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5 Abstract

6 In single-cell RNA-sequencing (scRNA-seq), gene expression is assessed individually for each cell,
7 allowing the investigation of developmental processes, such as embryogenesis and cellular differenti-
8 ation and regeneration, at unprecedented resolutions. In such dynamic biological systems, grouping
9 cells into discrete groups is not reflective of the biology. Cellular states rather form a continuum,
10 e.g., for the differentiation of stem cells into mature cell types. This process is often represented via
11 a trajectory in a reduced-dimensional representation of the scRNA-seq dataset.

12 While many methods have been suggested for trajectory inference, it is often unclear how to handle
13 multiple biological groups or conditions, e.g., inferring and comparing the differentiation trajectories
14 of wild-type and knock-out stem cell populations.

15 In this manuscript, we present a method for the estimation and downstream interpretation of cell
16 trajectories across multiple conditions. Our framework allows the interpretation of differences between
17 conditions at the trajectory, cell population, and gene expression levels. We start by integrating
18 datasets from multiple conditions into a single trajectory. By comparing the conditions along the
19 trajectory’s path, we can detect large-scale changes, indicative of differential progression. We also
20 demonstrate how to detect subtler changes by finding genes that exhibit different behaviors between
21 these conditions along a differentiation path.

2 The emergence of RNA sequencing at the single-cell level (scRNA-Seq) has enabled a new degree of
;3 resolution in the study of cellular processes. The ability to consider biological processes as continuous
2 phenomena instead of individual discrete stages has permitted a finer and more comprehensive under-
»  standing of dynamic processes such as embryogenesis and cellular differentiation. Trajectory inference
s was one of the first applications that leveraged this continuum [1] and a consequential number of methods
z have been proposed since then [2-4]. Saelens et al. [5] offer an extensive overview and comparison of such
s methods. Analysis of scRNA-Seq datasets using a curated database reveals that about half of all datasets
» were used for trajectory inference (TI) [6]. At its core, TT represents a dynamic process as a directed
s graph. Distinct paths along this graph are called lineages. Individual cells are then projected onto these
a1 lineages and the distance along each path is called pseudotime. In this setting, developmental processes
2 are often represented in a tree structure, while cell cycles are represented as a loop. Following TI, other
1 methods have been proposed to investigate differential expression (DE) along or between lineages, either
s as parts of TT methods [3, 7] or as separate modules that can be combined to create a full pipeline [8].

3 More recently, other methods have emerged to answer an orthogonal problem, focusing on systems
s under multiple conditions. This includes, for example, situations where a biological process is studied
w» both under a normal (or control) condition and under an intervention such as a treatment [9-11] or a
s genetic modification [12]. In other instances, one may want to contrast healthy versus diseased [13] cells
» or even more than two conditions [14]. In such settings, one might look for differential abundance, i.e.,
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w0 cell population shifts between conditions. Initial analytical approaches ignored the continuous nature of
o biological processes and binned cells into discrete clusters before looking at differences in composition
© between clusters. Borrowing from the field of mass cytometry [15], milo [16], and DAseq [17] rely on
1 low-dimensional representations of the observations and define data-driven local neighborhoods in which
a they test for differences in compositions. Each of these methods show clear improvements in performance
s over cluster-based methods, and provide a more principled approach that better reflects the nature of
4 the system.

a7 However, many studies with multiple conditions, if not most, actually involve processes that can be
s described by a trajectory. Utilizing this underlying biology could increase either the interpretability of
2 the results or the ability to detect true and meaningful changes between conditions. In this manuscript,
so we present the condiments workflow, a general framework to analyze dynamic processes under multiple
si1 conditions that leverages the concept of a trajectory structure. condiments has a more specific focus
s than milo or DAseq, but it compensates for this by improving the quality of the differential abundance
53 assessment and its biological interpretation. Our proposed analysis workflow is divided into three steps.
s« In Step 1, condiments considers the trajectory inference question, assessing whether the dynamic process
ss is fundamentally different between conditions, which we call differential topology. In Step 2, it tests
ss for differential abundance of the different conditions along lineages and between lineages, which we
sv respectively call differential progression and differential differentiation. Lastly, in Step 3, it estimates
s gene expression profiles similarly to Van den Berge et al. [8] and tests whether gene expression patterns
so differ between conditions along lineages, therefore extending the scope of differential expression.

60 In this manuscript, we first present the condiments workflow, by detailing the underlying statistical
s model, and providing an explanation and intuition for each step. We then benchmark condiments against
2 more general methods that test for differential abundance to showcase how leveraging the existence of a
e trajectory improves the assessment of differential abundance. Finally, we demonstrate the flexibility and
s« improved interpretability of the condiments workflow in three case studies that span a variety of biological
s settings and topologies.

« Results

« General model and workflow

¢ Data structure and statistical model. We observe gene expression measures for J genes in n cells,
o resulting in a J X n count matrix Y. For each cell i, we also know its condition label c(i) € {1,...,C}
0 (e.g.,“treatment” or “control”, “knock-out” or “wild-type”). We assume that, for each condition ¢, there
7 is an underlying developmental structure 7., or trajectory, that possesses a set of L. lineages.

72 For a given cell i with condition c(7), its position along the developmental path 7. is defined by a
s vector of L) pseudotimes T; and a unit-norm vector of L) weights W; (|[W;|[; = 1) (i.e., there is
7+ one pseudotime and one weight per lineage), with

T; ~ Gc(i) and W; ~ Hc(i)- (1)

75 The cumulative distribution functions (CDF) G, and H, are condition-specific and we make limited
76 assumptions on their properties (see the method section for details). The pseudotime values represent
7 how far a cell has progressed along each lineage, while the weights represent how likely it is that a cell
7 belongs to each lineage. The gene expression model will be described below. Using this notation, we can
79 properly define a trajectory inference (TI) method as a function that takes as input Y — and potentially
s other arguments — and returns estimates of L., T, W, and eventually 7.

s Step 1 - Differential Topology: Should we fit a common trajectory? The first question to ask
&2 in our workflow is: Should we fit a common trajectory to all cells regardless of their condition? Or are the
ss developmental trajectories too dissimilar between conditions? To demonstrate what this means, consider
& two extremes. For a dataset that consists of a mix of bone marrow stem cells and epithelial stem cells,
s using tissue as our condition, it is obvious that the developmental trajectories of the two conditions are
s not identical and should be estimated separately. On the other hand, if we consider a dataset where only
&7 a few genes are differentially expressed between conditions, the impact on the developmental process will
ss be minimal and it is sensible to estimate a single common trajectory.

8 Indeed, we favor fitting a common trajectory for several reasons. Firstly, fitting a common trajectory
o is a more stable procedure since more cells are used to infer the trajectory. Secondly, our workflow still
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Figure 1: [llustrating the first two steps of the condiments workflow with several scenarios (a.) The
examples are all built on a similar wild-type backbone, i.e., two lineages that slowly diverge in the
absence of knocking out. Cells either originate from a wild-type (WT, blue) or a knock-out (KO, orange)
condition. In (b.), the knock-out has no effect, all three tests fail to reject their null hypothesis. In
(c.), the knock-out partly blocks differentiation along Lineage 2, meaning that fewer cells develop along
that lineage. In this case, while the topologyTest fails to reject the null, we have both differential
progression along Lineage 2 and differential differentiation. In (d.), the knock-out speeds development,
so there are more orange cells toward the end of both lineages. This leads to both differential progression
and differentiation. In (e.), the knock-out modifies the intermediate stage for Lineage 1 and changes
where the lineages bifurcates; based on the topologyTest, we fit one trajectory per condition. However,
the skeleton structure is unchanged, so there is a mapping between the two trajectories and we can still
test for differential progression and differentiation. In both cases, we fail to reject the null. Finally, in
(f.), the knock-out fully disrupts the developmental process: all cells in the knock-out condition progress
along a new lineage. Here, we fit separate trajectories and these cannot be reconciled easily, so we cannot
proceed to Steps 2 and 3.

provides a way to test for differences between conditions along and between lineages even if a common
trajectory is inferred. In particular, fitting a common trajectory between conditions does not require that
cells of distinct conditions differentiate similarly along that trajectory. Finally, fitting different trajecto-
ries greatly complicates downstream analyses since we may need to map between distinct developmental
structures before comparing them (i.e., each lineage in the first trajectory must match exactly one lin-
eage in the second trajectory). Therefore, our workflow recommends fitting a common trajectory if the
differences between conditions are small enough.

