

43 **Abstract:**

44
45 Metabolites, or the small organic molecules that are synthesized by cells during
46 metabolism, comprise a complex and dynamic pool of carbon in the ocean. They are an
47 essential form of information, linking genotype to phenotype at the individual, population
48 and community levels of biological organization. Characterizing metabolite distributions
49 inside microbial cells and dissolved in seawater is essential to understanding the controls
50 on their production and fate, as well as their roles in shaping marine microbial food webs.

51 Here, we apply a targeted metabolomics method to quantify particulate and dissolved
52 distributions of a suite of biologically relevant metabolites including vitamins, amino
53 acids, nucleic acids, osmolytes, and intermediates in biosynthetic pathways along a
54 latitudinal transect in the western Atlantic Ocean. We find that, in the euphotic zone,
55 most particulate or intracellular metabolites positively co-vary with the most abundant
56 microbial taxa. In contrast, dissolved metabolites exhibited greater variability with
57 differences in distribution between ocean regions. Although fewer particulate metabolites
58 were detected below the euphotic zone, molecules identified in the deep ocean may be
59 linked to preservation of organic matter or adaptive physiological strategies of deep-sea
60 microbes. Based on the identified metabolite distributions, we propose relationships
61 between certain metabolites and microbial populations, and find that dissolved metabolite
62 distributions are not directly related to their particulate abundances.

63

64 **Introduction**

65 Marine organic matter is a complex component of the global carbon cycle due to its
66 molecular diversity across particulate and dissolved phases. Cycling of this organic
67 matter is largely controlled by the relationship between microbial metabolism and
68 dissolved organic carbon (DOC) as marine microbes produce, consume, and influence the
69 composition of DOC. About 50% of the organic matter fixed by phytoplankton passes
70 through the marine DOC pool (Ducklow 1999), which is a carbon reservoir similar in
71 size to that of carbon dioxide in the atmosphere (Hansell et al. 2009). Within the marine
72 DOC pool, organic molecules are cycled on timescales ranging from minutes to
73 thousands of years (reviewed by Carlson and Hansell 2015).

74 To adequately understand the factors that control production and removal of organic
75 matter, molecular-level characterization of this material is needed. Compositional studies
76 of organic matter have predominantly focused on compound classes. While a much
77 smaller portion of the organic matter reservoir in the ocean, suspended particulate organic
78 matter can be a source of dissolved organic matter through processes like cell death,
79 grazing, and viral lysis (Carlson and Hansell 2015). These particles are composed of
80 biologically-derived organic matter in the form of living cells and detritus including
81 carbohydrates, amino acids, lipids, nucleic acids, and additional small molecules required
82 for metabolism and secondary metabolites (e.g. Biersmith and Benner 1998; Sheridan et
83 al. 2002; Kawasaki et al. 2011; Johnson et al. 2020).

84 Studies of molecular classes have determined that a large portion of high-molecular
85 weight DOC is comprised of carbohydrates (Aluwihare et al. 1997) as well as carboxyl-
86 rich aliphatic material (Hertkorn et al. 2006). Hydrolysable and free individual amino

87 acids make up a smaller portion of organic carbon (McCarthy et al. 1996; Kaiser and
88 Benner 2009). An additional group of molecules in DOC, identified with ultrahigh-
89 resolution mass spectrometry of solid phase-extracted DOC, includes compounds with
90 molecular formulas that do not match common biochemical compound classes, likely
91 derived from pyro- and petrogenic sources (Dittmar and Koch 2006).

92 Metabolites, including free amino acids and monomeric sugars as well as vitamins
93 and metabolic intermediates, while comprising a relative minor proportion of DOC in the
94 ocean, play essential roles as the currencies in marine microbial interactions, transferring
95 energy, cellular components, and information among microbial neighbors (Kujawinski
96 2011; Moran et al. 2016). By simultaneously measuring a suite of these molecules, we
97 can trace the relationships between their distributions in particulate and dissolved phases,
98 and hypothesize about the controls on their production, removal, and roles in microbial
99 communities.

100 Metabolites, or small biomolecules, are defined as the products of all cellular
101 regulation (Fiehn 2002). Due to the sensitivity of metabolite concentrations to both
102 genetic and environmental factors, the metabolite profile of an organism can be
103 considered an aspect of its phenotype. Intracellular or particulate metabolite
104 concentrations respond to physical, chemical, and biological environmental cues
105 including nutrient limitation (Brauer et al. 2006; Kujawinski et al. 2017), salinity (Gebser
106 and Pohnert 2013), temperature (Thompson et al. 1992), oxidative stress (Lesser 2006),
107 grazing (Pohnert 2000; Longnecker and Kujawinski 2020), viral lysis (Ankrah et al.
108 2014), available carbon substrates (Johnson et al. 2016), and the presence of
109 infochemicals (Seyedsayamdst et al. 2011). For example, in response to infection by a

110 phage, a marine bacterium had elevated intracellular concentrations of some amino acids
111 and sugars (Ankrah et al. 2014). Thus, probing particulate and dissolved metabolite
112 concentrations within the contexts of environmental cues and microbe-microbe
113 interactions may elucidate phenotypic variations in microbes under environmental
114 stressors, and thus facilitate understanding of exuded or released microbial organic matter
115 under various conditions (Kujawinski 2011; Moran et al. 2016).

116 Dissolved metabolites mediate interactions among marine organisms. This
117 encompasses both the transfer of organic substrates through the food web as well as the
118 subtle but often significant role of infochemicals in influencing an organism's phenotype
119 (e.g. Paul et al. 2012; Barak-Gavish et al. 2018). Heterotrophic microbes catabolize many
120 metabolite types produced by autotrophic microbes. For example, sugars fuel a dominant
121 component of the marine food web, supporting aerobic respiration (Søndergaard et al.
122 2000). A common algal metabolite, dimethylsulfoniopropionate (DMSP), is used for both
123 energy and reduced sulfur (Kiene et al. 2000). Amino acids also move through the food
124 web, providing both fixed nitrogen and essential cellular building blocks (Rich et al.
125 1997). In addition to the autotrophic production of organic substrates for heterotrophic
126 remineralization, some metabolites fulfill requirements in sympatric community
127 members. For instance, certain species of phytoplankton require vitamins that they cannot
128 synthesize *de novo*, such as vitamin B₁₂ or biotin; these vitamins are produced by
129 heterotrophic bacteria and sustain phytoplankton growth (reviewed by Croft et al. 2006).
130 Some heterotrophic bacteria also have specific substrate requirements, such as a SAR11
131 isolate that requires an exogenous source of a thiamin precursor (Carini et al. 2014).
132 These physiological demands have been studied on a case-by-case basis using field and

133 lab experiments coupled with genomic information. However, our knowledge of the
134 distributions of many of these metabolites in the ocean is limited or non-existent, thus
135 inhibiting our ability to predict the impact of these requirements on microbial
136 communities in the field.

137 To quantify a suite of structurally diverse metabolites, we use a liquid
138 chromatography-tandem mass spectrometry-based metabolomics approach (Kido Soule
139 et al. 2015). In this targeted metabolomics method, pure standards of each metabolite of
140 interest are used to identify and quantify that metabolite in seawater. In this study,
141 seawater samples encompassed a variety of ocean regions, between the latitudes of 55°N
142 and 38°S in the western Atlantic and from depths between 5 m and ~5500 m. Our method
143 detected 27 particulate metabolites and 18 dissolved metabolites, including amino acids,
144 vitamins, nucleic acids, osmolytes, and a variety of metabolic intermediates from both
145 primary metabolism and biosynthetic pathways. Many of these metabolites were selected
146 because they are essential for most organisms, while others were identified in laboratory
147 experiments as being responsive to environmental differences or being specific to certain
148 groups of organisms. Some of these metabolites have been measured previously in the
149 ocean, allowing us to compare our measurements to literature values while other
150 metabolites have never been measured, to our knowledge, in the ocean.

151 The goal of this study is to quantify the distribution of the core set of metabolites in
152 our method along latitudinal and depth gradients in the Atlantic Ocean. In particular, the
153 identification of metabolites whose distributions are independent of microbial biomass
154 may lead to discovery of other environmental controls on the production or degradation
155 of those molecules in certain ocean regions. As the majority of the metabolites analyzed

156 are essential components of metabolism, starting from the null hypothesis that each
157 metabolite is present in the same abundance inside a cell anywhere in the ocean and that
158 its release into, and uptake from, the dissolved pool of metabolites is driven only by the
159 number of cells present, particulate and dissolved metabolite distributions should co-vary
160 with biomass. However, we find that this is not the case, and metabolite concentrations
161 correlate to a variety of factors. We distill our results within the following three contexts:
162 1) particulate metabolite distributions that are correlated to abundant microbial
163 community members, 2) dissolved metabolite distributions that vary across ocean regions
164 and 3) particulate metabolite distributions in the euphotic zone versus the deep ocean.

165

166 **Materials and methods**

167 **Materials**

168 We obtained all metabolite standards from Sigma-Aldrich at the highest purity
169 available with the exception of dimethylsulfoniopropionate (DMSP), which we purchased
170 from Research Plus, Inc. We purchased hydrochloric acid (trace metal grade), acetonitrile
171 (Optima grade), and methanol (Optima grade) from Fisher Scientific. We obtained formic
172 acid (LC-MS grade) from Fluka Analytical. We purchased glutamic acid-d₃ from
173 Cambridge Isotopes, 4-hydroxybenzoic acid-d₄ from CDN Isotopes, and sodium
174 taurocholate-d₅ from Toronto Research Chemicals through Fisher Scientific. We used
175 water purified by a Milli-Q system (Millipore; resistivity 18.2 MΩ•cm @ 25 °C, TOC <
176 1 μM) for all cleaning, eluents, and solutions. We combusted all glassware and GF/F
177 filters in an oven at 460°C for at least 5 h. We acid-washed and autoclaved all plasticware

178 before use. We flushed the filter holders and tubing for shipboard filtration with 10% HCl
179 and then Milli-Q water between each sample.

180

181 **Field Sites**

182 We collected samples over the course of two cruises in 2013. Cruise KN210-04
183 (Deep DOM) took place in the western tropical Atlantic from 25 March – 9 May (austral
184 fall), transiting from Montevideo, Uruguay to Bridgetown, Barbados. In the north
185 Atlantic, we collected samples on the second leg of cruise AE1319 transiting from
186 Boothbay Harbor, Maine U.S.A. to Bermuda via the Labrador Sea from 20 August – 11
187 September (boreal late summer – early fall). On KN210-04 we collected samples at
188 depths including 5 m (referred to as the surface), the deep chlorophyll maximum (DCM)
189 determined by fluorescence, 250 m, Antarctic Intermediate Water (AAIW, ~1000 m),
190 North Atlantic Deep Water (NADW, ~2500 m), and Antarctic Bottom Water (AABW,
191 ~5000 m). On cruise AE1319 we collected samples at 5 m, the DCM, Eighteen Degree
192 Mode Water (~350 m, where present), ~1000 m, and 3000 m. See Table S1 for mixed
193 layer, euphotic zone, and DCM depths.

194

195 **Total organic carbon (TOC)**

196 We collected 40 mL samples of unfiltered seawater in combusted glass EPA vials.
197 We acidified the water samples to pH 2-3 with concentrated hydrochloric acid and stored
198 them at 4°C until analysis. We analyzed the samples on a Shimadzu TOC-VCSH total
199 organic carbon analyzer coupled to a TNM-1 analyzer. We ran Milli-Q water blanks and
200 standard curves of potassium hydrogen phthalate and potassium nitrate throughout

201 analysis and made comparisons daily to standards from Prof. D. Hansell (University of
202 Miami).

203

204 **Temperature, salinity, photosynthetically active radiation (PAR), chlorophyll *a*, and**
205 **cell counts**

206 The R/V *Knorr* (KN210-04) was equipped with a SBE9+ CTD with a depth limit of
207 6000 m. We used a SBE3T/SBE4C sensor system to measure temperature and
208 conductivity, a Wet Labs FLNTURTD combination fluorometer and turbidity sensor to
209 detect fluorescence, and a Biospherical QSP-200L underwater PAR sensor. The R/V
210 *Atlantic Explorer* (AE1319) had a SBE 9/11 Plus CTD with a depth limit of 6800 m with
211 a SBE 3+ temperature sensor, a SBE 4C conductivity sensor, and a Biospherical QSP-
212 2350 Scalar PAR sensor. We used a Chelsea Aquatracka II to measure fluorescence. We
213 calibrated fluorescence data from both cruises with direct chlorophyll *a* measurements
214 (according to methods from Arar & Collins (1997) on KN210-04; according to methods
215 from Yentsch and Menzel (1963) on AE1319). Prokaryotic cell counts for cruise KN210-
216 04 were based on epifluorescence microscopy of cells stained with SYBR Green I stain
217 and captured on a 0.02 μm Anodisc filter (for a complete method see Noble and Fuhrman
218 1998).

