

1 Full title: **Social learning about rewards – how information from others helps to
2 adapt to changing environment**

3

4 **Winiarski M.¹, Borowska J.¹, Wołyniak R. M.¹, Jędrzejewska-Szmk J.², Kondrakiewicz L.¹,
5 Mankiewicz L.³, Chaturvedi M. ^{4,5}, Turzyński K.⁶, Wójcik D.K.^{2,7}, Puścian A.^{1*}, Knapska E.^{1*}**

6

7 ¹ Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and
8 Brain Disorders – BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of
9 Sciences, Warsaw, Poland

10 ²Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of
11 Sciences, Warsaw, Poland

12 ³Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland

13 ⁴ Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain
14 Disorders – BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of
15 Sciences, Warsaw, Poland

16 ⁵ The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom

17 ⁶ Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

18 ⁷ Jagiellonian University, Faculty of Management and Social Communication, Jagiellonian
19 University, 30-348 Cracow, Poland

20

21 *Corresponding authors: Ewelina Knapska (e.knapska@nencki.edu.pl) & Alicja Puścian
22 (a.puscian@nencki.edu.pl)

23 **Abstract**

24 Being a part of a social structure is key for survival and reproduction. Living with conspecifics
25 boosts evolutionary fitness, by providing essential information about the environment.
26 Nonetheless, studying neural mechanisms of social learning has not yet been established under
27 laboratory conditions. To examine how socially passed information about the reward affects the
28 behavior of individuals we used Eco-HAB, an automated system for tracing voluntary behavior of
29 group-housed mice living under semi-naturalistic conditions. We show that a scent of a rewarded
30 individual has profound effects on the conspecifics' ability to find the reward in both familiar and
31 novel environments. Importantly, the animals display clear and stable individual differences in
32 social behavior. As a result, socially conveyed information has different effects on individual mice.
33 Further, we show that disrupting neuronal plasticity in the prelimbic cortex with nanoparticles
34 gradually releasing TIMP metallopeptidase inhibitor 1, disrupts animals' social behavior and
35 results in decreased ability to adapt to environmental changes. The experimental paradigm we
36 developed can be further used to study neuronal mechanisms of social learning.

37

38 **Introduction**

39 Social structure resulting from kinship, friendship, and hierarchy among individuals is a
40 hallmark of human society. Being a part of this structure is key for survival and reproduction^{1,2}.
41 Similar structures, albeit less complex, are also observed in other social species, including rodents³.
42 Living with conspecifics raises individual's evolutionary fitness in many ways, among others by
43 providing valuable information about the environment. Social learning about threats and
44 opportunities helps individuals to adapt to the rapidly changing circumstances without the need for
45 first-hand experience, which can be costly, especially in case of exposure to predators or energy
46 expenditure^{4,5}. Yet, studying social learning and mechanisms of socially driven spreading of
47 information between group-housed mice is still not established under laboratory conditions.

48 So far processing of information provided by others has almost exclusively been studied in
49 simplified models employing dyads of interacting rodents^{6,7}. These studies showed that
50 emotionally aroused animals transmit signals that can be detected and decoded by conspecifics⁸.
51 They also elucidated a set of neuronal circuits involved in processing of social information,
52 including networks within the prefrontal cortex (PFC)⁹. In contrast, how learning scales up from
53 individuals to social networks is yet to be determined. Moreover, we know very little about social
54 learning under more complex conditions, i.e., in animals living in groups, using larger territory and
55 functioning within a social structure. Although difficult, such studies are of paramount importance,
56 since mouse sociability is heavily dependent on population density, habitat size and structure¹⁰.

57 Further, most laboratory studies on social communication and learning rely on the
58 assessment of direct interactions between individuals. However, under natural conditions, life of
59 mice, in particular their social life, is dominated by smell. Mice commonly use odors to detect and
60 assess food and predators, recognize individuals, and evaluate sexual and social status^{11–14}.
61 Notably, a major form of communication among mice is scent marking with urine that does not
62 require direct contact between individuals^{15,16}. Importantly, choosing ecologically relevant stimuli
63 should increase the odds that animals master the task quickly, react in a coherent way and –
64 crucially for brain studies – consistently use similar, well-conserved neural circuitry^{17,18}.

65 Both rodent and human studies implicated the PFC in processing of social information^{19,20},
66 discriminating of affective state of other individuals²¹, social hierarchy²², and social transmission
67 of information about food safety²³. Proteases have been shown to play a major role in experience-
68 dependent plasticity both in animals^{24–26} and in humans^{27,28}. In particular, TIMP-1, tissue inhibitor

69 of metalloproteinases, has been shown to disrupt neuronal plasticity in the PFC²⁶. Here we used
70 nanoparticles gradually releasing TIMP-1 over several days²⁹ to affect functionality of the
71 prelimbic part of the PFC (PL). To study how information about the reward affects behavior of
72 individuals we used Eco-HAB³⁰, an automated system for tracing social behavior and learning of
73 mice living in a group under semi-naturalistic conditions. Eco-HAB allows for measuring
74 voluntary behaviors, with animals responding at their own pace, as well as for collecting data for
75 much longer than in classical tests.

76 In the following studies we illustrate the profound effects of social information about
77 reward on animals' behavior and their ability to adapt to changes in both familiar and novel
78 environments. We show that mice effectively learn from olfactory social cues and use that
79 information to gain access to the reward. Importantly, the animals display clear and stable
80 individual differences in social interactions and thus socially conveyed information has different
81 effects on individual mice. Finally, social learning and resulting adjustments of social structure are
82 impaired when synaptic plasticity in the PL is disrupted.

83

84 **Results**

85

86 **Scent of a rewarded mouse attracts other mice and changes the pattern of their social
87 interactions**

88 After 48 hours of adaptation to the novel environment of the Eco-HAB system, two mice out of 12
89 living together (cohort 1), were separated from the group and put into individual cages for the next
90 24 hours. The separated mice provided a source of social olfactory information, bedding soaked
91 with their scent, which was then presented to the rest of the group still inhabiting Eco-HAB. The
92 two scents were presented for 12 hours, in two distant, opposite spaces within the territory (Fig
93 1A). To avoid mixing of the scents, olfactory stimuli were placed behind the perforated separators.
94 Notably, the two separated mice did not come back to their original cohort in the testing phase, so
95 there was no direct contact that might have resulted in the additional ways of communication
96 between the conspecifics. The same cohort of mice was subjected to two rounds of experimental
97 procedures. In the first, control round of testing, both separated mice got access to tap water while
98 singly housed. In the second round, the same pair of mice was separated, but this time one of them
99 got access to sweetened water (highly rewarding 10% sucrose solution), while the other could drink
100 only tap water. We observed that during exposure to bedding from two separated animals that had
101 access to tap water, the rest of the cohort inhabiting Eco-HAB did not prefer any of the presented
102 scents (Fig 1B, CTRL). However, when bedding from a mouse having access to 10% sucrose
103 solution was presented, the animals displayed a strong preference to its scent in comparison to the
104 scent of a mouse having access to water (Fig 1B). The preference persisted for the whole testing
105 phase, i.e., 12 hours (Fig 1C). Moreover, the presence of the scent from the mouse drinking
106 sweetened water changed the pattern of social interactions of the tested mice, who started following
107 each other more often (Fig 1D). Importantly, the overall locomotor activity of the mice was not
108 changed (Fig S1), which suggests that the olfactory information affected social rather than general
109 exploratory behavior.

110

111 **Disrupting synaptic plasticity in the prelimbic cortex impairs response to scent of a rewarded
112 mouse**

113 Using a variant of the above described behavioral testing in which animals were exposed to social
114 scents indicating reward we now studied behavior of mice before (control condition) and after

115 releasing a tissue inhibitor of metalloproteinases TIMP-1 into their prelimbic cortex (PL, Fig 2A).
116 Specifically, at first, we tested a new cohort of naïve mice (cohort 2) and replicated the previous
117 finding, that is a preference for the social odor indicating reward (Fig 2B). Then we bilaterally
118 injected animals with nanoparticles loaded with TIMP-1 to the PL, which significantly changed
119 the observed behavioral pattern. Brain-manipulated mice showed no persistent preference for the
120 scent of a rewarded mouse (Fig 2C), and followed each other significantly less (Fig 2D).
121 Importantly, injection of the TIMP-1 nanoparticles did not change the overall activity, indicating
122 social specificity of the observed impairment (Fig S2).