To quantify what small enough is, we rely on two approaches. The first is a qualitative diagnostic tool
called imbalance score. It requires as input a reduced-dimensional representation X of the data Y and the
condition labels. Fach cell is assigned a score that measures the imbalance between the local and global
distributions of condition labels. Similarly to Dann et al. [16], Burkhardt et al. [18], the neighborhood
of a cell is defined using a k-nearest neighbor graph on X, which allows the method to scale very well
to large values of n. Cell-level scores are then locally scaled using smoothers in the reduced-dimensional
space (see the Methods section).

However, visual representation of the scores may not always be enough to decide whether or not to
fit a common trajectory in less obvious cases. Therefore, we introduce a more principled approach, the
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1w topologyTest. This test assesses whether we can reject the following null hypothesis:
HOZV(Cl,CQ)6{1,...,0}2772-] 2722. (2)

w8 Under the null, the trajectory is common among all conditions and can therefore be estimated using all
w0 cells. Therefore, an estimation of the pseudotime vectors done by inferring a trajectory for each condition
o should be equivalent to the same procedure after permuting the condition labels. This is what is done
m for the topologyTest. A set of pseudotime vectors is estimated with the true condition labels. Another
2 set is generated using permuted labels. Under the null, these two distributions should be equal. We can
us  therefore test hypothesis (2) by testing for the equality in distributions of pseudotime using a variety of
us  statistical tests (see the Methods section for details). Since we want to favor fitting a common trajectory
us and we only want to discover cases that are not only statistically significant but also biologically relevant,
us the tests typically include a minimum magnitude requirement for considering the difference between
w7 distributions to be significant (similar to a minimum log-fold-change for assessing DE). More details and
us practical implementation considerations are discussed in the Methods section.

119 In practice, the topologyTest requires maintaining a mapping between each of the trajectories,
120 both between conditions and between permutations (see the Methods section where we define a mapping
m precisely). Trajectory inference remains a semi-supervised task, that generally cannot be fully automated.
122 In particular, the number of estimated lineages might change between different permutations for a given
123 condition, precluding a mapping. As such, the topologyTest is only compatible with certain TT methods
s that allow for the specification of an underlying skeleton structure [2, 4], where the adjacency matrix can
15 be pre-specified, as well (optionally) start and/or end states.

126 In the examples from Fig 1, the skeleton of the trajectory is represented by a series of nodes and
127 edges. In examples 1b-d, the knock-out has no impact on this skeleton compared to the wild-type. In
s example le, the knock-out (KO) modifies the skeleton, in that the locations of the nodes change. However,
19 the adjacency matrix does not change and the two skeletons represent isomorphic graphs: the skeleton
1o structure is preserved.

131 For some TT methods [2, 4], it is possible to specify and preserve this skeleton structure. This means
12 that the mapping of lineages can be done automatically. The topologyTest utilises this, and is thus
13 restricted to such TI methods. This common skeleton structure can also be used if the null of the
134 topologyTest is rejected. The availability of a mapping between lineages means that the next steps of
135 the workflow can be conducted as if we had failed to reject the null hypothesis, as done in Fig le. The
136 third case study will also present an example of this.

137 Even if the null is rejected by the topologyTest and separate trajectories must be fitted for each
s condition, a common skeleton structure can still be used to map between trajectories. This mapping
130 means that the next steps of the workflow can be conducted as if we had failed to reject the null hypothesis,
o as done in Fig le. The third case study will also present an example of this. In cases where no common
w skeleton structure exists, such as Fig 1f, no automatic mapping exists. Differential abundance can be
12 assessed but requires a manual mapping. Differential expression can still be conducted as well.

w3 Step 2 - Differential abundance: What are the global differences between conditions? The
us  second step of the workflow focuses on differences between conditions at the trajectory level. It requires
us  either a common trajectory, or multiple trajectories and a mapping. We can then ask whether cells from
us different conditions behave similarly as they progress along the trajectory. To facilitate the interpretation
w7 of the results, we break this into two separate questions. Note that, at this step and the next, we are no
us longer limited to specific TT methods. Moreover, the mapping can be partial. In that case, Step 2 will
1o be restricted to the parts (or subgraphs) of the trajectories that are mappable. See the Methods section
150 for proper definitions of mapping and partial mapping.

11 Step 2a: Differential Progression. Although the topology might be common, cells might progress
12 at different rates along the lineages for different conditions. For example, a treatment might limit the
13 differentiation potential of the cells compared to the control, or instead speed it up. In the first case,
15« one would expect to have more cells at the early stages and fewer at the terminal state, when comparing
155 treatment and control. Using our statistical framework, testing for differential progression amounts to
156 testing:

HQZV(Cl,Cg)E{l,...,C}Z7Gcl :GC2. (3)

157 This test can also be conducted at the individual-lineage level. If we denote by Gj. the I*" component

155 of the distribution function G, we can test for differential progression along lineage ! by considering the
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159 null hypothesis:
Hy ZV(Cl,Cg) S {17...,0}2,(;[61 = Gl02~ (4)

160 We can assess either or both null hypotheses in the progressionTest, which relies on non-parametric
161 tests to compare two or more distributions, e.g., the Kolmogorov-Smirnov test [19] or the classifier
162 test [20]. More details and practical implementation considerations are discussed in the Methods Section.

13 Step 2b: Differential Differentiation. Although the topology might be common, cells might also
s differentiate in varying proportions between the lineages for different conditions. For example, an in-
165 tervention might lead to preferential differentiation along one lineage over another, compared to the
s control condition; or might alter survival rates of differentiated cells between two end states. In both
167 cases, the weight distribution will be different between the control and treatment. Assessing differential
s differentiation at the global level amounts to testing, in our statistical framework, the null hypothesis

Hy :V(c1,¢0) € {1,...,C}* H., = H,,. (5)
160 This test can also be conducted for a single pair of lineages (I,1'):
Hy : V(CMCQ) € {17 R 0}2’ [HlCqu’Cl] = [ch2a Hl’c2}' (6)
170 The above null hypotheses can again be tested by relying on non-parametric test statistics. We also
m  discuss specific details and practical implementation in the Methods section.
172 The progressionTest and differentiationTest are quite linked since the functions G. and H, are

3 correlated and will therefore often return similar results. However, they do answer somewhat different

s questions. In particular, looking at single-lineage (progressionTest) and lineage-pair (differentiationTest)
s test statistics will allow for a better understanding of the global differences between conditions. Differ-

e ential differentiation does not necessarily imply differential progression and vice versa.

i Step 3 - Differential Expression: Which genes have different expression patterns between
s  conditions? Steps 1 and 2 focus on differences at a global level (i.e., aggregated over all genes) and
o will detect large changes between conditions. However, such major changes are ultimately driven by
1o underlying differences in gene expression patterns. Furthermore, even in the absence of global differences,
11 conditions might still have some more subtle impact at the gene level. In the third step, we therefore
122 compare gene expression patterns between conditions for each of the lineages. Step 3 is even more general
183 than Step 2, in that it can be used without mapping between trajectories, i.e., some or all lineages could
18« be condition-specific.

