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Structural connectome quantifies tumor invasion and predicts survival in
glioblastoma patients

Abstract

Glioblastoma widely affects brain structure and function, and remodels neural connectivity.
Characterizing the neural connectivity in glioblastoma may provide a tool to understand
tumor invasion. Here, using a structural connectome approach based on diffusion MRI, we
guantify the global and regional connectome disruptions in individual glioblastoma patients
and investigate the prognostic value of connectome disruptions and topological properties.
We show that the disruptions in the normal-appearing brain beyond the lesion could mediate
the topological alteration of the connectome (P <0.001), associated with worse patient
performance (P <0.001), cognitive function (P <0.001), and survival (overall surviva: HR:
1.46, P = 0.049; progression-free survival: HR: 1.49, P = 0.019). Further, the preserved
connectome in the normal-appearing brain demonstrates evidence of remodeling, where
increased connectivity is associated with better overall survival (log-rank P = 0.005). Our
approach reveals the glioblastoma invasion invisible on conventional MRI, promising to

benefit patient stratification and precise treatment.
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Introduction

Glioblastoma is the most common primary malignant brain tumor in adults, characterized by
diffuse infiltration into the surrounding tissue™. It is increasingly accepted that glioblastoma
widely influences the brain structure and function beyond the focal lesion®®*. Microscopic
evidence shows that glioblastoma can induce profound remodeling of neural connectivity”,
while neuronal activity can promote tumor progression®. This bidirectional interaction
underscores the promise of characterizing neural connectivity to better understand
glioblastoma invasion, which may facilitate more accurate patient stratification for

personalized management.

Diffusion MRI (dMRI) isamethod to estimate the structural connectivity of the brain.
It is more sensitive to detect occult tumor invasion, compared to the conventional T1-
weighted and FLAIR images’. Evidence shows that dMRI can indicate the tissue signature of
gliomd®, offering values to evaluate invasiveness™ '°, detect peritumoral invasion'™ %
indicate subventricular zone involvement™, and predict molecular phenotypes®. These

studies, however, have focused on the focal tumor, instead of the systematic disturbance of

the brain.

The advance in neuroimaging has represented structural connectivity as a complex
network, namely structural connectome™ *°. This approach models brain regions as nodes
while the white matter connections among brain regions as edges. Graph theoretical analysis
of the derived structural networks shows to characterize various neurological and psychiatric
disorders™ *® *°. Further, recent studies suggest that brain tumors may alter the connectome

0. 2L 22 |nitial evidence shows that the topological features derived from the

topology
structural connectome appear to outperform clinical parameters in survival prediction®.

However, it requires further clinical validation whether the disruption of the structural
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connectome could be quantified for patient stratification. Of particular significance is

whether the alteration of the neural connectivity could impact patient outcomes.

The purpose of this study was to characterize the disruption of the structura
connectome in glioblastoma systematically. We hypothesized that glioblastoma could induce
both focal and global disturbance to the structural connectome, leading to topological
ateration of the brain and impact patient outcomes. We tested this hypothesis in two
prospective glioblastoma cohorts. Firstly, we constructed the structural networks using the
dMRI from glioblastoma patients and healthy controls. Secondly, we quantified the focal and
distant disrupted connectome separately from each patient. Thirdly, we calculated the
disruption indices and topological features and examined their significance in survival
models. Lastly, we modeled the alteration of the preserved connectivity after removing the
disrupted connectome, and investigated its significance on patient survival. The results reveal
the widespread disruptions of the structural connectome, which lead to topological alterations

and show prognostic value in glioblastoma patients.
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Results
Subject characteristics

We included two patient cohorts in this study (Supplementary Table Sl1, see
Supplementary Methods for a flowchart of patient inclusion). For the Discovery cohort, we
recruited 136 patients for pre-operative MRI scanning. After excluding 19 patients according
to the trial exclusion criteria, we included 117 of 136 (86.0 %) patients (mean age 59 years,
range 22-75 years, 89 males) for anaysis. Six patients (5.1 %) were lost to follow-up. The
median overall survival (OS) was 392 (range 34-1932) days. The median progression-free

survival (PFS) was 275 (range 13-1393) days.

For the Validation cohort, we initially recruited 49 patients. After excluding seven
patients under the identical criteriawith the Discovery cohort, we included 42 of 49 (85.7 %)
patients (mean age 61 years, range 28-75 years, 34 males). The median OS was 335 (range
55- 962) days. The median PFS was 246 (range 21-805) days. Two study cohorts showed no

significant differencesin clinical variables (Supplementary Table S1).

