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Abstract

1 Mendelian Randomization (MR) is a valuable tool for inferring causal relationships among
> a wide range of traits using summary statistics from genome-wide association studies (GWASs).
s Existing summary-level MR methods often rely on strong assumptions, resulting in many false
+ positive findings. To relax MR assumptions, ongoing research has been primarily focused
s on accounting for confounding due to pleiotropy. Here we show that sample structure is
s another major confounding factor, including population stratification, cryptic relatedness,
7 and sample overlap. We propose a unified MR approach, MR-APSS, which (i) accounts for
s pleiotropy and sample structure simultaneously by leveraging genome-wide information; and
o (ii) allows to include more genetic variants with moderate effects as instrument variables (IVs)
10 to improve statistical power without inflating type I errors. We first evaluated MR-APSS using
u comprehensive simulations and negative controls, and then applied MR-APSS to study the
12 causal relationships among a collection of diverse complex traits. The results suggest that
13 MR-APSS can better identify plausible causal relationships with high reliability. In particular,
1w MR-APSS can perform well for highly polygenic traits, where the IV strengths tend to be
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s relatively weak and existing summary-level MR methods for causal inference are vulnerable to

=

16 confounding effects.

» Introduction

18 Inferring the causal relationship between a risk factor (exposure) and a phenotype of interest
1o (outcome) is essential in biomedical research and social science [I]. Although randomized
20 controlled trials (RCTs) are the gold standard for causal inference, RCTs can be very costly
2 and sometimes even infeasible or unethical (e.g., random allocation to prenatal smoking)
2 [2]. Mendelian randomization (MR) was introduced to mimic RCTs for causal inference in
23 observational studies [3, 4]. Recently, MR analysis has drawn increasing attention [5] because
2 it can take summary statistics from Genome-Wide Association Studies (GWASs) as input,
s including SNP effect size estimates and their standard errors, to investigate causal relationship
2 among human complex traits.

27 MR is an instrumental variable (IV) method to infer the causal relationship between
s an exposure and an outcome, where genetic variants, e.g., single-nucleotide polymorphisms
2 (SNPs), serve as IVs of the exposure [6, [7]. To eliminate the influence of confounding factors,
w0 conventional MR methods rely on strong assumptions, including (A-I) IVs are associated with
u the exposure; (A-II) IVs are independent of confounding factors; and (A-III) IVs only affect
2 the outcome through the exposure. However, assumptions (A-II) and (A-III) are often not
13 satisfied in practice due to confounding factors hidden in GWAS summary statistics, leading to
s false positive findings [5, §]. To perform causal inference with genetic data, it is indispensable
55 to distinguish two major confounding factors: pleiotropy [8] and sample structure [9, [10].

36 First, SNPs exhibit pervasive pleiotropic effects. Pleiotropy occurs when a genetic variant
s directly affects both exposure and outcome traits or indirectly through an intermediate phe-
;s notype [11]. Pleiotropy can induce trait association or genetic correlation in the absence of
3 causality [I1]. Due to the polygenicity of complex traits and linkage disequilibrium (LD) in the
w0 human genome, pleiotropic effects can widely spread across the whole genome [12]. Therefore,
s a substantial proportion of SNPs can carry pleiotropic effects and they fail to satisfy (A-II)
2 and (A-IIT) on IVs in conventional MR methods.

a3 Second, sample structure can lead to bias in SNP effect size estimates and introduce
w spurious trait associations. Here, sample structure encompasses population stratification,
s cryptic relatedness, and sample overlap in GWASs of the exposure and outcome traits. In
s the presence of population stratification and cryptic relatedness, SNPs can affect the outcome
« through sample structure and thus they violate assumptions (A-II) and (A-III) on IVs.
s Without correcting for sample structure, SNP effect size estimates can be severely biased, which
s may lead to misinterpretation on trait association and thus many false positive discoveries in
so causal inference. Sample overlap can also lead to spurious trait associations [I3]. Although
si principal component analysis (PCA) [I4] and linear mixed models (LMM) [I5] are widely used
2 to account for sample structure in GWASs, the results from LDSC [I6] show that sample
53 structure is often unsatisfactorily corrected in publicly available GWAS summary statistics.
54 To maximize the usage of publicly available GWAS summary statistics for causal inference,
55 a number of summary-level MR methods have been developed, including Inverse Variance
s Weighted regression (IVW) [17], Egger [18], RAPS [19], AIVW [20], Weighted-median [21],
sv Weighted-mode [22], MRMix [23], CML-MA [24], and CAUSE [25]. Despite these efforts, there
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58 are two major limitations in existing summary-level MR methods. First, most of them only
o use a small subset of SNPs passing the genome-wide significance (p-value < 5 x 107%) for
oo causal inference. To account for pleiotropy (including correlated pleiotropy and uncorrelated
s pleiotropy [25]), it is challenging to fit a flexible model with limited information from genome-
s2 wide significant SNPs. Second, existing summary-level MR methods presume that PCA or
ss  LMM-based approaches have satisfactorily accounted for sample structure and thus they largely
s« ignore the influence of sample structure in GWAS summary statistics. Due to the complexity of
s human genetics, sample structure driven by socioeconomic status [26] or geographic structure
s [27] may not be fully corrected by routine adjustment and it may remain as a major confounding
o7 factor hidden in GWAS summary statistics.

68 In this paper, we develop MR-APSS, a unified approach to MR Accounting for Pleiotropy
s and Sample Structure simultaneously. Specifically, we propose a foreground-background
70 model to decompose the observed SNP effect sizes, where the background model accounts for
7 confounding factors hidden in GWAS summary statistics, including correlated pleiotropy and
72 sample structure, and the foreground model performs causal inference while accounting for
73 uncorrelated pleiotropy. MR-APSS differs from existing methods in the following aspects. First,
7« under the assumptions of LD score regression (LDSC) [16], the background model accounts
s for pleiotropy and sample structure using genome-wide summary statistics. In contrast, most
7 summary-level MR methods only use SNPs passing the genome-wide significance (p-value
7 <5 x1078). Second, MR-APSS allows us to include more SNPs without achieving the genome-
s wide significance as IVs to improve statistical power. With the pre-estimated background
79 model, MR-APSS can inform whether an SNP belongs to the background component or the
so foreground component. Even in the presence of many invalid IVs, the type I error will not be
s1 inflated because only the foreground signals are used for causal inference. As more SNPs are
&2 included, the increasing amount of the foreground signal can improve the statistical power.