185 Following the tradeSeq manuscript by Van den Berge et al. [8], we consider a general and flexible
s model for gene expression, where the gene expression measure Yj; for gene j in cell 4 is modeled with
1s7  the negative binomial generalized additive model (NB-GAM) described in Equation (13). We extend the
188 tradeSeq model by additionally estimating condition-specific average gene expression profiles for each
1o gene. We therefore rely on lineage-specific, gene-specific, and condition-specific smoothers, sj;.. With
190 this notation, we can introduce the conditionTest, which, for a given gene j, tests the null hypothesis
11 that these smoothers are identical across conditions:

H() : Sjlcl = SleQ, V(Cl,CQ),Vl. (7)

12 As in tradeSeq, we rely on the Wald test to test Hp in terms of the smoothers’ regression coefficients.
13 We can also use the fitted smoothers to visualize gene expression along lineages between conditions or
14 cluster genes according to their expression patterns.

s Simulations

s We generate multiple trajectories using the simulation framework provided by Cannoodt et al. [22].
17~ Within this framework, it is possible to knock out a specific gene. Here, we knock out a master regulator
18 that drives differentiation into the second lineage. The strength of this knock-out can be controlled via
199 a multiplier parameter m. If m = 0, the knock-out is total. If 0 < m < 1, we have partial knock-out. If
20 m > 1, the master regulator is over-expressed and cells differentiate much faster along the second lineage.
201 Three types of datasets are generated: Simple branching trajectories (two lineages, e.g., Fig. 2a) of
200 3,500 cells, with equal parts wild-type and knock-out; trajectories with two consecutive branchings (and
203 thus three lineages, e.g., Fig. 2b) of 3,500 cells, with equal parts wild-type and knock-out; and branching
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Figure 2: Simulation results. Three types of datasets are generated, with respectively two, three, and two
lineages, and two, two, and three conditions. Reduced-dimensional representations of these datasets, for
a multiplier value of m = .5, are presented in (a.), (b.), and (c.), respectively. After generating multiple
versions of the datasets for a range of values of m, we compare the performance of the progressionTest
and differentiationTest with that of DAseq[17] and milo[16], when controlling the false discovery rate
at nominal levels 1% and 5% using the Benjamini-Hochberg [21] procedure. In (d.), each cell represents
the performance measure associated with one test on one dataset for one nominal FDR level. Cells are also
colored according to the performance. Overall, with two conditions, the progressionTest ranks first,
followed by DAseq and the differentiationTest. With three conditions, the differentiationTest
ranks first. DAseq is limited to two conditions. Exact simulation parameters and metrics are specified in
the Methods section.

24 trajectories (two lineages) of 5,000 cells with three conditions, wild-type, knock-out with multiplier m,
205 and induction with multiplier 1/m (Fig. 2c).

206 The simulation framework cannot, however, generate distinct trajectories for the different conditions,
207 S0 we start the condiments workflow at Step 2, downstream of slingshot. We compare the progressionTest
208 and differentiationTest from condiments to methods that also do not rely on clustering, but instead
200 take into account the continuum of differentiation. milo [16] and DAseq[17] both define local neighbor-
20 hoods using k-nearest neighbors graphs and look at differences of proportions in these neighborhood to
an test for differential abundance. These methods returns multiple tests per dataset (i.e., one per neigh-
22 borhood), so we adjustfor multiple hypothesis testing using the Benjamini-Hochberg procedure [21]. By
a3 applying milo, DAseq, and condiments on the simulated datasets, we can compare the results of the tests
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Table 1: Summary of all case study datasets. We report the name, number of cells n, number of conditions
C, number of lineages L of each dataset, as well as the p-value resulting from testing for differential topol-
ogy, progression and differentiation and the number of differentially expressed genes between conditions
according to the conditionTest

Dataset n C L topology progression differentiation DE

TGFB[9] | 9,268 2 1 0.38 <22x 10716 NA 1,993
TCDDJ10] | 9,951 2 1 0.07 <22x10716 NA 2,144
KRAS[23] | 10,177 3 3 | <22x1071¢ <22x10716 <22x10716 363

2 versus the values of m: We count a true positive when a test rejects the null and m # 1, and a true
a5 negative if the test fails to reject the null and m = 1.

216 We compare the methods’ ability to detect correct differences between conditions using five met-
a7 rics: The true negative rate (TNR), positive predictive value (PPV), true positive rate (TPR), negative
as  predictive value (NPV), and Fl-score, when controlling the FDR at two nominal levels of 1% and 5%.
29 More details on the simulation scenarios and metrics can be found in the Methods section. Results are
20 displayed in Fig. 2d.

o) On all simulations, all methods display excellent results for the TNR and PPV (except for the
2 differentiationTest with level 1% on the branching dataset). However, the performances for the TPR
23 (power), NPV, and Fl-rate vary quite widely. On the two types of datasets with two conditions, the rank-
24 ing is uniform over all metrics and levels: progressionTest, DAseq, differentiationTest, and milo.
25 On the third simulation setting with three conditions, we cannot benchmark DAseq since its testing frame-
26 work is restricted to two conditions. Here, also, the ranking is uniform but the differentiationTest
27 outperforms the progressionTest. Looking more closely at the results, we can see (Fig S2) that this
28 mostly stems from increased power for the differentiationTest when m is close to 1.

229 Overall, the tests from the condiments workflow offer a flexible approach that can handle various
20 scenarios and still outperform competitors.

1 Case studies

22 We consider three real datasets as case studies for the application of the condiments workflow. Table 1
213 gives an overview of these datasets and summary results. These case studies aim to demonstrate the
24 versatility and usefulness of the condiments workflow, as well as showcase how to interpret and use the
235 tests in practice.

226 TGFB dataset

27 McFaline-Figueroa et al. [9] studied the epithelial-to-mesenchymal transition (EMT), where cells migrate
2 from the epithelium (inner part of the tissue culture dish) to the mesenchyme (outer part of the tissue
20 culture dish) during development. The developmental process therefore is both temporal and spatial. As
a0 cells differentiate, gene expression changes. Moreover, the authors studied this system under two settings:
21 a mock (control) condition and a condition under activation of transforming growth factor § (TGFB).
242 After pre-processing, normalization, and integration (see details in the supplementary methods), we
23 have a dataset of 9,268 cells, of which 5,207 are mock and 4,241 are TGFB-activated. The dataset
24 is represented in reduced dimension using UMAP[24] (Fig. 3a). Adding the spatial label of the cells
us  (Fig. 3b) shows that the reduced-dimensional representation of the gene expression data captures the
us  differentiation process.

247 We can then run the condiments workflow. The imbalance score of each cell is computed and dis-
s played in Fig. 3c. Although some regions do display strong imbalance, there is no specific pattern along
20 the developmental path. This is confirmed when we run the topologyTest. The nominal p-value of
0 the associated test is 0.38. We clearly fail to reject the null hypothesis and we consequently fit a com-
;1 mon trajectory to both conditions using slingshot with the spatial labels as clusters. This single-lineage
2 trajectory is shown in Fig. 3d.