123

124 **Social olfactory information helps to find the reward in a novel environment, which requires
125 an intact prelimbic cortex**

126 To investigate whether olfactory information from a rewarded mouse helps to find reward in a
127 novel, previously unknown environment we tested mice (cohorts 3, 4 and 5) transferred to a
128 different Eco-HAB system, previously inhabited by two familiar mice, who had left social olfactory
129 cues throughout the territory. Said social cues had been left by the animals that had access to either
130 tap water in two opposite Eco-HAB compartments (control condition - cohort 3) or to sweetened
131 water (10% sucrose solution) in one of the compartments and to tap water in the other compartment
132 (reward condition – cohorts 4 and 5). Importantly, the bottles were replaced with the new ones
133 containing tap water before the tested cohort of mice, moving in from another Eco-HAB, was
134 introduced to the testing environment (Fig 3A). In addition to the previously described behavioral
135 measures we assessed the time spent on drinking water from both bottles and observed a preference
136 for the previously rewarded site (cohort 4). Interestingly, this effect was also observed for the
137 control group (cohort 3), in which 2 mice who had lived in the system before showed slight
138 preference for one of the bottles, even though both contained tap water (Fig 3B). However, this
139 effect was transient. Otherwise, the preference for the previously rewarded site persisted for the
140 whole testing phase (Fig 3C). Further, similarly as in the previous experiments, mice followed each
141 other more frequently (Fig 3D), when the social information about the reward was present in the
142 environment. On the other hand, mice treated with TIMP-1 in the PL (Fig 3B-D, cohort 5) show a
143 decreased response to information about the reward. As before, there was no difference in general
144 activity between the control (cohort 3) and reward vehicle group (cohort 4), while TIMP-1 treated
145 group (cohort 5) showed a slightly decreased locomotor activity (Fig S3).

146

147 **Mice form stable social networks reflecting individual differences in responding to social**
148 **information about reward**

149 Getting olfactory cues through sniffing other individuals is an important source of information in
150 mice³¹. Thus, to track social interactions that can provide such information we focused on the
151 patterns of following between the animals cohabitating the Eco-HAB, specifically, the manner in
152 which they trail one another through the corridors connecting different parts of the territory. We
153 chose to measure following, since it is a type of social interaction by definition voluntarily initiated
154 by the mouse which chooses to trail another and thus get direct access to the olfactory cues of a
155 trailed individual. As shown by the already presented data, on average, the number of followings
156 within each tested cohort increased when social olfactory information about reward appeared in
157 the environment. To look into the individual differences in their intensity we visualized social
158 network structure with a node - edge graph. In the graph, the nodes represent individual mice, and
159 the thickness of the edge connecting two nodes represents the number of followings a given
160 follower performs after a given leader (Fig 4A, B). We observed that mice gradually develop stable
161 and complex social network, with differences in the level of followings between individuals (Fig
162 4C-H, cohort 1). The individual differences in sociability were reflected especially in the variable
163 increase in the followings when the reward-related social cues were present in the environment
164 (Fig 4F-H). Moreover, longitudinal observation of the social network (cohort 6) shows that it is
165 formed very early in the experiment and remains stable throughout (Fig S4A, B). However, it is
166 clearly disturbed when the PL plasticity is impaired with TIMP-1 (Fig S4A, C), which suggests
167 that constant updating of information in these neuronal circuits is needed to maintain the group
168 structure. Notably, social network distribution in mice tested in Eco-HAB shows similarities with
169 networks observed in human research³².

170 Social structures in rodents are most commonly related to social hierarchy³³⁻³⁵. Thus, to investigate
171 the relationship of the social network based on intensity of following conspecifics with dominance
172 hierarchy, we compared the number of followings performed by the individual mice with their
173 performance in the U-tube dominance test (cohort 7). We show that in the well-stabilized social
174 network there is a positive correlation between the number of followings and U-tube winning score
175 (Fig S5).

176 **Discussion**

177 We show that information about reward is coded in social olfactory cues left by a rewarded
178 mouse. Mice are able to distinguish between neutral and reward-related social odors. The olfactory
179 information left by a rewarded mouse helps other individuals find the reward in a novel
180 environment. Social reward-related olfactory cues change the pattern of social interactions, by
181 increasing following of other animals in the group. Importantly, degree to which the number of
182 followings increases in the presence of reward-related social cues reflects the individual differences
183 in social status within the group. Further, we show that impairing neuronal plasticity in the PL with
184 TIMP-1 results in significantly diminished persistence in seeking for social reward-related
185 olfactory cues, lack of increase in following other animals, and impaired detection of the reward
186 cues in a novel environment.

187 Presented behavioral paradigm can be further used to study mechanisms of social learning,
188 and in particular social learning strategies³⁶. Reward learning, in contrast to threat learning, is more
189 dependent on when and from whom one learns to optimize behavior^{37,38}. As searching for reward
190 is an investment, being able to estimate the effort needed to get it and attractiveness of the bounty
191 are important. Thus, the reliability and accessibility of the source of knowledge is key.

192 We show that olfactory cues from well-known, familiar conspecifics indeed suffice for the
193 transfer of information about the reward. This observation is in line with information theory,
194 according to which in a novel environment animals with no direct experience heavily rely on social
195 cues¹⁷. Interestingly, we observed that after the two scout mice from the cohort had been patrolling
196 and scent marking the novel environment, the rest of the mice, subsequently moved into the Eco-
197 HAB, preferred drinking from the bottles that had been used more frequently by their peers. This
198 effect was more pronounced in the experimental group, where scout mice had been given access to
199 reward, but also present in the control condition, when scouts had drunk water but, as usually
200 observed in freely behaving mice, more eagerly from one of the presented bottles. Albeit this effect
201 was transient, it shows the value of social information when individual experience is missing³⁹.
202 Effects of gaining preference for the things liked by the members of one's social group are well-
203 documented in humans³⁹. Presented experimental paradigm opens new avenues of investigation of
204 such phenomena and enables better understanding of their neural background in well-controlled
205 rodent experiments.

206 The prefrontal cortex (PFC) is essential for successful navigation through a complex social
207 world both in humans and in other social species, especially the dorsomedial and medial PFC

208 (dmPFC and mPFC) have been implicated in monitoring of emotions and actions in self and
209 others³⁹. The functional homolog of these regions in rodents is the dorsal mPFC, including the
210 anterior cingulate cortex and the prelimbic cortex (PL)⁴⁰. We show that disrupting neuroplasticity
211 in the PL with TIMP-1 results in abolished response to social olfactory cues indicating reward.
212 This is in line with the earlier study showing that the PL neurons selectively respond to social
213 olfactory cues³⁵.

214 Further, social learning relies on efficient social communication³⁶ and social information
215 processing³⁸. We have developed a method of tracking social interactions between individual mice
216 living in a group in the Eco-HAB by tracing movement through the corridors of the system. We
217 observed that social olfactory information about the reward in the environment increased the
218 average number of such interactions, and TIMP-1 release in the PL blocked that increase. Since
219 changes in the followings showed high individual variability they may play a role in social
220 communication. Thus, we looked into the network of interactions within the group and their
221 relationship with social hierarchy.

222 Social structure in humans can be described by topological variables such as centrality,
223 social distance and betweenness⁴¹. The most common visualization is the graph with nodes
224 representing individual subjects, edges describing relations between them, and centrality and social
225 distance displayed as their spatial positions⁴². Here we used the number of followings of other mice
226 within the group to analyze the social relationships and show that mice, similarly to primates, form
227 stable social networks. Human studies show that information is spread mostly by so-called
228 information hubs, i.e., humans that have many social connections⁴³. Interestingly, our studies show
229 that being a social hub in mice is related to a higher increase in following others when a reward-
230 related social cues appear in the environment. Thus, the Eco-HAB measures we have developed
231 allow for tracking individual variability in social interactions, which seems to be crucial for
232 information spreading.

233 We show a positive correlation between position in social network and dominance
234 measures. This result suggests that, at least partially, number of followings performed in the Eco-
235 HAB system may be related to hierarchy formation and maintenance. This is also in line with the
236 recent rodent works, which have shown that learning and experience-dependent synaptic plasticity
237 in the PFC are critical for social rank status^{22,38,39}. Similarly, when impairing neuronal plasticity in
238 the PL we observed flattening of the social network. The imperfect linear relationship between the

239 traditionally measured hierarchy and followings in the social network suggests that linear model
240 of social hierarchy does not appropriately reflect complexity of the phenomenon. Thus, the detailed
241 relation of social network to hierarchy requires further studies.

242 Tracking individual differences in social interactions through social networks measured in
243 the Eco-HAB can be very useful for modelling social impairments. In most of the classical tests of
244 sociability randomly chosen pairs of mice are tested, which can increase variability of the results
245 and blur the conclusions. In contrast, longitudinal observation of mice in the Eco-HAB system
246 enables tracking of complex, voluntary and dynamic interactions, thus far exceeding the limits of
247 what can be studied in the conventional approaches to measuring social behavior.