83 To demonstrate the effectiveness of MR-APSS, we have performed a comprehensive sim-
s« ulation study and analyzed 640 pairs of exposure and outcome traits from 26 GWASs. In
s the simulation study, we showed that MR-APSS still had satisfactory performance when the
s assumptions of IVs were violated. We examined MR-APSS on a wide spectrum of complex
& traits using GWAS summary statistics, including psychiatric/neurological disorders, social
s traits, anthropometric traits, cardiovascular traits, metabolic traits, and immune-related traits.
8o Real data results indicate that pleiotropy and sample structure are two major confounding
o factors. By rigorous statistical modeling of these confounding factors, MR-APSS not only avoids
a1 many false positive findings but also improves the statistical power of MR. When inferring
e causal relationships among highly polygenic traits, such as psychiatric disorders and social
o3 traits, the strengths of IVs tend to be relatively weak and causal inference is vulnerable to
o confounding effects. Thus, existing MR methods will suffer from either low statistical power or
os inflated type I errors. The empirical results indicate that MR-APSS is particularly useful in
o this scenario because it accounts for confounding factors and allows for incorporating many
o IVs with moderate effects, demonstrating its advantage over existing MR methods.
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Results

Overview of MR-APSS. Causality, pleiotropy, and sample structure are three major sources
to induce correlation between GWAS estimates of exposure-outcome traits. To distinguish
causality from correlation, it is indispensable to eliminate the possibility that correlation is
induced by confounding factors, such as pleiotropy and sample structure (including population
stratification, cryptic relatedness, and sample overlap).

MR-APSS takes GWAS summary statistics of exposure and outcome traits as its input and
performs causal inference based on a proposed foreground-background model (see an overview
in Fig. |1) and details in the Materials and Methods section). Under the assumptions of LDSC
[16] (see details in SI Appendix, section 1.1), the background model can effectively account for
confounding factors by disentangling pleiotropy (Fig. [[B) and sample structure (Fig. [[|C). This
is because the pleiotropic effects can be tagged by LD and the influence of sample structure is
uncorrelated with LD [16]. In addition to the LDSC assumptions in the background model,
we have made two key assumptions for causal inference. First, we assume that the correlated
pleiotropy effects can be approximately characterized by the genetic correlation which can be
estimated from genome-wide summary statistics. Second, we assume that the direct effect
is independent of the instrument strength in our foreground model (known as the InSIDE
condition). This is reasonable because correlated pleiotropy effects have been accounted for
using genome-wide genetic correlation. By further accounting for selection bias [28] due to
selection of IVs (see Materials and Methods section), the foreground model can use the classical
causal diagram to perform causal inference (Fig. ) In summary, our method requires the
LDSC assumptions for the background model and the InSIDE condition for the foreground
model to relax assumptions (A-II) and (A-III).

Compared methods. Because MR-APSS uses the GWAS summary statistics as its input, we
mainly compare MR-APSS with nine summary-level MR methods and grouped them (including
MR-APSS) into three groups based on their assumptions, including IVW from group 1; Egger,
RAPS and dIVW from group 2; and Weighted-median, Weighted-mode, MRMix, CML-MA,
CAUSE and MR-APSS from group 3 (see Table[l)). We provide a review of them in SI Appendix,
sections 2.1-2.2. We show theoretically that the IVW estimator and the dIVW estimator can
be biased in the presence of pleiotropy and sample structure (SI Appendix, section 2.6). To
establish a better connection with causal literature, we also provide a review of individual-level
MR methods in SI Appendix, section 2.3 and Table S1. We conducted comparisons between
summary-level MR methods and individual-level MR methods. Detailed results are provided
in SI Appendix, sections 3.3 and 4.4, Figs. S1, S6, and S16-S21.
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Figure 1: The MR-~-APSS approach. To infer the causal effect S between exposure X and
outcome Y, MR-APSS uses a foreground-background model to characterize the estimated effects
of SNPs G, on X and Y (%; and I';) with standard errors (5, §y,), where the background
model accounts for polygenicity, correlated pleiotropy (B) and sample structure (C), and the

foreground model (A) aims to identify informative instruments and account for uncorrelated

pleiotropy to perform causal inference. (D) We consider inferring the causal relationship
between BMI and T2D as an illustrative example of MR-APSS. The estimated causal effect
is indicated by a red line with its 95% confidence interval indicated by the shaded area in

transparent red color. Triangles indicate the observed SNP effect sizes (4; and f]) The color of

triangles indicates the posterior of a valid IV, i.e., the posterior of an IV carrying the foreground
signal (Z; = 1, dark blue) or not (Z; = 0, light blue).

Table 1: Summary of ten summary-level MR methods

Method (A-II) | (A-III) | Key assumptions Sample | Selection
structure bias
IVW [17 v All TVs are valid; NOME. X X
Egger [18] v X IH_SIDE; NOME; X X
Directional pleiotropy (E(a;) = p).
InSIDE;
RAPS 9] v % Balanced pleiotropy (a; ~ N'(0,72)). % .
InSIDE;
dIVW 20 v % Balanced pleiotropy (a; ~ N(0,72)). % v
Weighted-median [21] X X Majority valid; NOME. X X
Weighted-mode [22] X X Plurality valid. X X
MRMix 23] X X Plurality valid. X X
cML-MA 24 X X Plurality valid. X X
All IVs can be invalid,
CAUSE 25 X X but majority of IVs should not be Sample X
affected by correlated pleiotropy. overlap
All IVs can be invalid;
MR-APSS X X Assumptions of LDSC; v v
InSIDE in the foreground model.

IV: Instrumental Variable; Three IV assumptions: (A-I) IVs are associated with the exposure; (A-II) IVs are
independent of confounders; and (A-III) IVs only affétt the outcome through the exposure.
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Simulation studies. To evaluate MR-APSS in various scenarios and compare it with nine
MR methods in Table [ we first perform simulation studies under the MR-APSS model. After
that, we investigate the robustness of MR-APSS in the presence of model misspecification.

For exposure and outcome traits, we used 47,049 SNPs on chromosomes 1 and 2 of 20,000
individuals of white British ancestry randomly drawn from the UK BioBank (UKBB). SNP
effect sizes (v;, a;, uj, v;) were generated from the relationship shown in Fig. [1] and Eq.
in Materials and Methods section. Based on real genotype data and simulated SNP effect
sizes, we generated both traits and obtained summary statistics (see details in SI Appendix,
section 3.1). The relationship shown in Fig. [1|is composed of the background signal and the
foreground signal. For the background signal, polygenic effects (u;, v;) of all SNPs were normally
distributed with variance components (¢ = 72 = 0.5/47,049), such that the heritabilities of
both exposure X and outcome Y were specified at 0.5. The magnitudes of the error terms
(€;,&;) were determined by the fixed sample sizes of 20,000. For the foreground signal, we
randomly assigned 500 out of 47,049 SNPs as IVs. As the instrument strength (v;) and the
magnitude of the direct effect () are given by variance components ¢ and 72 (Fig. , we
specified 02 : 02 = 20 to mimic real data scenarios. We set 72 : 72 = 1, so the magnitude of the
direct effects in the foreground model is the same as that of the polygenic effects.