219

220 **Shipboard sample processing**

221 We collected water (4 L) directly from Niskin bottles into polytetrafluoroethylene
222 (PTFE) or polycarbonate bottles. We filtered water sequentially through a 0.7- μm
223 (nominal pore size) GF/F filter (Whatman) and a 0.2- μm filter (Omnipore, EMD

224 Millipore) using a peristaltic pump. We re-wrapped the GF/F filters in their combusted
225 aluminum foil envelopes and we folded and placed the Omnipore filters into cryogenic
226 vials (Nalgene). We stored filters at -80°C until they could be extracted in the laboratory
227 (next section).

228 We then acidified the filtrate with 4 mL of 12 M HCl (~pH 2-3; Dittmar et al. 2008;
229 Longnecker 2015). We extracted dissolved organic molecules from the filtrate using solid
230 phase extraction (SPE) with a modified styrene-divinylbenzene polymer (Agilent Bond
231 Elut PPL) as a substrate. We first rinsed the PPL cartridges with 6 mL of methanol and
232 then used a vacuum pump to pull the acidified filtrate (4 mL of 12 M HCl added to 4 L of
233 filtrate (~pH 2-3) through the cartridge via PTFE tubing (Dittmar et al. 2008; Longnecker
234 2015). Then we rinsed the cartridge with ~24 mL of 0.01 M HCl and allowed it to dry by
235 pulling air over the cartridge for 5 min. We eluted each sample with 6 mL of methanol
236 into a glass test tube and then transferred it via Pasteur pipette to an 8 mL amber vial. We
237 stored extracts at -20°C until analysis. We created process blanks by carrying shipboard
238 and laboratory Milli-Q water through the entire procedure of filtration and SPE
239 extraction.

240

241 **Laboratory sample processing**

242 We extracted particulate filters within 48 h of mass spectrometry analysis. We
243 adapted the filter extraction protocol (Kido Soule et al. 2015) from Rabinowitz and
244 Kimball (2007). We weighed one half of each filter and cut it into smaller pieces using
245 methanol-rinsed scissors and tweezers on combusted aluminum foil. We placed the
246 pieces in an 8 mL glass amber vial with 1 mL of -20°C extraction solvent (40:40:20

247 acetonitrile:methanol:water + 0.1 M formic acid) and spiked 25 μ L of a 1 μ g/mL
248 deuterated standard mix (glutamic acid-d₃, 4-hydroxybenzoic acid-d₄, taurocholate-d₅)
249 into each sample as an extraction recovery standard. We vortexed each vial gently to
250 separate filter pieces and then sonicated the vials in an ultrasonication bath for 10 min.
251 We transferred the solvent extract with a Pasteur pipette to 1.5 mL Eppendorf centrifuge
252 tubes. We rinsed the filter pieces left in the 8 mL vials with 200 μ L of cold extraction
253 solvent and combined the rinse with the original extract. We spun the extract at 20,000 x
254 g for 5 min to remove cellular detritus and filter particles, and transferred the supernatant
255 to clean 8 mL amber glass vials for neutralization with 26 μ L of 6 M ammonium
256 hydroxide. We removed the solvent by vacufuge until samples were almost completely
257 dry (<5 μ L) and reconstituted the dry extract with either 247.5 μ L 95:5 water:acetonitrile
258 and 2.5 μ L biotin-d₄ (injection standard) for samples collected at the surface or DCM, or
259 123.75 μ L 95:5 water:acetonitrile and 1.25 μ L biotin-d₄ (injection standard) for deeper
260 samples with presumed lower biomass. We loaded 100 μ L of each solution into a glass
261 insert in an autosampler vial. We combined 15 μ L of each sample for matrix-matched
262 quality control during the LC-MS/MS analysis (see next section).

263 For the dissolved metabolites, we brought 1 mL of the SPE extracts (~6 mL total
264 volume) to almost complete dryness in the vacufuge and then reconstituted the samples in
265 495 μ L 95:5 water:acetonitrile and 5 μ L of 5 μ g/mL biotin-d₄ (injection standard). Some
266 dissolved metabolite samples (mostly deep samples, 2000 – 5000 m) required additional
267 dilution due to high-levels of ion suppression in the middle of the chromatogram (see
268 Table S2).

269

270 **Mass spectrometry**

271 We performed the LC-MS/MS analysis on a reversed phase C18 column
272 (Phenomenex Synergi Fusion, 2.1 x 150 mm, 4 μ m) coupled via heated electrospray
273 ionization (ESI) to a triple quadrupole mass spectrometer (Thermo Scientific TSQ
274 Vantage) operated under selected reaction monitoring mode (SRM), as described
275 previously (Kido Soule et al. 2015). We monitored quantification and confirmation SRM
276 transitions for each analyte. Chromatography conditions included a gradient between
277 Eluent A (Milli-Q water with 0.1% formic acid) and Eluent B (acetonitrile with 0.1%
278 formic acid) at 250 μ L / min: hold at 5% B for 2 min; ramp to 65% B for 16 min; ramp to
279 100% B for 7 min and hold for 8 min. We re-equilibrated the column with the starting
280 ratio of eluents for 8.5 min between samples. We separated samples into batches of
281 approximately 50 samples, with a pooled sample comprised of those 50 samples. We
282 conditioned the column with 5 injections of the pooled sample prior to each batch, and
283 we ran a pooled QC sample after every ten samples. These samples indicated that
284 coefficients of variation of metabolite abundance ranged between 8-27% during mass
285 spectrometry analysis.

286

287 **Data processing**

288 We converted the XCalibur RAW files generated by the mass spectrometer to mzML
289 files using msConvert (Chambers et al. 2012). We used MAVEN (Melamud et al. 2010;
290 Clasquin et al. 2012) to select and integrate peaks. We discarded calibration peaks below
291 a MAVEN quality threshold of 0.4 (on a scale of 0-1) and sample peaks below 0.2. To
292 enhance confidence in metabolite identification, we required quantification and

293 confirmation peaks to have retention times within 12 seconds (0.2 minutes) of each other.

294 We required confirmation ions to have a MAVEN quality score of at least 0.1 and a

295 signal-to-noise ratio greater than 1. We required calibration curves to have at least five

296 calibration points, with the highest point at one concentration level above the highest

297 concentration in a sample. There were 9 available calibration points: 0.5 ng mL⁻¹, 1 ng

298 mL⁻¹, 10 ng mL⁻¹, 25 ng mL⁻¹, 50 ng mL⁻¹, 100 ng mL⁻¹, 250 ng mL⁻¹, 500 ng mL⁻¹, 1000

299 ng mL⁻¹. We adjusted particulate metabolite abundances based on ion suppression

300 determined by comparison of a standard spiked pooled sample (1000 ng mL⁻¹ metabolite

301 standard mix in the sample matrix) to a standard spiked Milli-Q water sample (1000 ng

302 mL⁻¹ metabolite standard mix without complex matrix), (see Johnson et al. 2020 for ion

303 suppression values). We normalized metabolite abundances to the volume of seawater

304 filtered. Where noted, we normalized particulate concentrations of metabolites to the total

305 moles of targeted metabolites measured in the sample because this parameter correlated

306 well with available cell counts (see discussion below and Figure S1). We corrected the

307 concentrations of dissolved metabolites with extraction efficiencies greater than 1% on a

308 PPL cartridge (measured concentration divided by the extraction efficiency) to reflect a

309 more accurate estimate of the *in situ* metabolite concentrations (see extraction

310 efficiencies in Johnson et al. 2017). We do not report dissolved metabolites with

311 extraction efficiencies less than 1%.

312

313 **Determination of microbial community composition**

314 We collected different types of microbial community composition data on the

315 southern transect (KN210-04) and the northern transect (AE1319). In the south Atlantic

316 we used small subunit ribosomal RNA (16S or SSU rRNA) gene amplicon sequencing to
317 determine bacterial and archaeal community composition as described in Johnson et al.
318 (2020). In the north Atlantic, we used flow cytometry methods to determine abundances
319 of *Synechococcus*, *Prochlorococcus*, picoeukaryotes, and nanoeukaryotes as described in
320 Lomas et al. (2014).

321

322 **Computation and statistical tools**

323 We used MATLAB (R2014a; MathWorks, Natick, MA) to process data and create
324 figures. We created the map and metabolite profile images with Ocean Data View
325 (Schlitzer 2016). We calculated Spearman's rank correlation coefficients using the R stats
326 package (R Core Team 2015) to examine the relationship between metabolite
327 distributions and microbial community composition. Spearman's rank correlation
328 identifies monotonic relationships but does not require that the relationship be linear. We
329 required that metabolites be present in at least three samples to perform the analysis.
330 When working with the phylogenetic data from cruise KN210-04 we only included the
331 top ten most abundant phyla. We adjusted the p-values from the correlation analysis
332 using the false discovery rate algorithm in the R package q-value (Storey 2002, 2010;
333 Storey and Tibshirani 2003). We considered the resulting adjusted q-values significant at
334 the value permitting the possibility of one false positive for the smaller north Atlantic
335 dataset ($p < 0.06$ particulate metabolites; $p < 0.35$ dissolved metabolites). For the larger
336 south Atlantic dataset we defined the significance cut-off as $p < 0.05$. We defined mixed
337 layer depth as the depth where the decreasing temperature exceeded $0.15 \text{ }^{\circ}\text{C m}^{-1}$ (based

338 upon the continuous CTD downcast) and the euphotic zone depth as the depth at which
339 photosynthetically active radiation (PAR) was 1% of the surface PAR.

340

341 **Results**

342 **Oceanographic transect**

343 We collected samples along a transect encompassing latitudes from 38°S to 55°N and
344 at depths ranging from the surface (5 m) to approximately 5500 m. Surface oceanic
345 regions along this transect included the South Atlantic Gyre (Stations K2, K5, K7, K9),
346 the equatorial region (Stations K12, K15, K16, K19, K21), the Amazon River plume
347 (Station K23), the North Atlantic Gyre (Stations A11, A15), and the Labrador Sea
348 (Stations A4, A7; Figure 1a) facilitating an analysis of metabolite distributions in both
349 productive and oligotrophic regions of the ocean. In addition, we took samples from deep
350 water masses including Antarctic Intermediate Water, North Atlantic Deep Water, and
351 Antarctic Bottom Water (Figure S2). Stations and depths with likely high productivity
352 were identified using chlorophyll *a* concentrations (Figure 1c). These included the deep
353 chlorophyll maximum (DCM) near the equator where there was upwelling of nutrients
354 (station K15) and the highest latitudes sampled in the Labrador Sea (stations A4, A7)
355 where there was a shallow DCM. The total organic carbon (TOC) concentrations, as
356 expected, were maximal in the surface water of the subtropical gyres and decreased with
357 depth (Figure 1b).

358

359 **Data normalization**

360 We report both particulate and dissolved metabolite concentrations per total volume
361 filtered (picomoles per liter, pM). This approach is the most unambiguous way to present
362 the data as concentration units are the standard chemical and geochemical approach to
363 reporting chemical data. Concentration units also facilitate comparisons between the
364 particulate and dissolved distributions. However, as particulate metabolite samples are
365 approximations of the intracellular pool of metabolites, an approach that presents
366 metabolite abundances in relation to cellular biomass is also needed. Other ‘omics fields
367 use approaches such as normalization to housekeeping genes (whose abundances are
368 constant inside cells) to present per-cell variability. Such an approach is not possible here
369 because there is no consensus “housekeeping” metabolite. We considered other
370 oceanographic parameters as proxies for biomass such as chlorophyll *a* concentration or
371 the beam transmittance at 660 nm (from a transmissometer) as a measure of how many
372 particles were in the water. Chlorophyll *a* is problematic because it is only produced by
373 phytoplankton, and its abundance can be affected by physiological changes (Kruskopf
374 and Flynn 2006). The relationship between transmissometer data and prokaryotic cell
375 counts (from SYBR Green staining and counting under an epifluorescence microscope)
376 showed a poor relationship. In this study, we predominantly use pM units, but present
377 some data as the mole fraction where the moles of the metabolite are normalized to the
378 total moles of metabolites measured in the sample. This was selected because there is
379 good agreement between prokaryotic cell abundance and total moles of metabolites
380 measured (Figure S1). As more oceanographic measurements of metabolites become
381 available, best practices in normalization will inevitably emerge.

382

383 **Variability in metabolite detection**

384 Of the 32 metabolites that passed the quality control checks of their calibration curves
385 in the particulate samples, 5 were not detected in any sample. 2,3-Dihydroxybenzoic acid
386 (2,3-DHBA), desthiobiotin, indole 3-acetic acid, and inosine 5'-monophosphate (IMP)
387 were each measured in only one sample preventing assessment of their variability across
388 the full transect. Most of the remaining metabolites were elevated in the upper 200 m of
389 the water column, with DMSP, guanine, and phenylalanine measured in every particulate
390 sample in this depth range. Throughout the full water column, guanine and phenylalanine
391 were measured in all but 3 samples (Table 1).

