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Abstract
Mendelian Randomization (MR) is a valuable tool for inferring causal relationships among1

a wide range of traits using summary statistics from genome-wide association studies (GWASs).2

Existing summary-level MR methods often rely on strong assumptions, resulting in many false3

positive findings. To relax MR assumptions, ongoing research has been primarily focused4

on accounting for confounding due to pleiotropy. Here we show that sample structure is5

another major confounding factor, including population stratification, cryptic relatedness,6

and sample overlap. We propose a unified MR approach, MR-APSS, which (i) accounts for7

pleiotropy and sample structure simultaneously by leveraging genome-wide information; and8

(ii) allows to include more genetic variants with moderate effects as instrument variables (IVs)9

to improve statistical power without inflating type I errors. We first evaluated MR-APSS using10

comprehensive simulations and negative controls, and then applied MR-APSS to study the11

causal relationships among a collection of diverse complex traits. The results suggest that12

MR-APSS can better identify plausible causal relationships with high reliability. In particular,13

MR-APSS can perform well for highly polygenic traits, where the IV strengths tend to be14

1Xianghong Hu and Jia Zhao contributed equally to this work.
∗To whom correspondence may be addressed: Hongyu Zhao (hongyu.zhao@yale.edu), Xiang Wan (wanxi-

ang@sribd.cn) or Can Yang (macyang@ust.hk).
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relatively weak and existing summary-level MR methods for causal inference are vulnerable to15

confounding effects.16

Introduction17

Inferring the causal relationship between a risk factor (exposure) and a phenotype of interest18

(outcome) is essential in biomedical research and social science [1]. Although randomized19

controlled trials (RCTs) are the gold standard for causal inference, RCTs can be very costly20

and sometimes even infeasible or unethical (e.g., random allocation to prenatal smoking)21

[2]. Mendelian randomization (MR) was introduced to mimic RCTs for causal inference in22

observational studies [3, 4]. Recently, MR analysis has drawn increasing attention [5] because23

it can take summary statistics from Genome-Wide Association Studies (GWASs) as input,24

including SNP effect size estimates and their standard errors, to investigate causal relationship25

among human complex traits.26

MR is an instrumental variable (IV) method to infer the causal relationship between27

an exposure and an outcome, where genetic variants, e.g., single-nucleotide polymorphisms28

(SNPs), serve as IVs of the exposure [6, 7]. To eliminate the influence of confounding factors,29

conventional MR methods rely on strong assumptions, including (A-I) IVs are associated with30

the exposure; (A-II) IVs are independent of confounding factors; and (A-III) IVs only affect31

the outcome through the exposure. However, assumptions (A-II) and (A-III) are often not32

satisfied in practice due to confounding factors hidden in GWAS summary statistics, leading to33

false positive findings [5, 8]. To perform causal inference with genetic data, it is indispensable34

to distinguish two major confounding factors: pleiotropy [8] and sample structure [9, 10].35

First, SNPs exhibit pervasive pleiotropic effects. Pleiotropy occurs when a genetic variant36

directly affects both exposure and outcome traits or indirectly through an intermediate phe-37

notype [11]. Pleiotropy can induce trait association or genetic correlation in the absence of38

causality [11]. Due to the polygenicity of complex traits and linkage disequilibrium (LD) in the39

human genome, pleiotropic effects can widely spread across the whole genome [12]. Therefore,40

a substantial proportion of SNPs can carry pleiotropic effects and they fail to satisfy (A-II)41

and (A-III) on IVs in conventional MR methods.42

Second, sample structure can lead to bias in SNP effect size estimates and introduce43

spurious trait associations. Here, sample structure encompasses population stratification,44

cryptic relatedness, and sample overlap in GWASs of the exposure and outcome traits. In45

the presence of population stratification and cryptic relatedness, SNPs can affect the outcome46

through sample structure and thus they violate assumptions (A-II) and (A-III) on IVs.47

Without correcting for sample structure, SNP effect size estimates can be severely biased, which48

may lead to misinterpretation on trait association and thus many false positive discoveries in49

causal inference. Sample overlap can also lead to spurious trait associations [13]. Although50

principal component analysis (PCA) [14] and linear mixed models (LMM) [15] are widely used51

to account for sample structure in GWASs, the results from LDSC [16] show that sample52

structure is often unsatisfactorily corrected in publicly available GWAS summary statistics.53

To maximize the usage of publicly available GWAS summary statistics for causal inference,54

a number of summary-level MR methods have been developed, including Inverse Variance55

Weighted regression (IVW) [17], Egger [18], RAPS [19], dIVW [20], Weighted-median [21],56

Weighted-mode [22], MRMix [23], CML-MA [24], and CAUSE [25]. Despite these efforts, there57
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are two major limitations in existing summary-level MR methods. First, most of them only58

use a small subset of SNPs passing the genome-wide significance (p-value ≤ 5 × 10−8) for59

causal inference. To account for pleiotropy (including correlated pleiotropy and uncorrelated60

pleiotropy [25]), it is challenging to fit a flexible model with limited information from genome-61

wide significant SNPs. Second, existing summary-level MR methods presume that PCA or62

LMM-based approaches have satisfactorily accounted for sample structure and thus they largely63

ignore the influence of sample structure in GWAS summary statistics. Due to the complexity of64

human genetics, sample structure driven by socioeconomic status [26] or geographic structure65

[27] may not be fully corrected by routine adjustment and it may remain as a major confounding66

factor hidden in GWAS summary statistics.67

In this paper, we develop MR-APSS, a unified approach to MR Accounting for Pleiotropy68

and Sample Structure simultaneously. Specifically, we propose a foreground-background69

model to decompose the observed SNP effect sizes, where the background model accounts for70

confounding factors hidden in GWAS summary statistics, including correlated pleiotropy and71

sample structure, and the foreground model performs causal inference while accounting for72

uncorrelated pleiotropy. MR-APSS differs from existing methods in the following aspects. First,73

under the assumptions of LD score regression (LDSC) [16], the background model accounts74

for pleiotropy and sample structure using genome-wide summary statistics. In contrast, most75

summary-level MR methods only use SNPs passing the genome-wide significance (p-value76

≤ 5× 10−8). Second, MR-APSS allows us to include more SNPs without achieving the genome-77

wide significance as IVs to improve statistical power. With the pre-estimated background78

model, MR-APSS can inform whether an SNP belongs to the background component or the79

foreground component. Even in the presence of many invalid IVs, the type I error will not be80

inflated because only the foreground signals are used for causal inference. As more SNPs are81

included, the increasing amount of the foreground signal can improve the statistical power.82

To demonstrate the effectiveness of MR-APSS, we have performed a comprehensive sim-83

ulation study and analyzed 640 pairs of exposure and outcome traits from 26 GWASs. In84

the simulation study, we showed that MR-APSS still had satisfactory performance when the85

assumptions of IVs were violated. We examined MR-APSS on a wide spectrum of complex86

traits using GWAS summary statistics, including psychiatric/neurological disorders, social87

traits, anthropometric traits, cardiovascular traits, metabolic traits, and immune-related traits.88

