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Structural connectome quantifies tumor invasion and predicts survival in 
glioblastoma patients 
 
Abstract 

Glioblastoma widely affects brain structure and function, and remodels neural connectivity. 

Characterizing the neural connectivity in glioblastoma may provide a tool to understand 

tumor invasion. Here, using a structural connectome approach based on diffusion MRI, we 

quantify the global and regional connectome disruptions in individual glioblastoma patients 

and investigate the prognostic value of connectome disruptions and topological properties. 

We show that the disruptions in the normal-appearing brain beyond the lesion could mediate 

the topological alteration of the connectome (P <0.001), associated with worse patient 

performance (P <0.001), cognitive function (P <0.001), and survival (overall survival: HR: 

1.46, P = 0.049; progression-free survival: HR: 1.49, P = 0.019). Further, the preserved 

connectome in the normal-appearing brain demonstrates evidence of remodeling, where 

increased connectivity is associated with better overall survival (log-rank P = 0.005). Our 

approach reveals the glioblastoma invasion invisible on conventional MRI, promising to 

benefit patient stratification and precise treatment. 
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Introduction 

Glioblastoma is the most common primary malignant brain tumor in adults, characterized by 

diffuse infiltration into the surrounding tissue1. It is increasingly accepted that glioblastoma 

widely influences the brain structure and function beyond the focal lesion2, 3, 4. Microscopic 

evidence shows that glioblastoma can induce profound remodeling of neural connectivity5, 

while neuronal activity can promote tumor progression6. This bidirectional interaction 

underscores the promise of characterizing neural connectivity to better understand 

glioblastoma invasion, which may facilitate more accurate patient stratification for 

personalized management.  

Diffusion MRI (dMRI) is a method to estimate the structural connectivity of the brain. 

It is more sensitive to detect occult tumor invasion, compared to the conventional T1-

weighted and FLAIR images7. Evidence shows that dMRI can indicate the tissue signature of 

glioma8, offering values to evaluate invasiveness9, 10, detect peritumoral invasion11, 12, 

indicate subventricular zone involvement13, and predict molecular phenotypes14. These 

studies, however, have focused on the focal tumor, instead of the systematic disturbance of 

the brain.  

The advance in neuroimaging has represented structural connectivity as a complex 

network, namely structural connectome15, 16. This approach models brain regions as nodes 

while the white matter connections among brain regions as edges. Graph theoretical analysis 

of the derived structural networks shows to characterize various neurological and psychiatric 

disorders17, 18, 19. Further, recent studies suggest that brain tumors may alter the connectome 

topology20, 21, 22. Initial evidence shows that the topological features derived from the 

structural connectome appear to outperform clinical parameters in survival prediction23. 

However, it requires further clinical validation whether the disruption of the structural 
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connectome could be quantified for patient stratification. Of particular significance is 

whether the alteration of the neural connectivity could impact patient outcomes. 

The purpose of this study was to characterize the disruption of the structural 

connectome in glioblastoma systematically. We hypothesized that glioblastoma could induce 

both focal and global disturbance to the structural connectome, leading to topological 

alteration of the brain and impact patient outcomes. We tested this hypothesis in two 

prospective glioblastoma cohorts. Firstly, we constructed the structural networks using the 

dMRI from glioblastoma patients and healthy controls. Secondly, we quantified the focal and 

distant disrupted connectome separately from each patient. Thirdly, we calculated the 

disruption indices and topological features and examined their significance in survival 

models. Lastly, we modeled the alteration of the preserved connectivity after removing the 

disrupted connectome, and investigated its significance on patient survival. The results reveal 

the widespread disruptions of the structural connectome, which lead to topological alterations 

and show prognostic value in glioblastoma patients.     

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.03.09.434656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434656
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

Results 

Subject characteristics 

We included two patient cohorts in this study (Supplementary Table S1, see 

Supplementary Methods for a flowchart of patient inclusion). For the Discovery cohort, we 

recruited 136 patients for pre-operative MRI scanning. After excluding 19 patients according 

to the trial exclusion criteria, we included 117 of 136 (86.0 %) patients (mean age 59 years, 

range 22-75 years, 89 males) for analysis. Six patients (5.1 %) were lost to follow-up. The 

median overall survival (OS) was 392 (range 34-1932) days. The median progression-free 

survival (PFS) was 275 (range 13-1393) days. 

For the Validation cohort, we initially recruited 49 patients. After excluding seven 

patients under the identical criteria with the Discovery cohort, we included 42 of 49 (85.7 %) 

patients (mean age 61 years, range 28-75 years, 34 males). The median OS was 335 (range 

55- 962) days. The median PFS was 246 (range 21-805) days. Two study cohorts showed no 

significant differences in clinical variables (Supplementary Table S1).  

A cohort of 117 healthy age-matched subjects (mean age 59.9 years) was included as 

the control cohort. Another independent cohort of ten healthy controls (mean age 60.9 years) 

was included to generate a WM connection template. The above four cohorts showed no 

significant difference in age. 

