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Abstract

Finding an interpretable and compact representation of complex neurcimage data can be
extremely useful for understanding brain behavioral mapping and hence for explaining the
biological underpinnings of mental disorders. Hand-crafted representations, as well as linear
transformations, may not accurately reflect the significant variability across individuals. Here, we
applied a data-driven approach to learn interpretable and generalizable latent representations
that link cognition with underlying brain systems; we applied a three-dimensional autoencoder to
two large-scale datasets to find an interpretable latent representation of high dimensional task
fMRI image data. This representation also accounts for demographic characteristics, achieved
by solving a joint optimization problem that simultaneously reconstructs the data and predicts
clinical or demographic variables. We then applied normative modeling to the latent variables to
define summary statistics (‘latent indices’) to find a multivariate mapping to non-imaging
measures. We trained our model with multi-task fMRI data derived from the Human
Connectome Project (HCP) that provides whole-brain coverage across a range of cognitive
tasks. Next, in a transfer learning setting, we tested the generalization of our latent space on UK
Biobank data as an independent dataset. Our model showed high performance in terms of age
and predictions and was capable of capturing complex behavioral characteristics and preserving

the individualized variabilities using a highly interpretable latent representation.
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Introduction

One ultimate challenge in the application of machine learning to neuroimaging is to find
an optimal summary of the complex spatial information encoded in brain images into
biologically interpretable representations which can be used to understand inter-
individual differences, learn associations with cognitive variables and to discover
biomarkers that explain the biological underpinnings of healthy and disordered mental

states’™.

Neuroimaging studies have traditionally had a limited number of high-dimensional
datasets, which until recently had hindered employing complex deep neural network
models for a time due to the curse of dimensionality’ The recent increase in the
availability of large-scale neuroimaging data has provided a great opportunity to move
toward employing complex nonlinear methods, for example based on deep learning
approaches’™3. Many deep learning studies in neuroimaging use hand-crafted features
>14-17a g., regions of interest (ROIs) or image-derived phenotypes (IDPs), which are
potentially suboptimal for prediction because (i) hand-crafted features may not
accurately capture complex structural or functional brain characteristics e.g. overlapping
latent representations encoded in the brain, nor their intricate relationships with
behavior and (ii) they do not benefit from the strength of deep neural networks in
automatically learning the optimal representation from the data (for example using
convolutional filters). Particularly in task fMRI studies, which are designed to study
mappings from brain activations to cognition and behavior, there are many challenges in
understanding the underlying mechanisms, including the extensive heterogeneity
across subjects, finding an optimal representation, and a reliable reference to compare
the activations *?*. Consequently, using hand-crafted features potentially leads to
losing information relevant, for example, for understanding inter-subject variability >%°. In
these scenarios, learning an optimal representation of high-dimensional neuroimaging
data rather than — for example — using pre-defined ROIs may enable us to better
understand individual variation and more accurately predict clinical and cognitive
variables. This representation, also called a latent representation, allows us to reduce

the data dimensionality and extract only the essential features from the data. In other
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words, a latent representation model maps complex and high-dimensional data into a

reduced and low-dimensional space®.

Having learned the latent representation, we suggest that there are two steps to assess
the latent representations: first, whether the derived latent representation shows a
stronger association with cognitive, clinical and demographic variables, here referred to
collectively as ‘non imaging-derived phenotypes’ (nIDPs) compared to data in the
original space (e.g., mapping from raw image data or hand-crafted features to
behavioral scores) and further, whether the latent space can be generalized to
accurately reconstruct or make predictions for new data (new brain scans, new
participants or new scanning sites) which may have a partially different distribution. In
the event that this is proven applicable, then, the knowledge learned from one large-
scale dataset can be transferred to modeling smaller datasets in a transfer learning

paradigm .

Most applications of deep learning in neuroscience focus on learning a latent
representation that is optimized for a single supervised learning problem, such as

predicting age or sex (e.g. 11 "?%%

). However, this may reduce the generalizability of
the learned latent representation to other problems. Therefore, we sought to learn a
general-purpose latent space that is not bound to a particular task, and instead aims to
learn features from the data that are predictive of many different cognitive scores. There
have been a number of efforts to that end, e.g. to generate synthetic neuroimaging data
3033 However, most of these studies evaluate the data representation on the basis of
specific measures like reconstruction error. However, this does not necessarily suggest
that the latent space presents relevant features, and what is more important is how
accurately such representations can associate with nIDP measures. Although linear
data-driven transformations like Principal Component Analysis (PCA) and Independent