Real data results indicate that pleiotropy and sample structure are two major confounding89

factors. By rigorous statistical modeling of these confounding factors, MR-APSS not only avoids90

many false positive findings but also improves the statistical power of MR. When inferring91

causal relationships among highly polygenic traits, such as psychiatric disorders and social92

traits, the strengths of IVs tend to be relatively weak and causal inference is vulnerable to93

confounding effects. Thus, existing MR methods will suffer from either low statistical power or94

inflated type I errors. The empirical results indicate that MR-APSS is particularly useful in95

this scenario because it accounts for confounding factors and allows for incorporating many96

IVs with moderate effects, demonstrating its advantage over existing MR methods.97
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Results98

Overview of MR-APSS. Causality, pleiotropy, and sample structure are three major sources99

to induce correlation between GWAS estimates of exposure-outcome traits. To distinguish100

causality from correlation, it is indispensable to eliminate the possibility that correlation is101

induced by confounding factors, such as pleiotropy and sample structure (including population102

stratification, cryptic relatedness, and sample overlap).103

MR-APSS takes GWAS summary statistics of exposure and outcome traits as its input and104

performs causal inference based on a proposed foreground-background model (see an overview105

in Fig. 1 and details in the Materials and Methods section). Under the assumptions of LDSC106

[16] (see details in SI Appendix, section 1.1), the background model can effectively account for107

confounding factors by disentangling pleiotropy (Fig. 1B) and sample structure (Fig. 1C). This108

is because the pleiotropic effects can be tagged by LD and the influence of sample structure is109

uncorrelated with LD [16]. In addition to the LDSC assumptions in the background model,110

we have made two key assumptions for causal inference. First, we assume that the correlated111

pleiotropy effects can be approximately characterized by the genetic correlation which can be112

estimated from genome-wide summary statistics. Second, we assume that the direct effect113

is independent of the instrument strength in our foreground model (known as the InSIDE114

condition). This is reasonable because correlated pleiotropy effects have been accounted for115

using genome-wide genetic correlation. By further accounting for selection bias [28] due to116

selection of IVs (see Materials and Methods section), the foreground model can use the classical117

causal diagram to perform causal inference (Fig. 1A). In summary, our method requires the118

LDSC assumptions for the background model and the InSIDE condition for the foreground119

model to relax assumptions (A-II) and (A-III).120

Compared methods. Because MR-APSS uses the GWAS summary statistics as its input, we121

mainly compare MR-APSS with nine summary-level MR methods and grouped them (including122

MR-APSS) into three groups based on their assumptions, including IVW from group 1; Egger,123

RAPS and dIVW from group 2; and Weighted-median, Weighted-mode, MRMix, CML-MA,124

CAUSE and MR-APSS from group 3 (see Table 1). We provide a review of them in SI Appendix,125

sections 2.1-2.2. We show theoretically that the IVW estimator and the dIVW estimator can126

be biased in the presence of pleiotropy and sample structure (SI Appendix, section 2.6). To127

establish a better connection with causal literature, we also provide a review of individual-level128

MR methods in SI Appendix, section 2.3 and Table S1. We conducted comparisons between129

summary-level MR methods and individual-level MR methods. Detailed results are provided130

in SI Appendix, sections 3.3 and 4.4, Figs. S1, S6, and S16-S21.131
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Figure 1: The MR-APSS approach. To infer the causal effect β between exposure X and

outcome Y , MR-APSS uses a foreground-background model to characterize the estimated effects

of SNPs Gj on X and Y (γ̂j and Γ̂j) with standard errors (ŝX,j, ŝY,j), where the background

model accounts for polygenicity, correlated pleiotropy (B) and sample structure (C), and the

foreground model (A) aims to identify informative instruments and account for uncorrelated

pleiotropy to perform causal inference. (D) We consider inferring the causal relationship

between BMI and T2D as an illustrative example of MR-APSS. The estimated causal effect

is indicated by a red line with its 95% confidence interval indicated by the shaded area in

transparent red color. Triangles indicate the observed SNP effect sizes (γ̂j and Γ̂j). The color of

triangles indicates the posterior of a valid IV, i.e., the posterior of an IV carrying the foreground

signal (Zj = 1, dark blue) or not (Zj = 0, light blue).

Table 1: Summary of ten summary-level MR methods

Method (A-II) (A-III) Key assumptions Sample

structure

Selection

bias

IVW [17] X X All IVs are valid; NOME. × ×

Egger [18] X ×
InSIDE; NOME;

Directional pleiotropy (E(αj) = µ).
× ×

RAPS [19] X ×
InSIDE;

Balanced pleiotropy (αj ∼ N (0, τ2)).
× ×

dIVW [20] X ×
InSIDE;

Balanced pleiotropy (αj ∼ N (0, τ2)).
× X

Weighted-median [21] × × Majority valid; NOME. × ×

Weighted-mode [22] × × Plurality valid. × ×

MRMix [23] × × Plurality valid. × ×

cML-MA [24] × × Plurality valid. × ×

CAUSE [25] × ×

All IVs can be invalid,

but majority of IVs should not be

affected by correlated pleiotropy.

Sample

overlap

×

MR-APSS × ×

All IVs can be invalid;

Assumptions of LDSC;

InSIDE in the foreground model.

X X

IV: Instrumental Variable; Three IV assumptions: (A-I) IVs are associated with the exposure; (A-II) IVs are

independent of confounders; and (A-III) IVs only affect the outcome through the exposure.5
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Simulation studies. To evaluate MR-APSS in various scenarios and compare it with nine132

MR methods in Table 1, we first perform simulation studies under the MR-APSS model. After133

that, we investigate the robustness of MR-APSS in the presence of model misspecification.134

For exposure and outcome traits, we used 47,049 SNPs on chromosomes 1 and 2 of 20,000135

individuals of white British ancestry randomly drawn from the UK BioBank (UKBB). SNP136

effect sizes (γj, αj, uj, vj) were generated from the relationship shown in Fig. 1 and Eq. [1]137

in Materials and Methods section. Based on real genotype data and simulated SNP effect138

sizes, we generated both traits and obtained summary statistics (see details in SI Appendix,139

section 3.1). The relationship shown in Fig. 1 is composed of the background signal and the140

foreground signal. For the background signal, polygenic effects (uj, vj) of all SNPs were normally141

distributed with variance components (σ2
u = τ 2v = 0.5/47, 049), such that the heritabilities of142

both exposure X and outcome Y were specified at 0.5. The magnitudes of the error terms143

(εj, ξj) were determined by the fixed sample sizes of 20, 000. For the foreground signal, we144

randomly assigned 500 out of 47,049 SNPs as IVs. As the instrument strength (γj) and the145

magnitude of the direct effect (αj) are given by variance components σ2 and τ 2 (Fig. 1), we146

specified σ2 : σ2
u = 20 to mimic real data scenarios. We set τ 2 : τ 2v = 1, so the magnitude of the147

direct effects in the foreground model is the same as that of the polygenic effects.148

We compared MR-APSS with nine MR methods, including IVW, dIVW, RAPS, MRMix,149

cML-MA, Egger, CAUSE, Weighted-median, and Weighted-mode. Note that the performance150

of MR methods depends on the selected IVs. Using a stringent criterion, fewer SNPs will be151

selected as IVs and MR methods tend to have lower power of detecting the causal effect and152

lower false positive rate. When more SNPs are included using a loose criterion, MR methods153

tend to have higher power but higer false positive rate because their model assumptions are154

more likely to be violated. To evaluate the performance of MR methods under null (β = 0), we155

used a stringent criterion (IV threshold p = 5× 10−6) to select IVs for IVW, dIVW, RAPS,156