392 Twenty-six dissolved metabolites passed quality control criteria for their calibration
393 curves and could be extracted using our PPL SPE method (Johnson et al. 2017). Of these,
394 8 were not detected in any samples. In some cases, this may be due to extremely low
395 solid phase extraction efficiencies (i.e., high detection limits). No metabolites were
396 measured in every sample in the dissolved phase. However, phenylalanine was the most
397 prevalent of the dissolved metabolites, detected in 70% of these samples. 4-
398 Aminobenzoic acid (PABA), pantothenic acid (vitamin B₅), and tryptophan were present
399 in most samples from the upper 200 m (Table 2). We examined the relationship between
400 dissolved and particulate metabolites and based on the observed lack of a consistent
401 relationship, we believe that filtration-induced cell leakage did not have a significant
402 impact on our data and its interpretation (Text S1).

403

404 **Microbial taxa abundance**

405 The datasets used to describe the composition of the microbial community were
406 generated with different analytical approaches between the two cruises, and are not
407 directly comparable. For both cruises, flow cytometry provided an assessment of the
408 pigmented phytoplankton, including cyanobacteria *Prochlorococcus* and *Synechococcus*,
409 picoeukaryotes and nanoeukaryotes. In the northern Atlantic (Figure S3),
410 *Prochlorococcus* was numerically the largest of these four groups in the subtropics
411 (Figure S3; stations A11 and A15) and a small component of stations A4 and A7, where
412 *Synechococcus* and picoeukaryotes were most abundant (Baer et al. 2017).
413 *Prochlorococcus* was numerically more abundant in the surface waters of the south and
414 equatorial Atlantic than *Synechococcus*, picoeukaryotes, and nanoeukaryotes (Howard et
415 al. 2017). In the southern and equatorial Atlantic, phytoplankton data were complemented
416 by the prokaryotic community composition based on 16S rRNA gene sequences (Figure
417 S4). Consistent with the literature on pelagic prokaryotic communities (Frias-Lopez et al.
418 2008), Cyanobacteria, Proteobacteria, and Bacteroidetes were the most abundant phyla in
419 the upper 200 m (Figure S4). Cyanobacteria, specifically *Prochlorococcus*, was a more
420 abundant component of the microbial community at the surface, at every station along
421 this transect except for stations A4 and A7. This is consistent with the overall
422 understanding of the distribution of these groups in the ocean (Zubkov et al. 1998; Li and
423 Harrison 2001; Flombaum et al. 2013).
424

425 **Trends in particulate metabolites**

426 Most particulate metabolites were elevated in the upper 200 m of the water column,
427 relative to deeper samples (e.g. Figure 2) and 15 of the 27 quantified metabolites were

428 found more frequently in the upper 200 m than below that depth (Table 1). These results
429 are consistent with expectations based on the higher productivity and more abundant
430 biomass in this zone. For example, guanine, a purine nucleobase required by all living
431 organisms, was measured in nearly all the samples in the transect allowing comparison of
432 its concentrations at all depths. Particulate guanine abundance was relatively high in the
433 surface samples, generally peaking at the DCM, and then was quite low at depth (Figure
434 2a). As an essential component of DNA, guanine is a metabolite that might be
435 hypothesized to co-vary with cell abundance. While the relationship between guanine and
436 proxies of biomass such as prokaryotic cell abundance ($r^2 = 0.61, p < 0.001$) and
437 chlorophyll *a* concentration ($r^2 = 0.62, p < 0.001$) was statistically significant, more study
438 is required before it could be used as a proxy of biomass. When guanine is normalized to
439 the total moles of targeted metabolites measured in a sample, it becomes a major
440 component of the deep samples reaching greater than 70% of the total moles of
441 metabolites in some samples (Figure 2b).

442 To examine relationships between particulate metabolites and the distribution of
443 microbial taxa, we used Spearman's rank correlation coefficients to determine the extent
444 of positive or negative co-variance. In the south and equatorial Atlantic, Cyanobacteria
445 and Actinobacteria had the most significant positive correlations with many of the
446 particulate metabolites, closely followed by Bacteroidetes and Proteobacteria (Figure 3a).
447 Arginine and caffeine had significant positive correlations with other phyla (Figure 3a).
448 In the north Atlantic, we observed a similar trend, wherein nanoeukaryotes,
449 picoeukaryotes, and *Synechococcus* were generally positively correlated with most
450 metabolites and *Prochlorococcus* was negatively correlated with metabolite abundance

451 (Figure 3b). Uracil and adenine were the metabolites most weakly correlated with
452 microbial taxa in both the south and north Atlantic. Additionally, in the south Atlantic
453 biotin, folic acid, and methionine were not significantly correlated with any of the 10
454 most abundant phyla (Figure 3) suggesting that other factors control their distributions.
455 Thus, particulate metabolites fall generally into two groups: 1) those that positively
456 correlate with abundant taxa or 2) those that do not have correlations with specific taxa.

457 Adenosine 5'-monophosphate (AMP) is representative of the distributions seen for
458 metabolites that positively correlated with abundant taxa (Figure 4a) and had a linear (r^2
459 = 0.79, $p < 0.001$) correlation with chlorophyll *a* concentrations (Figure 4b). These
460 metabolites (phenylalanine, tryptophan, inosine, AMP, glutamic acid, 5-
461 methylthioadenosine (MTA), adenosine, DMSP, guanine, glycine betaine) were
462 characterized by elevated concentrations at high latitudes in the north Atlantic, at the
463 DCM at K15 where upwelling was observed, and at the surface of K23 where there was
464 some influence from the Amazon River plume. Relatively low concentrations were
465 measured in the surface at K7, K9, and K12 in the South Atlantic Subtropical Gyre.
466 These metabolites also grouped with the summed total moles of metabolites measured in
467 each sample, indicating that they account for the bulk of the molar abundance of
468 metabolites detected (Figure 3).

469 Below 200 m, the amino acids phenylalanine, tryptophan, (iso)leucine, proline
470 (Figure 5b), and arginine (Figure 5a), and the purine nucleobases guanine and adenine
471 were detected (Table 1). Guanine in particular was found in most deep samples (Figure
472 2). Caffeine was also measured in deep samples and was strongly positively correlated
473 with some of the other deep metabolites (guanine, phenylalanine, tryptophan). Given our

474 limited knowledge of caffeine in the ocean, we cannot constrain whether caffeine's
475 presence is due to production by an organism as a defense compound similar to terrestrial
476 plants (Mithöfer and Boland 2012) or from some other source, but its depth profile is not
477 consistent with ship contamination. Finally, the B vitamins biotin (B₇) and pyridoxine
478 (B₆), were measured below the euphotic zone. Biotin was measured in only a few deep
479 samples while pyridoxine, an essential cofactor in many enzymes associated with amino
480 acid metabolism (Mittenhuber 2001), was more prevalent. It is striking that of all the B
481 vitamins measured, pyridoxine was present at a variety of depths with relatively
482 consistent concentrations, suggesting that this vitamin might be of particular importance
483 to deep sea microbes.

484

485 **Trends in dissolved metabolites**

486 The distributions of dissolved metabolites in the upper 250 m were weakly correlated
487 with prokaryotic taxa in the south Atlantic. This correlation was conducted on all samples
488 down to 250 m to provide enough statistical power to make the comparison and to
489 include data that contrasted with the more productive surface and DCM samples. In the
490 north Atlantic, the dissolved metabolites were positively correlated with either
491 nanoeukaryotes and picoeukaryotes or with *Synechococcus* (Figure 6). While few
492 correlations were significant after a false discovery rate correction, we observed similar
493 trends within the correlations from both the south and north Atlantic, underscoring the
494 potential links between microbial taxa and dissolved metabolites. For example, in the
495 south Atlantic, dissolved PABA and pantothenic acid, had significant positive
496 correlations with Cyanobacteria, likely driven by the abundance of *Prochlorococcus*

497 (Figure 6a). In the north Atlantic, dissolved MTA was positively correlated with both
498 picoeukaryotes and nanoeukaryotes, while pantothenic acid was positively correlated
499 with *Synechococcus*. In the same region, *Prochlorococcus* was generally negatively
500 correlated with the dissolved metabolites, most strongly with riboflavin. These results
501 suggest that some dissolved metabolites are linked to differing taxa across the transect.
502 As the dominant Cyanobacteria genus shifts from *Prochlorococcus* in the south to
503 *Synechococcus* in the north, dissolved pantothenic acid and PABA could be differentially
504 derived from each genus, including in the northernmost samples (stations A4 and A7)
505 where picoeukaryotes are also more abundant (Figure S3). In contrast, dissolved MTA
506 and riboflavin were detected in relatively few samples in the south Atlantic, but were
507 particularly abundant in the northernmost stations of the transect where picoeukaryotes
508 and *Synechococcus* were more abundant than *Prochlorococcus* (Figures 6 and 7).
509

510 **Discussion**

511 **Comparison to previously measured concentrations**

512 Some of the metabolites presented here have been measured previously; in some
513 cases, using similar mass spectrometry-based methods or with other analytical
514 approaches. While the abundances of particulate metabolites are difficult to compare due
515 to the diversity of ways in which molecules are normalized, concentrations of dissolved
516 metabolites can be compared more readily with past values. Of the 18 dissolved
517 metabolites quantified here, 12 have been measured previously in aquatic systems (Table
518 S3). Two B vitamins, biotin (B₇) and riboflavin (B₂), had values of the same order of
519 magnitude as the measurements made by Sañudo-Wilhelmy et al. (2012). A third B

520 vitamin, thiamin (B₁), had an order of magnitude higher concentration than that reported
521 by Sañudo-Wilhelmy et al. (2012), but was only measured in one sample. Thiamin has a
522 low extraction efficiency in the current protocol (2% in seawater; Johnson et al. 2017)
523 and the resulting correction may introduce quantification error. When measured as
524 dissolved free amino acids, (iso)leucine, phenylalanine, and tryptophan display a variety
525 of concentrations ranging from hundreds to thousands of picomolar (Mopper and
526 Lindroth 1982) in the upper 170 m of the Baltic Sea. In our study, concentrations varied
527 from < 10 pM (deep ocean) to hundreds of pM (surface ocean). In short, dissolved
528 metabolite concentrations obtained using this method agreed within an order of
529 magnitude with existing data, where available.

530

531 **Many particulate metabolite distributions in the euphotic zone are linked to**
532 **abundant microbial taxa**

533 In the euphotic zone, many particulate metabolites have fairly similar profiles.
534 Concentrations (Figure 3) differ most likely due to shifts in microbial community
535 composition where members retain relatively constant intracellular concentrations of
536 essential metabolites. For example, guanine (Figure 2) and AMP (Figure 4) were both
537 elevated at the DCM and correlate with chlorophyll *a*. In the south and equatorial
538 Atlantic, the phyla of Cyanobacteria, Actinobacteria, Proteobacteria, and Bacteroidetes
539 positively correlated with particulate guanine, AMP, and other metabolites with similar
540 profiles suggesting that they may be sources of these metabolites and thus have a strong
541 influence on their distributions (Figure 3a). In the north Atlantic, nanoeukaryotes,
542 picoeukaryotes, and *Synechococcus* were generally positively correlated with a similar

543 set of metabolites, while *Prochlorococcus* was negatively correlated with these
544 metabolite abundances (Figure 3b). This is likely a function of which taxa are the most
545 abundant as these taxa will have the greatest impact on essential metabolite
546 concentrations. It is also consistent with biovolume considerations, wherein larger
547 microbes such as the pico- and nanoeukaryotes and *Synechococcus* carry larger
548 metabolite concentrations due to their size, relative to the small *Prochlorococcus*
549 (Kirchman 2008).

550 In contrast, some metabolites were not positively correlate with microbial abundance
551 (Figure 3), including two B vitamins, a number of amino acids, and a nucleobase
552 (adenine) and nucleobase derivatives (xanthine, uracil, caffeine). Adenine, a purine
553 nucleobase, is an example of a metabolite that has weak or negative correlations with the
554 dominant microbial taxa. It is measured in most surface samples, but in relatively few
555 DCM samples compared to metabolites that positively correlate with Cyanobacteria,
556 Proteobacteria and/or pico- and nanoeukaryotes. It is particularly striking that adenine
557 was not detected at the Station K15 DCM where nutrients were being upwelled. In
558 contrast, some of its highest concentrations were measured in the surface at Stations K5
559 and K7 in the oligotrophic South Atlantic Subtropical Gyre. This distinct pattern in
560 particulate adenine distribution may be linked to how microbes respond to nutrient stress.
561 In culture, *Escherichia coli* responds to both carbon and nitrogen starvation by elevating
562 intracellular concentrations of adenine (Brauer et al. 2006). While the mechanism for this
563 increase is not known, intracellular adenine concentrations play a regulatory role by
564 binding to certain riboswitches (reviewed by Winkler and Breaker 2005). There are some
565 exceptions to this trend of particulate adenine concentrations being elevated in

566 oligotrophic samples. In particular, adenine was not detected at Station K9 in the gyre
567 and the greatest adenine abundance was at Station K23 in the Amazon River plume.
568 Thus, particulate adenine concentrations may be driven by something more complex than
569 simply nutrient limitation, such as type or quality of nutrients, and variable species-
570 specific responses. Metabolite distributions that are independent of biomass may
571 highlight subtle and perhaps highly transient differences in metabolic state that are not
572 reflected in more conservatively maintained intracellular metabolites.