253 Next, we can ask whether the TGFB treatment impacts the differentiation speed. The developmental
x4 stage of each cell is estimated using its pseudotime. Plotting the per-condition kernel density estimates
s of pseudotimes in Fig. 3e reveals a strong treatment effect. The pseudotime distribution for the mock
»6  cells is trimodal, likely reflecting initial, intermediary, and terminal states. However, the first mode is
»s7 - not present in the TGFB condition, and the second is skewed towards higher pseudotime values. This is
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Figure 3: TGFB dataset: Differential topology and differential progression. After normalization and
projection on a reduced-dimensional space (using UMAP), the cells can be colored either by treatment
label (a.) or spatial origin (b.). Using the treatment label and the reduced-dimensional coordinates, an
imbalance score is computed and displayed (c.). The topologyTest fails to reject the null hypothesis of
no differential topology and a common trajectory is therefore fitted (d.). However, there is differential
progression between conditions: the pseudotime distributions along the trajectory are not identical (e.)
between conditions and we reject the null using the progressionTest.

s very consistent with the fact that the treatment is a growth factor that would increase differentiation, as
20 shown in the original publication. Testing for equality of the two distributions with the progressionTest
20 confirms the visual interpretation. The nominal p-value associated with the test is smaller than 2.2 x 10716
1 and we reject the null that the distributions are identical. Since the trajectory is limited to one lineage,
2 there is no possible differential differentiation between pairs of lineages.

263 Then, we proceed to identifying genes whose expression patterns differ between the mock and TGFB
s conditions. After gene filtering, we fit smoothers to 10,549 genes, relying on the model described in
s Equation (13). We test whether the smoothers are significantly different between conditions using the
s conditionTest. Testing against a log-fold-change threshold of 2, we find 1, 993 genes that are dynamically
7 differentially expressed between the two conditions when controlling the false discovery rate (FDR) at
s a nominal level of 5%. Fig. 4a and b show the two genes with the highest Wald test statistic. The
w0 first gene, LAMC2, was also found to be differentially expressed in the original publication and has been
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Figure 4: TGFB dataset: Differential expression. The tradeSeq gene expression model is fitted using
the trajectory inferred by slingshot. Differential expression between conditions is assessed using the
conditionTest and genes are ranked according to the test statistics. The genes with the highest (a.),
second highest (b.), and smallest (c.) test statistics are displayed. After adjusting the p-values to control
the FDR at a nominal level of 5%, we display genes for both conditions using a pseudocolor image (d.)
after scaling each gene to a [0, 1] range.

oo shown to regulate EMT [25]. The second gene, TGFBI or TGFB-induced gene, is not surprising, and was
on  also labelled as differentially expressed in the original publication. In contrast, the gene that is deemed
o the least differentially expressed exhibits no differences between the smoothers (Fig. 4c.). Looking at all
a3 1,993 DE genes, we can cluster and display their expression patterns along the lineage for both conditions
on  (Fig. 4) and identify several groups of genes that have different patterns between the two conditions.

215 Finally, we perform a gene set enrichment analysis on all the genes that are differentially expressed
s between the conditions. The full results are available in Supplementary Table S1. Top annotations
a7 include gene sets involved in cell motility, adhesion, and morphogenesis, which are consistent with the
s expected biology.

29 TCDD dataset

20 Nault et al. [10] collected a dataset of 16,015 single nuclei to assess the hepatic effects of 2,3,7.8-
s tetrachlorodibenzo-p-dioxin or TCDD. In particular, they focused on the effect of TCDD on the 9,951
22 hepatocytes cells along the central-portal axis. This dataset is not a developmental dataset per se but still
253 exhibits continuous changes along a spatial axis, demonstrating the versatility of the trajectory inference
2  framework in general, and of the condiments workflow in particular.

285 Fig. S3a shows a reduced-dimensional representation of the dataset, with cells labelled according to
s treatment/control condition, while Fig. S3b shows the same plot colored by cell type, as derived by the
27 authors of the original publication. The cells are aligned in a continuum, from central to mid-central and
s then mid-portal and portal. The imbalance score shows some spatial pattern (Fig. S3c). However, the
20 nominal p-value associated with the topologyTest is .07. We therefore fail to reject the null and we infer
20 & common trajectory using slingshot on the spatial clusters. This results in a single-lineage trajectory
21 that respects the ordering of the spatial clusters (Fig. S3d). Note that, since the trajectory reflects a
2 spatial continuum rather than a temporal one, the start of the trajectory is arbitrary. However, inverting
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203 the start and end clusters amounts to an affine transformation of the pseudotimes for all the cells. Step
24 2 and 3 are fully invariant to this transformation, so we can pick the Central cluster as the start of the
205 trajectory.

206 The densities of the treatment and control pseudotime distributions differ greatly visually (Fig. S3e),
27 with the TCDD density heavily skewed toward the start of the trajectory. Indeed, the progressionTest
2 has a nominal p-value < 2.2 x 10716, This coincides with the finding of the original publication which
200 highlighted the periportal hepatotoxicity of TCDD.

300 The ability of the progressionTest to correctly find large-scale changes in the spatial distribution
sn  of cells between conditions underscores why we favor fitting a common trajectory. Indeed, the p-value of
32 the topologyTest in Step 1 is rather small and would have been below .05 if we had not conducted a
303 test against a threshold. However, testing against a threshold and thus fitting a common trajectory does
;4 not stop the workflow from finding large-scale differences between conditions in Step 2 and results in a
s more stable estimate of the trajectory.

306 After gene filtering, we test 8,027 genes for spatial differential expression between conditions and we
s7 find 2,114 DE genes when controlling the FDR at a nominal level of 5%. The genes with the largest,
28 second largest, and smallest test statistics are displayed in Fig.S4a-c. Similarly to Nault et al. [10], we
20 obtain a list of zonal genes from Halpern et al. [26]. The proportion of zonal genes among the DE genes
s10 1S twice their proportion among non-DE genes.

a1 KRAS dataset

sz Xue et al. [23] studied the impact of KRAS(G12C) inhibitors at the single-cell level on three models
as of KRAS(G12C) lung cancers. Specifically, they examined how various cell populations react to these
sie  inhibitors and how some cells can return in proliferation mode shortly after the end of the treatment.
as  Here, we want to investigate how the three cancer models (H358, H2122, and SW1573) differ in their
us response to the KRAS(G12C) inhibitors.

317 We use the reduced-dimensional representation from the original paper to display the 10,177 cells
as  from the various types (Fig 5a). Using the cancer type labels and the reduced-dimensional coordinates,
a0 an imbalance score can be computed (Fig 5b); some regions clearly show an imbalance. This is further
2 confirmed by the topologyTest, with p-value smaller than 2.2 x 1076, We therefore do not fit a common
a1 trajectory to all cancer types (Fig 5c¢).

322 Note that this does not necessarily imply that the trajectory of reaction to the KRAS(G12C) inhibitors
w3 is different between cancer types. Indeed, this may also reflect strong batch effects between conditions,
324 which the normalization scheme was unable to fully remove when integrating the three cancer types in
s one common reduced-dimensional representation. Thus, it is not really possible to draw a biological
16 conclusion at this first step. However, this does mean that a separate trajectory should be fitted to each
527 condition.

38 Here, the trajectories, although different, are similar enough that we can still use an underlying
2o common skeleton (Fig 5d). Indeed, we keep the tree structure derived by computing the minimum
10 spanning tree (MST) on the clusters using all cells. This way, it is possible to derive a one-to-one mapping
s between the lineages of the three trajectories and we respect the assumptions detailed in Section 1.2 that
s are necessary for the progressionTest and differentiationTest.