Quantifying the strength of brain connectome 

Tractography is a technique to measure the strength of the white matter (WM) connection by 

tracking the fiber pathway connecting different brain regions. However, directly performing 

tractography on the brain with a tumor may cause tracking failure or artifacts, e.g., an 

unrealistic belt of fibers surrounding the tumor24. To bypass the need to perform tractography 

on the lesioned brain, previous studies proposed to generate a template from healthy controls 
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for tract localization, and the strength of WM connection was then robustly estimated by 

comparing patients to healthy controls25, 26.  

 
Fig 1. Quantifying connectome disruptions. (A) Probabilistic tractography is performed on the 

high-resolution dMRI of ten healthy controls to generate a template for the WM connections among 

the 90 regions on the AAL atlas. (B) Skeletonized FA maps are generated from both patients and age-

matched healthy controls to estimate the WM connection strength, using an improved voxel 

projection procedure based on TBSS. The strengths of WM connections and brain regions are derived 

for healthy controls and patients (C). By comparing the patients to the controls (D), the disrupted 

connectome (E) in patients is identified as the WM connection (Cpatient) or brain region (Bpatient) with a 

strength that is 2SD (95% confidence) lower than the mean (μ(Ccontrol) or μ(Bcontrol)) of the control 

group. The disruption indices of WM connections and brain regions, calculated by averaging the 

disruption matrices/vectors, are both negatively correlated with the MMSE score (F & G). Higher 

disruption is associated with worse KPS (H & I). AAL: automated anatomical Labelling. FA: 

fractional anisotropy WM: white matter. TBSS: tract-based spatial statistics; MMSE: Mini-Mental 

State Examination; KPS: Karnofsky Performance Status. P value significant codes: P < 0.001 ***. 

We first derived a WM connection template among the 90 brain regions defined by 

the Automatic Anatomical Labeling (AAL) atlas27 (Fig. 1A). As the strength of the WM 

connections can be measured by the fractional anisotropy (FA) value calculated from the 
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dMRI, we generated an alignment-invariant tract representation through projecting FA voxels 

using tract-based spatial statistics (TBSS)28, 29. We further improved this approach by using 

the iterative projection under the guidance of tract orientation30. We also applied a histogram 

matching normalization method to reduce the variations across the subjects and imaging 

protocols31, 32. The skeletonized FA maps of patients and controls (Fig. 1B) were finally 

generated to produce the individualized strength matrices of WM connections (Fig. 1C). We 

then calculated the strength vector of brain region disruptions by aggregating the WM 

connections. 

To rigorously assess the reproducibility of connectome strength estimation, we 

compared the strengths of a cerebellar tract (middle cerebellar peduncle, MCP) that is not 

affected by the supratentorial tumors in our cohorts. We found no significant difference in the 

strength of MCP across the patient and control cohorts (two-sample t-test and f-test, P > 0.05, 

Supplementary Fig. S1), suggesting that the connectome strength estimation was 

comparable across the cohorts.  

Global disrupted connectome demonstrates clinical significance 

We calculated the disruption indices of both WM connections and brain regions as the 

standard deviation (SD)-normalized decrease in each patient, compared to the mean strength 

of the control group (Fig. 1D). We only considered the WM connection or brain region with 

a disruption index larger than 2SD (indicating 95% confidence) as significantly disrupted 

(Fig. 1E). We finally calculated the global disruption index in each patient by averaging the 

disruption of WM connections or brain regions, respectively.  

To validate the clinical significance of the disruption indices, we tested their 

correlations with the Mini-Mental State Examination (MMSE) score. We observed that the 

global disruption of brain regions (r = -0.69, P < 0.001, Fig. 1F.) and WM connections (r = -
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0.67, P < 0.001, Fig. 1G.) were both negatively correlated with the MMSE score. We further 

compared the patient subgroups stratified by the Karnofsky Performance Status (KPS) score 

of 80 as reported before33. We found that a worse KPS score was associated with higher 

disruptions of both brain regions and WM connections (both P < 0.001, Fig. 1H. & I). These 

results indicate that the global disruption indices were clinically robust, reflecting patient 

performance status.  

Identification of regional disrupted connectome 

To address spatial tumor heterogeneity, we further calculated the regional disruption indices 

based on the global indices. We firstly segmented the tumors into contrast-enhancing regions 

(CE, the entire area within T1 contrast-enhancing rim) and peritumoral non-enhancing 

regions (NE, the hyper-intensities surrounding the CE on FLAIR images, Fig. 2A). Based on 

the segmented tumor regions, we categorized the disrupted WM connections as: 1) Direct 

(crossing the tumor); 2) Indirect (without crossing the tumor).  

The disrupted brain regions were similarly categorized as: 1) CE (within CE tumor); 

2) NE (within NE tumor); 3) Distant (within the normal-appearing brain beyond the tumor 

and connected to the tumor via WM connections); 4) Indirect (within the normal-appearing 

brain beyond the tumor without any WM connections with the tumor)  

We defined the regional disruption index as the averaged disruption of each category 

(Fig. 2D-F). The two study cohorts showed no significant difference (Supplementary Table 

S2). In comparing disruptions of WM connections, we observed significantly higher Direct 

disruption (4.77 ± 1.56) than Indirect disruption (2.59 ± 0.39, P < 0.001, Fig. 2G, 

Supplementary Table S3). Similarly for brain regions, focal tumor (CE: 5.83 ± 2.00; NE: 

4.67 ± 1.33) were more significantly disrupted than the normal-appearing brain (Distant: 2.90 

± 0.71, Indirect: 2.56 ± 0.39, each P <0.001, Fig. 2I). The Validation cohort showed similar 
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disruption patterns (Fig. 2H & J). These results correspond to our understanding of tumor 

invasion and support the robustness of the regional disruption indices.  