MRMix, cML-MA, Egger, Weighted-median, and Weighted-mode. For CAUSE, we used its157

default threshold p = 1× 10−3 to include IVs. For MR-APSS, we used p = 5× 10−4. For all158

nine MR methods, we applied LD pruning (r2 = 0.01) to the selected IVs to ensure that they159

were nearly independent.160

We first examined type I error control of different MR methods under null (β = 0) in161

the presence of genetic correlation induced by pleiotropy. We simulated data with genetic162

correlation but without correlation in estimation errors. Quantile-quantile plots of different163

MR methods are shown in Fig. 2A, 2B, 2E for genetic correlation rg = 0.2 (more results for164

different genetic correlations are given in SI Appendix, Fig. S2). Clearly, MR-APSS is the only165

method that produces well-calibrated p-values. To better examine how MR-APSS accounted166

for polygenicity and pleiotropy, we manually set the variance component of MR-APSS to zero,167

i.e., Ω = 0. We denote this version of MR-APSS as MR-APSS (Ω = 0). As shown in Fig.168

2E, MR-APSS produced well-calibrated p-values while MR-APSS (Ω = 0) produced overly169

inflated p-values. This suggests that variance component Ω plays a critical role in accounting170

for polygenicity and pleiotropy. We also noticed different performance of alternative MR171

methods (Fig. 2A, 2B). In the presence of non-zero genetic correlation, MR methods, such as172

IVW, dIVW, RAPS, MRMix, cML-MA, Weighted-median, and MR-APSS (Ω = 0), tended to173

produce inflated p-values. Different from other MR methods, CAUSE produced very deflated174

p-values and thus CAUSE was very conservative in identifying causal effects.175
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Next, we examined the type I error control under null (β = 0) in the presence of correlation176

between estimation errors due to sample structure. Specifically, we set genetic correlation rg = 0177

and simply generated correlation of estimation errors (c12 = 0.15) using 10,000 overlapped178

samples in exposure and outcome studies (more results for different c12 are given in SI Appendix,179

Fig. S3). We notice that correlation between estimation errors can also be induced by population180

stratification and cryptic relatedness. To avoid unrealistic simulation of population stratification,181

we investigated this issue when we performed real data analysis. The quantile-quantile plots of182

different MR methods are shown in Fig. 2C, 2D, 2F. IVW, dIVW, RAPS, MRMix, cML-MA,183

and Weighted-median produced overly inflated p-values. These results indicate that correlation184

between estimator errors can be a major confounding factor leading to false positive findings.185

Again, CAUSE produced very deflated p-values. To see how MR-APSS accounts for correlation186

between estimation errors, we set C = I, i.e., c1 = c2 = 1 and c12 = 0. In such a way, MR-APSS187

was forced to ignore the correlation between estimation errors. We denote this version of188

MR-APSS as MR-APSS (C = I). As shown in Fig. 2F, MR-APSS (C = I) produced inflated189

p-values. In contrast, MR-APSS produced well-calibrated p-values. These results suggest that190

MR-APSS can satisfactorily account for correlation between estimation errors due to sample191

structure.192

Finally, we examined the power of MR methods. As shown above, IVW, dIVW, RAPS,193

MRMix, cML-MA, and Weighted-median often produced overly inflated type I errors in the194

presence of either pleiotropy or sample structure. Hence, we only compared MR-APSS with195

Egger, Weighted-mode, and CAUSE. We simulated data with both genetic correlation (rg = 0.1)196

and correlation between estimation error (c12 = 0.1). We varied the causal effect size β from197

0.05 to 0.45. MR-APSS was the overall winner in terms of power (Fig. 2 G). We further198

compared the estimation accuracy of the causal effects using MR-APSS, Egger, Weighted-mode,199

and CAUSE (Fig. 2 H). Consistent with the literature [29], we observed that Egger had a very200

large estimation error. As discussed in SI Appendix, section 2.4, CAUSE often misinterprets201

the causal effect as correlated pleiotropy, leading to underestimation of the true causal effect.202

Consistently, we observed that the estimate of Weighted-mode and CAUSE was biased to the203

null (β = 0). In the above simulations, the foreground-background variance ratio was fixed at204

σ : σu = 20 : 1. We provide more results with different foreground-background variance ratios205

(σ : σu ∈ {40, 10}) in SI Appendix, Figs. S4 and S5.206

To evaluate the robustness of MR-APSS in the presence of model misspecification, we also207

conducted simulations with the CAUSE model. The main patterns of the performance of the208

ten MR methods largely remained the same. We provide details in SI Appendix, section 3.2,209

Figs. S6-S8.210

Real data analysis: negative control outcomes. To fairly examine the type I errors of211

MR methods, we use the negative control outcomes proposed by Sanderson et al. [9], where212

confounding factors (e.g., pleiotropy and sample structure) naturally exist. The traits that can213

serve as ideal negative control outcomes should satisfy two conditions. First, they should not be214

causally affected by any of the exposures considered. Second, the exposure and outcome traits215

could be affected by some unmeasured confounders, e.g., population stratification. Following216

the same way of Sanderson et al. [9] to choose negative control outcomes, we considered natural217

hair colors before greying (Hair color: black, Hair color: blonde, Hair color: light brown, Hair218
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Scenario 1: genetic correlation rg ¹ 0, sample structure c12 = 0 Scenario 2: genetic correlation rg = 0, sample structure c12 ¹ 0
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Figure 2: Comparison of ten summary-level MR methods on simulated data. (A-F) Quantile-

quantile plots of − log10(p)-values from different methods under null simulations in the absence

of causal effect (β = 0). Null simulations were performed under different scenarios: (A, B,

E) Null simulations with genetic correlation (rg = 0.2) induced by pleiotropy, but without

correlation in estimation errors (c12 = 0). (C, D, F) Null simulations in the presence of

correlation in estimation errors (c12 = 0.15) due to sample structure, but in the absence of

non-zero genetic correlation (rg = 0). Based on results in A-D, MR-APSS, Egger, Weighted-

mode, and CAUSE do not provide overly inflated p-values. (G,H) Comparison of MR-APSS,

Egger, Weighted-mode, and CAUSE under alternative simulations (β 6= 0). (G) The power

under the settings that the causal effect size β varied from 0.05 to 0.45. (H) Estimates of

causal effect under the alternative simulations (β = 0.25). The results were summarized from

50 replications.

color: dark brown) and skin tanning ability (Tanning) from UKBB because they are largely219

determined at birth and they could be affected by sample structure.220

We considered 26 exposure traits from UKBB and Genomics Consortiums (Details for the221

GWAS sources are given in SI Appendix, Table S2). These traits can be roughly divided222

into five categories, including psychiatric/neurological disorders, social traits, anthropometric223

traits, cardiometabolic traits, and immune-related traits. The data pre-processing steps for224

GWAS summary statistics are described in SI Appendix, section 4.1. The sample sizes of those225

GWASs range from 114,244 to 385,603, with a minimum of 15,954 for ASD and a maximum of226