A cohort of 117 healthy age-matched subjects (mean age 59.9 years) was included as
the control cohort. Another independent cohort of ten healthy controls (mean age 60.9 years)
was included to generate a WM connection template. The above four cohorts showed no

significant difference in age.
Quantifying the strength of brain connectome

Tractography is a technique to measure the strength of the white matter (WM) connection by
tracking the fiber pathway connecting different brain regions. However, directly performing
tractography on the brain with a tumor may cause tracking failure or artifacts, e.g., an
unrealistic belt of fibers surrounding the tumor®*. To bypass the need to perform tractography

on the lesioned brain, previous studies proposed to generate a template from healthy controls
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for tract localization, and the strength of WM connection was then robustly estimated by

comparing patients to healthy control s> %,

(dMRI)
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Fig 1. Quantifying connectome disruptions. (A) Probabilistic tractography is performed on the
high-resolution dMRI of ten healthy controls to generate a template for the WM connections among
the 90 regions on the AAL atlas. (B) Skeletonized FA maps are generated from both patients and age-
matched healthy controls to estimate the WM connection strength, using an improved voxel
projection procedure based on TBSS. The strengths of WM connections and brain regions are derived
for healthy controls and patients (C). By comparing the patients to the controls (D), the disrupted
connectome (E) in patients is identified as the WM connection (Cyien) OF brain region (Bpaienr) With @
strength that is 2SD (95% confidence) lower than the mean (W(Ceontro) OF 1(Beontra)) Of the control
group. The disruption indices of WM connections and brain regions, calculated by averaging the
disruption matrices/vectors, are both negatively correlated with the MMSE score (F & G). Higher
disruption is associated with worse KPS (H & ). AAL: automated anatomical Labelling. FA:
fractional anisotropy WM : white matter. TBSS: tract-based spatial statistics; MM SE: Mini-Mental
State Examination; KPS: Karnofsky Performance Status. P value significant codes: P < 0.001 ***,

We first derived a WM connection template among the 90 brain regions defined by
the Automatic Anatomical Labeling (AAL) atlas®’ (Fig. 1A). As the strength of the WM

connections can be measured by the fractional anisotropy (FA) value calculated from the
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dMRI, we generated an alignment-invariant tract representation through projecting FA voxels
using tract-based spatial statistics (TBSS)® . We further improved this approach by using
the iterative projection under the guidance of tract orientation®. We also applied a histogram
matching normalization method to reduce the variations across the subjects and imaging
protocols™ *. The skeletonized FA maps of patients and controls (Fig. 1B) were finally
generated to produce the individualized strength matrices of WM connections (Fig. 1C). We
then calculated the strength vector of brain region disruptions by aggregating the WM

connections.

To rigorously assess the reproducibility of connectome strength estimation, we
compared the strengths of a cerebellar tract (middle cerebellar peduncle, MCP) that is not
affected by the supratentorial tumors in our cohorts. We found no significant difference in the
strength of MCP across the patient and control cohorts (two-sample t-test and f-test, P > 0.05,
Supplementary Fig. Sl1), suggesting that the connectome strength estimation was

comparable across the cohorts.
Global disrupted connectome demonstrates clinical significance

We calculated the disruption indices of both WM connections and brain regions as the
standard deviation (SD)-normalized decrease in each patient, compared to the mean strength
of the control group (Fig. 1D). We only considered the WM connection or brain region with
a disruption index larger than 2SD (indicating 95% confidence) as significantly disrupted
(Fig. 1E). We finally calculated the global disruption index in each patient by averaging the

disruption of WM connections or brain regions, respectively.

To validate the clinical significance of the disruption indices, we tested their
correlations with the Mini-Mental State Examination (MMSE) score. We observed that the

global disruption of brain regions (r = -0.69, P < 0.001, Fig. 1F.) and WM connections (r = -
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0.67, P < 0.001, Fig. 1G.) were both negatively correlated with the MM SE score. We further
compared the patient subgroups stratified by the Karnofsky Performance Status (KPS) score
of 80 as reported before®. We found that a worse KPS score was associated with higher
disruptions of both brain regions and WM connections (both P < 0.001, Fig. 1H. & I). These
results indicate that the global disruption indices were clinically robust, reflecting patient

performance status.
I dentification of regional disrupted connectome

To address spatial tumor heterogeneity, we further calculated the regiona disruption indices
based on the global indices. We firstly segmented the tumors into contrast-enhancing regions
(CE, the entire area within T1 contrast-enhancing rim) and peritumoral non-enhancing
regions (NE, the hyper-intensities surrounding the CE on FLAIR images, Fig. 2A). Based on
the segmented tumor regions, we categorized the disrupted WM connections as. 1) Direct

(crossing the tumor); 2) I ndirect (without crossing the tumor).

The disrupted brain regions were similarly categorized as: 1) CE (within CE tumor);
2) NE (within NE tumor); 3) Distant (within the normal-appearing brain beyond the tumor
and connected to the tumor via WM connections); 4) Indirect (within the normal-appearing

brain beyond the tumor without any WM connections with the tumor)

We defined the regional disruption index as the averaged disruption of each category
(Fig. 2D-F). The two study cohorts showed no significant difference (Supplementary Table
S2). In comparing disruptions of WM connections, we observed significantly higher Direct
disruption (4.77 = 1.56) than Indirect disruption (259 = 0.39, P < 0.001, Fig. 2G,
Supplementary Table S3). Smilarly for brain regions, focal tumor (CE: 5.83 + 2.00; NE:
4.67 = 1.33) were more significantly disrupted than the normal-appearing brain (Distant: 2.90