 
Fig 2. Quantifying regional disrupted connectome. The contrast-enhancing (CE, red) and non-

enhancing (NE, yellow) tumors are segmented (A). The disruption matrices of WM connections and 

disruption vectors of brain regions (B) are merged with the tumor segmentation to identify the 

regional disrupted connectome (C). WM connection disruption is further classified as Direct (D) and 

Indirect (E) disruptions. The disrupted brain regions are classified into CE, NE, Distant, and Indirect 

disruptions (F). In both Discovery and Validation cohorts, Direct connection disruption is higher than 

Indirect disruption (G, H); Tumor regions (CE, NE) are more significantly disrupted than the normal-

appearing brain (Distant, Indirect) (I, J). WM: white matter. MMSE: Mini-Mental State Examination; 

KPS: Karnofsky Performance Status. P value significant codes: P < 0.001 ***, P < 0.01 **, P < 0.05 

*.  

The regional disruptions are correlated with focal tumor volume 

Pearson correlation tests showed that the WM connection disruptions in tumor (Direct) and 

normal-appearing brain (Indirect) were positively correlated (r = 0.44, P <0.001). Similarly, 

the disruption of Distant regions was positively correlated with that of tumor regions (Distant 

vs. CE: r = 0.43, P < 0.001; Distant vs. NE: r = 0.34, P = 0.028, Supplementary Table S4). 

Further, the tumor volume (measured by CE tumor) was positively correlated with the 

disruptions of both Direct connections (r = 0.52, P < 0.001) and Distant regions (r = 0.33, P < 
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0.001, Supplementary Table S5). Collectively, these data indicate that a larger focal tumor 

is associated with higher connectome disruption throughout the brain.  

The normal-appearing brain shows widespread disruption 

We calculated the proportion of disrupted regions out of all brain regions. Noteworthy, in the 

patient group analysis, a higher proportion of Distant regions (16.8 ± 12.0%) was identified 

than the focal lesion (CE: 5.8 ± 5.1%, P < 0.001), recapitulated by the Validation cohort 

(Supplementary Table S6), supporting that the normal-appearing brain was widely 

disrupted.  

Next, we explored the disruption probability of connectome in the patient population, 

calculated as the percentage of the patients with a specific region or connection disrupted. At 

the group level, the average disruption probability of Distant regions was higher (17.2 ± 9.0%) 

than focal lesion (CE: 11.8 ± 6.8%, P < 0.001), possibly due to the more extensive coverage 

of the Distant regions. This finding further confirmed that the disruption of brain regions was 

widespread beyond the lesion. 

We further generated a tumor frequency map using the tumor segmentation of all the 

patients (Fig. 3A). The top five most likely disrupted Distant regions (Fig. 3C) were mainly 

in the low-frequency regions (See Supplementary Table S8 for details). We also mapped 

the disrupted WM connections to the atlases of anatomical tract generated from 1,000 

subjects in the UK Biobank34. Notably, the top five tracts most likely disrupted were mainly 

association tracts and close to the high-frequency regions (Fig. 3B, Supplementary Table 

S7), suggesting that the association tracts may mediate the tumor spread.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.03.09.434656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434656
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

 

Fig. 3. Tumor frequency map and disruption probabilities of anatomical structures. (A) Tumor 

frequency maps are generated using tumor segmentation. The top five disrupted focal brain regions 

include the right superior temporal gyrus (STG.R), right middle temporal gyrus (MTG.R), right insula 

(INS.R), left insula (INS.L), and right lenticular nucleus, putamen (PUT.R). (B) Top five disrupted 

anatomical tracts and their maximum intensity projection: right arcuate fasciculus (af.r), right middle 

longitudinal fasciculus (mdlf.r), left superior longitudinal fasciculus 3 (slf3.l), left arcuate fasciculus 

(af.l), left superior longitudinal fasciculus 1 (slf1.l). (C) The top five disrupted Distant brain regions 

include the left posterior cingulate gyrus (PCG.L), right posterior cingulate gyrus (PCG.R), left 

lingual gyrus (LING.L), left fusiform gyrus (FFG.L), and left hippocampus. L/l: left; R/r: right. 

The focal tumor alters the topological property of the connectome 

To specifically investigate the topological alteration of the brain under tumor attack, we 

calculated the two most commonly used topological features: characteristic path length and 

clustering coefficient, which respectively reflect the efficiency of global communication and 

local information exchange in networks35. We observed that the characteristic path length of 
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the patient networks was significantly higher than that of healthy controls (P < 0.001, Fig. 

4A). In contrast, the clustering coefficient of patients was significantly lower than that of 

healthy controls (P < 0.001, Fig. 4B, Supplementary Table S9). These results reveal that 

tumor lesions could dramatically alter the topology property of the structural connectome.  