898,130 for T2D. Given the large sample sizes of GWASs, we used the genome-wide significance227

threshold 5 × 10−8 as the IV threshold for IVW, dIVW, RAPS, Egger, MRMix, CML-MA,228

Weighted-median, and Weighted-mode in real data analysis. This stringent criterion helps to229

exclude invalid IVs for these methods and thus reduce their false positive rates. Due to the230

stringent IV selection, we were not able to find enough SNPs (> 4) as IVs for four exposure231

traits, i.e., major depressive disorder (MDD), autism spectrum disorder (ASD), subject well-232

being (SWB), and the number of children Ever born (NEB). For CAUSE [25], we used its233

default p-value threshold p = 1× 10−3 to select IVs. For MR-APSS, we used 5× 10−5 as the234
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default IV threshold.235

First, we applied MR-APSS and the nine summary-level MR methods to infer the causal236

effects between these 26 exposure traits and five negative control outcomes. To make the237

comparison fair, we focus on the results for 110 pairs where each method had sufficient IVs for238

MR analysis. Ideally, these p-values should be uniformly distributed between 0 and 1 under239

the null (β = 0). Fig. 3A shows the QQ-plots of − log10(p) values of the six methods (red240

dots).Clearly, MR-APSS and Weighted-mode produced well-calibrated p-values. IVW, dIVW,241

RAPS, MRMix, cML-MA, and Weighted-median produced overly inflated p-values, while Egger242
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Figure 3: Evaluation of the type I error control of MR methods using negative control

outcomes.(A) Quantile-quantile plots of − log10(p)-values from ten summary-level MR methods

for causal inference between complex traits and negative control outcome. Red dots represent

all 110 trait pairs tested by each method. Blue triangles represent the 81 trait pairs with

insignificant genetic correlation at the nominal level of 0.05. Green diamonds represent the 29

trait pairs whose genetic correlation rg and c12 are both insignificant at the nominal level of

0.05. (B) Estimates of rg and c12 for trait pairs between 26 complex traits and five negative

control outcomes. (C) Quantile-quantile plots of − log10(p)-values from MR-APSS, MR-APSS

(Ω = 0), and MR-APSS (C = I) for trait pairs between 26 complex traits and five negative

control outcomes. The circled p-values correspond to the trait pairs marked by squares in (B),

which are largely confounded by pleiotropy and sample structure.
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produced slightly inflated p-values. CAUSE produced deflated p-values in the beginning but243

inflated p-values later. We investigated the reasons why the five MR methods performed244

unsatisfactorily. As shown in Fig. 3B, we examined the estimates of two key parameters, rg245

and c12, of our background model, where rg is the genetic correlation capturing the overall246

correlated pleiotropic effects and c12 captures the correlation of estimation errors due to sample247

structure (e.g., population stratification, cryptic relatedness, and sample overlap). Among the248

110 exposure-outcome trait pairs, 81 trait pairs had nearly zero genetic correlation and 29249

trait pairs had nonzero genetic correlation at the nominal level of 0.05 (marked by *). We also250

examined the correlation of estimation errors due to sample structure. Among the 110 trait251

pairs, 63 pairs had significant nonzero ĉ12 at the nominal level 0.05 (marked by *). To identify252

the major reason for the inflated p-values produced by the nine MR methods, we restricted253

ourselves to the 81 trait pairs whose genetic correlation was nearly zero. For these 81 pairs,254

we generated the QQ-plots of − log10(p) values of the ten MR methods (blue triangles in Fig.255

3A). Clearly, IVW, dIVW, RAPS, MRMix, cML-MA, and Weighted-median still produced256

overly inflated p-values. Egger produced slightly better calibrated p-values. CAUSE produced257

deflated p-values in the beginning but inflated p-values later. We further restricted ourselves to258

trait pairs whose genetic correlation and correlation of estimation errors were both nearly zero.259

For these trait pairs (green diamond), MR-APSS, Weighted-mode RAPS, MRMix, cML-MA,260

Weighted-median, and Egger produced well-calibrated p-values. IVW and dIVW still produced261

inflated p-values. CAUSE produced very conservative p values. These results suggest that262

sample structure is another major confounding factor in addition to pleiotropy.263

It is worthwhile to mention that nonzero c12 can be induced by either population stratification264

or sample overlap. To see this, let us consider the relationship between Height (GIANT) [30]265

and Tanning from UKBB. Recall that parameters c1 and c2 capture the bias in estimation266

errors (εj, ξj) and parameter c12 captures their correlation (Fig. 1). By applying LDSC to267

estimate our background model, we obtained ĉ1 = 1.34 (s.e. = 0.022) for Height (GIANT) and268

ĉ2 = 1.81 (s.e. = 0.023) for Tanning, respectively. These results indicate that the publicly269

released GWAS summary statistics are affected by confounding factors, such as population270

stratification. By applying LDSC, we obtained ĉ12 = −0.17 (s.e. = 0.011). As we know,271

the samples from GIANT do not overlap with UKBB [31]. Therefore, the nonzero ĉ12 value272

should be mainly attributed to population stratification. As a comparison, we also considered273

Height (UKBB) [32] and Tanning from UKBB. By applying LDSC, we obtained ĉ1 = 1.97274

(s.e. = 0.040) for Height (UKBB), suggesting that the released GWAS summary statistics of275

Height (UKBB) might potentially suffer from population stratification. By applying LDSC, we276

obtained ĉ12 = −0.36 (s.e. = 0.014) for Height (UKBB) and Tanning (UKBB). Such a nonzero277

value could be attributed to both population stratification and sample overlap.278

To better examine the role of MR-APSS in accounting for pleiotropy or sample structure,279

we applied MR-APSS but fixed Ω = 0 and C = I, respectively. We denote the two variations280

as MR-APSS (Ω = 0) and MR-APSS (C = I), where MR-APSS (Ω = 0) does not account281

for pleiotropy and MR-APSS (C = I) does not account for sample structure. As shown in282

3C, both MR-APSS (Ω = 0) and MR-APSS (C = I) reported inflated p-values. For example,283

based on Bonferroni correction, several trait pairs (marked with black circles in Fig. 3C) were284

falsely detected as causal by MR-APSS (Ω = 0) and MR-APSS (C = I). As shown in Fig. 3B285

(marked by squares), their corresponding r̂g and ĉ12 values were significantly different from286

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2021.03.11.434915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434915
http://creativecommons.org/licenses/by-nc-nd/4.0/


zero. By using negative control outcomes, we show that MR-APSS can produce well-calibrated287

p-values by accounting for pleiotropy and sample structure.288

Inferring causal relationships among complex traits. To perform causal inference, we289

considered 26 complex traits from five categories including psychiatric/neurological disorders,290

social trait, anthropometric traits, cardiometabolic traits, and immune-related traits. Before291

applying MR methods, we examined the estimates of rg and c12 in the background model of292

MR-APSS for all 325 pairwise combination of the 26 traits. We found that genetic correlation293

(rg) of 198 pairs significantly differed from zero at the nominal level of 0.05 (marked by ∗ in Fig.294