248

249

250 **Figure legends**

251 **Fig 1. Social olfactory cues indicating reward attract mice and change the pattern of their**
252 **social interactions.**

253 (A) Schematic representation of the experimental design. Arrows indicate relocation of the animals
254 or their scents. (B) Mice preferred the compartment where the bedding from a rewarded conspecific
255 was presented over the one from the unrewarded conspecific. Approach to social odor was
256 calculated as a proportion of visits to the compartments containing olfactory cues (reward to
257 neutral) divided by a respective parameter from the corresponding period 24h prior to the
258 introduction of the social stimuli (see [Materials and Methods](#)). (C) The preference for the olfactory
259 cues from a rewarded mouse persisted for the whole testing phase. Persistence in odor seeking was
260 measured as a proportion of visits to the compartments containing olfactory cues (reward to neutral
261 or neutral-neutral) during the second 6 hours of the testing phase divided by a proportion of visits
262 to these compartments during the first 6 hours of the testing phase (see [Materials and Methods](#)).
263 (D) Presence of the olfactory cues from a rewarded mouse increased the number of followings, in
264 the corridors of the Eco-HAB system (see [Materials and Methods](#)). *p<0.05, **p<0.01, **CTRL** -
265 control trial, **REW** - reward trial, the dotted line shows level of no change. Results of the statistical
266 comparison to no change level are not shown to keep graph readability (B - **REW** - p<0.05, **CTRL**
267 - n.s., C - **REW** - n.s., **CTRL** - p<0.05). Values for individual subjects are presented on the heat
268 map (right to the bar plot), squares in each row represent data for the same mouse, columns
269 represent trials.

270

271 **Fig 2. Disrupting synaptic plasticity in the prelimbic cortex impairs response to olfactory cues**
272 **from a rewarded mouse.**

273 (A) Timeline of the experimental protocol. First, we tested response of mice to the olfactory cues
274 from a rewarded conspecific (**REW**), then the mice were stereotactically injected with nanoparticles
275 gradually releasing TIMP-1 (NP-TIMP1) into the prelimbic cortex (PL) and, after 5 days of
276 recovery, retested in the Eco-HAB (**REW** - **NP-TIMP1**). (B) TIMP-1 injection to the PL did not
277 change the preference for the olfactory cues from a rewarded mouse when compared to the trial
278 before surgery. However, it decreased persistence in its exploration (C) and followings within the
279 tested cohort (D). All the measures were calculated as for the data presented in Fig. 1. *p<0.05,***

280 p<0.001, the dotted line shows the level of no change. Results of the statistical comparison to no
281 change level are not shown to keep graph readability (B - **REW** - p<0.05, **REW-NP-TIMP1** -
282 n.s., C- **REW** - n.s., **REW-NP-TIMP1** - n.s.). Values for individual subjects are presented on the
283 heat map (right to the bar plot), squares in each row represent data for the same mouse.

284

285 **Fig 3. Social olfactory information helps to find the reward in a novel environment but only**
286 **in mice with an intact prelimbic cortex.**

287 (A) Schematic representation of the experimental design. Two cages were used, I and II, with three
288 phases: adaptation (A), isolation (B), and test (C). During adaptation, in the corners of two cages
289 (**I**, **II**), additional bottles containing water were placed. To measure the time of drinking of
290 individual mice an RFID antenna was mounted in front of each bottle nipple. After 72 hours of
291 adaptation (I-A), two mice from cage I were moved to the other, clean and intact Eco-HAB II (**II-**
292 **B**) leaving the rest behind (**I-B**). One of the bottles in the novel Eco-HAB II environment contained
293 10% sucrose solution, the other one tap water (in the control group both bottles contained tap
294 water). After 24h the two mice were moved out of the experiment, the bottles were cleaned and
295 refilled with tap water, and the rest of the group was moved into this Eco-HAB II environment
296 from cage I (**II-C**). (B) Newcomer mice preferred drinking from the bottle preferred by the mice
297 previously living in the Eco-HAB. Injection of TIMP1 decreased that preference (see [Materials](#)
298 [and Methods](#)). (C) The preference for the bottle increased over time when reward-related social
299 information was present. In contrast, the TIMP1 injected mice decreased the preference with time.
300 Persistence was calculated as in the previous experiments but time spent on drinking from the
301 bottles was used instead of the visits to the compartments and normalized to time spent in boxes
302 with bottles (see [Materials and Methods](#)). (D) As previously, followings were increased in the **REW**
303 - vehicle group, while mice treated with TIMP-1 in the PL showed decrease in following each
304 other. *p<0.05, **p<0.01, ***p<0.001. Results of the statistical comparison to no change level are
305 not shown to keep graph readability (C – **CTRL-vehicle** – n.s, **REW-vehicle** – p<0.05, **REW-NP-**
306 **TIMP1** - p>0.05). Values for individual subjects are presented on the heat map (right to the bar
307 plot), squares in each row represent data for the same mouse.

308

309 **Fig 4. Mice form stable social networks based on individual differences in following each**
310 **other.**

311 (A) Dynamic social interactions can be defined based on patterns of leadings/followings, i.e. (I)
312 instances of a follower mouse (M2, gray) trailing a leader mouse (M1, black), that is passing
313 through the corridor very shortly after it, so that the animals remain in close contact. (II) Those
314 events form group's social network represented as a weighted, directed graph with nodes corre-
315 sponding to individual mice and edges to interactions between them. (III) Different colors represent
316 the followings of each individual mouse. The numbers next to each node give the PageRank cen-
317 trality (see [Materials and Methods](#)) of that node calculated for the weighted, directed graph repre-
318 sented by the adjacency matrix of followings; the PageRank centrality is expressed as a percentage
319 (rounded to the closest integer), characterizing each mouse in relation to a whole social group sum-
320 ming up to 100%. (B) The radius of the colored circle at a given node is proportional to the number
321 of followings performed by the corresponding mouse, while the radius of the dashed circle is pro-
322 portional to the number of leadings performed by that mouse. The arrows are directed from a fol-
323 lower to a leader; the thickness of an arrow is proportional to the number of followings a given
324 follower performed after a given leader. (C-H) Social network of cohort 1. observed during base-
325 line period and after the presentation of social cues carrying information about either the neutral
326 stimulus (C, D; scent of a naïve, unrewarded animal) or the reward (F, G; scent of a rewarded
327 animal). Graphs show increase in following resulting from the presentation of the social cue indi-
328 cating reward (F, G) and its absence in the control condition (C, D). Horizontal segments (E, H)
329 correspond to the distribution of the number of following events in all pairs of mice within cohort
330 1. in the subsequent dark phases of the experiment (on days 1-4, where day 3. represents the base-
331 line period (b) and day 4. the period of test when stimuli carrying social information were presented
332 in the environment (t)). Subsequent days of the experiment correspond to respective rows, from
333 bottom to top. Rectangles running from left to right reflect the number of followings ranging from
334 0 to 40. The intensity of the shading represents the number of occurrences of a given number of
335 followings in all pairs of mice. In cases when there were pairs of mice with over 40 followings, the
336 number of such pairs is shown with a plus sign to the right of a respective row. Additionally, the
337 mean number of followings for all pairs of mice during a given experimental phase, calculated for
338 this distribution, is marked as a red line at the position corresponding to the red scale at the upper
339 edge of the plot. As shown in (E) the intensity of following among mice is high in the beginning
340 of experiment when animals are introduced to the Eco-HAB environment for the first time and thus

341 explore it intensively. Notably, (H) this effect is absent when the same group of animals is reintro-
342 duced to the already familiar experimental environment for second time.

343

344 **S1. Social olfactory cues indicating reward do not change locomotor activity.**

345 (A) Total number of visits performed by the mice from cohort 1.

346

347 **S2. Disrupting synaptic plasticity in the prelimbic cortex does not change locomotor activity.**

348 (A) Total number of visits performed by the mice from cohort 2.

349

350 **S3. Locomotor activity in experiments on social transfer of information in a novel**
351 **environment.**

352 (A) No difference in locomotor activity was observed between control (**CTRL-vehicle**) and reward
353 (**REW-vehicle**) groups. In contrast, TIMP1 injection to the PL reduced general activity.