We next determined the clinical significance of connectome topology by comparing 

the topological properties of the patient subgroups stratified by MMSE and KPS scores. We 

found that the patients with lower MMSE or KPS scores presented lower clustering 

coefficient (MMSE: P = 0.012, KPS: P < 0.001, Fig. 4C & D) and higher characteristic path 

length (MMSE: P = 0.013, KPS: P < 0.001, Fig. 4E & F). Moreover, characteristic path 

length (r = 0.43, P < 0.001) was positively correlated with tumor volume, while clustering 

coefficient (r = -0.45, P < 0.001) was negatively correlated with tumor volume, indicating 

that a larger focal lesion may have a greater influence on the connectome topology 

(Supplementary Table S5). 
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Fig. 4. Topological alteration of the connectome. Patients show increased characteristic path length 

(A) and decreased clustering coefficient (B) than controls. Patient subgroups with worse pre-operative 

KPS (C, D) and MMSE (E, F) scores show increased characteristic path length and decreased 

clustering coefficient. Disruption of Distant regions is higher in the subgroups with worse MMSE (G) 

and KPS (H), and it is the only significant predictor of characteristic path length (I) and clustering 

coefficient (J) in multiple linear regression. (K) The effects of tumor volume on characteristic path 

length are mediated by the disruption of Distant regions: total effect (c path) = 0.42, P < 0.001; direct 

effect (c’ path) = 0.25, P < 0.001; mediation effect (c – c’) = 0.17, P = 0.008. (L) The effects of tumor 

volume on clustering coefficient are mediated by the disruption of Distant regions: total effect (c path) 

= -0.041, P < 0.001; direct effect (c’ path) = -0.024, P < 0.001; mediation effect (c – c’) = -0.017, P < 

0.001. WM: white matter, MMSE Mini-Mental State Examination; KPS: Karnofsky Performance 

Status. P value significant codes: P < 0.001 ***, P < 0.01 **, P < 0.05 *. 

The disruption of Distant regions is associated with the topological alteration  

To understand the relation between the regional disruption with topological properties, we 

performed a multiple linear regression, which revealed that the disruption of Distant regions 
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was the only significant predictor of characteristic path length (Estimate = 0.21, P < 0.001) 

and clustering coefficient (Estimate = -0.018, P < 0.001, Fig. 4I & J). We then compared the 

disruptions of Distant regions in the patient subgroups stratified by the MMSE and KPS 

scores. We noticed that the patients with higher MMSE or higher KPS scores displayed 

significantly lower disruption of Distant regions (Fig. 4G & H), consistent with the distinct 

topological properties of these patient subgroups. The results imply the association between 

the disruption of Distant regions and connectome topology.   

We further performed mediation analysis, which showed that tumor volume had both 

significant direct and indirect effects (mediated by the disruption of Distant regions) on 

characteristic path length (direct: P < 0.001, indirect P = 0.008) and clustering coefficient 

(direct & indirect P < 0.001) (Fig. 4K & L). The findings were confirmed by the Validation 

cohort (Supplementary Fig. S3). 

Topological features and disruption of Distant regions are prognostic  

We evaluated the prognostic value of the disruption indices in log-rank tests. Stratified by the 

mean disruption of Distant regions (2.9), patients of higher disruption had worse survival 

than those of lower disruption (OS: median 293 vs. 449 days, P = 0.002, PFS: median 238 vs. 

307 days, P = 0.019, Fig. 5A).  

 Further, the subgroups stratified by the optimal cut-off of topological features 

(clustering coefficient: 0.46; characteristic path length: 3.20) had distinct survival. Precisely, 

the subgroup with a higher clustering coefficient had better survival than that with a lower 

clustering coefficient (OS: median 475 vs. 294 days, P = 0.040, PFS: median 306 vs. 238 

days, P = 0.002, Fig. 5B). The subgroup with lower characteristic path length showed better 

survival than that with higher characteristic path length (OS: median 465 vs. 288 days, P = 
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0.005, PFS: median 312 vs. 244 days, P = 0.012, Fig. 5C). We further confirmed the findings 

in the Validation cohort using identical cut-offs.   

We then evaluated the prognostic value of disruption indices and topological features 

in Cox models (Table 1). We observed that higher disruptions of Indirect connection (OS: 

HR = 1.36, P = 0.007; PFS: HR = 2.43, P = 0.046) and Distant regions (OS: HR = 1.46, P = 

0.049; PFS: HR = 1.49, P = 0.019) were associated with worse survival. For topological 

features, higher clustering coefficient was associated with better survival (OS: HR = 0.63, P 

= 0.035; PFS: HR = 0.49, P = 0.002), while higher characteristic path length was associated 

with worse survival (OS: HR = 1.56, P = 0.035; PFS: HR = 1.82, P = 0.009, Supplementary 

Table S10). 