333 Using this common mapping, we can then proceed to the progressionTest. At the global trajectory
s level, the nominal p-value is smaller than 2.2 x 10716, showing clear differential progression. At the lineage
1 level, all three lineages show strong differential progression, with p-values of 2.2 x 1076, 1.2 x 10712,
1 and 1.2 x 107!, respectively. The density plots for the pseudotime distributions at the single-lineage
s level (Fig 5e) indicate that the differential progression is driven by a group of cells from cancer type
18 H2122A. This matches the top left part of the reduced-dimensional plot, the region where cells exit the
39 initial inhibition stage to enter the reactivation stage. The second lineage also shows a difference between
0 H2122A and the two other models. The pseudotime distribution is heavily skewed toward earlier points
s in that model compared to the other two. Lineage 2 represents differential progression to a drug-induced
s state. In Lineage 3, it is the SW1573A model that displays more differential progression.

43 The differentiationTest also has a p-value smaller than 2.2 x 10716, Although all pairwise com-
us  parisons are significant, the test statistics are much higher for the Lineage 2 vs. 1 and Lineage 2 vs. 3
s comparisons. This again suggests that one model differentiates less into the drug-induced path, compared
us  to the other two. Since the weights have to sum to 1, the 3-dimensional distribution can be fully sum-
s marized by any two components. Fig S5 shows clear differences in distributions but visually interpreting
us  different 2D distributions is still challenging. A simpler way to compare the distributions is to look at the
s average weight in each condition for each lineage (Fig 5f). This ignores the correlation between lineages

10
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Figure 5: KRAS dataset: Differential topology, differential progression, and differential differentiation.
Using the reduced-dimensional representation of the original publication (t-SNE), the cells can be colored
by cancer type (a.). Using the cancer type label and the reduced-dimensional coordinates, an imbalance
score is computed and displayed (b.). The topologyTest rejects the null hypothesis of a common
trajectory, we thus fit one trajectory per condition (c.). However, the skeleton graphs have the same
structure (d.), so we can progress to the next steps in the condiments workflow. There is differential
progression (d.) and we indeed reject the null of identical pseudotime distributions along the trajectory
using the progressionTest. Similarly, there is differential differentiation (e.) and we reject the null of
identical weight distributions along the trajectory using the differentiationTest. Here, we summarize
the distributions by looking at the average weight for each lineage in each condition, which already shows
some clear differences.

0 but still allows for some interpretation. We can see in particular that Lineages 1 and 3 have greater
s weights for H2122A than for the other two conditions, which is consistent with the different pairwise
2 statistics.

353 With the mapped trajectories, we can also perform gene-level analysis using the conditionTest.
s« When comparing genes across all lineages and conditions, we find 363 differentially expressed genes when
55 controlling the FDR at nominal level 5%. We show the genes with the highest, second highest, and
6 smallest test statistics in Fig. S6a-c. Displaying these global patterns across all three lineages and all
ss7  three conditions makes it hard to interpret. We therefore focus on the first (and longest) lineage. In that
s lineage, we find 366 DE genes and we show their expression patterns along Lineage 1 in all three cancer
9 models in Fig. S6d.

w 1Discussion

s In this manuscript, we have introduced condiments, a full workflow to analyze dynamic systems under
2 multiple conditions. By separating the analysis into several steps, condiments offers a flexible framework
3 with increased interpretability. Indeed, we follow a natural progression through a top-down approach, by
w4 first studying overall differences in trajectories with the topologyTest, then differences in abundances
s at the trajectory level with the progressionTest and differentiationTest, and finally gene-level
6 differences in expression with the conditionTest.

11
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367 As demonstrated in the simulation studies, taking into account the dynamic nature of systems via
s the trajectory representation enables condiments to better detect true changes between conditions. The
w0 flexibility offered by our implementation, which provides multiple tests for non-parametric comparisons
s of distributions, also allows us to investigate a wide array of scenarios. This is evident in the three case
sn  studies presented in the manuscript. Indeed, in the first case study we have a developmental system
sz under treatment and control conditions, while in the second case study the continuum does not represent
sz a developmental process but spatial separation. In the third case study, the conditions do not reflect
sns  different treatments but instead different cancer models. This shows that condiments can be used to
s analyze a wide range of datasets.

376 Often, the different conditions also represent different batches. Indeed, some interventions cannot be
sir - delivered on a cell-by-cell basis and this creates unavoidable confounding between batches and conditions.
s Normalization and integration of the datasets must therefore be done without eliminating the underlying
s biological signal. This balance can be hard to strike, as discussed in Zhao et al. [17]. Proper experimental
s design — such as having several batches per condition — or limiting batch effects as much as possible —
s for example, sequencing a mix of conditions together — can help lessen this impact. Still, some amount
sz of confounding is sometimes inherent to the nature of the problem under study.

383 The tests used in the workflow (e.g., Kolmogorov-Smirnov test) assume that the pseudotime and
s weight vector are known and independent observations for each cell. However, this is not the case:
s they are estimated using TI methods which use all samples to infer the trajectory, and each estimate
s inherently has some uncertainty. Here, we ignore this dependence, as is the case in other differential
s7  abundance methods, which assume that the reduced-dimensional coordinates are observed independent
s random variables even thought they are being estimated using the full dataset. We stress that, rather
s than attaching strong probabilistic interpretations to p-values (which, as in most RNA-seq applications,
s0  would involve a variety of hard-to-verify assumptions and would not necessarily add much value to the
s analysis), we view the p-values produced by the condiments workflow as useful numerical summaries
s for guiding the decision to fit a common trajectory or condition-specific trajectories and for exploring
33 trajectories across conditions and identifying genes for further inspection.

304 Splitting the data into two groups, where the first is used to estimate the trajectory and the second
35 is used for pseudotime and weight estimation could, in theory, alleviate the dependence issue, at the cost
36 of smaller sample sizes. However, this would ignore the fact that, in practice, users perform exploratory
s7  steps using the full data before performing the final integration, dimensionality reduction, and trajectory
ws inference. Moreover, results on simulations show that all methods considered keep excellent control of the
30 false discovery rate despite the violation of the independence assumptions. This issue of “double-dipping”
wo therefore seems to have a limited impact.

401 The two issues raised in the previous paragraphs highlight the need for independent benchmarking.
w2 Simulation frameworks such as dyngen [22] are crucial. They also need to be complemented by real-world
w3 case studies, which will become easier as more and more datasets that study dynamic systems under
w0« multiple conditions are being published. condiments has thus been developed to be a general and flexible
ws  workflow that will be of use to researchers asking complex and ever-changing questions.
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« Data and code availability

a The results from this paper can be fully reproduced by following along the vignettes at https://
a2 hectorrdb.github.io/condimentsPaper. These also contain the code needed to recreate the datasets
az used for the simulations, as well as processed versions of all three datasets used in the case studies, aug-
s mented by metadata and functions to recreate the processed versions, using raw counts obtained from
s GEO (TGFB dataset: GSE114687, TCDD dataset: GSE148339, KRAS dataset: GSE137912).

416 The condiments workflow is available as an R package from Github (https://github.com/HectorRDB/
a7 condiments) and will be made available through the Bioconductor Project.
a18 All the methods to test for equality of two (or k) distributions have been put together for use by

a0 others in an R package called Ecume, available through CRAN and that can be explored at https:
20 //hectorrdb.github.io/Ecume.
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» Methods

2 1.1 Tests for equality of distributions
o5 1.1.1 General setting

26 Consider a set of n i.i.d. observations, X, with X; ~ Py, and a second set of m i.i.d. observations, Y,
a7 with Y; ~ Py, independent from X. For example, in our setting, X and Y may represent estimated
w28 pseudotimes for cells from two different conditions. We limit ourselves to the case where X and Y are
w29 random vectors of the same dimension d.