We compared MR-APSS with nine MR methods, including IVW, dIVW, RAPS, MRMix,
cML-MA, Egger, CAUSE, Weighted-median, and Weighted-mode. Note that the performance
of MR methods depends on the selected IVs. Using a stringent criterion, fewer SNPs will be
selected as IVs and MR methods tend to have lower power of detecting the causal effect and
lower false positive rate. When more SNPs are included using a loose criterion, MR methods
tend to have higher power but higer false positive rate because their model assumptions are
more likely to be violated. To evaluate the performance of MR methods under null (8 = 0), we
used a stringent criterion (IV threshold p = 5 x 107°) to select IVs for IVW, dIVW, RAPS,
MRMix, cML-MA, Egger, Weighted-median, and Weighted-mode. For CAUSE, we used its
default threshold p = 1 x 1073 to include IVs. For MR-APSS, we used p = 5 x 10~*. For all
nine MR methods, we applied LD pruning (r? = 0.01) to the selected IVs to ensure that they
were nearly independent.

We first examined type I error control of different MR methods under null (8 = 0) in
the presence of genetic correlation induced by pleiotropy. We simulated data with genetic
correlation but without correlation in estimation errors. Quantile-quantile plots of different
MR methods are shown in Fig. , , for genetic correlation r, = 0.2 (more results for
different genetic correlations are given in SI Appendix, Fig. S2). Clearly, MR-APSS is the only
method that produces well-calibrated p-values. To better examine how MR-APSS accounted
for polygenicity and pleiotropy, we manually set the variance component of MR-APSS to zero,
ie., © = 0. We denote this version of MR-APSS as MR-APSS (©2 = 0). As shown in Fig.
, MR-APSS produced well-calibrated p-values while MR-APSS (€2 = 0) produced overly
inflated p-values. This suggests that variance component €2 plays a critical role in accounting
for polygenicity and pleiotropy. We also noticed different performance of alternative MR
methods (Fig. , ) In the presence of non-zero genetic correlation, MR methods, such as
IVW, dIVW, RAPS, MRMix, cML-MA, Weighted-median, and MR-APSS (€2 = 0), tended to
produce inflated p-values. Different from other MR methods, CAUSE produced very deflated
p-values and thus CAUSE was very conservative in identifying causal effects.
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176 Next, we examined the type I error control under null (5 = 0) in the presence of correlation
177 between estimation errors due to sample structure. Specifically, we set genetic correlation 4 = 0
s and simply generated correlation of estimation errors (¢;2 = 0.15) using 10,000 overlapped
1o samples in exposure and outcome studies (more results for different ¢15 are given in ST Appendix,
o Fig. S3). We notice that correlation between estimation errors can also be induced by population
11 stratification and cryptic relatedness. To avoid unrealistic simulation of population stratification,
122 we investigated this issue when we performed real data analysis. The quantile-quantile plots of
183 different MR methods are shown in Fig. 2IC, 2D, 2F. IVW, dIVW, RAPS, MRMix, cML-MA,
18s and Weighted-median produced overly inflated p-values. These results indicate that correlation
15 between estimator errors can be a major confounding factor leading to false positive findings.
185 Again, CAUSE produced very deflated p-values. To see how MR-APSS accounts for correlation
17 between estimation errors, we set C =1, i.e., ¢; = ¢o = 1 and ¢15 = 0. In such a way, MR-APSS
188 was forced to ignore the correlation between estimation errors. We denote this version of
1ss MR-APSS as MR-APSS (C =1I). As shown in Fig. PJF, MR-APSS (C = I) produced inflated
10 p-values. In contrast, MR-APSS produced well-calibrated p-values. These results suggest that
11 MR-APSS can satisfactorily account for correlation between estimation errors due to sample
12 structure.

103 Finally, we examined the power of MR methods. As shown above, IVW, dIVW, RAPS,
s MRMix, cML-MA, and Weighted-median often produced overly inflated type I errors in the
105 presence of either pleiotropy or sample structure. Hence, we only compared MR-APSS with
ws  Egger, Weighted-mode, and CAUSE. We simulated data with both genetic correlation (r, = 0.1)
w7 and correlation between estimation error (c;o = 0.1). We varied the causal effect size 8 from
s 0.05 to 0.45. MR-APSS was the overall winner in terms of power (Fig. [2| G). We further
19 compared the estimation accuracy of the causal effects using MR-APSS, Egger, Weighted-mode,
20 and CAUSE (Fig. [2 H). Consistent with the literature [29], we observed that Egger had a very
20 large estimation error. As discussed in SI Appendix, section 2.4, CAUSE often misinterprets
22 the causal effect as correlated pleiotropy, leading to underestimation of the true causal effect.
203 Consistently, we observed that the estimate of Weighted-mode and CAUSE was biased to the
2 null (8 =0). In the above simulations, the foreground-background variance ratio was fixed at
20s 00, =20:1. We provide more results with different foreground-background variance ratios
205 (0 :0, € {40,10}) in SI Appendix, Figs. S4 and S5.

207 To evaluate the robustness of MR-APSS in the presence of model misspecification, we also
28 conducted simulations with the CAUSE model. The main patterns of the performance of the
20 ten MR methods largely remained the same. We provide details in SI Appendix, section 3.2,
210 FigS. S6-S8.

an Real data analysis: negative control outcomes. To fairly examine the type I errors of
22 MR methods, we use the negative control outcomes proposed by Sanderson et al. [9], where
23 confounding factors (e.g., pleiotropy and sample structure) naturally exist. The traits that can
2 serve as ideal negative control outcomes should satisfy two conditions. First, they should not be
a5 causally affected by any of the exposures considered. Second, the exposure and outcome traits
216 could be affected by some unmeasured confounders, e.g., population stratification. Following
217 the same way of Sanderson et al. [9] to choose negative control outcomes, we considered natural
218 hair colors before greying (Hair color: black, Hair color: blonde, Hair color: light brown, Hair
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Figure 2: Comparison of ten summary-level MR methods on simulated data. (A-F) Quantile-
quantile plots of —log,,(p)-values from different methods under null simulations in the absence
of causal effect (5 = 0). Null simulations were performed under different scenarios: (A, B,
E) Null simulations with genetic correlation (r, = 0.2) induced by pleiotropy, but without
correlation in estimation errors (c¢;3 = 0). (C, D, F) Null simulations in the presence of
correlation in estimation errors (¢j3 = 0.15) due to sample structure, but in the absence of
non-zero genetic correlation (r, = 0). Based on results in A-D, MR-APSS, Egger, Weighted-
mode, and CAUSE do not provide overly inflated p-values. (G,H) Comparison of MR-APSS,
Egger, Weighted-mode, and CAUSE under alternative simulations (5 # 0). (G) The power
under the settings that the causal effect size § varied from 0.05 to 0.45. (H) Estimates of
causal effect under the alternative simulations (5 = 0.25). The results were summarized from
50 replications.

color: dark brown) and skin tanning ability (Tanning) from UKBB because they are largely
determined at birth and they could be affected by sample structure.