Table 1. Univariate survival statistics of Discovery cohort 

Feature 
OS PFS 

HR 95%CI P HR 95%CI P  
Clinical variables 

Age 1.03 1.01 -1.05 0.004 1.03 1.00-1.05 0.021 
Sexa 0.81 0.52-1.25 0.333 0.75 0.47-1.19 0.217 

Performanceb 1.60 1.09-2.36 0.018 1.63 1.04-2.55 0.033 
IDHc 0.59 0.25-1.36 0.211 0.52 0.22-1.21 0.131 

MGMTd 0.77 0.52-1.14 0.196 0.68 0.43-1.07 0.094 
EORe 1.89 1.26-2.84 0.002 1.90 1.19-3.03 0.007 

Adjuvant treatmentf 0.21 0.13-0.34 <0.001 0.22 0.11-0.41 <0.001 
Tumor volume 1.01 1.00-1.01 0.001 1.01 1.00-1.02 0.045 

Eloquent locationg 0.93 0.64-1.36 0.711 1.06 0.69-1.62 0.807 
Deep white matterh 0.85 0.58-1.24 0.386 0.86 0.57-1.31 0.487 

Disruption indices 
Direct connection 1.07 0.87-1.30 0.790 1.08 0.88-1.32 0.464 

Indirect connection 1.36 1.13-1.65 0.007 2.43 1.02-5.81 0.046 
CE regions 0.95 0.86-1.04 0.667 0.96 0.86-1.06 0.418 
NE regions 1.01 0.88-1.15 0.939 1.00 0.87-1.15 0.979 

Distant regions 1.46 1.08-1.99 0.049 1.49 1.07-2.07 0.019 
Indirect regions 1.06 0.87-1.29 0.790 0.80 0.83-1.28 0.795 

Topological features 
Clustering coefficient 0.63 0.42-0.93 0.035 0.49 0.30-0.78 0.002 

Characteristic path length 1.56 1.06-2.29 0.035 1.82 1.16-2.84 0.009 
(a). Female as the reference; (b). KPS 90-100 as the reference; (c). IDH wildtype as reference; (d) 
Unmethylated MGMT as reference; (e). Incomplete resection as reference; (f) Concurrent 
chemoradiotherapy (CCRT) as reference. (g). Non-eloquent location as reference.  (h) Affected deep white 
matter as reference. EOR: extent of resection. KPS: Karnofsky Performance Score  
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Fig. 5. The prognostic value of disruption indices and topological features. Top: In both cohorts, 

higher disruption of Distant regions (A), lower clustering coefficient (B), and higher characteristic 

path length (C) are associated with worse OS. (D) The model of predicting OS using clinical factors, 

disruption indices, and topological features shows improved AUC than clinical factors alone. Bottom: 

Two examples with better or worse survival (OS: 1555 vs. 317 days; PFS: 747 vs. 159 days). Both are 

IDH wildtype and MGMT unmethylated tumors of similar visible size in two males (aged 69 vs. 67 

years). They both underwent complete resection followed by temozolomide chemoradiotherapy (E & 

F). Both patients have similar tumor sizes on post-contrast T1 (25.0 vs. 23.6 cm3). The patient with 

worse survival (H) has more widespread connection disruption beyond the visible lesion, compared to 

the patient with better survival (G); The disruption indices of Distant regions (blue) are 2.8 (I) and 3.0 

(J), respectively. Their topological features are distinct (clustering coefficient 0.48 vs. 0.44: 

characteristic path length 3.17 vs. 3.31). OS: Overall survival. HR: Hazard ratio. WM: white matter. 
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We also evaluated the model performance in predicting OS using the disruption 

indices and topological features. The baseline model, including the above significant clinical 

variables (i.e., age, EOR, and adjuvant therapy), achieved an AUC of 0.82 (CI: 0.68-0.96). 

By adding the significant disruption indices and topological features into the baseline model, 

the AUC was improved at 0.90 (CI: 0.80 - 0.99, Fig. 5D). We presented two examples (Fig. 

5E-J) with similar clinical variables but different disruption of Distant regions, topological 

features, and finally distinct survival (above and below the median, respectively).  

In the multivariate model adjusting for all the significant clinical covariates from the 

univariate models, the disruption of Distant regions and topological features remained 

significant (Fig. 6, Supplementary Table S10). Their prognostic value was confirmed by the 

Validation cohort (Supplementary Table S11 & S12).   

 

Fig. 6. Forest plots of multivariate modeling of overall survival. For the Discovery (A) and 

Validation (B) cohorts, the higher disruption of Distant regions, higher characteristic path length, and 

lower clustering coefficient are associated with worse survival. Their prognostic value is independent 

of the significant clinical variables. EOR: extent of resection.   
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The preserved connectome of Distant regions indicates patient survival 

Given that the disruption of the Distant regions was associated with the topological alteration 

of the global connectome, we further investigated the preserved connectivity of the Distant 

regions, after excluding the significantly disrupted WM connections. Through pairwise 

comparison between patients and age-matched controls, we categorized the preserved 

connections into increased or decreased connectivity, respectively (Fig. 7A). By aggregating 

the connections, we observed that 93.2% (109/117) patients displayed overall changes in 

connectivity, suggesting potential connectome remodeling. Among them, 24.7% (29/117) 

patients displayed overall increased connectivity, while 68.4% (80/117) patients showed 

overall decreased connectivity. We present two case examples with overall increased and 

decreased connectivity in the preserved connectome of the Distant regions, respectively (Fig. 