573

574 **Variable patterns in the distribution of dissolved metabolites**

575 Not all particulate and dissolved metabolites could be compared because some
576 metabolites are not retained on the PPL polymer used to extract the dissolved metabolites
577 (Johnson et al. 2017). In addition, some dissolved metabolites were not detected in
578 particulate samples. Nevertheless, where data could be compared between particulate and
579 dissolved pools, we observed greater variability in the distribution of dissolved
580 metabolites. In rare cases, such as tryptophan and phenylalanine, the particulate and
581 dissolved abundances appeared to co-vary (phenylalanine, $r^2 = 0.77$; tryptophan, $r^2 =$
582 0.73), implying a direct relationship between intracellular production and subsequent
583 release into the water, as well as a fairly constant rate of removal. More frequently, we
584 observed distinct distributions between the dissolved and particulate pools, and, in some
585 cases, notable differences between the distributions of dissolved metabolites in the
586 northern and southern portions of the transect (Figure 7; Figure 8).

587 For example, PABA and pantothenic acid were positively correlated with
588 Cyanobacteria in the southern portion of the transect and pantothenic acid was positively

589 correlated with *Synechococcus* in the northern portion of the transect (Figure 6). Both
590 PABA and pantothenic acid were particularly elevated in surface samples and measured
591 throughout the transect (Figure 7a), suggesting a common source such as the
592 Cyanobacteria. Due to its high rates of photosynthesis (Hartmann et al. 2014),
593 *Prochlorococcus* can release between 9 and 24% of its initially assimilated inorganic
594 carbon as DOC (Bertilsson et al. 2005). Of that, 4-20% can be low molecular weight
595 carboxylic acids which include molecules like PABA and pantothenic acid (Bertilsson et
596 al. 2005). Functionally, pantothenic acid is synthesized by plants and microbes and is a
597 precursor to coenzyme A and acyl carrier protein. PABA is a precursor to the vitamin
598 folate (Gibson and Pittard 1968). Both of these molecules could be valuable
599 micronutrients within the microbial community. In a recent study identifying auxotrophy
600 in the genomes of host-associated gram negative bacteria, some bacteria were predicted
601 to be auxotrophic for both of these metabolites (Seif et al. 2020). Although there is no
602 current evidence showing auxotrophy for these molecules in marine microbes, sustained
603 environmental presence could provide the right conditions for loss of those biosynthetic
604 pathways in some microbes (D'Souza and Kost 2016).

605 In contrast to PABA and pantothenic acid, riboflavin was more prevalent in the DCM
606 and the northern portion of the transect (Figure 7b). Riboflavin has no correlation with
607 any prokaryotic phyla in the south and equatorial Atlantic. However, in the north
608 Atlantic, while the p-values are not statistically significant, we determined a weak
609 positive correlation with *Synechococcus* and pico/nanoeukaryotes, and a significant
610 negative correlation with *Prochlorococcus* (Figure 6). These correlations suggest that the
611 source of dissolved riboflavin might be eukaryotes rather than Cyanobacteria. Riboflavin

612 is a vitamin that could play a role as a micronutrient within the microbial community.
613 Unlike some other B vitamins, auxotrophy for riboflavin has not been documented to our
614 knowledge. However, it is likely that microbes would assimilate available riboflavin
615 rather than synthesize it *de novo*. In non-marine systems, riboflavin plays other roles such
616 as mimicking quorum sensing molecules (Rajamani et al. 2008) and priming plant
617 defense responses (Zhang et al. 2009). The versatility of this molecule suggests we may
618 not fully understand its role in marine systems.

619 Dissolved MTA had a similar distribution to riboflavin but was detected in fewer
620 samples in the south Atlantic (Figure 8b). Nevertheless, it was detected in many
621 particulate samples in both the north and south Atlantic, indicating an intracellular
622 presence throughout the transect (Figure 8a). This is consistent with our understanding of
623 MTA biochemistry, wherein intracellular excess MTA inhibits the enzymes that produce
624 it, leading to relatively constant internal concentrations (Raina et al. 1982; Parsek et al.
625 1999). The latitudinal profile of particulate MTA shows a similar distribution to the other
626 metabolites linked to the most common prokaryotic phyla along the transect. The highest
627 abundances of particulate MTA are at stations A4, A7, the DCM at K15, and the surface
628 at K23. The particulate MTA abundances were lower, but still elevated, in most DCM
629 samples and in the north Atlantic where it was positively correlated with pico- and nano-
630 eukaryotes (Figure 3; Figure 8a). In contrast, dissolved MTA was only measured in the
631 north Atlantic and at the surface in K23 (Amazon River plume station; Figure 8b).

632 This difference in MTA distributions between particulate and dissolved pools
633 suggests that the intracellular concentration of MTA does not directly determine the
634 dissolved MTA concentration, unlike the aromatic amino acids tryptophan and

635 phenylalanine. In the south Atlantic, dissolved MTA was detected in too few samples to
636 compare to the community composition. In the north Atlantic, like riboflavin, dissolved
637 MTA was positively correlated with pico- and nanoeukaryotes (Figure 6), suggesting that
638 in the dissolved phase MTA might be associated with eukaryotic taxa. Alternatively,
639 while this cannot be determined from this dataset, there could be a more rapid removal
640 process for dissolved MTA in the south Atlantic that maintains the dissolved
641 concentrations below detection. However, a comparison of some representative genomes
642 suggests that the distribution of dissolved MTA could be shaped by differences in a
643 metabolic pathway between taxa. In culture experiments, the Cyanobacterium,
644 *Synechococcus elongatus*, does not release MTA (Fiore et al. 2015) while the
645 heterotrophic bacterium, *Ruegeria pomeroyi*, does (Johnson et al. 2016). According to the
646 KEGG database, *S. elongatus*, and other *Synechococcus* and *Prochlorococcus* species
647 lack the final gene in the methionine salvage pathway through which MTA is recycled
648 back to methionine, providing the possibility that MTA could be further transformed
649 through five additional enzymatic reactions before being released from the cell (Kanehisa
650 and Goto 2000; Kanehisa et al. 2012). In contrast, *R. pomeroyi*, has a truncated
651 methionine salvage pathway with only one additional possible downstream reaction after
652 MTA. This reaction results in a phosphorylated metabolite that would be a costly waste
653 product under low phosphorus conditions (Kanehisa and Goto 2000; Kanehisa et al.
654 2012). This suggests that rather than perform the final phosphorylation reaction, MTA
655 might be released as a waste product as was observed in Johnson et al. (2016). Similarly,
656 the picoeukaryotes *Ostreococcus tauri* and *Micromonas pusilla* also have a truncated
657 methionine salvage pathway that ends with the same phosphorylated metabolite as *R.*

658 *pomeroyi* (Kanehisa and Goto 2000; Kanehisa et al. 2012), suggesting that a higher
659 abundance of picoeukaryotes could result in more dissolved MTA.

660

661 **Particulate metabolites that persist in the deep ocean**

662 The metabolites measured in the deep ocean must either be derived from its unique
663 resident microbial community or be delivered from the surface ocean by sinking
664 particles. Interestingly, in a study that sought to establish a degradation index for
665 particulate organic matter based on amino acid composition, Dauwe et al. (1999) found
666 that threonine, arginine, aspartic acid and glycine increased as a mole percent of total
667 amino acids with increasing organic matter degradation. While we did not quantify
668 threonine, aspartic acid, or glycine in this study, we observed arginine in many deep
669 samples (Figure 5a). While these amino acids are used as part of a degradation index for
670 particulate organic matter (Dauwe et al. 1999), it is unclear whether their increased
671 proportion in deep particulate organic matter is due to *in situ* production or selective
672 preservation on sinking particles. We measured tryptophan and phenylalanine throughout
673 the deep particulate samples. These amino acids are not linked to organic matter
674 degradation according to Dauwe et al. (1999), suggesting that they might be produced by
675 the microbial community at depth. However, data from sinking particles collected at 150
676 m along the south Atlantic transect indicate that phenylalanine and tryptophan are present
677 in these sinking particles all along the transect, while arginine was only detected in ~25%
678 of the sinking particle samples (Johnson et al. 2020) suggesting that phenylalanine and
679 tryptophan could be delivered by sinking particles but that arginine might be generated *in*
680 *situ*.

681 Other particulate metabolites that we might expect to measure in the deep ocean
682 include osmolytes, which are present at high concentrations in the cytosol of cells.
683 However, glycine betaine and glutamic acid, both common osmolytes across all domains
684 of life (Yancey et al. 1982) and present at high concentrations in the upper water column
685 in this study were not detected in the deep ocean. By contrast, guanine and phenylalanine
686 had similar concentrations to glycine betaine and glutamic acid in the euphotic zone, but
687 were also measured in the deep ocean. This suggests that glycine betaine and glutamic
688 acid decrease more quickly than biomass with depth. This may indicate that other
689 molecules are used as osmolytes by deep-sea microbes due to differing requirements of
690 organisms living in the colder, higher pressure waters of the ocean interior. Deep sea
691 invertebrates have been shown to use different osmolytes than surface organisms but, to
692 our knowledge, this has not been examined in marine microbes (Yancey et al. 2002). The
693 amino acid proline also functions as an osmolyte (Burg and Ferraris 2008) and was
694 measured in many deep samples, perhaps indicating a preferential use of this molecule as
695 an osmolyte at high hydrostatic pressure and low temperatures (Figure 5b). In laboratory
696 experiments, proline has been found to increase intracellularly with increasing osmolarity
697 in *Bacillus subtilis* (Brill et al. 2011) and in *Sulfurimonas denitrificans* (Götz et al. 2018).
698 While *S. denitrificans* was isolated from a tidal mudflat, other species in this genus have
699 been found around hydrothermal vents in the deep ocean (Götz et al. 2018). It has not
700 been widely characterized in studies of marine amino acid distributions, but recent work
701 found that L-proline comprised 46% of the total (free and hydrolysable) amino acids in
702 bacterial-sized particles (0.2 μ m - 1.2 μ m; Takasu and Nagata 2015). These studies
703 support the idea that proline may be a substantial component of the cytosol of some cells

704 in marine environments, including in the deep ocean. In the surface ocean osmolytes like
705 DMSP are important sources of organic carbon that support heterotrophic growth, and it
706 is possible that molecules such as proline may serve a similar function for deep ocean
707 heterotrophs.

708

709 Conclusion

710 By simultaneously measuring a suite of metabolites in a variety of oceanic regions
711 and depths, we have developed a better understanding of metabolite variability in the
712 ocean. We found that a group of metabolites remains constant relative to biomass,
713 specifically associated with Cyanobacteria, Proteobacteria and/or eukaryote abundances,
714 while other metabolites exhibited distinct distributions. Metabolites that deviated from
715 biomass include nucleic acids, B vitamins, amino acids, and a variety of metabolic
716 intermediates. While in many cases these metabolites have been studied in a biomedical
717 context or in a model organism and their function in the cell is known, surprisingly little
718 is known about how these molecules respond to environmental cues or their specificity
719 within certain species (particularly in the ocean). This creates challenges in interpreting
720 these data in the environment. There are surprises, such as the finding that particulate
721 adenine was distributed in way that is not linked to abundant prokaryotic taxa, that
722 dissolved metabolites like PABA and pantothenic acid might be linked to Cyanobacterial
723 abundance while MTA and riboflavin appeared linked to pico- and nanoeukaryotes, and
724 that proline was a prevalent amino acid in the deep sea. This dataset provides a context
725 for future marine metabolomics work to constrain the ways in which specific metabolites
726 may act as currencies that link diverse groups of microbes. Integrating metabolomics

727 datasets with other omics datasets in the context of environmental parameters will allow
728 further testing of hypotheses proposed here. In addition, controlled culture experiments
729 can continue to expand our understanding of how metabolites respond to the
730 environment, and additional field studies will complete the picture of metabolite
731 distributions in other ocean regions. As this understanding is expanded, the mechanisms
732 that control the flux of these metabolites through the marine food web and carbon cycle
733 may be clarified and more accurately predicted.