We considered 26 exposure traits from UKBB and Genomics Consortiums (Details for the
GWAS sources are given in SI Appendix, Table S2). These traits can be roughly divided
into five categories, including psychiatric/neurological disorders, social traits, anthropometric
traits, cardiometabolic traits, and immune-related traits. The data pre-processing steps for
GWAS summary statistics are described in SI Appendix, section 4.1. The sample sizes of those
GWASSs range from 114,244 to 385,603, with a minimum of 15,954 for ASD and a maximum of
898,130 for T2D. Given the large sample sizes of GWASs, we used the genome-wide significance
threshold 5 x 107® as the IV threshold for IVW, dIVW, RAPS, Egger, MRMix, CML-MA,
Weighted-median, and Weighted-mode in real data analysis. This stringent criterion helps to
exclude invalid IVs for these methods and thus reduce their false positive rates. Due to the
stringent IV selection, we were not able to find enough SNPs (> 4) as IVs for four exposure
traits, i.e., major depressive disorder (MDD), autism spectrum disorder (ASD), subject well-
being (SWB), and the number of children Ever born (NEB). For CAUSE [25], we used its
default p-value threshold p =1 x 1072 to select IVs. For MR-APSS, we used 5 x 107> as the
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default IV threshold.

First, we applied MR-APSS and the nine summary-level MR methods to infer the causal
effects between these 26 exposure traits and five negative control outcomes. To make the
comparison fair, we focus on the results for 110 pairs where each method had sufficient IVs for
MR analysis. Ideally, these p-values should be uniformly distributed between 0 and 1 under
the null (5 = 0). Fig. shows the QQ-plots of —log,,(p) values of the six methods (red
dots).Clearly, MR-APSS and Weighted-mode produced well-calibrated p-values. IVW, dIVW,
RAPS, MRMix, cML-MA, and Weighted-median produced overly inflated p-values, while Egger
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Figure 3: Evaluation of the type I error control of MR methods using negative control
outcomes.(A) Quantile-quantile plots of — log,,(p)-values from ten summary-level MR methods
for causal inference between complex traits and negative control outcome. Red dots represent
all 110 trait pairs tested by each method. Blue triangles represent the 81 trait pairs with
insignificant genetic correlation at the nominal level of 0.05. Green diamonds represent the 29
trait pairs whose genetic correlation 74 and ci2 are both insignificant at the nominal level of
0.05. (B) Estimates of r, and c¢;2 for trait pairs between 26 complex traits and five negative
control outcomes. (C) Quantile-quantile plots of —log;,(p)-values from MR-APSS, MR-APSS
(2 =0), and MR-APSS (C =1) for trait pairs between 26 complex traits and five negative
control outcomes. The circled p-values correspond to the trait pairs marked by squares in (B),
which are largely confounded by pleiotropy and sample structure.
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produced slightly inflated p-values. CAUSE produced deflated p-values in the beginning but
inflated p-values later. We investigated the reasons why the five MR methods performed
unsatisfactorily. As shown in Fig. 3B, we examined the estimates of two key parameters, 7,
and c;g, of our background model, where r, is the genetic correlation capturing the overall
correlated pleiotropic effects and c¢15 captures the correlation of estimation errors due to sample
structure (e.g., population stratification, cryptic relatedness, and sample overlap). Among the
110 exposure-outcome trait pairs, 81 trait pairs had nearly zero genetic correlation and 29
trait pairs had nonzero genetic correlation at the nominal level of 0.05 (marked by *). We also
examined the correlation of estimation errors due to sample structure. Among the 110 trait
pairs, 63 pairs had significant nonzero ¢;5 at the nominal level 0.05 (marked by *). To identify
the major reason for the inflated p-values produced by the nine MR methods, we restricted
ourselves to the 81 trait pairs whose genetic correlation was nearly zero. For these 81 pairs,
we generated the QQ-plots of —log,,(p) values of the ten MR methods (blue triangles in Fig.
). Clearly, IVW, dIVW, RAPS, MRMix, cML-MA, and Weighted-median still produced
overly inflated p-values. Egger produced slightly better calibrated p-values. CAUSE produced
deflated p-values in the beginning but inflated p-values later. We further restricted ourselves to
trait pairs whose genetic correlation and correlation of estimation errors were both nearly zero.
For these trait pairs (green diamond), MR-APSS, Weighted-mode RAPS, MRMix, cML-MA,
Weighted-median, and Egger produced well-calibrated p-values. IVW and dIVW still produced
inflated p-values. CAUSE produced very conservative p values. These results suggest that
sample structure is another major confounding factor in addition to pleiotropy.

It is worthwhile to mention that nonzero ¢4 can be induced by either population stratification
or sample overlap. To see this, let us consider the relationship between Height (GIANT) [30]
and Tanning from UKBB. Recall that parameters ¢; and ¢, capture the bias in estimation
errors (€;,&;) and parameter cjp captures their correlation (Fig. . By applying LDSC to
estimate our background model, we obtained ¢ = 1.34 (s.e. = 0.022) for Height (GIANT) and
¢o = 1.81 (s.e. = 0.023) for Tanning, respectively. These results indicate that the publicly
released GWAS summary statistics are affected by confounding factors, such as population
stratification. By applying LDSC, we obtained ¢;5 = —0.17 (s.e. = 0.011). As we know,
the samples from GIANT do not overlap with UKBB [31]. Therefore, the nonzero ¢;5 value
should be mainly attributed to population stratification. As a comparison, we also considered
Height (UKBB) [32] and Tanning from UKBB. By applying LDSC, we obtained ¢ = 1.97
(s.e. = 0.040) for Height (UKBB), suggesting that the released GWAS summary statistics of
Height (UKBB) might potentially suffer from population stratification. By applying LDSC, we
obtained ¢12 = —0.36 (s.e. = 0.014) for Height (UKBB) and Tanning (UKBB). Such a nonzero
value could be attributed to both population stratification and sample overlap.

To better examine the role of MR-APSS in accounting for pleiotropy or sample structure,
we applied MR-APSS but fixed €2 = 0 and C =1, respectively. We denote the two variations
as MR-APSS (2 = 0) and MR-APSS (C = I), where MR-APSS (€2 = 0) does not account
for pleiotropy and MR-APSS (C = I) does not account for sample structure. As shown in
BC, both MR-APSS (2 = 0) and MR-APSS (C = I) reported inflated p-values. For example,
based on Bonferroni correction, several trait pairs (marked with black circles in Fig. [BIC) were
falsely detected as causal by MR-APSS (€2 = 0) and MR-APSS (C =1I). As shown in Fig.
(marked by squares), their corresponding 7, and ¢, values were significantly different from

10


https://doi.org/10.1101/2021.03.11.434915
http://creativecommons.org/licenses/by-nc-nd/4.0/

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434915; this version posted March 26, 2022. The copyright holder for this preprint

available under aCC-BY-NC-ND 4.0 International license.

zero. By using negative control outcomes, we show that MR-APSS can produce well-calibrated
p-values by accounting for pleiotropy and sample structure.