7A). The log-rank test showed that those patients with overall increased connectivity were 

associated with better survival (P = 0.005, Fig. 7B), confirmed by the validation cohort 

(Supplementary Fig. 2). The findings suggest that the remodeling towards a more integrated 

brain connectively, associated with the more robust connectome, may indicate better patient 

survival.  

Disrupted connectome indicates tumor recurrence 

Finally, we evaluated the usefulness of the disruption indices in indicating tumor recurrence 

after co-registering the follow-up recurrence scans to the pre-operative images. We found that 

the higher Distant region disruption was positively correlated with the furthest recurrence 

distance from tumor centroid (r= 0.60, P < 0.001, Fig. 7C). We present two cases that 

showed distant recurrence in follow-up scans, where the disrupted Distant regions indicated 

occult tumor invasion invisible on the pre-operative MRI (Fig. 7D-M).  
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Fig. 7. The disruptions of the Distant regions indicate patient survival and distant recurrence. 

Top: After removing the disrupted WM connections of the Distant regions, the preserved connections 

are categorized as increased or decreased connectivity in comparisons with healthy controls, and then 

aggregated to stratify patients. Two examples of overall increased and decreased connectivity are 

shown in (A). The subgroup with overall increased connectivity shows better survival than overall 

decreased connectivity (B). The disruption index of the Distant region is positively correlated with 

maximum recurrence distance (C). Bottom: two examples of distant recurrence. Both patients present 

solitary visible lesions on pre-operative post-contrast T1 (T1C) images (D, E), as well as widespread 

disrupted WM connections (F, H) and brain regions (G, I). In both patients, the distant recurrence 

location, either ipsilesional recurrence (J) or contralesional recurrence (K), corresponds to the Distant 

regions (blue), which are linked to the primary lesion via the WM connections shown in (F, H). A 

review of the pre-operative T1C images reveals no visible lesion in the recurrence location (L, M). 
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Discussion 

The present study employed a connectome approach to investigate the disruption of structural 

connectivity in glioblastoma. Our main findings include: 1) glioblastomas cause widespread 

disrupted neural connectivity beyond the focal lesion. 2) the disruption of the normal-

appearing brain could mediate the alteration of connectome topology, associated with worse 

patient performance, and impact patient survival. 3) the preserved connectome demonstrates 

evidence of network remodeling that is associated with survival. 

The finding that glioblastomas can cause widespread structural impairment is in line 

with the previous studies using resting-state fMRI, reporting that glioma induced widespread 

functional impairment.3, 4 The evidence supports that glioblastoma should be treated as a 

systematic disease rather than a local disease. Moreover, we found that only the disruption of 

Distant regions was associated with topological alteration and patient survival among all the 

regional disruptions, suggesting the importance of characterizing global neural connectivity.  

In the anatomical mapping of the disrupted connectome, we found that the top 

disrupted Distant regions, e.g., posterior cingulate cortex and hippocampus, are essential 

structures of the limbic system, suggesting the propensity of the occult invasion affecting the 

limbic system. Moreover, the top affected anatomical tracts, e.g., arcuate fasciculus and 

superior longitudinal fasciculus, are long association tracts widely connecting separated gyri, 

suggesting that tumor invasion might spread through these tracts. Although at the 

macroscopic scale, our imaging findings may provide a perspective for previously reported 

neural-cancer interaction36.  

We found that the connectivity measures could provide superior biomarkers for brain 

tumor stratification over conventional clinical factors, e.g., tumor location and volume. The 

network efficiency of the human brain generally reflects the integrity of brain function37. 
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Glioblastoma patients displayed decreased network efficiency than healthy controls, likely 

due to tumor disturbance on brain function. Interestingly, our results suggest that the 

preserved connectome demonstrates evidence of remodeling. The increased connectivity, 

indicating a more integrated network and more robust function, is associated with favorable 

survival. Although the mechanism remains further explored, it could suggest the 

opportunities of understanding neural-cancer interaction for patient prognosis.   

Our study has important clinical implications. Due to the remarkable heterogeneity of 

glioblastoma, the development of quantitative prognostic markers is crucial for precise 

diagnosis and treatment. The structural connectome and topological features confer a novel 

approach to investigate the systematic changes of neural connectivity in glioblastoma. It 

could enable us to understand the interaction between tumor invasion and neural connectivity, 

which promises to stratify patients more precisely and develop targeted therapeutics.  

Our study has limitations. Firstly, the structural connectome can only directly measure 

the connectivity of connecting tracts. Although most brain regions are connected via tracts, 

certain functionally related regions may not be structurally connected. Future work could be 

improved by adding resting-state MRI and functional connectivity. Secondly, we only 

included primary glioblastoma who received first-line treatment in the trial setting. Therefore, 

molecular markers, i.e., IDH and MGMT methylation, were not significant as previously 

reported.  

In conclusion, glioblastoma causes widespread impairment to the structural 

connectome. The invisible disruption on conventional MRI and connectome integrity are 

correlated with patient survival.  Neural connectivity may provide a valuable tool for patient 

stratification and precise treatment.  
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Methods 

Subjects  

This study was approved by the local institutional review board. Informed written consent 

was obtained from all patients. Healthy control data were obtained from two open-source 

datasets, which have obtained ethical approval.  