430 The general goal is to test the null hypothesis that X and Y have the same distribution, i.e., Hy :
431 P1 = Pg.

2 1.1.2 TUnivariate case: The weighted Kolmogorov-Smirnov test

sz The two-sample Kolmogorov-Smirnov test. Consider the case where X; and Y ; are scalar random
s variables (i.e., d = 1). The associated empirical cumulative distribution functions (ECDFs) are denoted,
ss  respectively, by Fi , and Fs ,,,. The univariate case occurs, for example, when there is only one lineage
16 in the trajectory(ies), so that the pseudotime estimates are scalars.
In this setting, one can test Hy using the standard Kolmogorov-Smirnov test [19], with test statistic
defined as:

DTL,"L =Ssup |F1,n (33) - F2,'rn (JJ)‘
T

= sup |F1,n(x)—F2,m(x)’.
reXUY

The rejection region at nominal level « is

\/ 1><1 axn+m
—— og — oo | .
2 g? nxm’

sv - That is, we reject the null hypothesis at the a-level if and only if D,, ,, > \/—1/2 x log /2 x 2tm,

nxm

The two-sample weighted Kolmogorov-Smirnov test. Consider a more general setting where we
have weights w;; € [0,1] and wy; € [0,1] for each of the observations. In trajectory inference, the
weights may denote the probability that a cell belongs to a particular lineage in the trajectory. Following
Monahan [27], we modify the Kolmogorov-Smirnov test in two ways. Firstly, the empirical cumulative
distribution functions are modified to account for the weights

1 n
Fin(z) :ﬁ Zwl,i X L(—o00,2)(Xi)
i=1 "5 =1
1 m
Fom(?) =m—— ) w2 X L(—0o)(Y}).
m Zj:1w2,j; 5 % Loo) (Y

Secondly, the definition of D,, ,, is unchanged, but the significance threshold is updated, that is, the
rejection region is

where .
n 2 2
( > wl,z) ( E w271)
! =1 1 j:].
n =—py and m’ = —
> wi; 2. wgd
i=1 j=1
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s 1.1.3 Multivariate case: The classifier test

10 Concept. Suppose that we have a classifier §(-), which could be, for example, a multinomial regression
w0 or SVM classifier. This classifier is a function from the support of X and Y into {1,2}. The data are
a1 first split into a learning and a test set, such that the test set contains nes; observations, equally-drawn

w2 from each population, i.e., there are nies; /2 observations XY from X and niest /2 observations y (test)

w3 from Y. Next, the classifier is trained on the learning set. We denote by Acc = |{i : 6(XEteSt)) =1}U{s:

244 5(Y§-t83t)) = 2}| the number of correct assignations made by the classifier on the test set.

If n = m, under the null hypothesis of identical distributions, no classifier will be able to perform
better on the test set than a random assignment would, i.e., where the predicted label is a Bernoulli(1/2)
random variable. Therefore, testing the equality of the distributions of X and Y can be formulated as
testing

Hy : E[Acc] = % vs. Hy : E[Acc] > %

Under the null hypothesis, the distribution of Acc is:
Acc ~p, Binom(ngest, 1/2).

ws  As detailed in Lopez-Paz and Oquab [20], one can use the classifier to devise a test that will guarantee
ws  the control of the Type 1 error rate.

w7 The classifier test in practice. In practice, we make no assumptions about the way in which the
us  distributions we want to compare might differ, which means the classifier needs to be quite flexible.
uo  Following Lopez-Paz and Oquab [20], we chose to use either a k-nearest neighbor classifier (k-NN) or
0 a random forests classifier [28], since such classifiers are fast and flexible. Hyper-paramters are chosen
w1 through cross-validation on the learning set. To avoid issues with class imbalance, we downsample the
w2 distribution with the largest number of samples first so that each distribution has the same number of
»s3 observations. That is, we have n’ = min(m,n) observations in each condition (or class). A fraction (by
e default 30%, user-defined) is kept as test data, so that niest = .3 x n/. We then train the classifier on the
s learning data, and select the tuning parameters through cross-validation on that learning set. Finally, we
w6 predict the labels on the test set and compute the accuracy of the classifier on that test set. This yields
7 our classifier test statistic.

ss Power of the classifier test. It is interesting to note that the classifier test is valid no matter the
a0 classifier chosen. However, the choice of classifier will have obvious impact on the power of the test.

w0 1.1.4 Multivariate case: Other methods

w1 Although we have found that the classifier test performs best in practice, there are many methods that
w2 test for the equality of two multivariate distributions. We have implemented a few such methods in
s: condiments, in case users would like to try them: The two-sample kernel test [29] and the permutation
ws  test relying on the Wasserstein distance (see descriptions in the supplementary methods).

w5 1.1.5 Extending the setting by considering more than two conditions

ws  Consider C' > 2 sets of samples, such that, for ¢ € {1,...,C}, we have n. i.i.d. observations X with
467 XZ(-C) ~ P.. We want to test the null hypothesis:

Hy:P. =P, Vei,c2 € {1,...,C} and ¢1 # cs.

466 While extensions of the Kolmogorov-Smirnov test [30] and the two-sample kernel test [31] have been
w0 proposed, we choose to focus only on the framework that is most easily extended to C' conditions, namely,
a0 the classifier test. Indeed, the C-condition classifier test requires choosing a multiple-class classifier
m instead of a binary classifier (which is the case for the k-NN classifier and random forests), selecting
2 Niest/C observations for each class in the test set, and testing:

Ntest
C
Under the null distributions, the distribution of Acc is:

Ntest

C

Hy : E[Acc] = vs. Hy : E[Acc] >

Acc ~p, Binom(niest, 1/C).
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a3 1.1.6 Extending the setting by considering an effect size

Effect size for the Kolmogorov-Smirnov test. The null hypothesis of the (weighted) Kolmogorov-
Smirnov test is Hy : P, = P». We can modify this null hypothesis by considering an effect size threshold
t, such that Ho(t) : sup, |Py(z) — Pa(z)| < t. The test statistic is then modified as:

D', = max(Dy, ,, — t,0)

aa and the remainder of the testing procedure is left unchanged.

Effect size for the classifier test. Similarly, the null and alternative hypotheses of the classifier test
can be modified to test against an effect size threshold ¢ as follows

test

HQ:AccgnT—i-tvs.leAcc>M

+t.

= 1.2  General statistical model for the trajectories

ws  Consider a set of condition labels ¢ € {1,...,C} (e.g.,“treatment” or “control”, “knock-out” or “wild-
a7 type”). For each condition, there is a given topology/trajectory 7. that underlies the developmental
as process. This topology is generally in the form of a tree, with a starting state which then differentiates
a0 along one or more lineages; but one can also have a circular graph, e.g., for the cell cycle. In general, a
w0 trajectory is defined as a directed graph.

481 We denote by L. the number of unique paths — or lineages — in the trajectory 7. and by C. the set of
w2 cells that belong to condition ¢. For example, for a tree structure, paths go from the root node (stem cell
w3 type) to the leaf nodes (differentiated cell type). For a cell cycle, any node can be be used as the start.
s A cell i from condition ¢; is characterized by the following features:

T; ~ G, : A vector of pseudotimes, one per lineage of 7,

W, ~H,, : A vector of weights, one per lineage of T,, s.t. ||[W;]|1 = 1.
a5 Note that the distribution functions are condition-specific. We further make the following assumptions:
486 e All G, and H, distributions are continuous;

287 e The support of all G, is bounded in R’«;
488 e The support of all H. is [0, 1]%e.