734

735 **Acknowledgments**

736 Funding for this work came from a National Science Foundation grant (Grant
737 OCE-1154320 to EBK and KL). The instruments in the WHOI FT-MS Facility were
738 purchased with support from the GBMF and NSF. Support for WMJ was provided by a
739 National Defense Science and Engineering Fellowship. We thank the captains and crew
740 of the R/V *Knorr* and the R/V *Atlantic Explorer*, Catherine Carmichael, Gwenn Hennon
741 (Chl *a* calibration on KN210-04), and Erin Eggleston (prokaryotic cell counts on KN210-
742 04) for helping to make this dataset possible. Targeted metabolomics datasets have been
743 archived with MetaboLights (study # MTBLS1752). Sequencing was performed under
744 the auspices of the US Department of Energy (DOE) JGI Community Science Program
745 (CSP) project (CSP 1685) supported by the Office of Science of US DOE Contract DE-
746 AC02- 05CH11231. Additional work related to sample collection and processing was
747 supported by the G. Unger Vetlesen and Ambrose Monell Foundations, the Natural
748 Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institute
749 for Advanced Study (CIFAR) and the Canada Foundation for Innovation through grants

750 awarded to SJH. MPB was supported by a CIFAR Global Scholarship and NSERC

751 postdoctoral fellowship.

752

753

754 **References**

755

756 Aluwihare, L., D. Repeta, and R. Chen. 1997. A major biopolymeric component to
757 dissolved organic carbon in surface sea water. *Nature* **387**: 166–169.

758 Ankrah, N. Y. D., A. L. May, J. L. Middleton, and others. 2014. Phage infection of an
759 environmentally relevant marine bacterium alters host metabolism and lysate
760 composition. *ISME J.* **8**: 1089–1100. doi:10.1038/ismej.2013.216

761 Arar, E. J., and G. B. Collins. 1997. Method 445.0: *In vitro* determination of chlorophyll
762 *a* and pheophytin *a* in marine and freshwater algae by fluorescence.

763 Barak-Gavish, N., M. J. Frada, P. A. Lee, and others. 2018. Bacterial virulence against an
764 oceanic bloom-forming phytoplankton is mediated by algal DMSP. 1–38.

765 Bertilsson, S., O. Berglund, M. J. Pullin, and S. W. Chisholm. 2005. Release of dissolved
766 organic matter by Prochlorococcus. *Vie Milieu* **55**: 225–231.
767 doi:10.4319/lo.2007.52.2.0798

768 Brauer, M. J., J. Yuan, B. D. Bennett, W. Lu, E. Kimball, D. Botstein, and J. D.
769 Rabinowitz. 2006. Conservation of the metabolomic response to starvation across
770 two divergent microbes. *Proc. Natl. Acad. Sci. U. S. A.* **103**: 19302–19307.
771 doi:10.1073/pnas.0609508103

772 Brill, J., T. Hoffmann, M. Bleisteiner, and E. Bremer. 2011. Osmotically controlled
773 synthesis of the compatible solute proline is critical for cellular defense of *Bacillus*
774 *subtilis* against high osmolarity. *J. Bacteriol.* **193**: 5335–5346.
775 doi:10.1128/JB.05490-11

776 Burg, M. B., and J. D. Ferraris. 2008. Intracellular organic osmolytes: Function and
777 regulation. *J. Biol. Chem.* **283**: 7309–7313. doi:10.1074/jbc.R700042200

778 Carini, P., E. O. Campbell, J. Morré, and others. 2014. Discovery of a SAR11 growth
779 requirement for thiamin's pyrimidine precursor and its distribution in the Sargasso
780 Sea. *ISME J.* **8**: 1727–38. doi:10.1038/ismej.2014.61

781 Carlson, C. A., and D. A. Hansell. 2015. DOM sources, sinks, reactivity, and budgets, p.
782 65–102. *In* D.A. Hansell and C.A. Carlson [eds.], *Biogeochemistry of marine*
783 *dissolved organic matter*. Elsevier.

784 Chambers, M. C., B. Maclean, R. Burke, and others. 2012. A cross-platform toolkit for
785 mass spectrometry and proteomics. *Nat. Biotechnol.* **30**: 918–920.
786 doi:10.1038/nbt.2377

787 Clasquin, M. F., E. Melamud, and J. D. Rabinowitz. 2012. LC-MS data processing with
788 MAVEN: A metabolomic analysis and visualization engine. *Curr. Protoc.*
789 *Bioinforma.* **37**: 1–23. doi:10.1002/0471250953.bi1411s37

790 Croft, M. T., M. J. Warren, and A. G. Smith. 2006. Algae need their vitamins. *Eukaryot.*
791 *Cell* **5**: 1175–1183. doi:10.1128/EC.00097-06

792 D'Souza, G., and C. Kost. 2016. Experimental evolution of metabolic dependency in
793 bacteria. *PLOS Genet.* **12**: 1–27. doi:10.1371/journal.pgen.1000953

794 Dauwe, B., J. J. Middelburg, P. M. J. Herman, and C. H. R. Heip. 1999. Linking
795 diagenetic alteration of amino acids and bulk organic matter reactivity. *Limnol.*
796 *Oceanogr.* **44**: 1809–1814. doi:10.1128/EC.00097-06

797 Dittmar, T., B. Koch, N. Hertkorn, and G. Kattner. 2008. A simple and efficient method
798 for the solid-phase extraction of dissolved organic matter (SPE-DOM) from
799 seawater. *Limnol. Oceanogr. Methods* **6**: 230–235. doi:10.1128/EC.00097-06

800 Dittmar, T., and B. P. Koch. 2006. Thermogenic organic matter dissolved in the abyssal
801 ocean. *Mar. Chem.* **102**: 208–217. doi:10.1016/j.marchem.2006.04.003

802 Ducklow, H. W. 1999. Minireview: The bacterial content of the oceanic euphotic zone.
803 *FEMS Microbiol.* **30**: 1–10. doi:10.1016/S0168-6496(99)00031-8

804 Fiehn, O. 2002. Metabolomics—the link between genotypes and phenotypes. *Plant Mol.*
805 *Biol.* **48**: 155–71.

806 Fiore, C. L., K. Longnecker, M. C. Kido Soule, and E. B. Kujawinski. 2015. Release of
807 ecologically relevant metabolites by the cyanobacterium, *Synechococcus elongatus*
808 CCMP 1631. *Environ. Microbiol.* **17**: 3949–3963. doi:10.1111/1462-2920.12899

809 Flombaum, P., J. L. Gallegos, R. A. Gordillo, and others. 2013. Present and future global
810 distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus.
811 *Proc. Natl. Acad. Sci. U. S. A.* **110**: 9824–9829. doi:10.1073/pnas.1307701110

812 Frias-Lopez, J., Y. Shi, G. W. Tyson, M. L. Coleman, S. C. Schuster, S. W. Chisholm,
813 and E. F. Delong. 2008. Microbial community gene expression in ocean surface
814 waters. *Proc. Natl. Acad. Sci. U. S. A.* **105**: 3805–10. doi:10.1073/pnas.0708897105

815 Gebser, B., and G. Pohnert. 2013. Synchronized regulation of different zwitterionic
816 metabolites in the osmoadaptation of phytoplankton. *Mar. Drugs* **11**: 2168–2182.
817 doi:10.3390/MD11062168

818 Gibson, F., and J. Pittard. 1968. Pathways of biosynthesis of aromatic amino acids and
819 vitamins and their control in microorganisms. *Bacteriol. Rev.* **32**: 465–492.

820 Götz, F., K. Longnecker, M. C. Kido Soule, K. W. Becker, J. Mcnichol, E. B.
821 Kujawinski, and S. M. Sievert. 2018. Targeted metabolomics reveals proline as a
822 major osmolyte in the chemolithoautotroph *Sulfurimonas denitrificans*.
823 *Microbiologyopen* 1–7. doi:10.1002/mbo3.586

824 Hansell, D. A., C. A. Carlson, D. J. Repeta, R. Schlitzer, and I. N. Insights. 2009.
825 Dissolved organic matter in the ocean. *Oceanography* **22**: 202–211.

826 Hertkorn, N., R. Benner, M. Frommberger, P. Schmitt-Kopplin, M. Witt, K. Kaiser, A.
827 Kettrup, and J. I. Hedges. 2006. Characterization of a major refractory component of
828 marine dissolved organic matter. *Geochim. Cosmochim. Acta* **70**: 2990–3010.
829 doi:10.1016/j.gca.2006.03.021

830 Howard, E. M., C. A. Durkin, G. M. M. Hennon, F. Ribalet, and R. H. R. Stanley. 2017.
831 Biological production, export efficiency, and phytoplankton communities across
832 8000 km of the South Atlantic. *Global Biogeochem. Cycles* **31**: 1066–1088.
833 doi:10.1002/2016GB005488

834 Johnson, W. M., M. C. Kido Soule, and E. B. Kujawinski. 2016. Evidence for quorum
835 sensing and differential metabolite production by a marine bacterium in response to
836 DMSP. *ISME J.* **10**: 2304–2316. doi:10.1038/ismej.2016.6

837 Johnson, W. M., M. C. Kido Soule, and E. B. Kujawinski. 2017. Extraction efficiency
838 and quantification of dissolved metabolites in targeted marine metabolomics.
839 *Limnol. Oceanogr. Methods* **15**: 417–428. doi:10.1002/lom3.10181

840 Johnson, W. M., K. Longnecker, M. C. Kido Soule, W. A. Arnold, M. P. Bhatia, S. J.
841 Hallam, B. A. S. Van Mooy, and E. B. Kujawinski. 2020. Metabolite composition of
842 sinking particles differs from surface suspended particles across a latitudinal transect
843 in the South Atlantic. *Limnol. Oceanogr.* **65**: 111–127. doi:10.1002/lno.11255

844 Kaiser, K., and R. Benner. 2009. Biochemical composition and size distribution of
845 organic matter at the Pacific and Atlantic time-series stations. *Mar. Chem.* **113**: 63–

846 77. doi:10.1016/j.marchem.2008.12.004
847 Kanehisa, M., and S. Goto. 2000. KEGG: kyoto encyclopedia of genes and genomes.
848 Nucleic Acids Res. **28**: 27–30.
849 Kanehisa, M., S. Goto, Y. Sato, M. Furumichi, and M. Tanabe. 2012. KEGG for
850 integration and interpretation of large-scale molecular data sets. Nucleic Acids Res.
851 **40**: D109–D114. doi:10.1093/nar/gkr988
852 Kido Soule, M. C., K. Longnecker, W. M. Johnson, and E. B. Kujawinski. 2015.
853 Environmental metabolomics: Analytical strategies. Mar. Chem. **177**: 374–387.
854 doi:10.1016/j.marchem.2015.06.029
855 Kiene, R. P., L. J. Linn, and J. a. Bruton. 2000. New and important roles for DMSP in
856 marine microbial communities. J. Sea Res. **43**: 209–224. doi:10.1016/S1385-
857 1101(00)00023-X
858 Kirchman, D. L. 2008. Introduction and overview, p. 1–26. In D.L. Kirchman [ed.],
859 Microbial Ecology of the Oceans. Wiley-Blackwell.
860 Kruskopf, M., and K. J. Flynn. 2006. Chlorophyll content and fluorescence responses
861 cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth
862 rate. New Phytol. **169**: 525–536. doi:10.1111/j.1469-8137.2005.01601.x
863 Kujawinski, E. B. 2011. The impact of microbial metabolism on marine dissolved
864 organic matter. Ann. Rev. Mar. Sci. **3**: 567–99. doi:10.1146/annurev-marine-
865 120308-081003
866 Kujawinski, E. B., K. Longnecker, H. Alexander, S. T. Dyhrman, C. L. Fiore, S. T.
867 Haley, and W. M. Johnson. 2017. Phosphorus availability regulates intracellular
868 nucleotides in marine eukaryotic phytoplankton. Limnol. Oceanogr. Lett. **2**: 119–
869 129. doi:10.1002/lo2.10043
870 Kujawinski, E. B., R. Del Vecchio, N. V. Blough, G. C. Klein, and A. G. Marshall. 2004.
871 Probing molecular-level transformations of dissolved organic matter: Insights on
872 photochemical degradation and protozoan modification of DOM from electrospray
873 ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar.
874 Chem. **92**: 23–37. doi:10.1016/j.marchem.2004.06.038
875 Lesser, M. P. 2006. Oxidative stress in marine environments: Biochemistry and
876 physiological ecology. Annu. Rev. Physiol. **68**: 253–278.
877 doi:10.1146/annurev.physiol.68.040104.110001
878 Li, W. K. W., and W. G. Harrison. 2001. Chlorophyll, bacteria and picophytoplankton in
879 ecological provinces of the North Atlantic. Deep. Res. Part II Top. Stud. Oceanogr.
880 **48**: 2271–2293. doi:10.1016/S0967-0645(00)00180-6
881 Lomas, M. W., J. A. Bonachela, S. A. Levin, and A. C. Martiny. 2014. Impact of ocean
882 phytoplankton diversity on phosphate uptake. Proc. Natl. Acad. Sci. U. S. A. **111**:
883 17540–17545. doi:10.1073/pnas.1420760111
884 Longnecker, K., M. C. Kido Soule, and E. B. Kujawinski. 2015. Dissolved organic matter
885 produced by *Thalassiosira pseudonana*. Mar. Chem. **168**: 114–123.
886 doi:10.1016/j.marchem.2014.11.003
887 McCarthy, M., J. Hedges, and R. Benner. 1996. Major biochemical composition of
888 dissolved high molecular weight organic matter in seawater. Mar. Chem. **55**: 281–
889 297. doi:10.1016/S0304-4203(96)00041-2
890 Melamud, E., L. Vastag, and J. D. Rabinowitz. 2010. Metabolomic analysis and
891 visualization engine for LC-MS data. Anal. Chem. **82**: 9818–9826.