4A). Among them, genetic correlation of 130 pairs remained to be significant after Bonferroni295

correction with p ≤ 0.05/325 (marked by ∗∗ in Fig. 4A). For the estimates of c12, 126 pairs296

had significant nonzero ĉ12 at the nominal level 0.05 (marked by ∗ in Fig. 4B) and 76 pairs297

of them remained to be significantly different from zero after Bonferroni correction (marked298

by ∗∗ in Fig. 4B). Of note, 56 pairs of traits had significantly nonzero estimates of both r̂g299

and ĉ12 after Bonferroni correction. The above results suggest that both pleiotropy and sample300

structure are presented as major confounding factors for causal inference.301

We considered inferring the causal relationship between traits X and Y in both directions,302

i.e., X → Y (X as exposure and Y as outcome) and Y → X (Y as exposure and X as outcome).303

To avoid causal inference between two very similar phenotypes (e.g., Angina and CAD), we304

excluded several trait pairs which were marked in grey color as non-diagonal cells in Fig. 4C.305

Therefore, 640 trait pairs remained for MR tests in total. We applied MR-APSS to these306

trait pairs using IV threshold p = 5× 10−5 and identified 34 significant causal relationships307

after Bonferroni correction (Fig. 4C, marked by triangles). As shown in Fig. 4A, many308

traits in social or neurological/psychiatric categories were observed to be genetically correlated309

with a wide range of complex traits from different categories. After accounting for pleiotropy310

and sample structure, the results from MR-APSS indicate that genetic correlation of many311

trait pairs should not be attributed to the causal effects. An example is Depression which312

was also genetically correlated with 18 complex traits from different categories, such as BMI313

(r̂g = 0.220, s.e. = 0.024) from Anthropometric category, Insomnia (r̂g = 0.454, s.e. = 0.025),314

and SCZ (r̂g = 0.321, s.e. = 0.027) from neurological/psychiatric category. MR-APSS only315

confirmed the causal effect of Depression on Insomnia (β̂ = 0.570, p-value = 4.38 × 10−5).316

Clearly, MR-APSS can serve as an effective tool to distinguish causality from genetic correlation.317

As a comparison, we also applied the nine compared methods to infer the causal relationships318

for the 640 trait pairs. We used p = 5× 10−8 as the IV selection threshold for IVW, dIVW,319

RAPS, Egger, MRMix, CML-MA, Weighted-median, and Weighted-mode, and p = 1× 10−3 for320

CAUSE. For MR methods including IVW, dIVW, RAPS, Egger, MRMix, CML-MA, Weighted-321

median, and Weighted-mode, only 541 trait pairs were tested because 99 trait pairs had less322

than four SNPs as IVs. For CAUSE, all 640 trait pairs were included. A summary of the causal323

relationships detected by the nine compared methods are given in SI Appendix, Figs. S22-S30.324

RAPS reported 58 trait pairs with significant causal effects after Bonferroni correction. Among325

them, 24 trait pairs were considered insignificant by MR-APSS after Bonferroni correction.326

Notably, RAPS made a similar assumption with the foreground model of MR-APSS, however, it327

has no background model to account for pleiotropy and sample structure. To better understand328

the difference between RAPS and MR-APSS, we applied MR-APSS (Ω = 0) or MR-APSS329
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Figure 4: Application of MR-APSS to infer causal relationships between 26 complex traits. (A)

Estimates of genetic correlation between 26 complex traits. Positive and negative estimates of

genetic correlation r̂g are indicated in red and blue, respectively. Trait pairs with significant r̂g
at the nominal level of 0.05 are marked by ∗. Trait pairs that remain to be significant after

Bonferroni correction with p ≤ 0.05/325 are marked by ∗∗. (B) Estimates of c12 between

26 complex traits. Positive and negative estimates of c12 are shown in purple and green,

respectively. Trait pairs with significant ĉ12 at the nominal level of 0.05 are marked by ∗. Trait

pairs remain to be significant after Bonferroni correction with p ≤ 0.05/325 are marked by

∗∗. (C) Causal relationships detected by MR-APSS. The positive and negative estimates of

causal effects of the exposure on the outcome are indicated by red up-pointing triangles and

blue down-pointing triangles, respectively. (D) The Venn diagram shows the causal effects

detected by MR-APSS, CAUSE, Egger, and Weighted-mode after Bonferroni correction.
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(C = I) to those trait pairs. The testing p-values of 18 trait pairs became significant based330

on Bonferroni correction. An example was BMI and Insomnia (SI Appendix, Table S3) with331

r̂g = 0.184 (s.e. = 0.025) and ĉ12 = 0.058 (s.e. = 0.010). RAPS produced β̂ = 0.07 with p-value332

3.04× 10−9. Without accounting for pleiotropy or sample structure, MR-APSS (Ω = 0) and333

MR-APSS (C = I) reported β̂ = 0.070 with p-value = 1.70×10−7 and β̂ = 0.063 with p-value =334

1.01× 10−4, respectively. After accounting for both pleiotropy and sample structure, MR-APSS335

estimated causal effect between BMI and Insomnia as β̂ = 0.0337 with p-value = 0.128. The336

results indicate that RAPS was likely affected by pleiotropy and sample structure.337

Since IVW, dIVW, RAPS, MRMix, cML-MA, Weighted-median tended to have higher338

type I errors than the nominal level, we mainly compared statistical power of MR-APSS with339

Egger, CAUSE, and Weighted-mode (Fig. 4D). A complete list of causal relationship among340

these traits detected by MR-APSS, Egger, CAUSE, and Weighted-mode are summarized in341

SI Appendix, Table S4. Based on Bonferroni correction, MR-APSS detected 18 significant342

causal effects which were not reported by CAUSE, Egger, and Weighted-mode, showing higher343

statistical power of MR-APSS For example, MR-APSS detected significant causal effects of344

BMI on eight traits. Five of them were supported with evidence of causality from previous345

literature, including T2D [33], serum urate (Urate) [34], and three cardiovascular diseases (high346

blood pressure (HBP), Angina and CAD) [35]. For these five supported trait pairs, Egger only347

detected three significant causal relationships (BMI on CAD, T2D, and HBP), and CAUSE348

only detected three significant causal relationships (BMI on Urate, HBP, and T2D), and further349

Weighted-mode detected two significant causal relationships (BMI on T2D; BMI on HBP).350

In addition to the confirmed findings, MR-APSS detected significant causal effects of BMI351

on Depression (β̂ = 0.07, p-value = 2.09× 10−5), ever smoked regularly (Smoking) (β̂ = 0.11,352

p-value = 1.36× 10−6) and Income (β̂ = −0.17, p-value = 1.83× 10−11). Those findings are353

consistent with results from previous MR studies [36, 37, 38], suggesting that being overweight354

not only increases the risk of depression and tobacco dependence but also suffers from reduced355

income. Our results also revealed Neuroticism as an important health indicator especially for356

human psychiatric health. Neuroticism is one of the big five personality traits, characterized357

by negative emotional states including sadness, moodiness, and emotional instability. Higher358

neuroticism is associated with premature mortality and a wide range of mental illnesses or359

psychiatric disorders [31, 39]. There is growing evidence that neuroticism plays a causal role in360

psychiatric disorders, such as SCZ [40] and MDD [41]. Evidence from MR-APSS also supported361

the significant causal effect of Neuroticism on SCZ (β̂ = 0.57, p-value = 7.02 × 10−7) and362

MDD (β̂ = 0.18, p-value = 2.06 × 10−5). None of the three methods, CAUSE, Egger and363

Weighted-mode detected significant causal effects of Neuroticism on MDD or SCZ. MR-APSS364

also revealed that Neuroticism could be causally linked to Insomnia (β̂ = 0.29, p-value =365

2.7× 10−10) and Anorexia (β̂ = 0.4, p-value = 6.90× 10−7). Weighted-mode and Egger did366

not report these two cases, and CAUSE only detected a significant causal effect between367

Neuroticism and Insomnia (β̂ = 0.14, p-value = 3.89× 10−6).368

Type I error control and statistical power with different IV thresholds. Existing369

summary-level MR methods select IVs based on a p-value threshold (or an equivalent t value).370

In this section, we would like to highlight the advantages of our method. Regarding the type I371

error control, our method is insensitive to the choice of threshold. Regarding the improvement372
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Figure 5: Evaluation of the performance of MR-APSS under different IV selection thresholds.