+ 0.71, Indirect: 2.56 + 0.39, each P <0.001, Fig. 2I). The Validation cohort showed similar
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disruption patterns (Fig. 2H & J). These results correspond to our understanding of tumor

invasion and support the robustness of the regional disruption indices.
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Fig 2. Quantifying regional disrupted connectome. The contrast-enhancing (CE, red) and non-
enhancing (NE, yellow) tumors are segmented (A). The disruption matrices of WM connections and
disruption vectors of brain regions (B) are merged with the tumor segmentation to identify the
regional disrupted connectome (C). WM connection disruption is further classified as Direct (D) and
Indirect (E) disruptions. The disrupted brain regions are classified into CE, NE, Distant, and Indirect
disruptions (F). In both Discovery and Validation cohorts, Direct connection disruption is higher than
Indirect disruption (G, H); Tumor regions (CE, NE) are more significantly disrupted than the normal-
appearing brain (Distant, Indirect) (I, J). WM : white matter. MM SE: Mini-Mental State Examination;
KPS: Karnofsky Performance Status. P value significant codes: P < 0.001 ***, P < 0.01 **, P < 0.05

Theregional disruptionsare correlated with focal tumor volume

Pearson correlation tests showed that the WM connection disruptions in tumor (Direct) and
normal-appearing brain (Indirect) were positively correlated (r = 0.44, P <0.001). Smilarly,
the disruption of Distant regions was positively correlated with that of tumor regions (Distant
vs. CE: r =043, P <0.001; Distant vs. NE: r = 0.34, P = 0.028, Supplementary Table $4).
Further, the tumor volume (measured by CE tumor) was positively correlated with the

disruptions of both Direct connections (r = 0.52, P < 0.001) and Distant regions (r = 0.33, P <
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0.001, Supplementary Table S5). Collectively, these data indicate that a larger focal tumor

is associated with higher connectome disruption throughout the brain.
The normal-appearing brain shows widespread disruption

We calculated the proportion of disrupted regions out of all brain regions. Noteworthy, in the
patient group analysis, a higher proportion of Distant regions (16.8 £ 12.0%) was identified
than the focal lesion (CE: 5.8 £ 5.1%, P < 0.001), recapitulated by the Validation cohort
(Supplementary Table S6), supporting that the normal-appearing brain was widely

disrupted.

Next, we explored the disruption probability of connectome in the patient population,
calculated as the percentage of the patients with a specific region or connection disrupted. At
the group level, the average disruption probability of Distant regions was higher (17.2 + 9.0%)
than focal lesion (CE: 11.8 £+ 6.8%, P < 0.001), possibly due to the more extensive coverage
of the Distant regions. This finding further confirmed that the disruption of brain regions was

widespread beyond the lesion.

We further generated a tumor frequency map using the tumor segmentation of all the
patients (Fig. 3A). The top five most likely disrupted Distant regions (Fig. 3C) were mainly
in the low-frequency regions (See Supplementary Table S8 for details). We also mapped
the disrupted WM connections to the atlases of anatomical tract generated from 1,000
subjects in the UK Biobank®. Notably, the top five tracts most likely disrupted were mainly
association tracts and close to the high-frequency regions (Fig. 3B, Supplementary Table

S7), suggesting that the association tracts may mediate the tumor spread.
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Fig. 3. Tumor frequency map and disr uption probabilities of anatomical structures. (A) Tumor
frequency maps are generated using tumor segmentation. The top five disrupted focal brain regions
include the right superior temporal gyrus (STG.R), right middle temporal gyrus (MTG.R), right insula
(INS.R), left insula (INS.L), and right lenticular nucleus, putamen (PUT.R). (B) Top five disrupted
anatomical tracts and their maximum intensity projection: right arcuate fasciculus (af.r), right middle
longitudinal fasciculus (mdlif.r), left superior longitudinal fasciculus 3 (sIf3.1), left arcuate fasciculus
(&), left superior longitudinal fasciculus 1 (slf1.1). (C) The top five disrupted Distant brain regions
include the left posterior cingulate gyrus (PCG.L), right posterior cingulate gyrus (PCG.R), left
lingual gyrus (LING.L), left fusiform gyrus (FFG.L), and |eft hippocampus. L/I: |eft; R/r: right.

Thefocal tumor altersthe topological property of the connectome

To specifically investigate the topological alteration of the brain under tumor attack, we
calculated the two most commonly used topological features: characteristic path length and
clustering coefficient, which respectively reflect the efficiency of global communication and

local information exchange in networks®. We observed that the characteristic path length of

10
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the patient networks was significantly higher than that of healthy controls (P < 0.001, Fig.
4A). In contrast, the clustering coefficient of patients was significantly lower than that of
healthy controls (P < 0.001, Fig. 4B, Supplementary Table S9). These results reveal that

tumor lesions could dramatically alter the topology property of the structural connectome.