354

355 **S4. Observation of the social network in naïve animals (cohort 6) shows that it is formed very**
356 **early in the experiment and remains stable throughout.** (A) Social network of naïve mice
357 housed in the Eco-HAB system without any additional stimulation for 4 days (upper row); the same
358 cohort was then subjected to the injection of TIMP1-carrying NPs into the PL and reintroduced to
359 the Eco-HAB environment for another 4 days (lower row). The social network graphs and the
360 respective horizontal graphs (**B, C**, corresponding to those in E, H of Fig. 4) show a stable level of
361 following during control period (B) and its suppression resulting from the disruption of the neu-
362 ronal plasticity in the PL (C). As previously described in Fig. 4., patterns of followings between
363 individuals form group's social network represented as a weighted, directed graph with nodes cor-
364 responding to individual mice and edges to interactions between them. Different colors represent
365 the followings of each individual mouse. The numbers next to each node give the PageRank cen-
366 trality of that node calculated for the weighted, directed graph represented by the adjacency matrix
367 of followings; the PageRank centrality is expressed as a percentage (rounded to the closest integer),
368 characterizing each mouse in relation to a whole social group summing up to 100%. The radius of
369 the colored circle at a given node is proportional to the number of followings performed by the
370 corresponding mouse, while the radius of the dashed circle is proportional to the number of leadings

371 performed by that mouse. The arrows are directed from a follower to a leader; the thickness of an
372 arrow is proportional to the number of followings a given follower performed after a given leader.
373 Horizontal segments (B, C) correspond to the distribution of the number of following events in all
374 pairs of mice within cohort 6. in the subsequent dark phases of the experiment (1-4). Subsequent
375 days of the experiment correspond to respective rows, from bottom to top. Rectangles running from
376 left to right reflect the number of followings ranging from 0 to 40. The intensity of the shading
377 represents the number of occurrences of a given number of followings in all pairs of mice. Addi-
378 tionally, the mean number of followings for all pairs of mice during a given experimental phase,
379 calculated for this distribution, is marked as a red line at the position corresponding to the red scale
380 at the upper edge of the plot.

381

382

383 **S5. The number of followings performed by individual mice corresponds with their social**
384 **status.**

385 (A) Schematic of the experimental design. First, followings were measured in the Eco-HAB, then
386 the U-tube dominance test was performed. (B) Positive correlation between the position within the
387 social network, defined by the number of followings performed in the Eco-HAB, and dominance
388 hierarchy as defined by the U-tube test. The dominant mice were the ones following others the
389 most.

390

391 **Materials and Methods**

392 **Subjects**

393 Animals were treated according to the ethical standards of the European Union (directive
394 no.2010/63/UE) and respective Polish regulations. All the experiments were preapproved by the
395 Local Ethics Committee no. 1 in Warsaw, Poland. C57BL/6 male mice were bred in the Animal
396 House of Nencki Institute of Experimental Biology, Polish Academy of Sciences or Mossakowski
397 Medical Research Centre, Polish Academy of Sciences. The animals entered the experiments when
398 2-3 month old. They were littermates derived from several breeding pairs. The mice were
399 transferred to the animal room at least 2 weeks before the experiments started and put in the groups
400 of 12-15 in one cage (56 cm x 34 cm x 20cm) with enriched environment (tubes, shelters, nesting
401 materials). They were kept under 12h/12h light-dark cycle. The cages were cleaned once per week.

402

403 **RFID tagging**

404 Glass coated RFID microtransponders (9.5 mm - length and 2.2 mm - diameter, RFIP Ltd) were
405 sterilized in 70% ethanol, dried on a paper towel, loaded into the syringes and injected
406 subcutaneously into the subjects anesthetized with isoflurane. Each transponder had a unique
407 number that can be registered by the Eco-HAB antennas when animals pass through its corridors.
408 After injections mice were put together into one home cage and moved back to the experimental
409 room. On the next day the presence and the position of the transporters under animals' skin was
410 additionally verified .

411

412 **Poly(DL-lactide-co-glycolide) nanoparticles containing TIMP-1 or BSA**

413 To gradually release TIMP-1 in the PL of the tested animals we used poly(DL-lactide-co-glycolide,
414 PLGA) nanoparticles (NP) loaded with the protein (in the control condition bovine serum albumin,
415 BSA, Sigma-Aldrich). The NPs were prepared according to the protocol described by Chaturvedi
416 et al.²⁹. Briefly, NPs were prepared in the process of multiple emulsifications and evaporation
417 (MW 45.000–75.000, copolymer ratio: 50:50, Sigma-Aldrich). 100 mg PLGA was dissolved in 5
418 ml dichloromethane and 4ml of dimethyl tartaric acid (Sigma-Aldrich). In the next step, 1 mg of
419 TIMP-1 or BSA was dissolved in 500 µl of MiliQ water. The protein solution was mixed with
420 dichloromethane containing PLGA, sonicated and emulsified in 1% polyvinyl alcohol (on average
421 MW 30.000–70.000, Sigma-Aldrich). Additionally, FITC was added to easily localize place of

422 NP's delivery in the brain. Subsequently, the solution was stirred at room temperature overnight to
423 evaporate dichloromethane. Next, the NPs were centrifuged at 10.000 x g, washed three times with
424 MiliQ, dissolved in PBS, and stored at 4°C.

425

426 **Stereotaxic surgeries**

427 All tools were sterilized in 70% ethanol before the surgical procedures. Mice were anesthetized by
428 isoflurane inhalation (started at 5% and reduced to 2-1,5% of isoflurane) and placed in a stereotaxic
429 apparatus (Kopf Instruments) on a heating pad (37.8°C). The mice were subcutaneously injected
430 with analgesic (Butamidor, Richter, 1:20 in saline, 2.5 ml/kg) and reflexes were checked to ensure
431 absence of pain. To protect animals' eyes from drying we used a moisturizing gel (Carbonerum,
432 Vidisic). Ear bars were put into place and scalp was shaved. The skin on the skull was cut to expose
433 bregma. Nanofil 35G needles were used to bilaterally inject NPs into the PL (coordinates: AP +1.8
434 mm, LM +/- 0.92 mm, DV -1.67 mm, at 20° angle). The delivery was controlled by the Micro
435 Syringe Pump (World Precision Instruments, 500 nl of total volume, 100 nl/min). To let the NPs
436 diffuse the needle was left in the brain for additional 5 min after the injection. Afterwards, the
437 incision was sutured (Dafilon, C0935204) and lubricated with the analgesic lignocainum
438 hydrochloricum (10 mg, Polfa). The mice received subcutaneous injections of anti-inflammatory
439 medication (Tolfedine, Vetoquinol, 4 mg/kg) and a wide-spectrum antibiotic (Baytril 2.5%, Bayer,
440 1:3 in saline, 5 ml/kg). Then mice were placed in cages warmed with a heating pad and singly-
441 housed for the next 5 days to allow for full recovery.

442

443 **Perfusions and verification of TIMP-1 injections**

444 After the end of behavioral testing, mice injected with the NPs releasing TIMP-1 or BSA were
445 anesthetized with intraperitoneal injection of sodium pentobarbital (100 mg/kg, dissolved in PBS)
446 and transcardially perfused with 80 ml of ice-cold PBS followed by 60 ml of 4% PFA in PBS
447 (4°C). The brains were isolated and placed overnight in 4% PFA in PBS (4°C). Then, the brains
448 were moved to 30% sucrose solution in PBS for 2-3 days (4°C) for cryoprotection. Afterwards, the
449 brains were cut on a cryostat into 50 µm-thick coronal slices. The slices were then washed in PBS,
450 placed on the microscope glass slides and fluorescence of FITC encapsulated in NPs was imaged
451 under the Nikon Eclipse Ni microscope.