34-38

Component Analysis (ICA) are widely used for feature representation and

dimensionality reduction in neuroimaging, these methods often fail to extract complex

nonlinear relationships in data. 3°°

In this paper, we propose to explore the value of learning a general purpose nonlinear

latent space representation of task-fMRI images using a 3-dimensional semi-supervised
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autoencoder (AE). Autoencoder neural networks provide a powerful tool in various
applications in neuroimaging studies, from image segmentation to abnormality detection

and latent representation 294

. Complementary to existing approaches, we are
interested in automatically learning contextual features using an autoencoder. In
addition, we show how we can control the latent representation learned by the
autoencoder by adding a supervised learning term to the reconstruction (i.e. in a joint
optimization framework). Briefly, an autoencoder is a deep neural network architecture
that consists of two parts an encoder and a decoder. The encoder projects the inputs to
a lower-dimensional latent space using a non-linear transformation. The decoder
translates back the latent space to the original space by reconstructing the inputs®.
Here we controlled the search space by adding age and sex to the loss function
minimized by the model. In contrast to many previous approaches, this does not require
the prior specification of nodes or regions of interest, can learn overlapping
representations, can use the full range of spatial patterns in the fMRI signal and takes
advantage of the strengths of deep learning, for example by learning convolutional

filters that capture low-level features of the images.

More specifically, in a fully data-driven approach shown in Figure 1, we showed that
there is useful information about the data in the nonlinear latent space that is not fully
captured by a linear data representation and that such information can be extracted
using a hierarchical non-linear autoencoder architecture with joint optimization with age
and sex prediction. Here, we employed an autoencoder with an architecture designed
from the ground up for task-fMRI data and provide a method for visualizing, exploring
and interpreting the learned representation. Last, to illustrate how this model can be

1*=%% on the

used to understand inter-individual differences we applied normative mode
UMAP of latent variables to separate variation in that is principally age-related (encoded
by the normative model) from inter-individual differences that manifest as deviations
from an expected age-related pattern (encoded in the deviations of the normative
model). We these use these deviations for detecting associations with nIDPs. We
trained our model with multi-task fMRI data derived from the Human Connectome
Project (HCP)*® that provides whole-brain coverage across a range of cognitive tasks.

Next, in a transfer learning setting, we tested the generalization of our latent space on a
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UK Biobank dataset? after fine-tuning. Our experimental results show that our nonlinear
data representation provides a strong foundation for subsequent analysis of brain-
behavior mappings and results in strong associations between our latent index and

unseen nIDPs.

Step 1: 3D-Autoencoder with joint optimization - Step 2: Apply UMAP to Latent
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Figure 1: Method overview: stepl) training semi-supervised AE model with joint optimization of age and
sex prediction. Step2) applying UMAP transformation to the latent variables of semi-supervised AE .
step3) applying HBR normative modeling to the components of UMAPs. Step4) measuring the correlation
of non-imaging scores (behavioral, cognitive and clinical scores ) and the deviation value from normative
range of UMAP components (latent representation index)

Methods

Data
Two different datasets were used in this study. This first dataset consists of task-based

fMRI data from the HCP *® S500 release. The second tfMRI dataset is from the 2020 UK

Biobank imaging release®.
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HCP: We used tfMRI contrast data from 468 participants in total (187 males and 281
females, Age= 29.2+3.5) from seven different tasks (emotion processing, gambling,
language, relational processing, social cognition, motor, working memory) across 86
contrasts which served as the basis in previous brain-imaging work **°2. This yields a
total of N=40K task-fMRI scans. The HCP dataset is well suited for this purpose
because the task battery covers a wide range of cognitive domains and the neuronal
activations associated with the task provide good coverage of the entire brain *°. The
number of participants may vary from task to task; not all the participants have data in
all the tasks. While HCP has a large number of samples, the number of participants is
relatively small. Therefore, we split data into 5 subsets in a 5-fold cross-validation
scheme. The splits are made carefully at the subject level so that each fold contains all
the contrasts for a specified set of subjects in order to prevent overly optimistic
estimates of generalizability due to the correlations between different contrasts from the
same subject. More specifically, in each fold, about 95 participants (20% of the data)
were reserved for the test set (N=8K brain scans) and the rest for the training (N= 32K
brain scans, 373 participants). For each fold, we trained a separate model. Moreover, to
further guard against overfitting, an independent set of subjects were used to determine
the optimal model architecture (see below and in the supplementary material for
details).