(A) The average estimated number of valid IVs (dark color) and invalid IVs (light color) for

traits from each category using IV thresholds p = 5× 10−5 and p = 5× 10−8. (B-C) Quantile-

quantile plots of − log10(p)-values from MR-APSS (B) and MR-APSS without accounting for

selection bias (C) when applied to between 26 complex traits and five negative control outcomes.

(D) The number of significant trait pairs between 26 complex traits identified by MR-APSS

with different IV thresholds. (E-G): An illustrative examples of exposure: Depression. (E)

The number of selected IVs Mt at threshold t and the estimated number of valid IVs. (F) and

(G) The estimated average and total IV strengths.

of statistical power, our method prefers a loose threshold and we use p-value 5× 10−5 as the373

default setting in real applications. More details regarding the default IV threshold in real374

applications is given in SI Appendix, section 4.3.375

To examine the type I error control of MR-APSS when varying the IV thresholds, we376

varied the IV threshold from 5× 10−8 to 5× 10−5 when applying MR-APSS to infer the causal377

relationships between 26 complex traits and the five negative control outcomes. As more IVs378

involved with a looser IV threshold, the number of invalid IVs increases because they are prone379

to the violation of MR assumptions. However, most of IVs were detected by MR-APSS as380

invalid IVs (Fig. 5A). Since MR-APSS only uses the valid instrument strength in the foreground381

model for causal inference (Zj = 1), the type I error will not be inflated when more invalid382

IVs are included. As shown in Fig. 5B, the p-values from MR-APSS for trait pairs between383

26 complex traits and five negative control outcomes remain well-calibrated at different IV384

thresholds. These results confirm that the type I error of MR-APSS is insensitive to the IV385

threshold. It is important to note that correction of the selection bias is a critical step to386

control type I errors in MR-APSS. Without accounting for the selection bias, the magnitude of387

the true effect of a selected SNP is largely overestimated and it tends to falsely contribute to388

the foreground signal (Zj = 1) for causal inference, thus produces false positives. To verify389
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this, we modified MR-APSS to ignore selection bias and applied this modified version to the390

same trait pairs with negative control outcomes. Without accounting for the selection bias,391

the p-values produced by the MR-APSS model given in Eq. [6] become inflated (Fig. 5C).392

When the threshold varies from 5× 10−8 to 5× 10−5, the inflation of p-values becomes more393

severe because more SNPs will falsely contribute to the foreground signal. As a comparison,394

we ran other summary-level MR methods to the same trait pairs. The QQ-plots are shown395

in SI Appendix, Fig. S32. Clearly, p-values produced by most summary-level MR methods396

(except Weighted-mode) become more inflated when the IV threshold becomes less stringent.397

As p-values of MR-APSS are well-calibrated when the IV threshold varies from 5× 10−5 to398

5× 10−8, we can examine the statistical power of MR-APSS with different IV thresholds. We399

applied MR-APSS to infer the causal relationships among 26 complex traits by varying the IV400

threshold at 5× 10−5, 5× 10−6, 5× 10−7, and 5× 10−8. In general, we find that the average IV401

strength (defined in Eq. [11]) decreases with the IV threshold becomes looser, and the total IV402

strength (defined in Eq. [12]) increases as more IVs are included in the analysis. We provide403

two concrete examples to illustrate these points (see details in SI Appendix, section 4.2, Fig404

S14). As a result, the statistical power of MR-APSS can be improved by including SNPs with405

moderate effects. These results are confirmed in Fig. 5D, where the number of significant pairs406

identified by MR-APSS increases from 16 to 34 when the IV threshold becomes looser from407

5× 10−8 to 5× 10−5.408

When investigating the causal relationship among 26 complex traits, the number of valid409

IVs as well as the total IV strength increased a lot by changing the IV threshold from 5× 10−8
410

to 5× 10−5 (Fig. 5A). We found that the social and neurological/psychiatric traits can benefit411

a lot from this property. Despite the large sample sizes for these traits, the number of IVs is too412

small to perform powerful MR analysis when using the IV threshold p = 5× 10−8. For example,413

Depression only had a very small number of IVs using a stringent IV threshold p = 5× 10−8.414

When the IV thresholds became looser, the number of selected IVs and the number of valid IVs415

increased a lot (Fig. 5E). Although the average IV strength decreased as IV threshold became416

looser (Fig. 5F), the total IV strength increased dramatically (Fig. 5G). We also observed417

that, due to the limited number of IVs using a stringent IV threshold p = 5× 10−8, MR-APSS418

could not detect a significant causal effect of Depression on Insominia (β̂ = 0.197, s.e. = 0.214,419

p-value = 0.358). By using a looser IV threshold, MR-APSS detected a significant causal420

relationship between Depression and Insomnia (β̂ = 0.569, s.e. = 0.139, p-value = 4.38× 10−5).421

Discussion422

In this paper, we have developed a summary-level MR method, namely MR-APSS, to423

perform causal inference. To account for the confounding bias due to pleiotropy and sample424

structure, the background model of MR-APSS inherits the assumptions of LDSC. MR-APSS425

also assumes the InSIDE condition in the foreground model to infer the causal effect, i.e.,426

rf = Corr(γj, αj) = 0. In other words, we assume that the association between the exposure and427

the outcome should be induced by their causal relationship rather than rf after accounting for428

confounding factors (e.g., correlated pleiotropy and sample structure) in the background model.429

Although our method relies on this assumption to infer the causal effect, we can empirically430

check the influence of this assumption via the following sensitivity analysis. Specifically, we can431

evaluate how the estimated causal effect β̂ changes when Corr(γj, αj) varies. In this way, users432
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can obtain useful information about their inferred causal relationship under the perturbation433

of assumptions. We provide more details on sensitivity analysis in SI appendix, section 1.5,434

Fig. S13.435

Besides the development of summary-level MR methods, we are aware of recent developments436

of individual-level MR methods, including sisVIVE [42], TSHT [43], GENIUS [44], GENIUS-437

MAWII [45], and MR-MiSTERI [46]. We believe that summary-level MR methods and438

individual-level MR methods are complementary to each other. On the one hand, summary-439

level methods relying on linear models only require marginal estimates and their standard errors.440