452

453 **Eco-HAB system**

454 The Eco-HAB is a fully automated, open source system for testing social behavior in group-housed
455 mice living under the 12/12h dark/light cycle³⁰. The system comprises of 4 polycarbonate
456 compartments (30cm x 30cm x 18cm) connected with tube-shaped corridors (inner diameter
457 36mm, outer diameter 40mm), and covered with stainless steel grid lid. In 2 out of 4 compartments
458 mice have access to food and water (*ad libitum*); the other 2 compartments have a separated space
459 for presentation of the olfactory stimuli (in a corner, behind a perforated partition) or putting
460 additional bottles. Access to all compartments, olfactory stimuli and additional bottles is
461 unrestricted and voluntary. All housing elements can be autoclaved and disinfected with 70%
462 alcohol. To record movement of the animals within the Eco-HAB the corridors are equipped with
463 circular RFID antennas registering transponders' numbers. The data from the antennas are
464 collected by a dedicated electronic system, which sends them to the computer. Eco-HAB measures
465 were computed with pyEcoHAB library (<https://github.com/Neuroinflab/pyEcoHAB>). The
466 following behavioral measures were analyzed. **In a familiar environment approach to social**
467 **odor** was measured as a proportion of visits to the compartments with olfactory stimuli
468 (reward:neutral or neutral:neutral, depending on the experiment) divided by the same proportion
469 from the preceding dark phase (when no olfactory stimuli were present in the compartments). **In**
470 **the experiments performed in a novel environment preference to the bottles** was measured as
471 a relative time spent on drinking from the preferred bottle in relation to the non-preferred bottle in
472 1st hour of the experiment. **Persistence** was defined as a proportion of visits to the compartments
473 where odors were presented (reward:neutral or neutral:neutral) during the last 6 hours of the testing
474 phase, divided by the same proportion from the first 6 hours of the testing phase. This measure
475 shows persistence in seeking for social information about the reward. In the experiments performed
476 in the novel environment persistence was calculated similarly to what was previously described,
477 but the time spent on drinking from the additional bottles was divided by the time spent in chambers
478 where the bottles were presented. **Followings** were measured based on the number of events when
479 mice followed one another in the corridors of the Eco-HAB system. Specifically, following was
480 defined as an event when one mouse entered a corridor, followed by another mouse before the first
481 left the tube, and when both mice left the corridor in the same order and in the same direction. For
482 the purpose of between-group comparisons to control for the individual variability in locomotor
483 activity we summed all the following events of each mouse and divided by its activity (total number

484 of its visits) during the analyzed time bin. For the details of the implemented algorithm please refer
485 to <https://github.com/Neuroinflab/pyEcoHAB>. For the analysis of within-cohort changes in
486 following patterns presented in Fig 4 raw values were used.

487 **Testing behavioral response to social olfactory cues indicating reward presented in a familiar
488 environment**

489 13 mice (cohort 1) were put into the Eco-HAB system at the beginning of the dark phase. Please
490 note that one mouse had to be excluded from experiments due to health problems with fore tooth
491 overgrowth that might have affected its social behavior. Animals were adapted to the testing
492 environment for 48 hours (Adaptation phase). Then, 2 randomly chosen mice were separated and
493 housed in the individual cages (17 cm x 23 cm x 13 cm) for the next 24h. They were offered either
494 tap water or 10% sucrose solution, food was freely available (Isolation phase). Bedding soaked
495 with the scents of the separated mice was used as social olfactory cues; for the next 24h it was put
496 behind the perforated partitions in the Eco-HAB system to avoid spreading it throughout the cages
497 while maintaining unrestricted sniffing. The cohort was tested twice, in the first (control-CTRL)
498 trial both separated mice had access to tap water, in the second trial (experimental-REW) the same
499 mice were isolated and one of them had access to highly rewarding 10% sucrose solution, while
500 the other to tap water. The design of the experiment with TIMP-1 released into the PL was
501 performed in accordance to the same protocol. Similarly, the mice (cohort 2, n=13) were tested
502 twice, before and after brain manipulation (5 days after NPs injection). As previously described, in
503 both trials, the same pair of mice was isolated to produce social olfactory cues.

504

505 **Testing behavioral response to social olfactory cues indicating reward presented in a novel
506 environment**

507 **Social olfactory information in a new environment**

508 The mice were injected with NPs containing TIMP1 or BSA (vehicle) 5 days before the start of the
509 experimental procedures. We tested 3 cohorts of mice: CTRL-vehicle (cohort 3, n = 12, one mouse
510 had to be excluded from the analysis because it had not drunk), REW-vehicle (cohort 4, n = 12)
511 and REW-NP-TIMP1 (cohort 5, n=12, 2 mice died after the surgeries). Two opposite Eco-HAB
512 compartments offered access to the additional bottles through a short (8cm long) tube, equipped
513 with an RFID antenna to register drinking time of each mouse. As in the previous experiments, the

514 mice were put into the Eco-HAB system (Eco-HAB I) at the beginning of the dark phase. They
515 were adapting to the environment for the next 72 hours (Adaptation phase). Then, 2 randomly
516 chosen mice were moved into a new, clean Eco-HAB system (Eco-HAB II), in which the only
517 bottles accessible were the ones with the antennas monitoring drinking behavior. In the reward
518 (REW) trials the separated mice had access to tap water in one compartment and to 10% sucrose
519 solution in the opposite compartment of the Eco-HAB II. In the control (CTRL) trial both bottles
520 were filled with tap water. After 24 h of the Separation phase, the two scout mice were removed,
521 the bottles replaced with the ones containing fresh tap water. Then the rest of the group, which until
522 now had inhabited the original Eco-HAB I, was transferred to Eco-HAB II for 12 h (Testing phase).
523

524 **Longitudinal observation of social structure formation in the Eco-HAB**

525 To observe how social structure is formed and how it is affected by TIMP-1 release in the PL we
526 tested voluntary behavior of mice in the longitudinal experiments, in which animals inhabited Eco-
527 HAB, without any additional changes to the testing environment. The mice (cohort 6, n=15) were
528 placed into the Eco-HAB system and observed for 4 days. Next, they were subjected to the
529 stereotaxic injections with TIMP-1 loaded NPs. After recovery the mice were placed back into the
530 Eco-HAB and their behavior was measured for another 4 days.
531

532 **Dominance tests**

533 To assess the relationship between social structure and dominance hierarchy we tested the same
534 subjects (cohort 7, n=12) in the Eco-HAB and U-tube tests. Following 10-day-long observation of
535 the social structure in the Eco-HAB system, the mice were subjected to the U-tube dominance test.
536 Mice were placed in single cages and tested in all possible pairwise combinations. The mice from
537 the currently tested pair were placed at the opposite ends of the U-shaped tube (1m length, 42 mm
538 diameter) and allowed to interact. When one mouse pushed the other out it won a given bout. We
539 tested all pairs and calculated the number of wins for each subject as a measure of dominance.
540

541 **Technical reports**

542 As all Eco-HAB data are recorded automatically we verified its integrity to ensure there were no
543 corrupted segments or other problems that might have affected the results. In rare situations of brief
544 antennas' malfunctions we were able to detect such situations and present the results in

545 supplemental reports (Fig S6 – Fig S12). It is noteworthy, that applied algorithms include heuristics
546 that account for an occasional missed reading of an antenna, to mitigate the impact of such
547 problems on the results. As a rule, if the percentage of antenna errors exceeds the level of 5%, the
548 experiment is considered technically invalid and data is not analyzed. No such problem occurred
549 in the presented studies.

550

551 Fig S6. Technical report – cohort 1: reward information sharing experiments

552 Antennas mismatches did not exceed the level of 5% and the experiment was considered valid for
553 further analysis

554 Fig S7. Technical report – cohort 2: reward information sharing after TIMP-1 experiments

555 Antennas mismatches did not exceed the level of 5% and the experiment was considered valid for
556 further analysis

557 Fig S8. Technical report – cohorts 3: reward information sharing experiments in novel
558 environment, control group.

559 Antennas mismatches did not exceed the level of 5% and the experiment was considered valid for
560 further analysis

561 Fig S9. Technical report – cohorts 4: reward information sharing experiments in novel
562 environment, vehicle-treated group

563 Antennas mismatches did not exceed the level of 5% and the experiment was considered valid for
564 further analysis

565 Fig S10. Technical report – cohort 5: reward information sharing experiments in novel
566 environment, TIMP1-treated group

567 Antennas mismatches did not exceed the level of 5% and the experiment was considered valid for
568 further analysis

569 Fig S11. Technical report – cohort 6: longitudinal observation of the social network

570 Antennas mismatches did not exceed the level of 5% and the experiment was considered valid for
571 further analysis

572 Fig S12. Technical report – cohort 7: experiments on the relationship of the social network with
573 dominance hierarchy

574 Antennas mismatches did not exceed the level of 5% and the experiment was considered valid for
575 further analysis

576

577 **Statistical analyzes**

578 For statistical analyses we used GraphPad Prism7 software. The normality of data distributions
579 was assessed with the D'Agostino-Pearson omnibus normality test. Data sets that passed the nor-
580 mality tests were further analyzed using Student's t-test for independent or paired samples, de-
581 pending on the particular type of comparison. For the data sets that did not pass the criterion of
582 normality required for performing parametric analyses, the Mann-Whitney or Wilcoxon matched-
583 pairs signed-rank tests were used. For comparisons of data with the theoretical value (no change
584 level) we used one sample t-test for parametric data. Correlation was calculated by Pearson corre-
585 lation test. To assess the significance of each mouse as an element of the social network, we cal-
586 culated PageRank centrality for the inverted weighted directed graph of followings or, equiva-
587 lently, for the weighted directed graph of leading, in which each directed edge carries a weight
588 equal to the number of respective events⁴⁴. Calculations were performed with the use of Wolfram
589 Mathematica. The weights are given in percent and rounded to the nearest integer number. The
590 criterion for statistical significance was a probability level of $p<0.05$. Statistical details for all ex-
591 periments are described in Table S1.