We next determined the clinical significance of connectome topology by comparing
the topological properties of the patient subgroups stratified by MM SE and KPS scores. We
found that the patients with lower MMSE or KPS scores presented lower clustering
coefficient (MMSE: P = 0.012, KPS: P < 0.001, Fig. 4C & D) and higher characteristic path
length (MMSE: P = 0.013, KPS: P < 0.001, Fig. 4E & F). Moreover, characteristic path
length (r = 0.43, P < 0.001) was positively correlated with tumor volume, while clustering
coefficient (r = -0.45, P < 0.001) was negatively correlated with tumor volume, indicating
that a larger focal lesion may have a greater influence on the connectome topology

(Supplementary Table S5).
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Fig. 4. Topological alteration of the connectome. Patients show increased characteristic path length
(A) and decreased clugtering coefficient (B) than controls. Patient subgroups with worse pre-operative
KPS (C, D) and MMSE (E, F) scores show increased characteristic path length and decreased
clustering coefficient. Disruption of Distant regions is higher in the subgroups with worse MMSE (G)
and KPS (H), and it is the only significant predictor of characterigtic path length (1) and clustering
coefficient (J) in multiple linear regression. (K) The effects of tumor volume on characteristic path
length are mediated by the disruption of Distant regions: total effect (c path) = 0.42, P < 0.001; direct
effect (¢’ path) = 0.25, P < 0.001; mediation effect (c—c’) = 0.17, P =0.008. (L) The effects of tumor
volume on clustering coefficient are mediated by the disruption of Distant regions: total effect (c path)
=-0.041, P < 0.001,; direct effect (¢’ path) = -0.024, P < 0.001; mediation effect (c—c’) =-0.017, P<
0.001. WM: white matter, MM SE Mini-Mental State Examination; KPS: Karnofsky Performance
Status. P value significant codes: P < 0.001 ***, P<0.01**, P<0.05*.

Thedisruption of Distant regions is associated with the topological alteration

To understand the relation between the regional disruption with topological properties, we

performed a multiple linear regression, which revealed that the disruption of Distant regions
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was the only significant predictor of characteristic path length (Estimate = 0.21, P < 0.001)
and clustering coefficient (Estimate = -0.018, P < 0.001, Fig. 41 & J). We then compared the
disruptions of Distant regions in the patient subgroups stratified by the MMSE and KPS
scores. We noticed that the patients with higher MM SE or higher KPS scores displayed
significantly lower disruption of Distant regions (Fig. 4G & H), consistent with the distinct
topological properties of these patient subgroups. The results imply the association between

the disruption of Distant regions and connectome topology.

We further performed mediation analysis, which showed that tumor volume had both
significant direct and indirect effects (mediated by the disruption of Distant regions) on
characteristic path length (direct: P < 0.001, indirect P = 0.008) and clustering coefficient
(direct & indirect P < 0.001) (Fig. 4K & L). The findings were confirmed by the Validation

cohort (Supplementary Fig. S3).
Topological featuresand disruption of Distant regions are prognostic

We evaluated the prognostic value of the disruption indices in log-rank tests. Stratified by the
mean disruption of Distant regions (2.9), patients of higher disruption had worse survival
than those of lower disruption (OS: median 293 vs. 449 days, P = 0.002, PFS: median 238 vs.

307 days, P =0.019, Fig. 5A).

Further, the subgroups stratified by the optimal cut-off of topological features
(clustering coefficient: 0.46; characteristic path length: 3.20) had distinct survival. Precisely,
the subgroup with a higher clustering coefficient had better survival than that with a lower
clustering coefficient (OS: median 475 vs. 294 days, P = 0.040, PFS: median 306 vs. 238
days, P = 0.002, Fig. 5B). The subgroup with lower characteristic path length showed better

survival than that with higher characteristic path length (OS: median 465 vs. 288 days, P =

13
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0.005, PFS: median 312 vs. 244 days, P = 0.012, Fig. 5C). We further confirmed the findings

in the Validation cohort using identical cut-offs.

We then evaluated the prognostic value of disruption indices and topological features
in Cox models (Table 1). We observed that higher disruptions of Indirect connection (OS:
HR = 1.36, P = 0.007; PFS: HR = 2.43, P = 0.046) and Distant regions (OS: HR = 1.46, P =
0.049; PFS: HR = 1.49, P = 0.019) were associated with worse survival. For topological
features, higher clustering coefficient was associated with better survival (OS. HR = 0.63, P
= 0.035; PFS: HR = 0.49, P = 0.002), while higher characteristic path length was associated

with worse survival (OS: HR = 1.56, P = 0.035; PFS: HR = 1.82, P = 0.009, Supplementary

Table S10).
Table 1. Univariate survival statistics of Discovery cohort
Feature 0S PFS
HR 95%CI P HR 95%CI P
Clinical variables

Age 103 1.01-1.05 0.004 1.03 1.00-1.05 0.021

Sex? 081 052-1.25 0.333 0.75 0.47-1.19  0.217

Performance” 160 1.09-2.36  0.018 1.63 1.04-255  0.033

IDH® 059 0.25-1.36 0.211 0.52 0.22-1.21 0.131

MGMT® 0.77 052-1.14 0.196 0.68 0.43-1.07 0.094

EOR® 1.89 1.26-2.84 0.002 1.90 1.19-3.03 0.007
Adjuvant treatment’ 021 0.13-0.34 <0.001 0.22 0.11-041 <0.001