892 Mittenhuber, G. 2001. Phylogenetic analyses and comparative genomics of vitamin B6
893 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. *J. Mol. Microbiol.*
894 *Biotechnol.* **3**: 1–20.

895 Mopper, K., and P. Lindroth. 1982. Diel and depth variations in dissolved free amino
896 acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis.
897 *Limnol. Oceanogr.* **27**: 336–347. doi:10.4319/lo.1982.27.2.0336

898 Moran, M. A., E. B. Kujawinski, A. Stubbins, and others. 2016. Deciphering ocean
899 carbon in a changing world. *Proc. Natl. Acad. Sci. U. S. A.* **113**: 3143–3151.
900 doi:10.1073/pnas.1514645113

901 Noble, R. T., and J. A. Fuhrman. 1998. Use of SYBR Green I for rapid epifluorescence
902 counts of marine viruses and bacteria. *Aquat. Microb. Ecol.* **14**: 113–118.
903 doi:10.3354/ame014113

904 Parsek, M. R., D. L. Val, B. L. Hanzelka, J. E. Cronan, and E. P. Greenberg. 1999. Acyl
905 homoserine-lactone quorum-sensing signal generation. *Proc. Natl. Acad. Sci. U. S.*
906 **A.** **96**: 4360–5. doi:10.1073/pnas.96.8.4360

907 Paul, C., M. A. Mausz, and G. Pohnert. 2012. A co-culturing/metabolomics approach to
908 investigate chemically mediated interactions of planktonic organisms reveals
909 influence of bacteria on diatom metabolism. *Metabolomics* **9**: 349–359.
910 doi:10.1007/s11306-012-0453-1

911 Pohnert, G. 2000. Wound-activated chemical defense in a unicellular planktonic algae.
912 *Angew. Chemie Int. Ed.* **30**: 4352–4354.

913 R Core Team. 2015. R: A language and environment for statistical computing.

914 Rabinowitz, J. D., and E. Kimball. 2007. Acidic acetonitrile for cellular metabolome
915 extraction from *Escherichia coli*. *Anal. Chem.* **79**: 6167–6173.

916 Raina, A., K. Tuomi, and R. L. Pajula. 1982. Inhibition of the synthesis of polyamines
917 and macromolecules by 5'-methylthioadenosine and 5'-alkylthiotubercidins in
918 BHK21 cells. *Biochem. J.* **204**: 697–703.

919 Rajamani, S., W. D. Bauer, J. B. Robinson, and others. 2008. The vitamin riboflavin and
920 its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. *Mol.*
921 *plant-microbe Interact.* **21**: 1184–92. doi:10.1094/MPMI-21-9-1184

922 Rich, J., M. Gosselin, E. Sherr, B. Sherr, and D. L. Kirchman. 1997. High bacterial
923 production, uptake and concentrations of dissolved organic matter in the Central
924 Arctic Ocean. *Deep. Res. Part II Top. Stud. Oceanogr.* **44**: 1645–1663.
925 doi:10.1016/S0967-0645(97)00058-1

926 Sañudo-Wilhelmy, S. A., L. S. Cutter, R. Durazo, and others. 2012. Multiple B-vitamin
927 depletion in large areas of the coastal ocean. *Proc. Natl. Acad. Sci. U. S. A.* **109**:
928 14041–5. doi:10.1073/pnas.1208755109

929 Schlitzer, R. 2016. Ocean Data View.

930 Seif, Y., K. Sonal, Y. Hefner, A. Anand, and L. Yang. 2020. Metabolic and genetic basis
931 for auxotrophies in Gram-negative species. *Proc. Natl. Acad. Sci.*
932 doi:10.1073/pnas.1910499117

933 Seyedsayamdst, M. R., R. J. Case, R. Kolter, and J. Clardy. 2011. The Jekyll-and-Hyde
934 chemistry of *Phaeobacter gallaeciensis*. *Nat. Chem.* **3**: 331–335.
935 doi:10.1038/nchem.1002

936 Søndergaard, M., P. J. le B. Williams, G. Cauvet, B. Riemann, C. Robinson, S. Terzic, E.
937 M. S. Woodward, and J. Worm. 2000. Net accumulation and flux of dissolved

938 organic carbon and dissolved organic nitrogen in marine plankton communities.
939 Limnol. Oceanogr. **45**: 1097–1111.

940 Storey, J. D. 2002. A direct approach to false discovery rates. J. R. Stat. Soc. B **64**: 479–
941 498. doi:10.1073/pnas.81.19.5921

942 Storey, J. D. 2010. False Discovery Rates Multiple Hypothesis Testing. 1–7.

943 Storey, J. D., and R. Tibshirani. 2003. Statistical significance for genomewide studies.
944 Proc. Natl. Acad. Sci. U. S. A. **100**: 9440–9445. doi:10.1073/pnas.1530509100

945 Takasu, H., and T. Nagata. 2015. High proline content of bacteria-sized particles in the
946 Western North Pacific and its potential as a new biogeochemical indicator of organic
947 matter diagenesis. Front. Mar. Sci. **2**: 110. doi:10.3389/fmars.2015.00110

948 Thompson, P. A., M. X. Guo, P. J. Harrison, and J. N. C. Whyte. 1992. Effects of
949 variation in temperature. II. On the fatty-acid composition of eight species of marine
950 phytoplankton. J. Phycol. **28**: 488–497. doi:10.1111/j.0022-3646.1992.00488.x

951 Winkler, W. C., and R. R. Breaker. 2005. Regulation of Bacterial Gene Expression By
952 Riboswitches. Annu. Rev. Microbiol. **59**: 487–517.
953 doi:doi:10.1146/annurev.micro.59.030804.121336

954 Yancey, P. H., W. R. Blake, and J. Conley. 2002. Unusual organic osmolytes in deep-sea
955 animals: Adaptations to hydrostatic pressure and other perturbants. Comp. Biochem.
956 Physiol. Part A **133**: 667–676. doi:10.1016/S1095-6433(02)00182-4

957 Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero. 1982. Classes
958 of intracellular osmolyte systems and their distributions living with water stress:
959 Evolution of osmolyte systems. Science (80-.). **217**: 1214–1222.
960 doi:10.1126/science.7112124

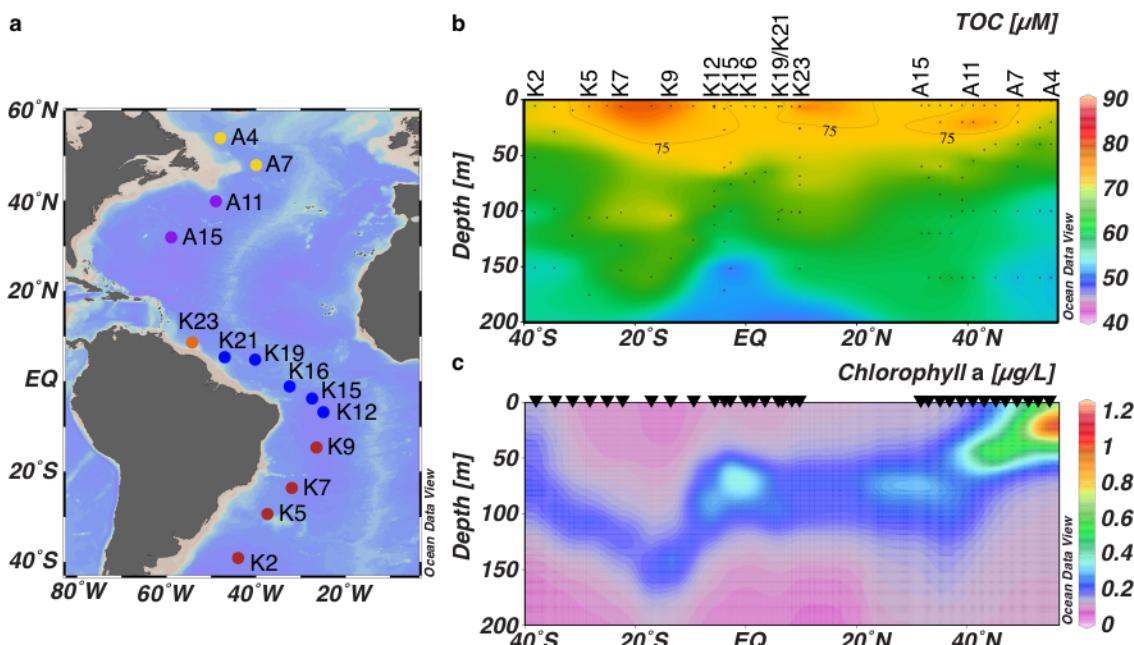
961 Yentsch, C. S., and D. W. Menzel. 1963. A method for the determination of
962 phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res.
963 Oceanogr. Abstr. **10**: 221–231. doi:10.1016/0011-7471(63)90358-9

964 Zhang, S., X. Yang, M. Sun, F. Sun, S. Deng, and H. Dong. 2009. Riboflavin-induced
965 priming for pathogen defense in *Arabidopsis thaliana*. J. Integr. Plant Biol. **51**: 167–
966 174. doi:10.1111/j.1744-7909.2008.00763.x

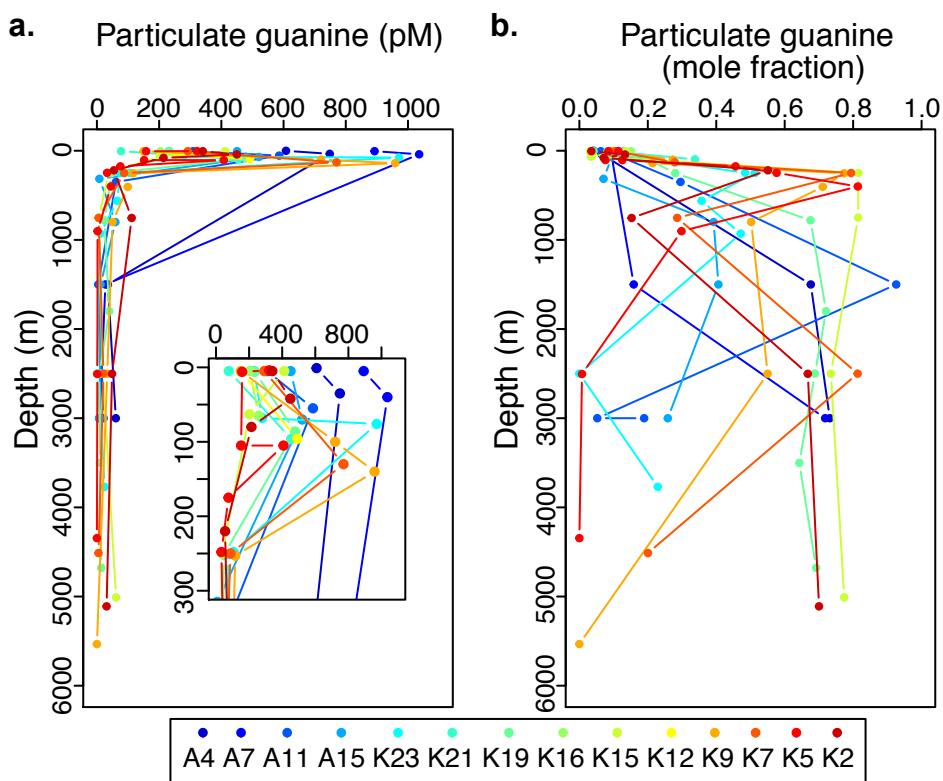
967 Zubkov, M. V., M. A. Sleigh, G. A. Tarhan, P. H. Burkhill, and R. J. G. Leakey. 1998.
968 Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S.
969 Deep. Res. Part I Oceanogr. Res. Pap. **45**: 1339–1355. doi:10.1016/S0967-
970 0637(98)00015-6

971

972 **Table 1.** Range of particulate concentrations of each metabolite and prevalence in
973 samples. Minimum concentration is the lowest value in a sample where the metabolite
974 was detected. ^aPicomoles of particulate metabolite per liter filtered. Values with a “<”
975 symbol indicate the detection limit of the metabolite as the metabolite was not detected in
976 any sample. ^bIsoleucine and leucine cannot be separated chromatographically and thus
977 their combined concentrations are reported as (iso)leucine.