Inferring causal relationships among complex traits. To perform causal inference, we
considered 26 complex traits from five categories including psychiatric/neurological disorders,
social trait, anthropometric traits, cardiometabolic traits, and immune-related traits. Before
applying MR methods, we examined the estimates of r, and ¢ in the background model of
MR-APSS for all 325 pairwise combination of the 26 traits. We found that genetic correlation
(ry) of 198 pairs significantly differed from zero at the nominal level of 0.05 (marked by * in Fig.
[MA). Among them, genetic correlation of 130 pairs remained to be significant after Bonferroni
correction with p < 0.05/325 (marked by *x in Fig. [lA). For the estimates of ¢1o, 126 pairs
had significant nonzero ¢ at the nominal level 0.05 (marked by * in Fig. ) and 76 pairs
of them remained to be significantly different from zero after Bonferroni correction (marked
by *x in Fig. ) Of note, 56 pairs of traits had significantly nonzero estimates of both 7
and ¢19 after Bonferroni correction. The above results suggest that both pleiotropy and sample
structure are presented as major confounding factors for causal inference.

We considered inferring the causal relationship between traits X and Y in both directions,
ie, X =Y (X as exposure and Y as outcome) and Y — X (Y as exposure and X as outcome).
To avoid causal inference between two very similar phenotypes (e.g., Angina and CAD), we
excluded several trait pairs which were marked in grey color as non-diagonal cells in Fig. [4IC.
Therefore, 640 trait pairs remained for MR tests in total. We applied MR-APSS to these
trait pairs using IV threshold p = 5 x 107° and identified 34 significant causal relationships
after Bonferroni correction (Fig. , marked by triangles). As shown in Fig. , many
traits in social or neurological /psychiatric categories were observed to be genetically correlated
with a wide range of complex traits from different categories. After accounting for pleiotropy
and sample structure, the results from MR-APSS indicate that genetic correlation of many
trait pairs should not be attributed to the causal effects. An example is Depression which
was also genetically correlated with 18 complex traits from different categories, such as BMI
(g = 0.220,s.e. = 0.024) from Anthropometric category, Insomnia (7, = 0.454,s.e. = 0.025),
and SCZ (1, = 0.321,s.e. = 0.027) from neurological/psychiatric category. MR-APSS only
confirmed the causal effect of Depression on Insomnia (B = 0.570, p-value = 4.38 x 107°).
Clearly, MR-APSS can serve as an effective tool to distinguish causality from genetic correlation.

As a comparison, we also applied the nine compared methods to infer the causal relationships
for the 640 trait pairs. We used p = 5 x 107® as the IV selection threshold for IVW, dIVW,
RAPS, Egger, MRMix, CML-MA, Weighted-median, and Weighted-mode, and p = 1 x 1072 for
CAUSE. For MR methods including IVW, dIVW, RAPS, Egger, MRMix, CML-MA, Weighted-
median, and Weighted-mode, only 541 trait pairs were tested because 99 trait pairs had less
than four SNPs as [Vs. For CAUSE, all 640 trait pairs were included. A summary of the causal
relationships detected by the nine compared methods are given in SI Appendix, Figs. S22-S30.
RAPS reported 58 trait pairs with significant causal effects after Bonferroni correction. Among
them, 24 trait pairs were considered insignificant by MR-APSS after Bonferroni correction.
Notably, RAPS made a similar assumption with the foreground model of MR-APSS, however, it
has no background model to account for pleiotropy and sample structure. To better understand
the difference between RAPS and MR-APSS, we applied MR-APSS (€2 = 0) or MR-APSS

11
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Figure 4: Application of MR-APSS to infer causal relationships between 26 complex traits. (A)
Estimates of genetic correlation between 26 complex traits. Positive and negative estimates of
genetic correlation 7, are indicated in red and blue, respectively. Trait pairs with significant 7,
at the nominal level of 0.05 are marked by *. Trait pairs that remain to be significant after
Bonferroni correction with p < 0.05/325 are marked by . (B) Estimates of ¢ between
26 complex traits. Positive and negative estimates of ¢ are shown in purple and green,
respectively. Trait pairs with significant ¢;5 at the nominal level of 0.05 are marked by *. Trait
pairs remain to be significant after Bonferroni correction with p < 0.05/325 are marked by
k. (C) Causal relationships detected by MR-APSS. The positive and negative estimates of
causal effects of the exposure on the outcome are indicated by red up-pointing triangles and
blue down-pointing triangles, respectively. (D) The Venn diagram shows the causal effects
detected by MR-APSS, CAUSE, Egger, and Weighted-mode after Bonferroni correction.
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(C =1) to those trait pairs. The testing p-values of 18 trait pairs became significant based
on Bonferroni correction. An example was BMI and Insomnia (SI Appendix, Table S3) with
7y = 0.184 (s.e. = 0.025) and ¢12 = 0.058 (s.e. = 0.010). RAPS produced 3 = 0.07 with p-value
3.04 x 1072, Without accounting for pleiotropy or sample structure, MR-APSS (£ = 0) and
MR-APSS (C = 1) reported B = 0.070 with p-value = 1.70 x 10~7 and 3 = 0.063 with p-value =
1.01 x 107, respectively. After accounting for both pleiotropy and sample structure, MR-APSS
estimated causal effect between BMI and Insomnia as B = 0.0337 with p-value = 0.128. The
results indicate that RAPS was likely affected by pleiotropy and sample structure.