Therefore, they are widely applicable to screen causal relationship between an exposure and an441

outcome. This is important because the access to individual-level data may be restricted due to442

privacy protection [47]. On the other hand, individual-level methods can be more powerful than443

summary-level MR methods when individual-level data is accessible. First, individual-level MR444

methods can allow for a more flexible model to handle nonlinearity in causal inference. We are445

aware of several nonlinear MR methods using individual-level data [48, 49]. Unlike linear MR446

methods which approximate a population-averaged causal effect, the nonlinear MR methods447

estimate the localized average causal effects in each stratum of population using individual-level448

data. For example, a very recent MR study applies a nonlinear MR method to investigate449

whether a nonlinear model is a better fit for the relationship between diastolic blood pressure450

(DBP) and cardiovascular disease (CVD) [50]. Second, individual-level MR methods can utilize451

more information, which is only available in individual-level GWAS datasets. For example, the452

individual-level methods, GENIUS [44] and GENIUS-MAWII [45], require heteroscedasticity of453

the exposure but this kind of information is not available in GWAS summary statistics. We454

find that GENIUS and GENIUS-MAWII are robust in the presence of pleiotropy and sample455

structure. The estimation efficiency of GENIUS and GENIUS-MAWII depends on their IV456

strengths which are related to heteroscedasticity of the exposure. In this regard, GENIUS and457

GENIUS-MAWII relax classical MR assumptions by requiring heteroscedasticity of the exposure,458

while MR-APSS relaxes classical MR assumptions by imposing the LDSC assumptions in its459

background model and the InSIDE condition in its foreground model. Through simulation460

studies and real data analyses, we find GENIUS, GENIUS-MAWII and MR-APSS are quite461

complementary to each other. We provide more detailed results in SI Appendix, sections 2.3,462

3.3 and 4.4. In summary, we believe that summary-level methods and individual-level MR463

methods are complementary to each other, and they jointly contribute to the MR literature464

for causal inference. Summary-level MR methods are often preferred for large-scale screening465

of causal relationships and individual-level MR methods can provide a closer examination for466

causal relationships of interest.467

Similar to existing summary-level MR-methods, we consider linear models to perform causal468

inference even for binary traits. To have better interpretation of the causal effect estimates for469

binary traits, we show that the output from the observed 0-1 scale based on linear models can470

be transformed to the liability scale based on the probit models. We provide the details in SI471

Appendix, section 1.7.472

Despite the improvement of MR-APSS over many existing MR methods, more research473

is needed for causal inference with genetic data. First, the background model is proposed to474

account for pleiotropy and sample structure hidden in GWASs of complex traits. The direct475

application of this model in some other contexts may not be suitable. For example, it is of great476
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interest to infer the causal relationship between gene expression and complex diseases based on477

transcriptome-wide Mendelian randomization. However, it remains unclear what kind of signals478

should be considered as the background signals. The development of new statistical methods479

for transcriptome-wide Mendelian randomization is highly desirable. Second, multivariate480

Mendelian randomization (MVMR) is drawing more and more attention [51, 52]. As some risk481

factors are known to be related to a certain type of disease, it is more interesting to ask what482

other risk factors can be inferred conditioning on the known ones. We hope that MR-APSS483

can motivate more researchers to uncover more reliable causal relationships using rich genetic484

data resources.485

Materials and Methods486

The MR-APSS approach487

MR-APSS takes GWAS summary statistics {γ̂j, Γ̂j, ŝX,j, ŝY,j

∣
∣
∣|γ̂j/ŝX,j| ≥ t}j=1,...,Mt

as input to488

perform causal inference, where γ̂j and Γ̂j are the estimated j-th SNP’s effects on exposure489

X and outcome Y , respectively, and ŝX,j and ŝY,j are their standard errors, |γ̂j/ŝX,j| ≥ t is490

the selection criterion to ensure that SNP j is associated with X, and Mt is the number of491

SNPs selected as IVs using a threshold t of z-values. To infer the causal effect β of exposure X492

on outcome Y , we propose to decompose the observed SNP effect sizes into background and493

foreground signals (Fig. 1):494

(

γ̂j
Γ̂j

)

= Zj

(
γj

βγj + αj

)

Uncorrelated
pleiotropy

︸ ︷︷ ︸

Foreground

+

(
uj

vj

)

Polygenicity
Correlated
pleiotropy

+

(
ej
ξj

)

Sample structure
(Population stratification,

cryptic relatedness,
sample overlap etc.)

︸ ︷︷ ︸

Background

(1)

where uj and vj are the polygenic effects of SNP j on X and Y , εj and ξj are the estimation495

errors of SNP effect sizes, γj is the remaining SNP effect on exposure X as the instrument496

strength, αj is the direct SNP effect on outcome Y , and Zj is a Bernoulli variable indicating497

whether SNP j has a foreground component (Zj = 1) or not (Zj = 0).498

The background model of MR-APSS499

To model polygenic effects and their correlation induced by pleiotropy (Fig. 1b), we assume a500

variance component model501

p (uj, vj|Ω) = N

((
uj

vj

) ∣
∣
∣0,Ω

)

, with Ω =

(
σ2
u rgσuτv

rgσuτv τ 2v

)

, (2)

where (uj, vj) are random effects from a bivariate normal distribution with mean vector 0 and502

covariance matrix Ω, rg is the genetic correlation induced by pleiotropic effects between X and503

Y , and σ2
u and τ 2v are the variance of polygenic effects on X and Y , respectively. To account504

for bias and correlation in estimation errors due to sample structure, we consider the following505

model:506

p
(

εj, ξj|C, Ŝj

)

= N

((
εj
ξj

) ∣
∣
∣0, ŜjCŜj

)

, (3)

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2021.03.11.434915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434915
http://creativecommons.org/licenses/by-nc-nd/4.0/


where Ŝj =

(
ŝX,j 0

0 ŝY,j

)

,C =

(
c1 c12
c12 c2

)

, and the parameters c1 and c2 are used to adjust the507

bias in estimator errors and c12 accounts for the correlation between the estimation errors. In508

the presence of population stratification and cryptic relatedness, c1 and c2 will deviate from509

one (typically larger than one). Moreover, either population stratification or sample overlap510

can induce covariance between the estimation errors, resulting in nonzero c12.511

Under the assumptions of LDSC [16], we can exploit the LD structure of human genome to512

account for confounding factors in the background model. Let `j =
∑

k r
2
jk be the LD score of513

SNP j, where rjk is the correlation between SNP j and SNP k. The key idea to adjust LD514

effects is based on the fact: the true genetic effects are tagged by LD while the influence of515

sample structure is uncorrelated with LD. Then we show that our background model (Zj = 0)516

can be written as (see SI Appendix, section 1.1)517

p(γ̂j, Γ̂j|Ω,C, Ŝj, `j) = N

((

γ̂j
Γ̂j

)
∣
∣
∣0, `jΩ+ ŜjCŜj

)

, (4)

where pleiotropy and sample structure are captured by the first-order and zero-order terms of518