UK Biobank: We used UK Biobank task-fMRI contrast data from 20781 participants
and 5 contrasts, in total N=104K scans (9,860 males, 10,921 females, Age=54.6 +7.4).
The fMRI data derived from UK Biobank uses the same paradigm as the emotion task
from the HCP with only minor modifications (e.g. to accommodate shorter run length)
2250 since UK Biobank provides a larger number of participants than HCP, we trained
separate model for each contrast. We randomly selected N=15585 of participants for
the train set and 5196 for the test set. All the contrast-models employ the same dataset

configuration (the test and train sets).

Non-imaging data: The UK Biobank study provides an extensive number of clinical,
behavioral, lifestyle and cognitive scores, which we categorized to seven groups e.g.,

cognitive phenotypes, lifestyle, and mental health (see supplementary information for
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the full list of categories). We only included the measures that their scores are available

5354 the measures

more than half of participants. Moreover, in line with previous studies
that had same value for more than 80% of the participants were excluded from further

analysis..
Preprocessing image

For both datasets we used the volumetrically preprocessed images in standard

reference space provided by the respective consortia >°°

(for HCP using the ‘minimally
processed’ pipeline *°). Subsequently the scans images were downsampled from 2mm
to 3mm voxel resolution to reduce the computational burden then cropped tightly to the
whole brain such that the dimension of the image decreased to 56x64x56. The model

was trained on the whole-brain contrast images.

Model architecture

We developed a deep 3D-convolutional autoencoder that learns to encode and decode
task-fMRI images using HCP data. Since there are many choices that need to be made
regarding the architecture of the autoencoder, we performed a pilot study on a subset of
data that were discarded before fitting the final model. Here, we selected the
architecture for the autoencoder using held out data (N=30 participants reserved data,
scans=2580). Full details of this procedure are provided in the supplement. The final
architecture was as follows: Each encoder and decoder of the semi-supervised AE had
three hidden convolutional layers with 3x3x3 kernel size. The bottleneck of the model is
a dense layer contains 100 nodes. Each layer except the output layer were follows by
RELU activation function®” to add non-linearity and sparsity to the network and to
reduce the likelihood of vanishing gradient. The output layer was followed by linear
activation function. To increase the robustness of the model and avoid overfitting, we
added drop-out®® (drop-out level=.2) to each layer except the output layer. To avoid the
risk of a degenerate solution, where the autoencoder simply learns the identity function,
we added Gaussian noise® (mean=0, standard deviation =0.1) to the input layer to
randomly corrupt the data (see supplementary for details about the optimization of the

architecture of the semi-supervised AE ).
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The loss function to train the model contains two parts; an unsupervised and a
supervised loss. The supervised loss simply is the mean squared error of reconstruction
image of noisy image and the original image. The supervised loss incorporated into the
control of latent space of the autoencoder; Here, we added age and sex as supervised
part of calculating the loss function. We used age as a continuous variable rather than a
one-hot encoded matrix (i.e. which would effectively treat the regression as a
classification problem®). This enables us to generalize beyond the age range used in
the training dataset, which is important for transfer learning because of potential

differences between cohorts. So the training loss is defined by:
loss = A(x — £)? + (1 = D (|Yage — Fage| + Binary crossentropy Vsex — Jsex))

which x is the input image and y, 4. and y,., are age and sex. The first term refers to
unsupervised loss which is the usual autoencoder loss and the second term refers to
supervised loss. To balance the supervise and unsupervised loss in terms of scale, we
used coefficient A which specifies the importance of supervised loss e.g., A = 1 means
completely unsupervised autoencoder (Vanilla AE). We trained our model with different

As to select the optimum value in terms of unsupervised and supervised loss.

Training the model

The training data was normalized with zero mean unit variance across the feature. The
layers weights were initialized using Xavier initialization®. First, the model was trained
using HCP data with 1000 epochs and using Adam® optimizer by adaptive learning
rate. The base learning rate was set at .001 and with exponential learning rate decay
over each epoch reached 0.0003. Last, the minil Ibatch gradient descent was conducted

with the size of 10 images.