592

593 **Acknowledgements**

594 **Funding:** This work was supported by a European Research Council Starting Grant (H 415148),
595 and grants from the National Science Center, Poland (2017/27/B/NZ4/02025,
596 2013/08/W/NZ4/00691, 2015/18/E/NZ4/00600). EK and AP were supported by ‘BRAINCITY -
597 Centre of Excellence for Neural Plasticity and Brain Disorders’ project of Polish Foundation for
598 Science. D.K.W. was supported by the Foundation for Polish Science (FNP) project Bio-inspired
599 Artificial Neural Networks POIR.04.04.00-00-14DE/18-00. MC was supported by Preludium
600 grant number 2013/09/N/NZ3/03527 from the National Science Centre, Poland. MC also
601 acknowledges support from “Mobilność Plus” fellowship from Polish Ministry of Science and
602 Higher Education grant number 1291/MOB/IV/2015/0. **Authors contributions:** Concept and
603 design M.W., A.P., E.K.; data acquisition M.W., J.B., M.R.W., L.K., M.C.; analysis
604 and interpretation of data M.W., J.B., M.R.W., J.J.S., D.K.W., L.K., K.T. A.P., E.K.; drafting and
605 revising the article M.W., L.M., D.K.W., K.T., A.P., E.K.

606

607 **Conflict of interest**

608 The authors declare no competing financial interests in relation to the work described.
609

610 Bibliography

611 1. Kaplan, H. S., Hooper, P. L. & Gurven, M. The evolutionary and ecological roots of human
612 social organization. *Philos Trans R Soc Lond B Biol Sci* **364**, 3289–3299 (2009).

613 2. von Rueden, C. R., Redhead, D., O’Gorman, R., Kaplan, H. & Gurven, M. The dynamics of
614 men’s cooperation and social status in a small-scale society. *Proc. R. Soc. B.* **286**, 20191367
615 (2019).

616 3. Brent, L. J. N., Chang, S. W. C., Gariépy, J.-F. & Platt, M. L. The neuroethology of
617 friendship: Neuroethology of friendship. *Ann. N.Y. Acad. Sci.* **1316**, 1–17 (2014).

618 4. Pérez-Escudero, A. & de Polavieja, G. G. Adversity magnifies the importance of social
619 information in decision-making. *J R Soc Interface* **14**, (2017).

620 5. Reader, S. M. Animal social learning: associations and adaptations. *F1000Res* **5**, 2120
621 (2016).

622 6. Márquez, C., Rennie, S. M., Costa, D. F. & Moita, M. A. Prosocial Choice in Rats Depends
623 on Food-Seeking Behavior Displayed by Recipients. *Current Biology* **25**, 1736–1745 (2015).

624 7. Langford, D. J. *et al.* Social modulation of pain as evidence for empathy in mice. *Science*
625 **312**, 1967–1970 (2006).

626 8. Han, Y. *et al.* Bidirectional cingulate-dependent danger information transfer across rats. *PLoS
627 Biol* **17**, (2019).

628 9. Jeon, D. *et al.* Observational fear learning involves affective pain system and Cav1.2 Ca²⁺
629 channels in ACC. *Nat Neurosci* **13**, 482–488 (2010).

630 10. Lloyd, J. A. Social structure and reproduction in two freelygrowing populations of house
631 mice (*Mus musculus* L.). *Animal Behaviour* **23**, 413–424 (1975).

632 11. Beny-Shefer, Y. *et al.* Nucleus Accumbens Dopamine Signaling Regulates Sexual Preference
633 for Females in Male Mice. *Cell Reports* **21**, 3079–3088 (2017).

634 12. Arakawa, H., Blanchard, D. C., Arakawa, K., Dunlap, C. & Blanchard, R. J. Scent marking
635 behavior as an odorant communication in mice. *Neuroscience & Biobehavioral Reviews* **32**,
636 1236–1248 (2008).

637 13. Li, Y. *et al.* Lrfn2-Mutant Mice Display Suppressed Synaptic Plasticity and Inhibitory
638 Synapse Development and Abnormal Social Communication and Startle Response. *J.
639 Neurosci.* **38**, 5872–5887 (2018).

640 14. Sprott, R. L. “Fear Communication” via Odor in Inbred Mice. *Psychol Rep* **25**, 263–268
641 (1969).

642 15. Hurst, J. L. Urine marking in populations of wild house mice *Mus domesticus* rutty. I.
643 Communication between males. *Animal Behaviour* **40**, 209–222 (1990).

644 16. Scott, J. W. & Pfaff, D. W. Behavioral and electrophysiological responses of female mice to
645 male urine odors. *Physiology & Behavior* **5**, 407–411 (1970).

646 17. Duboscq, J., Romano, V., MacIntosh, A. & Sueur, C. Social Information Transmission in
647 Animals: Lessons from Studies of Diffusion. *Front. Psychol.* **7**, (2016).

648 18. Kondrakiewicz, K., Kostecki, M., Szadzińska, W. & Knapska, E. Ecological validity of
649 social interaction tests in rats and mice. *Genes, Brain and Behavior* **18**, e12525 (2019).

650 19. Bicks, L. K., Koike, H., Akbarian, S. & Morishita, H. Prefrontal Cortex and Social Cognition
651 in Mouse and Man. *Front. Psychol.* **6**, (2015).

652 20. Demolliens, M., Isbaine, F., Takerkart, S., Huguet, P. & Boussaoud, D. Social and asocial
653 prefrontal cortex neurons: a new look at social facilitation and the social brain. *Social
654 Cognitive and Affective Neuroscience* **12**, 1241–1248 (2017).

655 21. Ito, W. & Morozov, A. Prefrontal-amygdala plasticity enabled by observational fear.

656 *Neuropsychopharmacol.* **44**, 1778–1787 (2019).

657 22. Wang, F. *et al.* Bidirectional Control of Social Hierarchy by Synaptic Efficacy in Medial

658 Prefrontal Cortex. *Science* **334**, 693–697 (2011).

659 23. Loureiro, M. *et al.* Social transmission of food safety depends on synaptic plasticity in the

660 prefrontal cortex. *Science* **364**, 991–995 (2019).

661 24. Attwood, B. K. *et al.* Neuropsin cleaves EphB2 in the amygdala to control anxiety. *Nature*

662 **473**, 372–375 (2011).

663 25. Knapska, E. *et al.* Reward Learning Requires Activity of Matrix Metalloproteinase-9 in the

664 Central Amygdala. *Journal of Neuroscience* **33**, 14591–14600 (2013).

665 26. Okulski, P. *et al.* TIMP-1 Abolishes MMP-9-Dependent Long-lasting Long-term Potentiation

666 in the Prefrontal Cortex. *Biological Psychiatry* **62**, 359–362 (2007).

667 27. Bach, D. R., Tzovara, A. & Vunder, J. Blocking human fear memory with the matrix

668 metalloproteinase inhibitor doxycycline. *Molecular Psychiatry* **23**, 1584–1589 (2018).

669 28. Bach, D. R., Näf, M., Deutschmann, M., Tyagarajan, S. K. & Quednow, B. B. Threat

670 Memory Reminder Under Matrix Metalloproteinase 9 Inhibitor Doxycycline Globally

671 Reduces Subsequent Memory Plasticity. *J. Neurosci.* **39**, 9424–9434 (2019).

672 29. Chaturvedi, M., Molino, Y., Bojja, S., Khrestchatsky, M. & Kaczmarek, L. Tissue inhibitor

673 of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery

674 across the blood–brain barrier. *IJN* **575** (2014) doi:10.2147/IJN.S54750.

675 30. Puścian, A. *et al.* Eco-HAB as a fully automated and ecologically relevant assessment of

676 social impairments in mouse models of autism. *eLife* **5**, e19532 (2016).

677 31. Łopucki, R. & Schimrosczyk, D. Recognition of interspecific familiar versus unfamiliar

678 odours among bank voles and yellow-necked mice. *Acta Theriologica* **48**, 167–176 (2003).

679 32. Lee, R. K.-W., Hoang, T.-A. & Lim, E.-P. Discovering Hidden Topical Hubs and Authorities
680 Across Multiple Online Social Networks. *IEEE Transactions on Knowledge and Data
681 Engineering* **33**, 70–84 (2021).