Since IVW, dIVW, RAPS, MRMix, cML-MA, Weighted-median tended to have higher
type I errors than the nominal level, we mainly compared statistical power of MR-APSS with
Egger, CAUSE, and Weighted-mode (Fig. D). A complete list of causal relationship among
these traits detected by MR-APSS, Egger, CAUSE, and Weighted-mode are summarized in
SI Appendix, Table S4. Based on Bonferroni correction, MR-APSS detected 18 significant
causal effects which were not reported by CAUSE, Egger, and Weighted-mode, showing higher
statistical power of MR-APSS For example, MR-APSS detected significant causal effects of
BMI on eight traits. Five of them were supported with evidence of causality from previous
literature, including T2D [33], serum urate (Urate) [34], and three cardiovascular diseases (high
blood pressure (HBP), Angina and CAD) [35]. For these five supported trait pairs, Egger only
detected three significant causal relationships (BMI on CAD, T2D, and HBP), and CAUSE
only detected three significant causal relationships (BMI on Urate, HBP, and T2D), and further
Weighted-mode detected two significant causal relationships (BMI on T2D; BMI on HBP).
In addition to the confirmed findings, MR-APSS detected significant causal effects of BMI
on Depression (B = 0.07, p-value = 2.09 x 107°), ever smoked regularly (Smoking) (B =0.11,
p-value = 1.36 x 10~%) and Income (3 = —0.17, p-value = 1.83 x 10~!!). Those findings are
consistent with results from previous MR studies [36] 37, B8], suggesting that being overweight
not only increases the risk of depression and tobacco dependence but also suffers from reduced
income. Our results also revealed Neuroticism as an important health indicator especially for
human psychiatric health. Neuroticism is one of the big five personality traits, characterized
by negative emotional states including sadness, moodiness, and emotional instability. Higher
neuroticism is associated with premature mortality and a wide range of mental illnesses or
psychiatric disorders [31], 39]. There is growing evidence that neuroticism plays a causal role in
psychiatric disorders, such as SCZ [40] and MDD [41]. Evidence from MR-APSS also supported
the significant causal effect of Neuroticism on SCZ (B = 0.57, p-value = 7.02 x 1077) and
MDD (B = 0.18, p-value = 2.06 x 107°). None of the three methods, CAUSE, Egger and
Weighted-mode detected significant causal effects of Neuroticism on MDD or SCZ. MR-APSS
also revealed that Neuroticism could be causally linked to Insomnia (B = 0.29, p-value =
2.7 x 1071%) and Anorexia (ﬁ = 0.4, p-value = 6.90 x 10~7). Weighted-mode and Egger did
not report these two cases, and CAUSE only detected a significant causal effect between
Neuroticism and Insomnia (3 = 0.14, p-value = 3.89 x 10°).

Type I error control and statistical power with different IV thresholds. Existing
summary-level MR methods select IVs based on a p-value threshold (or an equivalent ¢ value).
In this section, we would like to highlight the advantages of our method. Regarding the type I
error control, our method is insensitive to the choice of threshold. Regarding the improvement
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Figure 5: Evaluation of the performance of MR-APSS under different IV selection thresholds.
(A) The average estimated number of valid IVs (dark color) and invalid IVs (light color) for
traits from each category using IV thresholds p =5 x 107® and p = 5 x 107%. (B-C) Quantile-
quantile plots of —log,,(p)-values from MR-APSS (B) and MR-APSS without accounting for
selection bias (C) when applied to between 26 complex traits and five negative control outcomes.
(D) The number of significant trait pairs between 26 complex traits identified by MR-APSS
with different IV thresholds. (E-G): An illustrative examples of exposure: Depression. (E)
The number of selected IVs M, at threshold ¢ and the estimated number of valid IVs. (F) and
(G) The estimated average and total IV strengths.

of statistical power, our method prefers a loose threshold and we use p-value 5 x 1075 as the
default setting in real applications. More details regarding the default IV threshold in real
applications is given in SI Appendix, section 4.3.

To examine the type I error control of MR-APSS when varying the IV thresholds, we
varied the IV threshold from 5 x 1078 to 5 x 10~® when applying MR-APSS to infer the causal
relationships between 26 complex traits and the five negative control outcomes. As more IVs
involved with a looser IV threshold, the number of invalid IVs increases because they are prone
to the violation of MR assumptions. However, most of IVs were detected by MR-APSS as
invalid IVs (Fig. ) Since MR-APSS only uses the valid instrument strength in the foreground
model for causal inference (Z; = 1), the type I error will not be inflated when more invalid
IVs are included. As shown in Fig. B, the p-values from MR-APSS for trait pairs between
26 complex traits and five negative control outcomes remain well-calibrated at different IV
thresholds. These results confirm that the type I error of MR-APSS is insensitive to the IV
threshold. It is important to note that correction of the selection bias is a critical step to
control type I errors in MR-APSS. Without accounting for the selection bias, the magnitude of
the true effect of a selected SNP is largely overestimated and it tends to falsely contribute to
the foreground signal (Z; = 1) for causal inference, thus produces false positives. To verify

14


https://doi.org/10.1101/2021.03.11.434915
http://creativecommons.org/licenses/by-nc-nd/4.0/

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

390

391

392

393

394

395

396

397

398

399

400

401

402

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434915; this version posted March 26, 2022. The copyright holder for this preprint

available under aCC-BY-NC-ND 4.0 International license.

this, we modified MR-APSS to ignore selection bias and applied this modified version to the
same trait pairs with negative control outcomes. Without accounting for the selection bias,
the p-values produced by the MR-APSS model given in Eq. ﬂ@ become inflated (Fig. )
When the threshold varies from 5 x 1078 to 5 x 107°, the inflation of p-values becomes more
severe because more SNPs will falsely contribute to the foreground signal. As a comparison,
we ran other summary-level MR methods to the same trait pairs. The QQ-plots are shown
in SI Appendix, Fig. S32. Clearly, p-values produced by most summary-level MR methods
(except Weighted-mode) become more inflated when the IV threshold becomes less stringent.

As p-values of MR-APSS are well-calibrated when the IV threshold varies from 5 x 107° to
5 x 1078, we can examine the statistical power of MR-APSS with different IV thresholds. We
applied MR-APSS to infer the causal relationships among 26 complex traits by varying the IV
threshold at 5 x 1072, 5 x 107%, 5 x 1077, and 5 x 10~%. In general, we find that the average IV
strength (defined in Eq. [L1]) decreases with the IV threshold becomes looser, and the total IV
strength (defined in Eq. [12]) increases as more IVs are included in the analysis. We provide
two concrete examples to illustrate these points (see details in SI Appendix, section 4.2, Fig
S14). As a result, the statistical power of MR-APSS can be improved by including SNPs with
moderate effects. These results are confirmed in Fig. [fD, where the number of significant pairs
identified by MR-APSS increases from 16 to 34 when the IV threshold becomes looser from
5x 1078 to 5 x 1077,

When investigating the causal relationship among 26 complex traits, the number of valid
IVs as well as the total IV strength increased a lot by changing the IV threshold from 5 x 108
to 5 x 107° (Fig. [fJA). We found that the social and neurological /psychiatric traits can benefit
a lot from this property. Despite the large sample sizes for these traits, the number of IVs is too
small to perform powerful MR analysis when using the IV threshold p = 5 x 1078, For example,
Depression only had a very small number of IVs using a stringent IV threshold p = 5 x 1078,
When the IV thresholds became looser, the number of selected IVs and the number of valid IVs
increased a lot (Fig. ) Although the average IV strength decreased as IV threshold became
looser (Fig. [fF), the total IV strength increased dramatically (Fig. [§G). We also observed
that, due to the limited number of IVs using a stringent IV threshold p = 5 x 1078, MR-APSS
could not detect a significant causal effect of Depression on Insominia (B = 0.197, s.e. = 0.214,
p-value = 0.358). By using a looser IV threshold, MR-APSS detected a significant causal
relationship between Depression and Insomnia (B = 0.569, s.e. = 0.139, p-value = 4.38 x 107°).