489 The gene expression model will be discussed below, in the differential expression section.

w0 Trajectory inference. Many algorithms have been developed to estimate lineages from single-cell
w1 data [5]. Most algorithms provide a binary indicator of lineage assignment, that is, the W; vectors are
w2 composed of Os and 1s, so that a cell either belongs to a lineage or it does not (note that when cells fall
23 along a lineage prior to a branching event, this vector may include multiple 1s, violating our constraint
¢ that the W, have unit norm. In such cases, we normalize the weights to sum to 1).

s  Mapping between trajectories. Many of the tests that we introduce below assume that the cells
w5 from different conditions follow “similar” trajectories. In practice, this means that we either have a
w7 common trajectory for all conditions or that there is a possible manual mapping from one lineage to
w8 another. The term “mapping” is more rigorously defined as follows.

w0 Definition 1 The trajectories {7T. : ¢ € {1,...,C}} have a mapping if and only if V(ci,c2) €
so {1,...,C}?, T., and T., are isomorphic.

501 If there is a mapping, this implies in particular that the number of lineages L. per trajectory 7. is
sz the same across all conditions ¢ and we call this this value L. Since a graph is always isomorphic with
s3 itself, a common trajectory is a special case of a situation where there is a mapping.

s« Definition 2 The trajectories {T. : ¢ € {1,...,C}} have a partial mapping if and only if
s V(ci,c0) € {1,...,C}2, there is a subgraph T'., C T., and a subgraph T'., C T., that are
s tsomorphic.
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507 Essentially, this means that the size of the changes induced by the various conditions do not disturb
ss the topology of the original trajectory too much. The above mathematical definitions aim to formalize
so0  What too much is. Indeed, if the conditions lead to very drastic changes, it will be quite obvious that the
si0  trajectories are different and comparing them will mostly be either non-informative or will not require a
su  complex framework. We aim to build a test that retains reasonable power in more subtle cases.

2 1.3 Differential topology

ss Imbalance score. Consider a set of n cells, with associated condition labels ¢; € {1,...,C} and
su - coordinate vectors X; in d dimensions, usually corresponding to a reduced-dimensional representation of
sis the expression data obtained via PCA or UMAP[24, 32].

516 Let p = {pc}ee(i,..,c} denote the “global” distribution of cell conditions, where p. is the overall
siz - proportion of cells with label ¢ in the sample of size n. The imbalance score of a cell reflects the deviation
sis  of the “local” distribution of conditions in a neighborhood of the cell compared to the global distribution
siv p. Specifically, for each cell i, we compute its k-nearest neighbor graph using the Euclidean distance in
s0 the reduced-dimensional space. We therefore have a set of k neighbors and a set of associated neighbor
sa condition labels ¢; . for k € {1,...,k}. We then assign to the cell a z-score, based on the multinomial
2 test statistic P({¢ix}req1,... k), P), as defined in Section S-1.2. Finally, we smooth the z-scores in the
ss reduced-dimensional space by fitting s cubic splines for each dimension. The fitted values for each of the
s cells are the imbalance scores. Thus, the imbalance scores rely on two user-defined parameters, k and s.
s5 We set default values of 10 for both parameters. However, since this is meant to be an exploratory tool,
s we encourage users try different values for these parameters and observe the changes to better understand
sz their data.

ss General setting for the topologyTest. The imbalance score only provides a qualitative visual in-
s20  spection of local imbalances in the distribution of cell conditions. However, we need a more global and
s formal way to test for differences in topology between condition-specific trajectories. That is, we wish to
s test the null hypothesis

H():'Tq :7—62, V(Cl,CQ)G{L...,C}Q. (8)

s In practice, in order to test Hp, we have a set of cells ¢ with condition labels ¢;. We can estimates the
s pseudotimes of each cell when fitting a trajectory for each condition. We then want to compare this
s distribution of pseudotimes to a null distribution. To generate this null distribution, we use permutations
535 in the following manner

536 a) Estimate T; for all i by inferring one trajectory per condition, using any trajectory inference method.
537 b) Randomly permute the condition labels ¢; to obtain new labels ¢}, re-estimate T’; for each 4.
538 ¢) Repeat the permutation r times (by default, » = 100).

539 Under the null hypothesis, the n T; should therefore be drawn from the same distribution as the r xn
s0  TY;. We can test this using the weighted Kolmogorov-Smirnov test (if L = 1), the kernel two-sample test
s (if C' = 2), or the classifier test (any C). This is the topologyTest.

542 The aforementioned tests require that the samples be independent between the two distributions
s under comparison. However, here, the two distributions correspond to different pseudotime estimates for
ssa - the same cells so the samples are not independent between distributions. Even within distributions, the
ss  independence assumption is violated: the pseudotimes are estimated using trajectory inference methods
se6 that rely on all samples. Moreover, within the T’;, we have r pseudotime estimates of each cell.

547 The first two violations of the assumptions are hard to avoid and are further addressed in the discussion
ss  section. However, we can eliminate the third one by simply taking the average T'; for each cell. We
se0 then compare two distributions each with n samples. Both options (with and without averaging) are
ss0 implemented in the condiments R package, but the default is the average.

551 Furthermore, rather than attaching strong probabilistic interpretations to p-values (which, as in most
s2  RNA-seq applications, would involve a variety of hard-to-verify assumptions and would not necessarily
555 add much value to the analysis), we view the p-values produced by the condiments workflow simply as
ssa  useful numerical summaries for exploring trajectories across conditions and identifying genes for further
555 inspection.
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sss  Running the topologyTest in practice. Under the null, there should exist a mapping between
ss7  trajectories, both within conditions and between permutations. However, in practice, most trajectory
s inference methods will be too unstable to allow for automatic mapping between the runs. Indeed, they
sso might find a different number of lineages for some runs. Moreover, even if the number of lineages and
sso  graph structure remained the same across all permutations, mapping between permutations would break
ss1 even more the independence assumption since the condition labels would need to be used.

562 Therefore, for now, the topologyTest test is limited to two trajectory inference methods, slingshot [2]
ss  and TSCAN [4], where a set graph structure can be prespecified. Both methods rely on constructing
s« & minimum spanning tree (MST) on the centroids of input clusters in a reduced-dimensional space to
sss model branching lineages. In TSCAN, a cell’s pseudotime along a lineage is determined by its projection
sss onto a particular branch of the tree, and its weight of assignment is determined by its distance from the
ss7  branch. slingshot additionally fits simultaneous principal curves. A cell’s pseudotime along a lineage is
ss  determined by its projection onto a particular curve and its weight of assignment is determined by its
se0 distance from the curve. We therefore construct the MST on the full dataset (i.e., using all the cells
s regardless of their condition label), based on user-defined cluster labels. Then, we keep the same graph
s1 - structure as input to either TI method: the nodes are the centers of the clusters, but restrained to cells
sz of a given condition. This way, the path and graph structure are preserved. Note however, that there no
s;3  guarantee that the graph remains the MST when it is used for TT on a subset of cells.

« 1.4 Testing for differential progression
ss The differential progression test requires that a (partial) mapping exists between trajectories. If the

s mapping is only partial, we restrict ourselves to the mappable parts of the trajectories (i.e., subgraphs).

s Testing for differential progression for a single lineage. For a given lineage [, we want to test
szs  the null hypothesis that the pseudotimes along the lineage are identically distributed between conditions,

s which we call identical progression. Following the above notation, we want to test that the {** components
ss0 (1. of the distribution functions G, are identical across conditions
Hy : Gie, = Gle,, Y(c1,c2). (9)

s Testing for global differential progression. We can also test for global differences across all lineages,
ss2  that iS,
H() : Gcl = G027 V(Cl,CQ). (10)

ss3  Possible tests. If C' = 2, all tests introduced in Section 1.1 can be used to test the hypothesis in
s« Equation (9). If C' > 2, we need to rely on the classifier test.