682 33. Fuxjager, M. J., Knaebe, B. & Marler, C. A. A single testosterone pulse rapidly reduces
683 urinary marking behaviour in subordinate, but not dominant, white-footed mice. *Animal
684 Behaviour* **100**, 8–14 (2015).

685 34. Kleshchev, M. A. & Osadchuk, L. V. Social domination and reproductive success in male
686 laboratory mice (*Mus musculus*). *J Evol Biochem Phys* **50**, 227–233 (2014).

687 35. Hayashi, S. Development and diversity of social structure in male mice. *J. Ethol.* **11**, 77–82
688 (1993).

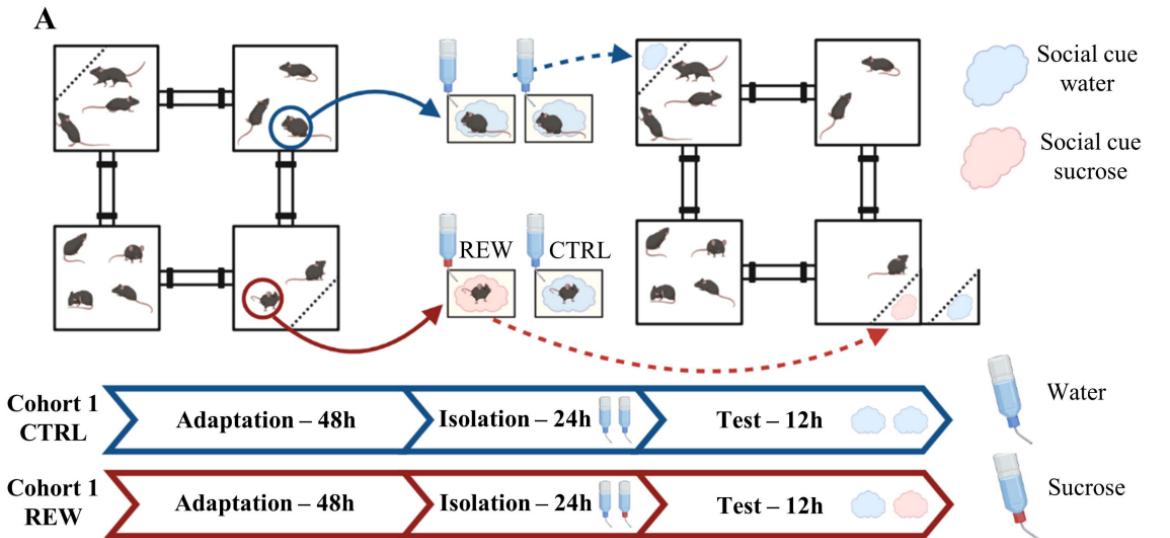
689 36. Olsson, A., Knapska, E. & Lindström, B. The neural and computational systems of social
690 learning. *Nature Reviews Neuroscience* **21**, 197–212 (2020).

691 37. Kendal, R. L. *et al.* Social Learning Strategies: Bridge-Building between Fields. *Trends in
692 Cognitive Sciences* **22**, 651–665 (2018).

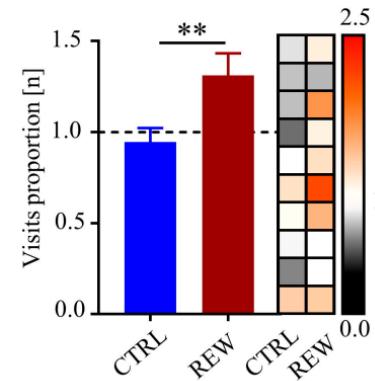
693 38. Parkinson, C., Kleinbaum, A. M. & Wheatley, T. Spontaneous neural encoding of social
694 network position. *Nat Hum Behav* **1**, 0072 (2017).

695 39. Bandura, A. *Social Learning Theory*. (Prentice Hall, 1977).

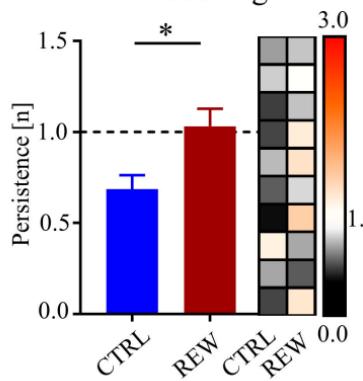
696 40. Wang, F. *et al.* Bidirectional Control of Social Hierarchy by Synaptic Efficacy in Medial
697 Prefrontal Cortex. *Science* **334**, 693–697 (2011).

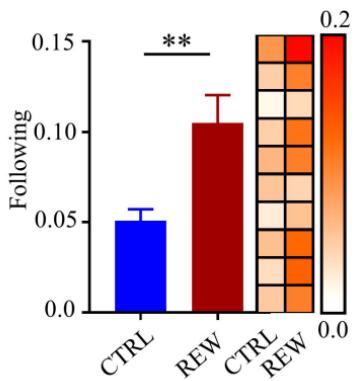

698 41. Wasserman, S., Urbana-Champaign), S. (University of I. W. & Faust, K. *Social Network
699 Analysis: Methods and Applications*. (Cambridge University Press, 1994).

700 42. Bonacich, P. Power and Centrality: A Family of Measures. *American Journal of Sociology*
701 **92**, 1170–1182 (1987).


702 43. Lee, R. K.-W., Hoang, T.-A. & Lim, E.-P. Discovering Hidden Topical Hubs and Authorities
703 Across Multiple Online Social Networks. *IEEE Trans. Knowl. Data Eng.* 1–1 (2019)
704 doi:10.1109/TKDE.2019.2922962.

705 44. Brin, S. & Page, L. The anatomy of a large-scale hypertextual Web search engine. *Computer
706 Networks and ISDN Systems* **30**, 107–117 (1998).