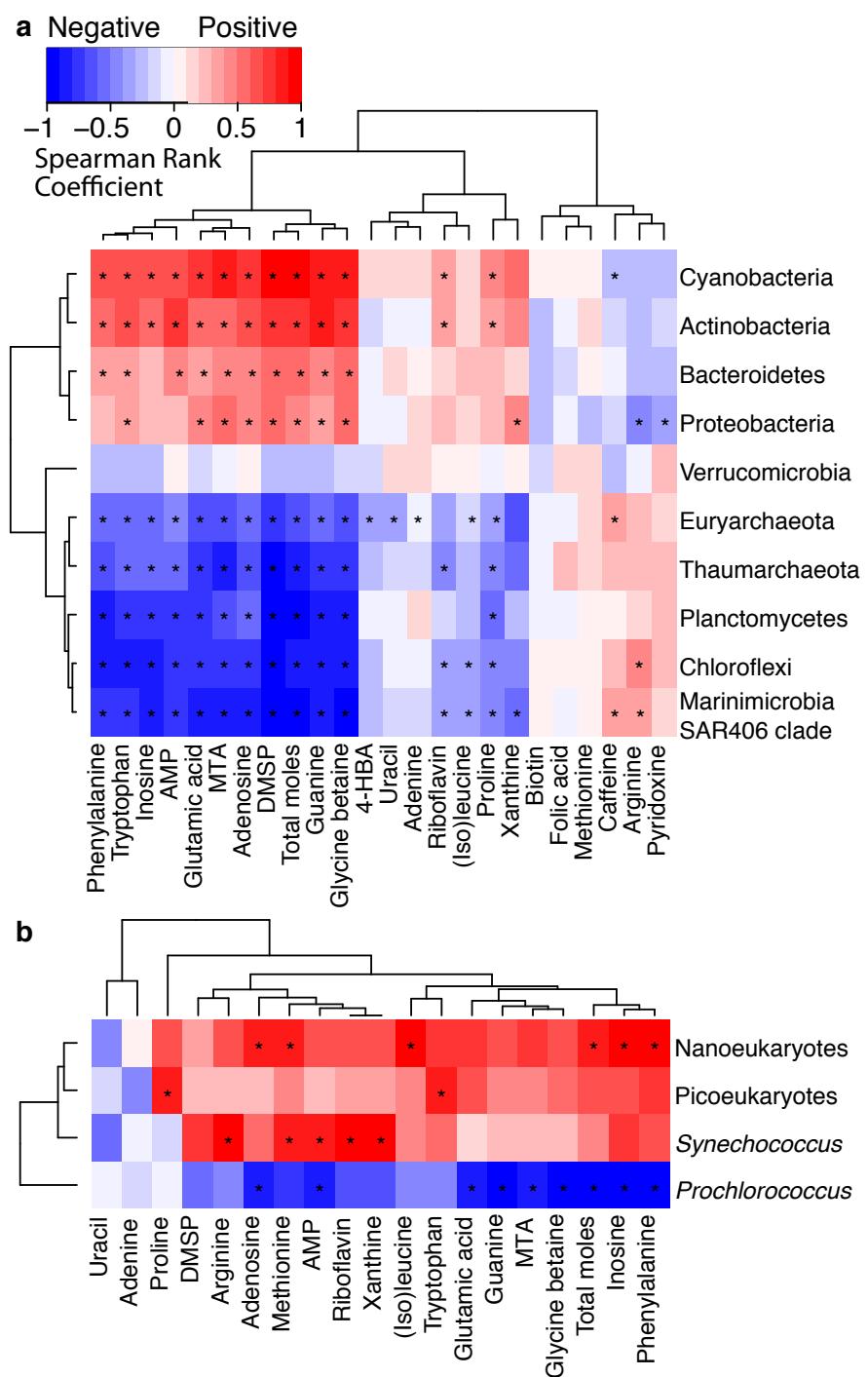

Compound	Abbreviation	Min ^a pM (>0)	Max ^a pM	# of samples <200m (n=34)	# of samples >200m (n=46)
2,3-Dihydroxybenzoic acid	2,3-DHBA	1.6	1.6	1	0
3-Mercaptopropionate		< 12	< 12	0	0
4-Aminobenzoic acid	PABA	< 0.6	< 0.6	0	0
4-Hydroxybenzoic acid	4-HBA	0.9	4.4	2	2
5-Methylthioadenosine	MTA	0.1	1.0	29	2
Adenine		0.6	22	11	21
Adenosine		0.09	85	29	17
Adenosine 5'-monophosphate	AMP	0.07	98	30	25
Arginine		2.4	46	9	22
Biotin (vitamin B ₇)		0.03	1.0	4	5
Caffeine		0.02	4.2	12	34
Cytosine		< 2.2	<2.2	0	0
Desthiobiotin		0.3	0.3	1	0
Dimethylsulfonylpropionate	DMSP	13	6200	34	8
Folic acid		0.2	0.8	2	2
Glutamic acid		61	9800	28	7
Guanine		1.3	1000	34	43
Glycine betaine		8.1	1300	33	7
Indole 3-acetic acid		0.2	0.2	1	0
Inosine 5'-monophosphate	IMP	0.9	0.9	1	0
Inosine		0.04	18	27	14
(Iso)leucine ^b		0.3	41	22	20
Methionine		1.5	39	4	2
<i>N</i> -acetyl glucosamine		< 9	< 9	0	0
Pantothenic acid (vitamin B ₅)		< 6.7	<6.7	0	0
Phenylalanine		0.05	58	34	43
Proline		0.2	110	23	25
Pyridoxine (vitamin B ₆)		0.1	2	8	20
Riboflavin (vitamin B ₂)		0.003	0.7	13	1
Tryptophan		0.02	20	33	32
Uracil		7.4	400	8	5
Xanthine		0.2	29	21	5

978

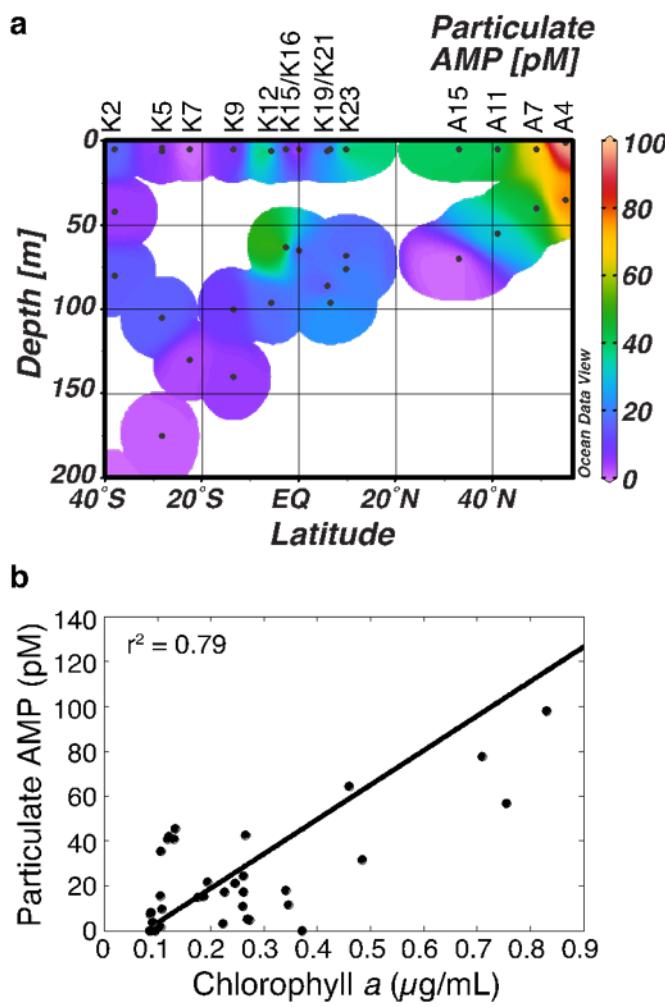

979 **Table 2.** Range of dissolved concentrations of each metabolite and prevalence in
980 samples. Minimum concentration is the lowest value in a sample where the metabolite
981 was detected. Values with a “<” symbol indicate the detection limit of the metabolite as
982 the metabolite was not detected in any sample.

Compound	Abbreviation	Min (pM) (>0)	Max (pM)	# of samples <200m (n=26)	# of samples >200m (n=28)
2,3-Dihydroxybenzoic acid	2,3-DHBA	4.2	9.9	3	0
3-Mercaptopropionic acid		< 78	< 78	0	0
4-Aminobenzoic acid	PABA	16	51	25	0
4-Hydroxybenzoic acid	4-HBA	15	61	7	0
5-Methylthioadenosine	MTA	1.1	2.6	9	0
Adenosine		< 123	< 123	0	0
Biotin		3.5	26	6	2
Caffeine		2.6	8.7	12	4
Chitotriose		12	130	7	1
Cyanocobalamin		< 0.8	< 0.8	0	0
Desthiobiotin		27	27	1	0
Folic acid		< 0.7	< 0.7	0	0
Indole 3-acetic acid		5.7	5.7	1	0
Inosine		16	29	2	0
(Iso)leucine		90	230	4	0
<i>N</i> -Acetylglutamic acid		220	600	1	1
Nicotinamide adenine dinucleotide	NAD	56	56	1	0
Pantothenic acid		1.0	19	22	0
Phenylalanine		2.2	290	26	12
Pyridoxine		< 236	< 236	0	0
Riboflavin		0.7	12	10	7
<i>S</i> -(5'-Adenosyl)-L- homocysteine		< 72	< 72	0	0
Taurocholic acid		< 5	< 5	0	0
Thiamin		4000	4000	1	0
Thymidine		< 123	< 123	0	0
Tryptophan		20	190	18	1

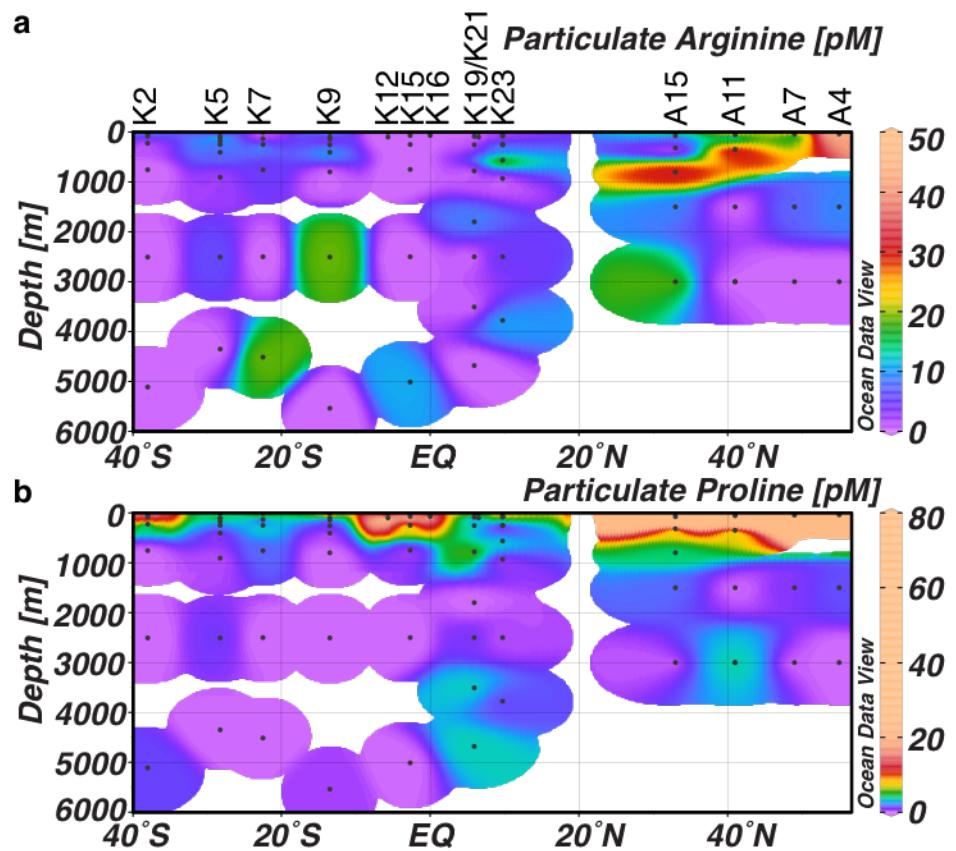
983
984



985
986 **Figure 1.** Transect stations and chemical parameters. (a) Stations sampled along a
987 latitudinal transect in the western Atlantic Ocean. Dots colored by region: red, South
988 Atlantic Gyre; blue, equatorial region; orange, Amazon plume; purple, North Atlantic
989 Gyre; yellow, Labrador Sea. (b) The total organic carbon (TOC) concentration in the top
990 200 m along the transect. Black dots indicate sample locations. (c) Chlorophyll *a*
991 concentrations in the top 200 m along the transect. Triangles indicate locations of CTD
992 casts where fluorescence was measured.
993