Having the model trained by HCP, the network was trained with same hyperparameters
again using UKB data as a fine-tunning step. Since the age range is very different
across these two datasets, none of the layers were frozen here. Instead, using the
same model, the weights of the trained model by HCP used as initial weights and the

base learning rate decreased to 0.0003 to train UKB data.


https://doi.org/10.1101/2021.03.10.434856
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434856; this version posted July 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Latent space representation using UMAP

To visualize and evaluate our model quantitatively, we visualized the latent space using
a Uniform Manifold Approximation and Projection (UMAP) approach ° with two
components. UMAP is a manifold learning technique similar to t-distributed stochastic
neighbor embedding (t-SNE) ® that preserves the local structure of high dimensional
data in a nonlinear space. UMAP is superior to tSNE since it better preserves the global
structure of data (in addition to its local structure). Furthermore, it is more stable under

perturbation or resampling of the data.

Here, to visualize the latent space with two UMAP components, UMAP model was fit
using train latent variables without any labeling. To ovoid over-engineering the results,
we applied UMAP with the default parameter settings. The size of local neighborhood to
learn the manifold structure of the data was set to 15 while the minimum distance of
each data in the low dimensional representation was 0.1 in Euclidean distance. Later,
this model was applied to the predicted latent variables of test images. We leave further

optimization of these parameters for future work.

To assist the interpretation of the latent space, we use a simple method to project back
the latent spaces in input (i.e., brain) space. To achieve this, we take advantage of the
fact that the UMAP algorithm finds clearly separated clusters for the different fMRI
contrasts (see results below). Then, for each contrast, we calculated the center of its
cluster (i.e., the centroid of K-means clustering) in 2- dimensional UMAP space. We
transformed these centroid points to the latent space (using the inverse UMAP
transformation) and used the decoder component of the autoencoder to reconstruct the

images corresponding to these cluster centers.

Associations with nIDPs

Normative modeling of UMAP: To assess the biological validity of our latent space, we
calculated the linear association between clinical and behavioral measures and the
deviations of UMAP reduced latent space for UK Biobank data. However, since the
latent variables are related to age and age has a strong association with many cognitive

and behavioral scores, we employ normative modeling on the latent space to separate
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variation in that is principally age-related (encoded by the normative model) from inter-
individual differences that manifest as deviations from an expected age-related pattern
(encoded in the deviations of the normative model). The normative modeling approach
has been used extensively to model heterogeneity in various psychiatric disorders’>%°
. Briefly, this approach provides a statistical estimation of the distribution of brain
measures along with the deviations from the reference cohort at the level of each

individual participant and

We define the ‘latent index’ as a feature that indicates the deviation of normative UMAP
of latent variables of each image. First, we applied normative modeling using a flexible
generalization of hierarchical Bayesian regression (HBR)®"°® to the UMAP of latent
variables to remove the linear and non-linear association of age and sex . Importantly,
we used a recent generalization of the HBR method that can handle heteroskedastic
and non-Gaussian distributions. Age was defined as a regressor and sex as batch
effect. (See supplementary for the details of HBR normative model).This way, for each
UMP component of each individual, we obtained the deviation or z-score which the so-
called latent index. Then, we used the latent index as an indicator of individualized brain
activation variability by measuring the associations of the latent index and nIDPs using

Spearman measure.

Results

Autoencoder performance

As described above and in detail in the supplement, the optimum number of nodes of
each layers and the number of layers of semi-supervised AE model was obtained by a
pilot study using independent data and resulted 32,16,8 number of nodes for 3 layers of
encoder and 8, 16 ,32 for decoder, respectively. 4 was set empirically to 0.05 in order to
balance the supervised and unsupervised loss. (See supplementary documents for
more details on the architecture of semi-supervised AE and the latent space
visualization for different values of lambda). The out-of-sample of model performance is

shown in Table 1.
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Table 1: Model performance

HCP UKB
Image reconstruction error (MSE) 0.26 0.16
Age mean absolute error 3.13 £0.09 4.84 +0.25
Sex prediction accuracy 81% + 3% 89% + 3%

Visualization of latent space

The scatterplot of UMAP components of the autoencoder’s latent variables is shown in
Figure 2. For selected contrasts *° in HCP and Face-Shape emotion tasks in UKB. This
figure shows how the data points are distributed in the latent space with regard to age
and sex. By contrasting the left and right columns of Figure 3A and 3B its clear that: (i)
in the vanilla AE (1 = 1) age and sex were not reflected in the latent space, and rather
the latent space principally reflects differences between different tasks; (ii) in the semi-
supervised AE (4 = 0.05), age and sex are more clearly evident in the latent space. This

is especially evident in UKBiobank, where the age range is wider.