707


B Approach to odor

C Persistence in odor seeking

D Following

A

Cohort 2
REW

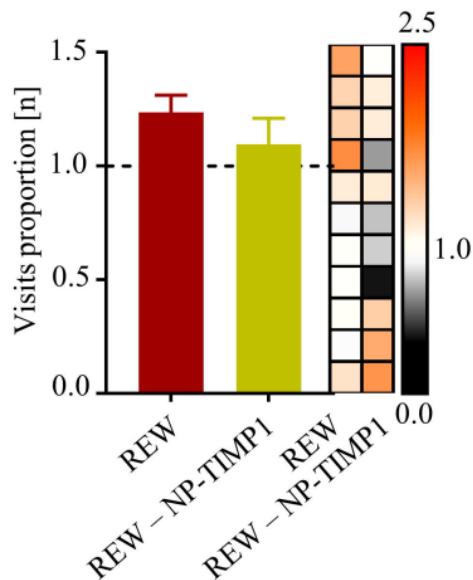
Adaptation – 48h

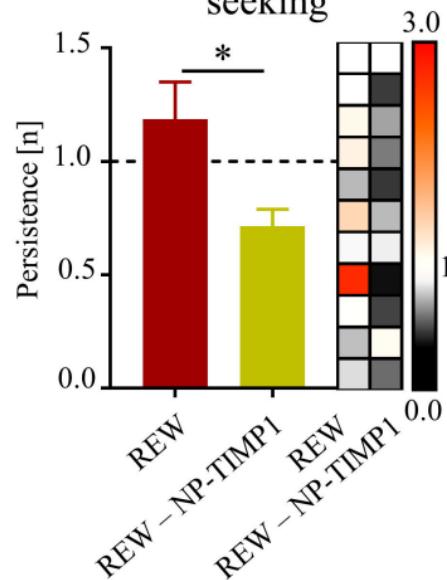
Isolation – 24h

Test – 12h

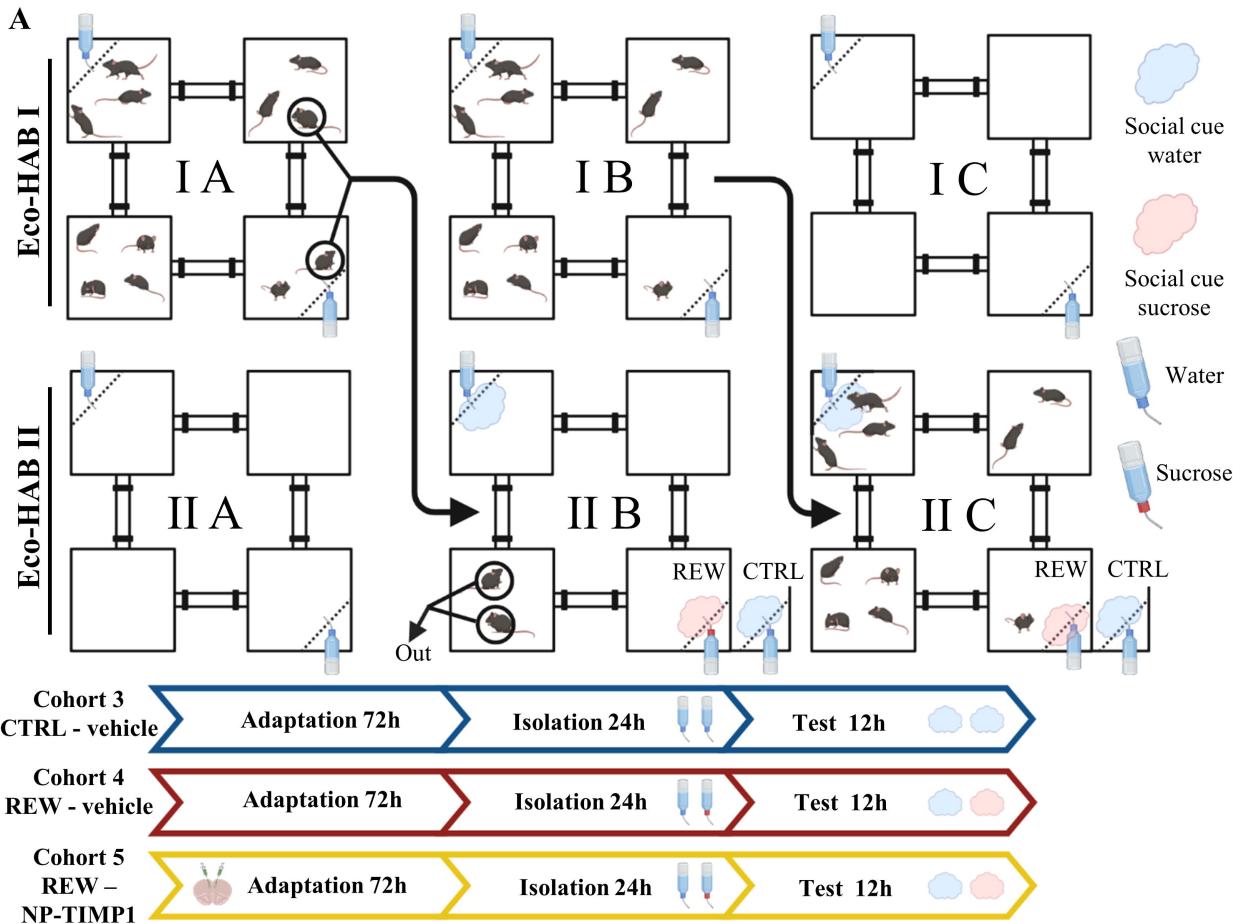
Cohort 2
REW -
NP-TIMP1

Adaptation – 48h

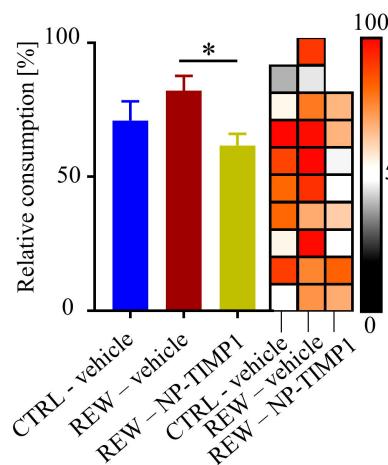

Isolation – 24h


Test – 12h

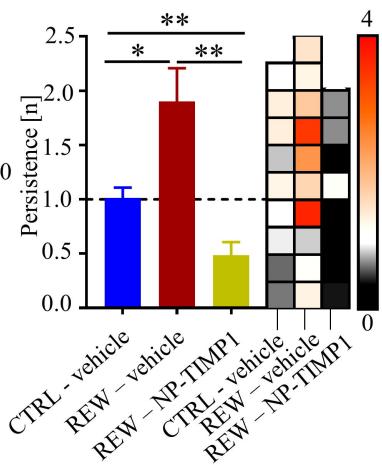
B Approach to odor

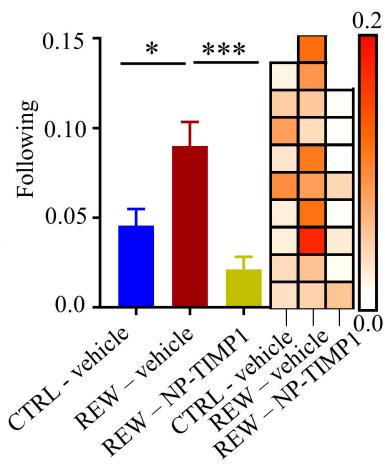


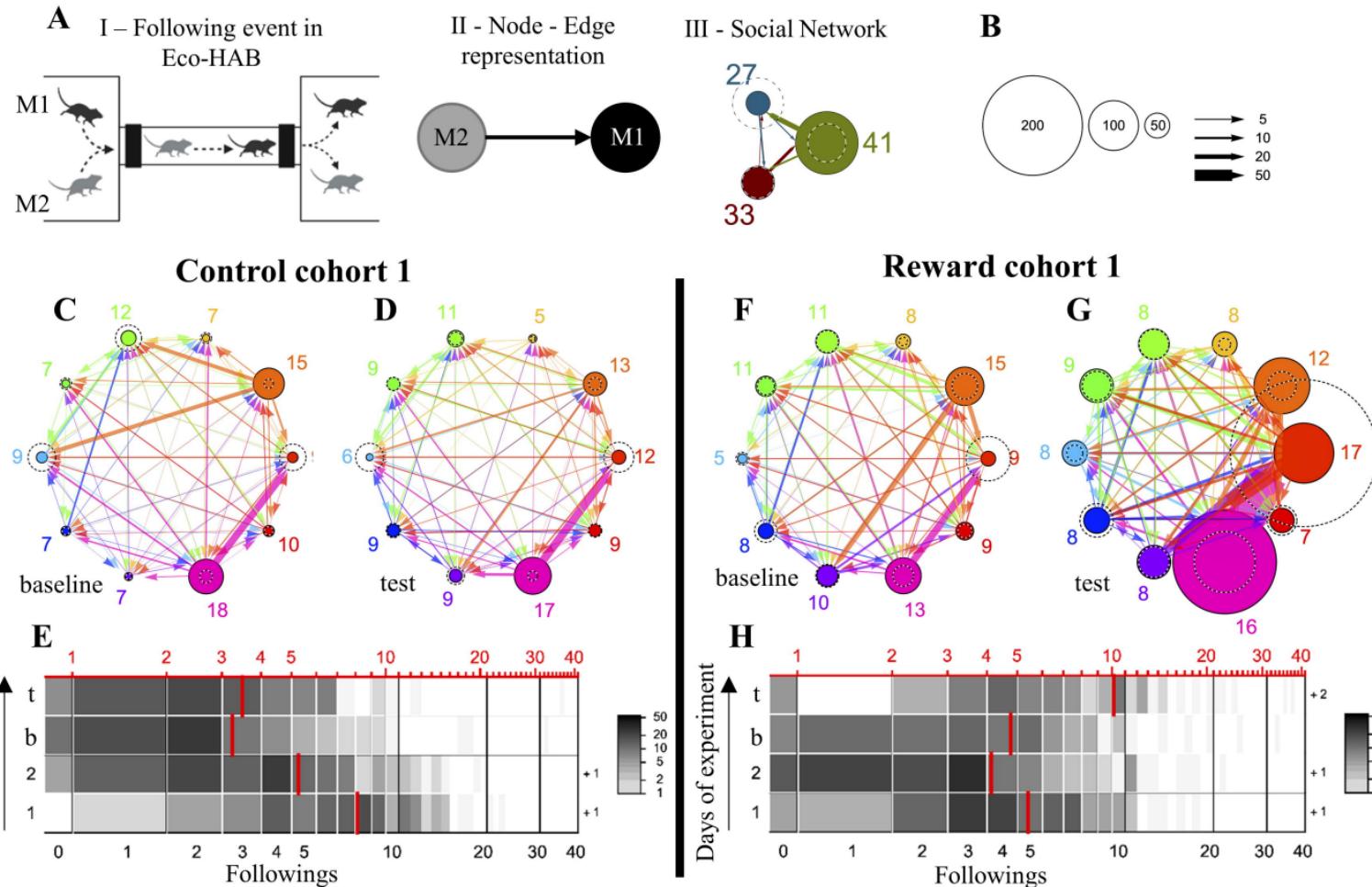
C Persistence in odor seeking



D Following




B Consumption from preferred bottle



C New environment persistence

D Following