LD score, respectively. Therefore, both Ω and C in the background model are pre-estimated519

by LDSC using genome-wide summary statistics (see SI Appendix, section 1.4.1). As observed520

in real data analysis, pleiotropy and sample structure are two major confounding factors for521

causal inference. We provide more discussion about the asymptotic distribution of summary522

statistics after principal component adjustment in SI Appendix, section 1.9.523

The foreground model of MR-APSS524

By accounting for confounding factors using the background model, we only need three mild525

assumptions on instrument strength γj and direct effect αj to infer causal effect β, as shown in526

Fig. 1(a). First, there exist some nonzero values in {γj}j=1,...,Mt
. Second, the strengths of in-527

struments {γj}j=1,...,Mt
are independent of confounding factors. Third, the instrument strengths528

are independent of the direct effects (InSIDE condition), i.e., (γ1, . . . , γMt
) |= (α1, . . . , αMt

).529

Although our assumptions seem similar to those of existing methods, they are only imposed to530

the foreground signal and thus they are much weaker than existing MR methods. Specifically,531

we assume that γj and αj are normally distributed and independent of each other:532

p (γj, αj|Σ) = N

((
γj
αj

) ∣
∣
∣0,Σ

)

, where Σ =

(
σ2 0

0 τ 2

)

. (5)

The foreground-background model of MR-APSS533

Now we combine the background model and the foreground model to characterize the observed534

SNP effect sizes (γ̂j, Γ̂j). Let π0 = p(Zj = 1) be the probability that SNP j carries the535

foreground signal. Combining Eqs. [1,2,3,5] and integrating out γj, αj, uj, vj, εj, ξj, and Zj,536
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we have the following probabilistic model:537

p(γ̂j, Γ̂j|π0, β,Σ,Ω,C, Ŝj, `j)

=π0N

((

γ̂j
Γ̂j

)
∣
∣
∣0, `jA(β)ΣA(β)T + `jΩ+ ŜjCŜj

)

+

(1− π0)N

((

γ̂j
Γ̂j

)
∣
∣
∣0, `jΩ+ ŜjCŜj

)

,

(6)

where A(β) =

(
1 0

β 1

)

. A detailed derivation for Eq. [6] is given in SI Appendix, section 1.2.538

The theoretical justification of the uniformity of the approximated distribution for (γ̂j, Γ̂j) in539

Eq. [6] for j = 1, . . . ,Mt is given in SI Appendix, section 1.8.540

Accounting for selection bias in MR-APSS541

Recall that SNPs are selected based on a p-value threshold or equivalently a threshold t of z-score,542

i.e., |γ̂j/ŝXj
| ≥ t. This selection process introduces non-ignorable bias, i.e., E(γ̂j

∣
∣
∣|γ̂j/ŝXj

| ≥543

t) 6= γj , which has been known as winner’s curse in GWAS [53, 28]. To correct the selection bias544

in MR, we further take into account the selection condition |γ̂j/ŝXj
| ≥ t. After some derivations545

(SI Appendix, section 1.3), model (6) becomes a mixture of truncated normal distributions:546

p
(

γ̂j, Γ̂j

∣
∣
∣|γ̂j/ŝXj

| ≥ t, πt, β,Σ,Ω,C, Ŝj, `j

)

=(1− πt)

N
((

γ̂j
Γ̂j

)
∣
∣
∣0, `jΩ+ ŜjCŜj

)

2Φ

(

−tŝX,j√
`jσ2

u+ŝ2
X,j

) +

πt

N
((

γ̂j
Γ̂j

)
∣
∣
∣0, `jA(β)ΣA(β)T + `jΩ+ ŜjCŜj

)

2Φ

(
−tŝXj

√

`jσ2+`jσ2
u+ŝ2

Xj

) ,

(7)

where πt = p(Zj = 1
∣
∣
∣|γ̂j/ŝXj

| ≥ t) is the probability that the j-th SNP carries the foreground547

signal after selection.548

Parameter estimation and statistical inference549

In MR-APSS, the parameters of Ω̂ and Ĉ in the background model are estimated by LDSC550

using genome-wide summary statistics. Given Ω̂ and Ĉ, the log-likelihood function of the551
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observed data Dt = {γ̂j, Γ̂j, ŝX,j, ŝY,j

∣
∣
∣|γ̂j/ŝX,j| ≥ t}j=1,...,Mt

can be written as:552

L(θ|Dt) =

Mt∑

j=1

log
[

(1− πt)

N
((

γ̂j

Γ̂j

)
∣
∣
∣0, `jΩ̂+ ŜjĈŜj

)

2Φ

(

−tŝX,j
√

`jσ2
u+ĉ1ŝ

2
X,j

) +

πt

N
((

γ̂j

Γ̂j

)
∣
∣
∣0, `jA(β)ΣA(β)T + `jΩ̂+ ŜjĈŜj

)

2Φ

(

−tŝX,j
√

`jσ2
u+`jσ2+ĉ1ŝ

2
X,j

)

]

.

(8)

To obtain the maximum likelihood estimate of model parameters θ = {β, πt,Σ}, we then derive553

an efficient expectation-maximization (EM) algorithm (see details in SI Appendix, section554

1.4.2). As a byproduct, we can estimate the numbers of valid IVs and invalid IVs as π̂tMt555

and (1− π̂t)Mt, respectively.Real data results of the estimated numbers of valid and invalid556

IVs are shown in Fig. 5 A. The posterior of SNP j serving as a valid IV can be estimated as557

p(Ẑj = 1|Dt), as shown in dark blue in Fig. 1D. The likelihood ratio test can be conducted to558

examine the existence of the causal effect. Considering the following hypothesis test:559

H0 : β = 0 v.s. H1 : β 6= 0, (9)

the likelihood-ratio test statistic (LRT) is given by560

T = 2
(

L(θ̂|Dt)− L(θ̂0|Dt)
)

, (10)

where θ̂ and θ̂0 are the parameter estimates obtained under hypotheses H1 and H0, respectively.561

Under the null hypothesis H0, the test statistic T is asymptotically distributed as χ2
df=1 and its562

p-value can be obtained accordingly.563

IV strength564

The performance of MR methods depend on the instrument strength. For MR-APSS, we define565

average strength of IVs = E

[

1

Mt

Mt∑

j=1

Zjγ
2
j

∣
∣
∣
∣
∣
t

]

, (11)

566

total strength of IVs = E

[
Mt∑

j=1

Zjγ
2
j

∣
∣
∣
∣
∣
t

]

, (12)

which measure the average/total IV strength for those Mt SNPs with the selection criterion567

(|γ̂j/ŝX,j| ≥ t). Given the observed summary statistics and the selection criterion t, we can568

use MR-APSS to obtain the posterior distributions of (γj, Zj). Therefore, we can obtain the569

estimates of average IV strength and total IV strength defined in Eq. [11] and Eq. [12].570

According to the above definitions, the average and total IV strengths depend on both the IV571

threshold and sample size. In general, we find that the average IV strength decreases when the572

IV threshold becomes looser, and the total IV strength increases as more IVs are included in573

the analysis. Our definitions of IV strengths for the MR-APSS model are closely connected to574

the IV strengths defined in MR literature (see details in SI Appendix, section 2.5).575
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Data availability576

All the GWAS summary statistics used in this paper are public available. The URLs for577

downloading the datasets are summarized in SI Appendix, Table S2.578

Code availability579

The MR-APSS software is available at https://github.com/YangLabHKUST/MR-APSS.580
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