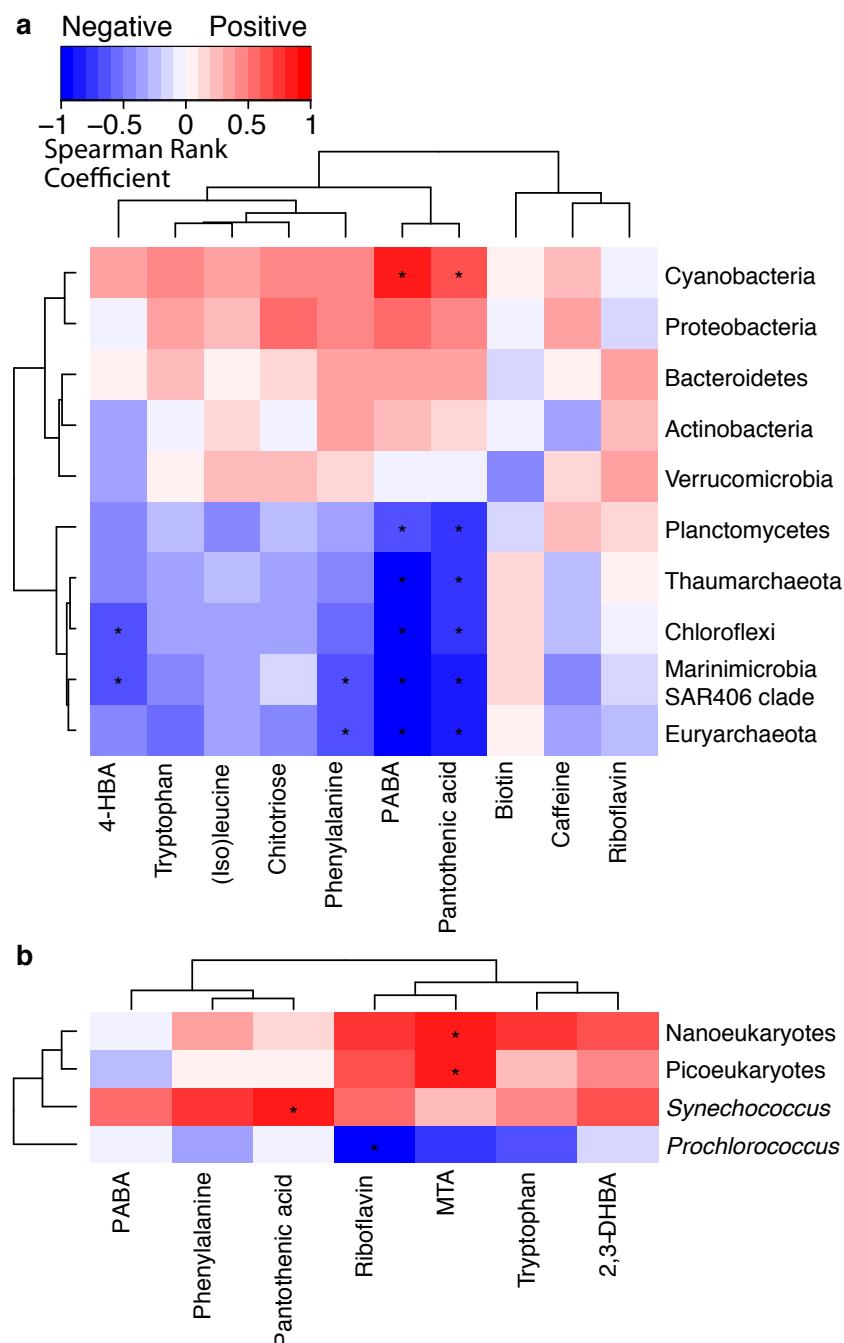

994

995 **Figure 2.** Particulate guanine abundance with depth. (a) Picoles particulate guanine
996 normalized to liter of seawater sampled, profiled by depth for each station. Cut-out shows
997 the top 300 m of the water column in more detail. (b) Moles of guanine normalized to
998 total moles targeted metabolites, profiled by depth for each station. Stations are indicated
999 by different symbol colors, as shown in the legend.
1000

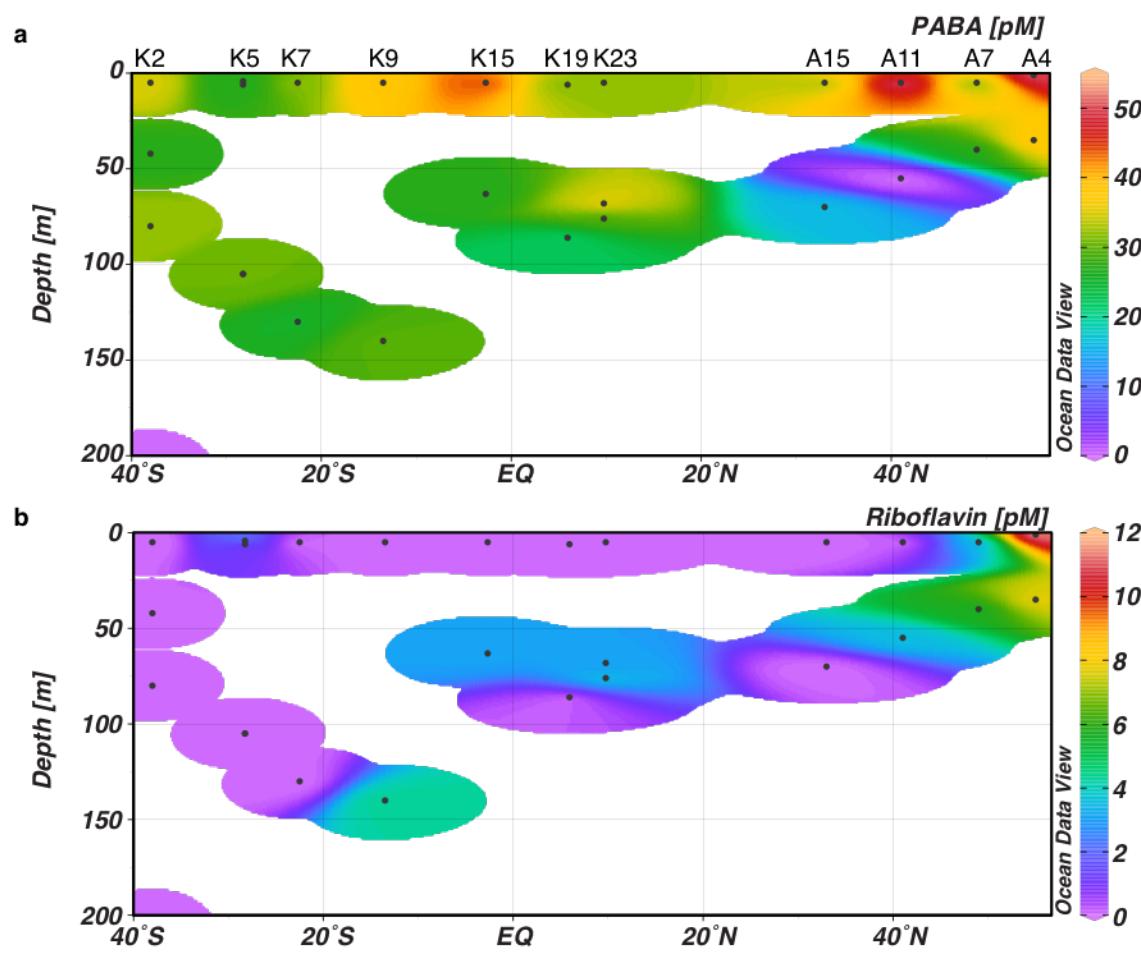


1001

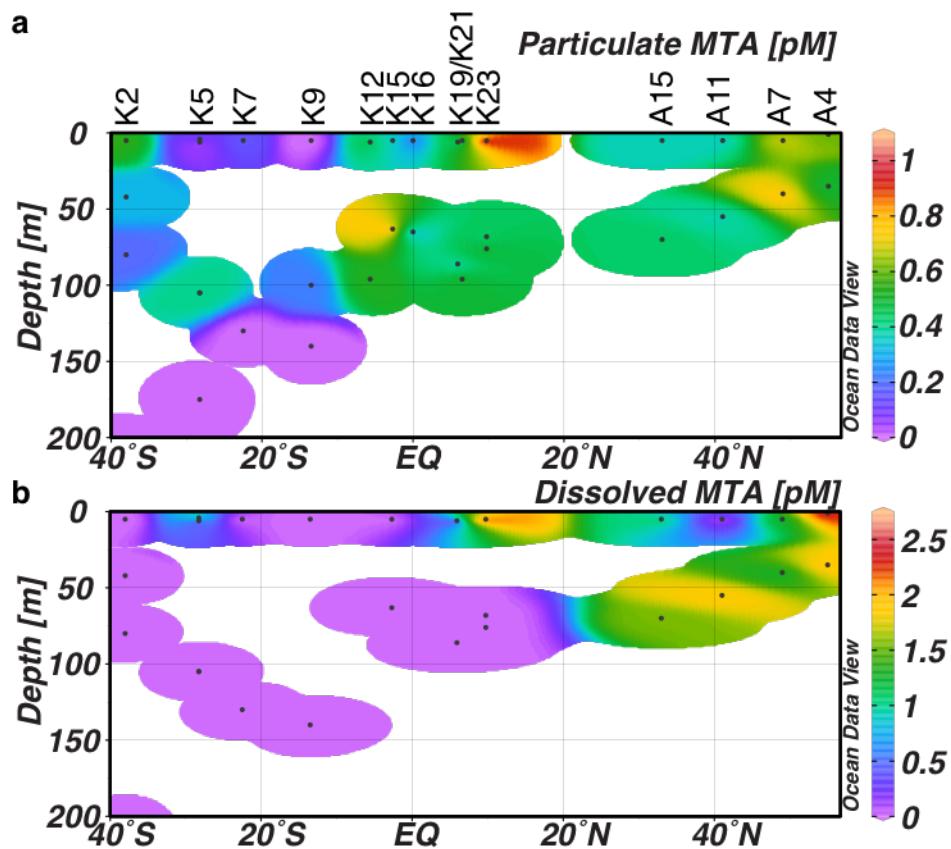
1002 **Figure 3.** Spearman rank correlation coefficients plotted as a heatmap with hierarchical
 1003 clustering showing the relationship between particulate metabolites and abundance of
 1004 microbial community members. Red indicates a positive correlation and blue indicates a
 1005 negative correlation. * Indicates correlations with significant p -values. (a) Comparison of
 1006 metabolites to phyla from KN210-04 samples ($p < 0.05$). (b) Comparison of AE1319
 1007 metabolite samples from the surface and DCM to groups identified with flow cytometry
 1008 ($p < 0.06$, see text).



1009 **Figure 4.** Particulate adenosine 5'-monophosphate (AMP) abundance with depth (a) and
1010 relative to chlorophyll *a* concentrations (b). (a) AMP abundance (pM) above 200 m. (b)
1011 Linear regression of chlorophyll *a* versus AMP, with r^2 value 0.79 and $p < 0.001$ (slope =
1012 154, y-intercept = -12).
1013
1014
1015


Figure 5. Distributions of particulate (a) arginine and (b) proline measured at depth.

1016
1017
1018
1019


1020

1021 **Figure 6.** Spearman rank correlation coefficients plotted as a heatmap with hierarchical
 1022 clustering showing the relationship between dissolved metabolites and abundance of
 1023 microbial community members. Red indicates a positive correlation and blue indicates a
 1024 negative correlation. * Indicates correlations with significant p -values. We include only
 1025 samples collected in the upper 250 m as there were too few metabolites measured in the
 1026 deeper samples (Table 2). (a) Comparison of metabolites to phyla from KN210-04
 1027 samples from 250 m and above ($p < 0.05$). (b) Comparison of AE1319 metabolite
 1028 samples from the surface and DCM to groups identified with flow cytometry ($p < 0.35$).

1029

1030 **Figure 7.** Concentrations of (a) dissolved 4-aminobenzoic acid (PABA) and (b)
1031 riboflavin (pM) in the top 200 m of the water column.
1032