Projection the latent representations to brain images

In order to understand relationships in the latent representation in the original space, we
show in Figure 3 the centroids of contrasts that are back-projected from the UMAP
latent space to the original brain space using vanilla AE. The patterns of activations for
these contrasts show an excellent correspondence with the expected task activations as
shown in with previous studies (e.g.Barch 2013"). For instance, for language task, our
projection of latent space to original image space shows the left lateralization which is

accord with previous findings in Barch 2013.
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Figure 2: A) UMAPs of latent space of selected contrasts according to Barch 2013 in HCP data in terms
of age and sex separation. B) UMAPs of latent space of UCP in terms of task separation. This is identical
to panel A, except that the data points are coloured according to task instead of age and sex C) MAPs of
latent space of Face-Shape task in UKB data.
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Figure 3: The projection of centroid of UMAP in the latent space to the input brain space. The centers of
UMAP of latent space were calculated using K-means clustering across the test data (shown as black
points in the panel at the top left). The centroids corresponding to each contrast were passed to encoder
of autoencoder to map to input original space.

Association between latent variables and non-imaging covariates
The normative models for the UMAP representation of latent variables is shown in
Figure 4 (see supplement for measures of fit for the HBR model). In the latent

representation the distribution of points has a complex and non-Gaussian distribution,
but this can be fit by capitalizing on the flexibility of HBR model.
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Figure 4: Normative model of the latent space UMAP components. The individualized deviations from the
normative range indicates latent representation index.

Figure 5 shows the Manhattan plot of p-value of univariate correlation between non-
imaging measures and latent index. This shows that there are strong associations with

many nIDPs even after properly accounting for age and sex using the normative model.

Discussion

In this study, we developed a 3-D convolutional autoencoder architecture for non-linear
transformation of fMRI data to a low-dimensional, yet informative latent space that
allows accurate reconstruction of the data whilst also representing demographic
variation. We presented methods to visualize, interpret and control the learned latent
space representation and defined a latent index to find a mapping to behavioral
measures. We showed that our model learned not only salient features that capture age

and other sources of population stratification but are also associated with clinical and
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behavioral features. Finally, we show that this representation was highly generic and

generalized to the UK Biobank population cohort as an independent dataset.

Correlation of latent representation index (UMAP 1) with nlDPS
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Figure 5: Manhattan plot of p-value of univariate correlation of non-imaging measures with the
individualized deviations from normative UMAPs od latent space( latent representation index)s. The black
line is Bonferroni-corrected p-value threshold
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Learning a generic latent representation

The HCP task-fMRI data enabled us to estimate a generic latent space representation

across diverse cognitive tasks'®*?

, Whilst also providing good whole brain coverage
across all the tasks *°. During the training, this mapping allows the autoencoder to learn
the various activation patterns across the brain instead of learning specific task-related
effects that may be localized to particular brain regions. To validate the generalizability
of this latent representation derived from HCP, we used UKB. Complementarily, UKB
contains the Hariri faces-shapes emotion task °°, which is very similar to the emotion
task of HCP (effectively a shorter version). The common contrasts provide a great
opportunity for further validation of the model and test the across-cohort generalization

of the latent space.

Mapping the latent space
Since the number of test participants are limited in each model of HCP (N=95 ) and the

age range is limited, the effect of age and sex in the latent space is not clear while the
UMAP of UKB generates a clear age continuum and good separation in terms of sex.
This indicates that moving from one point in manifold to another can be traced back

meaningfully through the input space.

By adding age and sex to the model, we provide a method to explore the functional and
anatomical manifolds of brain states by controlling what the autoencoder learns. While
unsupervised training of the model yields interpretable representations of different
tasks, using semi-supervised autoencoder, our representation was able to be tailored to
focus on specific differences. We illustrate this by training an autoencoder that
simultaneously reconstructs the data, whilst also predicting age and sex. Importantly,
this results in an interpretable latent manifold that clearly reflects individual differences

related to the representation of demographic variables in the underlying imaging data.

Projection of latent representation to original space: For the majority of the contrasts
and patrticularly language (story-math), social (theory of mind) and relational (relational-
baseline), the projection of the center of K-means of latent space to the original scan

image space were in line with findings in *°.In the context of interpretability of findings,
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the meaningful projection of the latent space can be viewed as an example of

explainable Al in complex models.