Tumor volume 1.01 1.00-1.01 0.001 1.01 1.00-1.02 0.045

Eloquent location® 093 064-1.36 0711 1.06 0.69-1.62  0.807

Deep white matter” 085 058124 0.386 0.86 057-1.31  0.487

Disruption indices

Direct connection 1.07 0.87-1.30 0.790 1.08 0.88-1.32 0.464

Indirect connection 136 113-1.65 0.007 243 1.02-581  0.046

CE regions 0.95 0.86-1.04 0.667 0.96 0.86-1.06 0.418

NE regions 101 088115 0.939 1.00 0.87-1.15  0.979

Distant regions 146 1.08-1.99 0.049 1.49 1.07-207 0.019

Indirect regions 106 0.87-1.29 0.790 0.80 0.83-1.28 0.795

Topological features
Clustering coefficient 0.63 042-093 0.035 0.49 0.30-0.78  0.002
Charecterigticpathlength 156 1.06-229  0.035 1.82 1.16-2.84  0.009
(a). Female as the reference; (b). KPS 90-100 as the reference; (c). IDH wildtype as reference; (d)
Unmethylated MGMT as reference; (€). Incomplete resection as reference; (f) Concurrent
chemoradiotherapy (CCRT) as reference. (g). Non-eloquent location as reference. (h) Affected deep white
matter as reference. EOR: extent of resection. K PS: Karnofsky Performance Score
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Fig. 5. The prognostic value of disruption indices and topological features. Top: In both cohorts,
higher disruption of Distant regions (A), lower clustering coefficient (B), and higher characteristic
path length (C) are associated with worse OS. (D) The model of predicting OS using clinical factors,
disruption indices, and topological features shows improved AUC than clinical factorsalone. Bottom:
Two examples with better or worse survival (OS: 1555 vs. 317 days, PFS: 747 vs. 159 days). Both are
IDH wildtype and MGMT unmethylated tumors of similar visible size in two males (aged 69 vs. 67
years). They both underwent complete resection followed by temozolomide chemoradiotherapy (E &
F). Both patients have similar tumor sizes on post-contrast T1 (25.0 vs. 23.6 cm®). The patient with
worse survival (H) has more widespread connection disruption beyond the visible lesion, compared to
the patient with better survival (G); The disruption indices of Distant regions (blue) are 2.8 (1) and 3.0
),
characterigtic path length 3.17 vs. 3.31). OS: Overall survival. HR: Hazard ratio. WM : white matter.

respectively. Their topological features are digtinct (clustering coefficient 0.48 vs. 0.44:

15


https://doi.org/10.1101/2021.03.09.434656
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434656; this version posted July 3, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We also evaluated the model performance in predicting OS using the disruption
indices and topological features. The baseline model, including the above significant clinical
variables (i.e., age, EOR, and adjuvant therapy), achieved an AUC of 0.82 (Cl: 0.68-0.96).
By adding the significant disruption indices and topological features into the baseline model,
the AUC was improved at 0.90 (Cl: 0.80 - 0.99, Fig. 5D). We presented two examples (Fig.
5E-J) with similar clinical variables but different disruption of Distant regions, topological

features, and finally distinct survival (above and below the median, respectively).

In the multivariate model adjusting for al the significant clinical covariates from the
univariate models, the disruption of Distant regions and topological features remained
significant (Fig. 6, Supplementary Table S10). Their prognostic value was confirmed by the

Validation cohort (Supplementary Table S11 & S12).

A Discovery Cohort B validation Cohort
Variable 1 Hazard ratio P value Variable Hazard ratio P value
Age —— 0845 | Age = = 0.072
Performance —_— 0.447 Performance i 0.169
EOR | 0.003 | FOR i —#— | <0.001
Adjuvant treatment —— : <0.001 Adjuvant treatment —— 0.017
Tumer volume L 0262 | Tumor volume L 0.478
Distant region disruption o R 0027 | Distant region disruption —— 0.012
3 ez o3 1 2 3 6050062 681 1 5 10320
Variable Hazard ratio P value Variable Hazard ratio P value
Age ~ 0.832 Age - 0.043
Performance ~- 0.588 Performance - 0.221
EOR - 0.002 EOR o —— <0.001
Adjuvant treatment —— : <0.001 Adjuvant treatment —— 0.001
Tumor volume n 0.125 Tumer velume | 0.351
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61 62 o8 1 2 4 34501621 651 2 5 1D
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Bl 0i G 1 u 3 530132031 2 3 0%

Fig. 6. Forest plots of multivariate modeling of overall survival. For the Discovery (A) and
Validation (B) cohorts, the higher disruption of Distant regions, higher characteristic path length, and
lower clustering coefficient are associated with worse survival. Their prognostic value is independent

of the significant clinical variables. EOR: extent of resection.
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The preserved connectome of Distant regions indicates patient survival