Discussion

In this paper, we have developed a summary-level MR method, namely MR-APSS, to
perform causal inference. To account for the confounding bias due to pleiotropy and sample
structure, the background model of MR-APSS inherits the assumptions of LDSC. MR-APSS
also assumes the InSIDE condition in the foreground model to infer the causal effect, i.e.,
ry = Corr(y;, ;) = 0. In other words, we assume that the association between the exposure and
the outcome should be induced by their causal relationship rather than r; after accounting for
confounding factors (e.g., correlated pleiotropy and sample structure) in the background model.
Although our method relies on this assumption to infer the causal effect, we can empirically
check the influence of this assumption via the following sensitivity analysis. Specifically, we can
evaluate how the estimated causal effect B changes when Corr(7;, «;) varies. In this way, users
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can obtain useful information about their inferred causal relationship under the perturbation
of assumptions. We provide more details on sensitivity analysis in SI appendix, section 1.5,
Fig. S13.

Besides the development of summary-level MR methods, we are aware of recent developments
of individual-level MR methods, including sisVIVE [42], TSHT [43], GENIUS [44], GENIUS-
MAWII [45], and MR-MiSTERI [46]. We believe that summary-level MR methods and
individual-level MR methods are complementary to each other. On the one hand, summary-
level methods relying on linear models only require marginal estimates and their standard errors.
Therefore, they are widely applicable to screen causal relationship between an exposure and an
outcome. This is important because the access to individual-level data may be restricted due to
privacy protection [47]. On the other hand, individual-level methods can be more powerful than
summary-level MR methods when individual-level data is accessible. First, individual-level MR
methods can allow for a more flexible model to handle nonlinearity in causal inference. We are
aware of several nonlinear MR methods using individual-level data [48, 49]. Unlike linear MR
methods which approximate a population-averaged causal effect, the nonlinear MR methods
estimate the localized average causal effects in each stratum of population using individual-level
data. For example, a very recent MR study applies a nonlinear MR method to investigate
whether a nonlinear model is a better fit for the relationship between diastolic blood pressure
(DBP) and cardiovascular disease (CVD) [50]. Second, individual-level MR methods can utilize
more information, which is only available in individual-level GWAS datasets. For example, the
individual-level methods, GENIUS [44] and GENIUS-MAWII [45], require heteroscedasticity of
the exposure but this kind of information is not available in GWAS summary statistics. We
find that GENIUS and GENIUS-MAWII are robust in the presence of pleiotropy and sample
structure. The estimation efficiency of GENIUS and GENIUS-MAWII depends on their IV
strengths which are related to heteroscedasticity of the exposure. In this regard, GENIUS and
GENIUS-MAWII relax classical MR assumptions by requiring heteroscedasticity of the exposure,
while MR-APSS relaxes classical MR, assumptions by imposing the LDSC assumptions in its
background model and the InSIDE condition in its foreground model. Through simulation
studies and real data analyses, we find GENIUS, GENIUS-MAWII and MR-APSS are quite
complementary to each other. We provide more detailed results in SI Appendix, sections 2.3,
3.3 and 4.4. In summary, we believe that summary-level methods and individual-level MR
methods are complementary to each other, and they jointly contribute to the MR literature
for causal inference. Summary-level MR methods are often preferred for large-scale screening
of causal relationships and individual-level MR methods can provide a closer examination for
causal relationships of interest.

Similar to existing summary-level MR-methods, we consider linear models to perform causal
inference even for binary traits. To have better interpretation of the causal effect estimates for
binary traits, we show that the output from the observed 0-1 scale based on linear models can
be transformed to the liability scale based on the probit models. We provide the details in SI
Appendix, section 1.7.

Despite the improvement of MR-APSS over many existing MR methods, more research
is needed for causal inference with genetic data. First, the background model is proposed to
account for pleiotropy and sample structure hidden in GWASs of complex traits. The direct
application of this model in some other contexts may not be suitable. For example, it is of great
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a7 interest to infer the causal relationship between gene expression and complex diseases based on
as  transcriptome-wide Mendelian randomization. However, it remains unclear what kind of signals
a0 should be considered as the background signals. The development of new statistical methods
w0 for transcriptome-wide Mendelian randomization is highly desirable. Second, multivariate
w1 Mendelian randomization (MVMR) is drawing more and more attention [51), 52]. As some risk
2 factors are known to be related to a certain type of disease, it is more interesting to ask what
a3 other risk factors can be inferred conditioning on the known ones. We hope that MR-APSS
s can motivate more researchers to uncover more reliable causal relationships using rich genetic
s data resources.

« Materials and Methods
« The MR-APSS approach

we MR-APSS takes GWAS summary statistics {5;, T}, 8x., 8v.;|9;/3x

> t};-1...m, as input to

w0 perform causal inference, where 7; and fj are the estimated j-th SNP’s effects on exposure
w0 X and outcome Y, respectively, and §x ; and Sy; are their standard errors, |y;/$x ;| > t is
w1 the selection criterion to ensure that SNP j is associated with X, and M, is the number of
w2 SNPs selected as IVs using a threshold ¢ of z-values. To infer the causal effect § of exposure X
w3 on outcome Y, we propose to decompose the observed SNP effect sizes into background and
s foreground signals (Fig. [1)):

Y\ _ YV u; €
B)-2() () (@)

Uncorrelated Polygenicity Sample structure 1
pleiotropy Correlated (Population stratification,
pleiotropy cryptic relatedness,
sample overlap etc.
Foreground N P P ) P
~~
Background

w5 where u; and v; are the polygenic effects of SNP j on X and Y, ¢; and &; are the estimation
ws errors of SNP effect sizes, ; is the remaining SNP effect on exposure X as the instrument
a7 strength, o is the direct SNP effect on outcome Y, and Z; is a Bernoulli variable indicating
ws  whether SNP j has a foreground component (Z; = 1) or not (Z; = 0).

« The background model of MR-APSS

soo To model polygenic effects and their correlation induced by pleiotropy (Fig. ), we assume a
so0 variance component model

) 2
p (s, 019) = N ((Zﬂ) \09> | with @ = < i T“’“Z”) , @)
J

TgOuTy Ty

s where (u;,v;) are random effects from a bivariate normal distribution with mean vector 0 and
s03 covariance matrix €2, r, is the genetic correlation induced by pleiotropic effects between X and
s0 Y, and o2 and 72 are the variance of polygenic effects on X and Y, respectively. To account
sos for bias and correlation in estimation errors due to sample structure, we consider the following

p <€j=§j|casj> =N ((Z) ‘0, SJCSJ) ; (3)

17
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- 5x; O c C :
where S; = X ,C = b , and the parameters ¢; and ¢, are used to adjust the
0  Syy Cla  Co

bias in estimator errors and c;s accounts for the correlation between the estimation errors. In
the presence of population stratification and cryptic relatedness, ¢; and ¢y will deviate from
one (typically larger than one). Moreover, either population stratification or sample overlap
can induce covariance between the estimation errors, resulting in nonzero cis.

