine*, 20(5):347–353, 09 2015.

701 [35] Sadiya S. Khan, Hongyan Ning, John T. Wilkins, Norrina Allen, Mercedes Carnethon,
702 Jarett D. Berry, Ranya N. Sweis, and Donald M. Lloyd-Jones. Association of Body Mass
703 Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. *JAMA*
704 *Cardiology*, 2018.

705 [36] Amy E Taylor, Rebecca C Richmond, Teemu Palviainen, Anu Loukola, Robyn E Woottton,
706 Jaakko Kaprio, Caroline L Relton, George Davey Smith, and Marcus R Munafò. The
707 effect of body mass index on smoking behaviour and nicotine metabolism: a Mendelian
708 randomization study. *Human molecular genetics*, 28(8):1322–1330, 2019.

709 [37] Jessica Tyrrell, Anwar Mulugeta, Andrew R Wood, Ang Zhou, Robin N Beaumont,
710 Marcus A Tuke, Samuel E Jones, Katherine S Ruth, Hanieh Yaghootkar, Seth Sharp,
711 et al. Using genetics to understand the causal influence of higher bmi on depression.
712 *International journal of epidemiology*, 48(3):834–848, 2019.

713 [38] Jessica Tyrrell, Samuel E Jones, Robin Beaumont, Christina M Astley, Rebecca Lovell,
714 Hanieh Yaghootkar, Marcus Tuke, Katherine S Ruth, Rachel M Freathy, and Joel N
715 Hirschhorn. Height, body mass index, and socioeconomic status: mendelian randomisation
716 study in UK Biobank. *Bmj British Medical Journal*, page i582, 2016.

717 [39] Lahey and B. Benjamin. Public health significance of neuroticism. *American Psychologist*,
718 64(4):241, 2009.

719 [40] Jim Van Os and Peter B. Jones. Neuroticism as a risk factor for schizophrenia. *Psychological*
720 *Medicine*, 31(6):1129–34, 2001.

721 [41] Anne Farmer, Kate Redman, Tanya Harris, Arshad Mahmood, Stephanie Sadler, Andrea
722 Pickering, and Peter McGuffin. Neuroticism, extraversion, life events and depression: The
723 Cardiff Depression Study. *The British Journal of Psychiatry*, 181(2):118–122, 2002.

724 [42] Hyunseung Kang, Anru Zhang, T Tony Cai, and Dylan S Small. Instrumental variables
725 estimation with some invalid instruments and its application to mendelian randomization.
726 *Journal of the American statistical Association*, 111(513):132–144, 2016.

727 [43] Zijian Guo, Hyunseung Kang, T Tony Cai, and Dylan S Small. Confidence intervals for
728 causal effects with invalid instruments by using two-stage hard thresholding with voting.
729 *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 80(4):793–815,
730 2018.

731 [44] Eric Tchetgen Tchetgen, BaoLuo Sun, and Stefan Walter. The GENIUS approach to
732 robust Mendelian randomization inference. *Statistical Science*, 36(3):443–464, 2021.

733 [45] Ting Ye, Zhonghua Liu, Baoluo Sun, and Eric Tchetgen Tchetgen. GENIUS-MAWII: For
734 Robust Mendelian Randomization with Many Weak Invalid Instruments. *arXiv preprint arXiv:2107.06238*, 2021.

736 [46] Zhonghua Liu, Ting Ye, Baoluo Sun, Mary Schooling, and Eric Tchetgen Tchetgen.
737 On Mendelian Randomization Mixed-Scale Treatment Effect Robust Identification (MR
738 MiSTERI) and Estimation for Causal Inference. *arXiv preprint arXiv:2009.14484*, 2020.

739 [47] Xiang Zhu and Matthew Stephens. Bayesian large-scale multiple regression with sum-
740 mary statistics from genome-wide association studies. *The Annals of Applied Statistics*,
741 11(3):1561–1592, 2017.

742 [48] Stephen Burgess, Neil M Davies, and Simon G Thompson. Instrumental variable analysis
743 with a nonlinear exposure–outcome relationship. *Epidemiology (Cambridge, Mass.)*,
744 25(6):877, 2014.

745 [49] James R Staley and Stephen Burgess. Semiparametric methods for estimation of a nonlinear
746 exposure–outcome relationship using instrumental variables with application to mendelian
747 randomization. *Genetic epidemiology*, 41(4):341–352, 2017.

748 [50] Marios Arvanitis, Guanghao Qi, Deepak L Bhatt, Wendy S Post, Nilanjan Chatterjee,
749 Alexis Battle, and John W McEvoy. Linear and nonlinear mendelian randomization
750 analyses of the association between diastolic blood pressure and cardiovascular events: the
751 J-curve revisited. *Circulation*, 143(9):895–906, 2021.

752 [51] Eleanor Sanderson, George Davey Smith, Frank Windmeijer, and Jack Bowden. An
753 examination of multivariable Mendelian randomization in the single-sample and two-
754 sample summary data settings. *International journal of epidemiology*, 48(3):713–727,
755 2019.

756 [52] Verena Zuber, Johanna Maria Colijn, Caroline Klaver, and Stephen Burgess. Selecting
757 likely causal risk factors from high-throughput experiments using multivariable mendelian
758 randomization. *Nature communications*, 11(1):1–11, 2020.

759 [53] John Ferguson, Judy H Cho, Can Yang, and Hongyu Zhao. Empirical Bayes Correction
760 for the Winner's Curse in Genetic Association Studies. *Genetic Epidemiology*, 37(1):60–68,
761 2013.