Glioblastoma patients. Patients with a radiological diagnosis of de novo supratentorial 

glioblastoma were prospectively recruited for surgical resection (Discovery: July 2010 - 

August 2015; Validation: July 2017 - October 2019) by the multidisciplinary team (MDT) 

central review. Patients were included in both cohorts following identical inclusion and 

exclusion criteria (see Supplementary methods). For both cohorts, patients were 

consecutively recruited, with data prospectively collected.  

Patient pre-operative cognitive performance was tested using the Mini-Mental State 

Examination (MMSE) in the Discovery cohort. The MMSE score was dichotomized as <27 

or >=27 as reported38. All glioblastoma patients underwent pre-operative 3D MPRAGE (pre-

contrast [T1] and post-contrast [T1C]), T2-weighted FLAIR, and dMRI sequences. 

 Control cohorts.  We included the age-matched subjects from the IXI datasets as 

healthy controls. The dMRI and T1 sequences of the cohort were available from https://brain-

development.org/ixi-dataset/.  

 Template cohort. Healthy subjects of the template cohort were available from the 

Alzheimer’s disease Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/) for 

constructing an unbiased high spatial resolution template of WM connection. High angular 

resolution dMRI and T1 sequences were downloaded.  

The scanning protocols of all the above subjects are detailed in the Supplementary 

Methods. 
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Treatment 

All patients underwent maximal safe surgery using 5-aminolevulinic acid fluorescence (5-

ALA, Medac, Stirling, UK) and neuro-navigation (StealthStation, Medtronic, Fridley, MN, 

USA). According to the post-operative MRI within 72 hours, the extent of resection was 

assessed as complete or partial resection of enhancing tumor or biopsy. Adjuvant therapy was 

determined by the MDT, according to the standard treatment protocols based on the patient 

post-operative status. All patients were followed up after surgery according to the response 

assessment in neuro-oncology (RANO) criteria. Overall survival (OS) and progression-free 

survival (PFS) were used as endpoints. 

Tumor segmentation  

All anatomical MRI, including T1, T2, and FLAIR, were co-registered to T1C images with 

an affine transformation, using the linear image registration tool (FLIRT) functions in the 

FMRIB Software Library (FSL)39. To segment the tumor, we applied a multi-scale 3D Deep 

Convolutional Neural Network40, implemented in the Cancer Imaging Phenomics Toolkit 

(CaPTk, https://cbica.github.io/CaPTk/index.html). A manual correction was performed 

using 3D slicer v4.6.2 (https://www.slicer.org/) by a neurosurgeon (XX) and a researcher 

(XX) after an initial training period and reviewed by an experienced neuroradiologist (XX). 

The final consensus was achieved to ensure inter-rater reliability.  

Connectome estimation 

The complete pipeline of connectivity estimation includes three steps: 1) constructing group 

tract template, 2) producing individualized skeletonized FA map, 3) combining the WM 

connection template and FA skeleton to produce WM connection strength matrices. 

WM connection template. An unbiased WM connection template in the standard space was 

generated by performing probabilistic tractography on the dMRI of the ten selected controls.  
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1) Cortical/subcortical regions of dMRI were parcellated into 90 brain regions 

according to AAL atlas 27 in the standard MNI-152 space41. Deformable registration was 

performed using the Advanced Normalization Tools (ANTs) 42. AAL atlas includes gray-

white matter boundary to facilitate tractography. 

2) Eddy currents and subject motions in dMRI were corrected using the FSL eddy 

tool (version 6.0.0). A crossing fiber model was then fitted to each control’s dMRI using the 

FSL function bedpostx. Probabilistic tractography between each pair of the 90 regions was 

subsequently performed using FSL Probtrackx243. Each ROI was used as a seed (starting ROI) 

or target (ending ROI) once for tracking. For each pair of seed/target ROIs, 5000 streamlines 

were sampled from the seed mask. Only the streamlines that reached the target mask were 

retained. The tracking curvature threshold was set to 0.2 (80 degrees). Streamline samples 

were terminated when they have traveled 2000 steps with a step length of 0.5mm or entered 

the cortical/subcortical brain regions. Streamlines were discarded if they entered the 

cerebrospinal fluids (CSF) in the ventricle or re-entered the seed region.  

3) For each healthy control, distribution maps were generated for all possible WM 

connections between the 90 cortical/subcortical brain regions. The distribution maps of the 

WM connections from all healthy controls were nonlinearly transformed to the MNI-152 

standard space using ANTs and averaged to a mean WM connection distribution across 

controls using function fslmaths. The mean distribution was thresholded and binarized such 

that only the voxels with the top 5% probability in the WM connection were retained, 

providing a conservative pathway for the template.    

Skeletonized FA map. To mitigate the partial-volume effect, we generated the skeletonized 

FA maps for estimating the strength of the WM connections in individual patients. The age-

matched healthy subjects were selected as controls to reduce the bias from aging-related 

white matter pathology.  
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The dMRI was fitted with a tensor model to produce an FA map using the FSL 

diffusion toolbox (FDT)44. The FA maps were then nonlinearly co-registered to the MNI-152 

space FA template using the deformable function of ANTs, which is shown to outperform the 

default deformable registration tools FNIRT 45 of TBSS in the co-registration of FA 46 and 

pathology-bearing T1 images47, and more importantly, could mitigate the deformation of the 

brain with tumor, by accounting for the tumor mass effect48. To minimize the bias of the 

signal-noise ratio introduced by the different MRI acquisition protocols, we normalized the 

FA map using the MRI intensity histogram-matching method49. 