Given that the disruption of the Distant regions was associated with the topological ateration
of the global connectome, we further investigated the preserved connectivity of the Distant
regions, after excluding the significantly disrupted WM connections. Through pairwise
comparison between patients and age-matched controls, we categorized the preserved
connections into increased or decreased connectivity, respectively (Fig. 7A). By aggregating
the connections, we observed that 93.2% (109/117) patients displayed overall changes in
connectivity, suggesting potential connectome remodeling. Among them, 24.7% (29/117)
patients displayed overall increased connectivity, while 68.4% (80/117) patients showed
overall decreased connectivity. We present two case examples with overall increased and
decreased connectivity in the preserved connectome of the Distant regions, respectively (Fig.
7A). The log-rank test showed that those patients with overall increased connectivity were
associated with better survival (P = 0.005, Fig. 7B), confirmed by the validation cohort
(Supplementary Fig. 2). The findings suggest that the remodeling towards a more integrated
brain connectively, associated with the more robust connectome, may indicate better patient

survival.
Disrupted connectome indicates tumor recurrence

Finally, we evaluated the usefulness of the disruption indices in indicating tumor recurrence
after co-registering the follow-up recurrence scans to the pre-operative images. We found that
the higher Distant region disruption was positively correlated with the furthest recurrence
distance from tumor centroid (r= 0.60, P < 0.001, Fig. 7C). We present two cases that
showed distant recurrence in follow-up scans, where the disrupted Distant regions indicated

occult tumor invasion invisible on the pre-operative MRI (Fig. 7D-M).
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Fig. 7. The disruptions of the Distant regions indicate patient survival and distant recurrence.
Top: After removing the disrupted WM connections of the Distant regions, the preserved connections

are categorized as increased or decreased connectivity in comparisons with healthy controls, and then

aggregated to stratify patients. Two examples of overall increased and decreased connectivity are
shown in (A). The subgroup with overall increased connectivity shows better survival than overall
decreased connectivity (B). The disruption index of the Distant region is positively correlated with
maximum recurrence distance (C). Bottom: two examples of distant recurrence. Both patients present
solitary visible lesions on pre-operative post-contrast T1 (T1C) images (D, E), as well as widespread
disrupted WM connections (F, H) and brain regions (G, 1). In both patients, the distant recurrence
location, either ipsilesional recurrence (J) or contralesional recurrence (K), corresponds to the Distant

regions (blue), which are linked to the primary lesion via the WM connections shown in (F, H). A

review of the pre-operative T1C images reveals no visible lesion in the recurrence location (L, M).
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Discussion

The present study employed a connectome approach to investigate the disruption of structural
connectivity in glioblastoma. Our main findings include: 1) glioblastomas cause widespread
disrupted neural connectivity beyond the focal lesion. 2) the disruption of the normal-
appearing brain could mediate the alteration of connectome topology, associated with worse
patient performance, and impact patient survival. 3) the preserved connectome demonstrates

evidence of network remodeling that is associated with survival.

The finding that glioblastomas can cause widespread structural impairment isin line
with the previous studies using resting-state fMRI, reporting that glioma induced widespread
functional impairment.* * The evidence supports that glioblastoma should be treated as a
systematic disease rather than alocal disease. Moreover, we found that only the disruption of
Distant regions was associated with topological alteration and patient survival among al the

regional disruptions, suggesting the importance of characterizing global neural connectivity.

In the anatomical mapping of the disrupted connectome, we found that the top
disrupted Distant regions, e.g., posterior cingulate cortex and hippocampus, are essentia
structures of the limbic system, suggesting the propensity of the occult invasion affecting the
limbic system. Moreover, the top affected anatomical tracts, e.g., arcuate fasciculus and
superior longitudinal fasciculus, are long association tracts widely connecting separated gyri,
suggesting that tumor invasion might spread through these tracts. Although at the
macroscopic scale, our imaging findings may provide a perspective for previously reported

neural-cancer interaction®®,

We found that the connectivity measures could provide superior biomarkers for brain
tumor stratification over conventional clinical factors, e.g., tumor location and volume. The

network efficiency of the human brain generally reflects the integrity of brain function®.
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Glioblastoma patients displayed decreased network efficiency than heathy controls, likely
due to tumor disturbance on brain function. Interestingly, our results suggest that the
preserved connectome demonstrates evidence of remodeling. The increased connectivity,
indicating a more integrated network and more robust function, is associated with favorable
survival. Although the mechanism remains further explored, it could suggest the

opportunities of understanding neural-cancer interaction for patient prognosis.

Our study has important clinical implications. Due to the remarkable heterogeneity of
glioblastoma, the development of quantitative prognostic markers is crucial for precise
diagnosis and treatment. The structural connectome and topological features confer a novel
approach to investigate the systematic changes of neural connectivity in glioblastoma. It
could enable us to understand the interaction between tumor invasion and neural connectivity,

which promises to stratify patients more precisely and develop targeted therapeutics.

Our study has limitations. Firstly, the structural connectome can only directly measure
the connectivity of connecting tracts. Although most brain regions are connected via tracts,
certain functionally related regions may not be structurally connected. Future work could be
improved by adding resting-state MRI and functional connectivity. Secondly, we only
included primary glioblastoma who received first-line trestment in the trial setting. Therefore,
molecular markers, i.e.,, IDH and MGMT methylation, were not significant as previously

reported.