Association of the latent representation index with non-imaging variables

One important aspect of summarizing the complex spatial maps of tftMRI is to preserve
the individualized variability. To complement this, these summaries or representations
should contain biological information that can be linked to cognitive, behavioral and
clinical characteristics. Due to the fact that the latent space here also represents age
and sex, and because age is strongly associated with a variety of cognitive and
behavioral scores, the correlation of latent variables and nIDPs may disrupted by the
confounding effect of age (see supplementary documents for the correlation of UMAPSs
and nIPDs). To disentangle clinically relevant variation from variation due to age and
sex from the UMAP representation, we applied normative modeling based on
hierarchical Bayesian regression. Here, the individualized deviations or latent
representation index indicates the distance from the normative latent variables
transformed by UMAP. We showed that this index is strongly associated with several
nIDP scores after accounting for confounding variables (age and sex). Hence, the
notion of normative latent variables may provide the basis for the development of a

biomarker that predicts cognitive and behavior characteristics.

Network architecture

The architectural hyper-parameters of the autoencoder were chosen during the pilot
study, solely based on how the models performed in terms of the reconstruction error
and no other readouts i.e., non-imaging measures were used for evaluations of the
models and the data used for the pilot study were not reused. Some decisions about the
network structure have been made before estimating the model. For example, to
preserve the morphology of the images and hence better interpretability, we decided to
use a 3-D convolutional network **=#*' In order to control order of latent space, we

used dense layer in the bottleneck of the autoencoder “°.

We emphasize that we designed our autoencoder with the specific nature of our high-

dimensional neuroimaging data in mind and therefore, a number of constraints were
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imposed on the model beforehand. For example, the networks evaluated were not
particularly deep, also to reduce the memory usage and computational complexity, we
took advantage of the weight sharing of convolutional layers. Here, we are in search of
low-level features that may be translation invariant, but a more important benefit is that
the weight sharing enables the networks to be scaled to whole-brain data °. The kernel
size was set to be 3 x 3 x 3 to keep the details of the downsampled image scans.
Average pooling layers were positioned right after each convolutional layer to ignore the
sharp features, reduce the number of parameters and consequently, minimize the
chance of overfitting. We relied on the pilot study to select the rest of the model's

parameters, such as the number of filters.

Here, we assigned unsupervised (image reconstruction error) and supervised (age and
sex prediction) loss function to our semi-supervised AE while the network's ultimate goal
was finding meaningful latent representations of data that can be mapped to the non-
imaging variables and interpreted both in the latent space and in the original voxel
space. Our model showed high performance in predicting age and sex. The contribution
of supervised and unsupervised loss can be also redefined in order to emphasize the
optimization process over supervised or unsupervised loss. This results in a semi-
supervised setting that allows the latent space to partially encode particular features of
the data °. Another interesting future direction is to train an autoencoder to predict
different data (e.g., a follow-up timepoint in longitudinal studies). This would serve to
sensitize the latent space to changes relevant to ageing or pathology, which suggests
that the latent representation may also be useful to generate features for downstream

analyses aiming to predict these features.

The increased number of neuroimaging scans provides a unique opportunity to

transcend linear mappings, but it is also necessary to acknowledge some limitations.

The traditional image processing techniques often used in deep learning are not

completely applicable here. For example, while data augmentation using image

mirroring, flipping, skewing, or segmenting is a straightforward approach to increase the
11

number of samples and has been applied before in neuroimaging applications -, we
did not consider it to be appropriate here because such augmentation strategies do not
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faithfully preserve invariances known to occur in the brain, for example the lateralization
of brain functions e.g. the association of left lateralization in language processing “*.
Another limitation is computational complexity. In addition, training an autoencoder on
large neuroimaging data is computationally more demanding comparing with similar
linear models. In this work we set the trade-off parameter (lambda) governing the
contribution of supervised and unsupervised loss components in a relatively informal
manner since a quantitative evaluation would have required us to define the relative
value of each components (e.g. how much to favour prediction of the supervised targets
over reconstruction or vice versa). It is possible that more careful optimization of this

parameter may yield improved performance where this information can be specified

Conclusion

Here, we applied 3-dimensional autoencoder to two large-scale datasets to find an
interpretable latent representation of high dimensional task fMRI image data by
controlling demographic information. We applied normative modeling to the latent

variables to define an index to find a mapping to non-imaging measures.

Our model showed high performance in terms of age and sex predictions and moreover,
the generalizability of the representation using an interdependent dataset. Last, our
model was capable of capturing complex biological, cognitive, and clinical
characteristics and preserve the individualized variabilities using a latent representation

index.
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