Under the assumptions of LDSC [16], we can exploit the LD structure of human genome to
account for confounding factors in the background model. Let ¢; = ", 7"]27{ be the LD score of
SNP j, where rj; is the correlation between SNP j and SNP k. The key idea to adjust LD
effects is based on the fact: the true genetic effects are tagged by LD while the influence of
sample structure is uncorrelated with LD. Then we show that our background model (Z; = 0)
can be written as (see SI Appendix, section 1.1)

P35, 1519, C.S;,4) =N ((ff) ‘0, 0+ éjCSJ) , (4)
J

where pleiotropy and sample structure are captured by the first-order and zero-order terms of
LD score, respectively. Therefore, both €2 and C in the background model are pre-estimated
by LDSC using genome-wide summary statistics (see SI Appendix, section 1.4.1). As observed
in real data analysis, pleiotropy and sample structure are two major confounding factors for
causal inference. We provide more discussion about the asymptotic distribution of summary
statistics after principal component adjustment in SI Appendix, section 1.9.

The foreground model of MR-APSS

By accounting for confounding factors using the background model, we only need three mild
assumptions on instrument strength ~; and direct effect «; to infer causal effect 3, as shown in
Fig. [I[a). First, there exist some nonzero values in {7;};-1,..a,. Second, the strengths of in-
struments {7; }j=1,.. am, are independent of confounding factors. Third, the instrument strengths
are independent of the direct effects (InSIDE condition), i.e., (71,...,7a,)AL(aq, ..., anr)-
Although our assumptions seem similar to those of existing methods, they are only imposed to
the foreground signal and thus they are much weaker than existing MR methods. Specifically,
we assume that v, and «; are normally distributed and independent of each other:

p (v, 048) =N ((Zi) ‘0’2> , where 2 = (%2 702> ' ©)

The foreground-background model of MR-APSS

Now we combine the background model and the foreground model to characterize the observed

SNP effect sizes (9;,1';). Let my = p(Z; = 1) be the probability that SNP j carries the
foreground signal. Combining Egs. and integrating out v;, «;, u;, vj, €5, &, and Z;,

18
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we have the following probabilistic model:

p(ﬁ/j? 1:“7"71-07 67 27 Qa C7 Sj? gj)

=moN ((?) 0. LABEAB) + 1,0+ Sﬁ%) +
J

(1 —m)N <(’FVJ> ‘0, 0, + Sjcsj) :
J

1
0). A detailed derivation for Eq. H is given in SI Appendix, section 1.2.

where A(f) = (5 1

The theoretical justification of the uniformity of the approximated distribution for (¥;, f]) in
Eq. @ for j =1,..., M, is given in SI Appendix, section 1.8.

Accounting for selection bias in MR-APSS

Recall that SNPs are selected based on a p-value threshold or equivalently a threshold ¢ of z-score,
i.e., |9;/5x,| > t. This selection process introduces non-ignorable bias, i.e., ]E(%‘Wj/éxj\ >
t) # 7;, which has been known as winner’s curse in GWAS [53] 28]. To correct the selection bias
in MR, we further take into account the selection condition |§;/3x,| > t. After some derivations
(SI Appendix, section 1.3), model (6)) becomes a mixture of truncated normal distributions:

p<;y]7f‘J |’3/.]/§XJ| Z t77rt767279707sj7€j>

N ((;J> ‘o,zjﬂ + Sjcsj)
=(1—m) d +

0 () )
N ((%) )0, GAB)ZAB) + ;92 + Sjcsj)

T

J
20 (| ——L
/Zj02+€j03+sxj

where m, = p(Z; = 1‘|%/§Xj| > t) is the probability that the j-th SNP carries the foreground

signal after selection.

Parameter estimation and statistical inference

In MR-APSS, the parameters of € and C in the background model are estimated by LDSC
using genome-wide summary statistics. Given 2 and C, the log-likelihood function of the
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observed data D, = {¥;,T;, $x, $v;

19j/8x.;] = t}j=1,. m, can be written as:

ﬁy. ~ A A A
" N ((FJ]) ‘o,ejn + Sjcsj>
LOID) =Y log [(1 )
j=1

20 | 1
ejag+61§?x’j
_l’_

0,(;A(B)ZA(B)T + ¢ SjCSj>

Q
" )
20 X
\/Zjo%-‘rij'Q-i-élé%(J

To obtain the maximum likelihood estimate of model parameters 6 = {3, m;, 3}, we then derive

an efficient expectation-maximization (EM) algorithm (see details in SI Appendix, section
1.4.2). As a byproduct, we can estimate the numbers of valid IVs and invalid IVs as 7, M,
and (1 — ;) M, respectively.Real data results of the estimated numbers of valid and invalid
IVs are shown in Fig. [5| A. The posterior of SNP j serving as a valid IV can be estimated as
p(Z; = 1/D;), as shown in dark blue in Fig. . The likelihood ratio test can be conducted to
examine the existence of the causal effect. Considering the following hypothesis test:

Hy:8=0 vs. Hy:0#0, (9)
the likelihood-ratio test statistic (LRT) is given by
T=2 (L(é\Dt) - L(éoypt)> , (10)

where 0 and 0, are the parameter estimates obtained under hypotheses Hy, and Hy, respectively.
Under the null hypothesis Hy, the test statistic T" is asymptotically distributed as Xile and its
p-value can be obtained accordingly.

IV strength

The performance of MR methods depend on the instrument strength. For MR-APSS, we define
1

2

M, Z Zjj
j=1

M
> 2
j=1

which measure the average/total IV strength for those M; SNPs with the selection criterion

average strength of IVs = E t

, (11)

total strength of IVs = E t, (12)

(17;/5x,;1 > t). Given the observed summary statistics and the selection criterion ¢, we can
use MR-APSS to obtain the posterior distributions of (v;, Z;). Therefore, we can obtain the
estimates of average IV strength and total IV strength defined in Eq. and Eq. [12].
According to the above definitions, the average and total IV strengths depend on both the IV
threshold and sample size. In general, we find that the average IV strength decreases when the
IV threshold becomes looser, and the total IV strength increases as more IVs are included in
the analysis. Our definitions of IV strengths for the MR-APSS model are closely connected to
the TV strengths defined in MR literature (see details in ST Appendix, section 2.5).
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Data availability

All the GWAS summary statistics used in this paper are public available. The URLs for
downloading the datasets are summarized in SI Appendix, Table S2.

Code availability
The MR-APSS software is available at https://github.com/YangLabHKUST /MR-~APSS.
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