A standard space FA skeleton mask (FMRIB58 FA skeleton 1mm) was used as the 

target for FA voxel projection. The local maxima voxels from the FA map of patients and 

controls were projected to this skeleton mask using an improved TBSS projection guided by 

the tract orientation30. The generated individualized FA skeletons represent the center 

integrity of white matter tracts in subjects.   

Constructing WM connection matrices. The WM connection matrix of each patient and 

control was estimated as the mean value of the tract segments in the individualized FA 

skeleton, constrained by the template of WM connection. 

The columns and rows of each individualized WM connection matrix represent the 

brain regions in the AAL atlas, while the elements in the matrices (Cij) represent the strength 

of WM connection between the brain regions i and j. According to the graph theory, we 

calculated the strength �� for region i, by aggregating the connectivity strength of the WM 

connection ���  that are connected to brain regions i using the below formula: 

�� � � ���

���
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Identification of significantly disrupted connectome  

We first calculated the mean and SD of each connection strength across healthy controls. For 

individualized patient networks, we compared each connection strength to the mean 

connection strength of the control group. The significantly decreased connectome in patients 

was defined as a connection or brain region with the strength 2SD lower than the mean 

strength of the control group, where 2SD indicates 95% confidence.  

Identification of regional disrupted connectome  

To address the intra-tumor heterogeneity, we categorized the disrupted WM connections and 

brain regions as below:  

1. Disrupted WM connections  

1) Direct disrupted connections: directly disrupted by tumor, traveling across the 

contrasting enhancing or non-enhancing tumor. 

2) Indirect disrupted connections: disrupted without crossing the lesion region. 

2. Disrupted brain regions 

1) Tumor disrupted regions: the AAL brain regions within the tumor region and 

directly disrupted by the tumor. These regions were further categorized into the CE or 

NE disrupted regions, depending on the overlapping between tumor and AAL 

regions. 

2) Distant disrupted regions: disrupted brain regions within the normal-appearing brain 

and connected to the tumor via WM connections. 

3) Indirect disrupted regions: disrupted brain regions without any connections linked 

to the tumor.  
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We calculated each category of connection/region disruption as a disruption index by 

averaging the SD scaled decreases separately and generated five disruption indices for each 

patient. 

Tumor frequency map and disruption probability of anatomical structures 

To use the segmented tumor masks to generate a focal tumor frequency map, we nonlinearly 

transformed all masks from individual patient space to the MNI-152 space using ANTs, with 

the voxel-wise tumor distribution density normalized at the group level. 

To quantify the disruption probability of anatomical structures, we mapped the 

disrupted connectome to the prior atlases. For the anatomical tracts, we mapped the WM 

connections to the 42 anatomical tracts constructed from the 1,000 healthy subjects available 

from the XTRACT toolbox in FSL. The disruption probability for each brain region or tract 

was calculated as the percentage of patients with this brain region or tract disrupted. 

Topological features of the brain network  

We calculated the clustering coefficient and characteristic path length using the Brain 

Connectivity Toolbox16. Briefly, the clustering coefficient measures the probability of two 

direct topological neighbors of a specific brain region being connected. The characteristic 

path length measures the average shortest path length of the network (see Supplementary 

Methods for detailed definition). To reduce the noise in feature calculation, we filtered the 

connectome with a population-consistency based strength threshold50. 

Statistical analysis 

All analyses were performed in RStudio v3.2.3 (RStudio, Boston, USA) and MATLAB 

2019b (The MathWorks Inc). The comparisons of disruption indices, topological features, 

and the performance subgroups were performed using a two-sample t-test. The correlation 
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was tested using the Pearson correlation test. Multiple comparisons were adjusted by false 

discovery rate. Mediation analysis was performed using the R package ‘mediation’. 

Survival analysis was performed using OS and PFS as the endpoints. Patients who 

were alive at the last known follow-up were censored. Disruption indices or topological 

features were dichotomized according to either median or the optimal cut-off value defined 

using the maximally selected rank statistics in the R package ‘Survminer’51, whichever was 

more significant. Kaplan-Meier survival curves were compared using the Log-rank test.  

Cox proportional hazards regression accounted for all relevant clinical covariates, 

including O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, isocitrate 

dehydrogenase-1 (IDH-1) mutation, sex, age, the extent of resection, adjuvant therapy, tumor 

volume. We also included two features from the VASARI feature set describing the 

involvement of eloquent cortex and deep white matter52 to account for the effects of tumor 

cortical/subcortical brain regions.  

Receiver operating characteristic (ROC) curves were used to evaluate the accuracy of 

predicting OS, including the significant variables in the univariate models. To assess the 

prognostic values of tumor disruption and topological features, we fit a generalized linear 

model to calculate the region under the curve (AUC). The hypothesis of no effect was 

rejected at a two-sided level of 0.05.    
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