In conclusion, glioblastoma causes widespread impairment to the structural
connectome. The invisible disruption on conventional MRI and connectome integrity are
correlated with patient survival. Neural connectivity may provide a valuable tool for patient

stratification and precise treatment.
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Methods
Subjects

This study was approved by the local institutional review board. Informed written consent
was obtained from all patients. Healthy control data were obtained from two open-source

datasets, which have obtained ethical approval.

Glioblastoma patients. Patients with a radiological diagnosis of de novo supratentorial
glioblastoma were prospectively recruited for surgical resection (Discovery: July 2010 -
August 2015; Validation: July 2017 - October 2019) by the multidisciplinary team (MDT)
central review. Patients were included in both cohorts following identical inclusion and
exclusion criteria (see Supplementary methods). For both cohorts, patients were

consecutively recruited, with data prospectively collected.

Patient pre-operative cognitive performance was tested using the Mini-Mental State
Examination (MM SE) in the Discovery cohort. The MM SE score was dichotomized as <27
or >=27 as reported®. All glioblastoma patients underwent pre-operative 3D MPRAGE (pre-

contrast [T1] and post-contrast [T1C]), T2-weighted FLAIR, and dMRI sequences.

Control cohorts. We included the age-matched subjects from the 1XI datasets as
healthy controls. The dMRI and T1 sequences of the cohort were available from https://brain-

development.org/ixi-dataset/.

Template cohort. Hedlthy subjects of the template cohort were available from the
Alzheimer’'s disease Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/) for
constructing an unbiased high spatial resolution template of WM connection. High angular

resolution dMRI and T1 sequences were downloaded.

The scanning protocols of all the above subjects are detailed in the Supplementary

Methods.
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Treatment

All patients underwent maximal safe surgery using 5-aminolevulinic acid fluorescence (5-
ALA, Medac, Stirling, UK) and neuro-navigation (StealthStation, Medtronic, Fridley, MN,
USA). According to the post-operative MRI within 72 hours, the extent of resection was
assessed as complete or partial resection of enhancing tumor or biopsy. Adjuvant therapy was
determined by the MDT, according to the standard treatment protocols based on the patient
post-operative status. All patients were followed up after surgery according to the response
assessment in neuro-oncology (RANO) criteria. Overal survival (OS) and progression-free

survival (PFS) were used as endpoints.
Tumor segmentation

All anatomical MRI, including T1, T2, and FLAIR, were co-registered to T1C images with
an affine transformation, using the linear image registration tool (FLIRT) functions in the
FMRIB Software Library (FSL)*. To segment the tumor, we applied a multi-scale 3D Deep
Convolutional Neural Network®, implemented in the Cancer Imaging Phenomics Toolkit
(CaPTk, https://chica.github.io/CaPTk/index.html). A manual correction was performed
using 3D dlicer v4.6.2 (https://www.slicer.org/) by a neurosurgeon (XX) and a researcher
(XX) after an initial training period and reviewed by an experienced neuroradiologist (XX).

The final consensus was achieved to ensure inter-rater reliability.
Connectome estimation

The complete pipeline of connectivity estimation includes three steps. 1) constructing group
tract template, 2) producing individualized skeletonized FA map, 3) combining the WM

connection template and FA skeleton to produce WM connection strength matrices.

WM connection template. An unbiased WM connection template in the standard space was

generated by performing probabilistic tractography on the dMRI of the ten selected controls.
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1) Cortical/subcortical regions of dMRI were parcellated into 90 brain regions
according to AAL atlas 7 in the standard MNI-152 space®. Deformable registration was
performed using the Advanced Normalization Tools (ANTs) “2. AAL atlas includes gray-

white matter boundary to facilitate tractography.

2) Eddy currents and subject motions in dMRI were corrected using the FSL eddy
tool (version 6.0.0). A crossing fiber model was then fitted to each control’s dMRI using the
FSL function bedpostx. Probabilistic tractography between each pair of the 90 regions was
subsequently performed using FSL Probtrackx2®. Each ROl was used as a seed (starting ROI)
or target (ending ROI) once for tracking. For each pair of seed/target ROIs, 5000 streamlines
were sampled from the seed mask. Only the streamlines that reached the target mask were
retained. The tracking curvature threshold was set to 0.2 (80 degrees). Streamline samples
were terminated when they have traveled 2000 steps with a step length of 0.5mm or entered
the cortical/subcortical brain regions. Streamlines were discarded if they entered the

cerebrospinal fluids (CSF) in the ventricle or re-entered the seed region.

3) For each healthy control, distribution maps were generated for all possible WM
connections between the 90 cortical/subcortical brain regions. The distribution maps of the
WM connections from all healthy controls were nonlinearly transformed to the MNI-152
standard space using ANTs and averaged to a mean WM connection distribution across
controls using function fsimaths. The mean distribution was thresholded and binarized such
that only the voxels with the top 5% probability in the WM connection were retained,

providing a conservative pathway for the template.

Skeletonized FA map. To mitigate the partial-volume effect, we generated the skeletonized
FA maps for estimating the strength of the WM connections in individual patients. The age-
matched healthy subjects were selected as controls to reduce the bias from aging-related

white matter pathology.
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The dMRI was fitted with a tensor model to produce an FA map using the FSL
diffusion toolbox (FDT)*. The FA maps were then nonlinearly co-registered to the MNI-152
space FA template using the deformable function of ANTS, which is shown to outperform the
default deformable registration tools FNIRT *° of TBSS in the co-registration of FA * and
pathology-bearing T1 images”’, and more importantly, could mitigate the deformation of the
brain with tumor, by accounting for the tumor mass effect®. To minimize the bias of the
signal-noise ratio introduced by the different MRI acquisition protocols, we normalized the

FA map using the MRI intensity histogram-matching method™.

A standard space FA skeleton mask (FMRIB58 FA skeleton 1mm) was used as the
target for FA voxel projection. The local maxima voxels from the FA map of patients and
controls were projected to this skeleton mask using an improved TBSS projection guided by
the tract orientation®. The generated individualized FA skeletons represent the center

integrity of white matter tractsin subjects.

Constructing WM connection matrices. The WM connection matrix of each patient and
control was estimated as the mean value of the tract segments in the individualized FA

skeleton, constrained by the template of WM connection.

The columns and rows of each individualized WM connection matrix represent the
brain regions in the AAL atlas, while the elements in the matrices (C;;) represent the strength
of WM connection between the brain regions i and j. According to the graph theory, we
calculated the strength B; for region i, by aggregating the connectivity strength of the WM
connection C;; that are connected to brain regions i using the below formula:

Bi = ZCU

j#i
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I dentification of significantly disrupted connectome

We first calculated the mean and SD of each connection strength across healthy controls. For
individualized patient networks, we compared each connection strength to the mean
connection strength of the control group. The significantly decreased connectome in patients
was defined as a connection or brain region with the strength 2SD lower than the mean

strength of the control group, where 2SD indicates 95% confidence.
I dentification of regional disrupted connectome

To address the intra-tumor heterogeneity, we categorized the disrupted WM connections and

brain regions as below:
1. Disrupted WM connections

1) Direct disrupted connections. directly disrupted by tumor, traveling across the
contrasting enhancing or non-enhancing tumor.

2) Indirect disrupted connections: disrupted without crossing the lesion region.
2. Disrupted brain regions

1) Tumor disrupted regions. the AAL brain regions within the tumor region and
directly disrupted by the tumor. These regions were further categorized into the CE or
NE disrupted regions, depending on the overlapping between tumor and AAL
regions.

2) Distant disrupted regions: disrupted brain regions within the normal-appearing brain
and connected to the tumor via WM connections.

3) Indirect disrupted regions: disrupted brain regions without any connections linked

to the tumor.
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We calculated each category of connection/region disruption as a disruption index by
averaging the SD scaled decreases separately and generated five disruption indices for each

patient.
Tumor frequency map and disruption probability of anatomical structures

To use the segmented tumor masks to generate a focal tumor frequency map, we nonlinearly
transformed all masks from individual patient space to the MNI-152 space using ANTS, with

the voxel-wise tumor distribution density normalized at the group level.

To quantify the disruption probability of anatomical structures, we mapped the
disrupted connectome to the prior atlases. For the anatomical tracts, we mapped the WM
connections to the 42 anatomical tracts constructed from the 1,000 healthy subjects available
from the XTRACT toolbox in FSL. The disruption probability for each brain region or tract

was calculated as the percentage of patients with this brain region or tract disrupted.
Topological features of the brain network

We calculated the clustering coefficient and characteristic path length using the Bran
Connectivity Toolbox™®. Briefly, the clustering coefficient measures the probability of two
direct topological neighbors of a specific brain region being connected. The characteristic
path length measures the average shortest path length of the network (see Supplementary
Methods for detailed definition). To reduce the noise in feature calculation, we filtered the

connectome with a popul ation-consistency based strength threshol d*.
Statistical analysis

All analyses were performed in RStudio v3.2.3 (RStudio, Boston, USA) and MATLAB
2019b (The MathWorks Inc). The comparisons of disruption indices, topological features,

and the performance subgroups were performed using a two-sample t-test. The correlation
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was tested using the Pearson correlation test. Multiple comparisons were adjusted by false

discovery rate. Mediation analysis was performed using the R package ‘ mediation’.

Survival analysis was performed using OS and PFS as the endpoints. Patients who
were alive a the last known follow-up were censored. Disruption indices or topological
features were dichotomized according to either median or the optimal cut-off value defined

151

using the maximally selected rank statistics in the R package ‘ Survminer' >, whichever was

more significant. Kaplan-Meier survival curves were compared using the Log-rank test.

Cox proportional hazards regression accounted for al relevant clinical covariates,
including O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, isocitrate
dehydrogenase-1 (IDH-1) mutation, sex, age, the extent of resection, adjuvant therapy, tumor
volume. We aso included two features from the VASARI feature set describing the
involvement of eloquent cortex and deep white matter™ to account for the effects of tumor

cortical/subcortical brain regions.

Receiver operating characteristic (ROC) curves were used to evaluate the accuracy of
predicting OS, including the significant variables in the univariate models. To assess the
prognostic values of tumor disruption and topological features, we fit a generalized linear
model to calculate the region under the curve (AUC). The hypothesis of no effect was

rejected at atwo-sided level of 0.05.
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