585 If L =1, the hypotheses in Equations (9) and (10) are identical. However, for L > 1, the functions
sss (3. are not univariate distributions.

ss7 Using the Kolmogorov-Smirnov test in the L > 1 setting. For L > 1, we can use lineage-level
sss  weights as observational weights for each individual lineage, which is an appealing property. Two settings
ss0  are possible.

590 e Test the null hypothesis in Equation (9) for each lineage using the Kolmogorov-Smirnov test and
501 perform a global test using the classifier test or the kernel two-sample test.

e Test the null hypothesis in Equation (9) for each lineages using the Kolmogorov-Smirnov test and
combine the p-values p; for each lineage | using Stouffer’s Z-score method [33], where each lineage
is associated with observational weights W; = Y7 | W,[I]. The nominal p-value associated with
the global test is then

L
> Wip
1=1
Dglob = By —
\ 2t W
592 Note that the second setting violates the assumption of Stouffer’s Z-score method, since the p-values

s3 are not i.i.d. However, this violation does not seem to matter in practice and this test outperforms others
sa SO we set it as default.
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s 1.5 Testing for differential differentiation

s0s The differential progression test requires that a (partial) mapping exists between trajectories. If the
sv mapping is only partial, we restrict ourselves to the mappable parts of the trajectories.

ss Testing for differential differentiation for a single pair of lineages. For a given pair of lineages
so0  [,1’, we want to test the null hypothesis that the cells differentiate between [ and I’ in the same way
so between all conditions, which we call identical differentiation. Following the above notation, we want to
o1 test that the [** and " components of the distibution function H, are the same

Hy : V(Cth), [HZCUHVCJ = [HlC27Hl/C2]‘ (11)

w2 Testing for global differential differentiation. We can also test for a global difference across all
03 pairs of lineages, that is,

Hy :Y(c1,c2), H,, = H,, (12)

«s Possible tests. Since all variables are multivariate, we cannot use the Kolmogorov-Smirnov test. By
s default, this test relies on the classifier test with random forest as a classifier.

o 1.6 Testing for differential expression

Notation. The gene expression model does not require a mapping or even a partial mapping. Indeed,
it can work as well with a common trajectory, different trajectories, or even a mix where some lineages
can be mapped between the trajectories for various conditions and others cannot. To reflect this, we
consider all L;,; lineages together. We introduce a new weight for each cell

Zije = 0, ifi£AC.orlé¢T,,

Z, = {Zilc}le{l,...,Lto,,},ce{17.._,c} s.t. ,
{Zie hiequ,....ocr ~ M(Wjy), otherwise

o7 where M(W;j) is a binary (or one-hot) encoding representation of a multinomial distribution with pro-
s portions W as in tradeSeq.
Likewise, we modify the pseudotime vector to have length L;.; such that

T — 0,ifl &7,
v T;[l], otherwise

ws Gene expression model. We adapt the model from Van den Berge et al. [8] to allow for condition-
s1o  specific expression. For a given gene j, the expression measure Yj; for that gene in cell ¢ can be modeled
e thus:

Yii o~ NB(pji, ¢5)
log(Mji) = e Nji (13)
Nji = > sje(Ti)Zie + Ujor; + log(N;)
=1 c=1

sz where the mean pj;; of the negative binomial distribution is linked to the additive predictor 7;; using
s13  a logarithmic link function. The U matrix represents an additional design matrix, representing, for
s1a example, a batch effect.

615 The model relies on lineage-specific, gene-specific, and condition-specific smoothers sj;., which are

sis linear combinations of K cubic basis functions, sj.(t) = Zle br.(t) Bjick-

sz Testing for differential Expression. With this notation, we can introduce the conditionTest,
sis  which, for a given gene j, tests the null hypothesis that the smoothers are identical across conditions:

Ho . V(Cl,02)7Vk,Vl,5j‘lclk = /le02k- (14)

619 We fit the model using the mgcv package [34] and test the null hypothesis using a Wald test for
e20 each gene. Note that, although the gene expression model can be fitted without any mapping, the
s21  conditionTest only exists for lineages with at least a mapping for two conditions.
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2 1.7 Simulation study
e3 1.7.1 Simulating datasets

2 The simulation study relies on the dyngen framework of Cannoodt et al. [22] and all datasets are simulated
s as follows. 1/ A common trajectory is generated, with an underlying gene network that drives the
o2 differentiation along the trajectory. 2/ A set of Ny cells belonging to the wild-type condition (i.e., with
&7 no modification of the gene network) is generated. 3/ One master regulator that drives differentiation into
s one of the lineages is impacted, by multiplying the wild-type expression rate of that gene by a factor m. If
s m = 1, there is no effect; if m > 1, the gene is over-expressed; and if m < 1, the gene is under-expressed,
s0 with m = 0 amounting to a total knock-out. 4/ A set of Nxo = Nwr cells is generated using the
en common trajectory with the modified gene network. 5/ A common reduced-dimensional representation
62 is computed.

633 We generate three types of datasets, over a range of values of m: a simple trajectory with L = 2
s lineages and C' = 2 conditions (WT and KO) named 77 ; a trajectory with two consecutive branchings
3  with L = 3 lineages and C' = 2 conditions (WT and KO) named 73; and a simple trajectory with L = 2
s lineages and C' = 3 conditions (WT, KO, and UP) named 75. For the latter case, Steps 3-4/ are repeated
e twice, with values of m for KO and 1/m for UP.

638 For 71 and T3, we use values of m € {.5,.8,.9,.95,1,1/.95,1/.9,1/.8,1/.5}, such that at the extremes
s the KO cells fully ignore some lineages. Values of .95 and 1/.95 represent the closest to no condition effect
s0 (m = 1), where the effect was still picked out by some tests. For T3, since the simulation is symmetrical
s1 In m, we pick m € {.5,.8,.9,.95,1}. We have one large dataset per value of m and per trajectory type.
s2  We use those large datasets to generate smaller ones of size n, by sampling 10% of the cells from each
e3  condition 50 times and applying the various tests on the smaller datasets. The reason for first generating
sa  a large dataset and then smaller ones by subsampling instead of generating small ones straightaway are
ss computational: the generation of the datasets is time-consuming and the part that scales with Ny can
ws be parallelized. Hence, it is almost as fast to generate a large dataset than a small one with dyngen. We
s pick Ny = 20,000 (for the large dataset) and thus n = 2,000.

648 Since we generate many datasets with true effect (m # 1) but only one null dataset, the size of Nyr
a0 for m = 1 is doubled to 40,000. To be comparable, the fraction of cells sampled is decreased to 5% so
o that n = 2,000 and we perform 100 subsampling. Table 2 recapitulates all this.

Table 2: Summary of all simulated datasets. We report the name, number of cells nyr for values of
m # 1 and m = 1, number of conditions C, number of lineages L, impacted master regulator, and figure
numbers for the associated gene network and an example of low-dimensional representation.

Nwr Impacted | Gene Network | Reduced Dimension
Dataset m#%1l | m=1 " Lyc Regulator Figure Representation
71 | 20,000 | 40,000 | 2,000 | 2 | 2 B3 Fig Sla Fig.2a
T2 | 20,000 | 40,000 | 2,000 | 3 | 2 D2 Fig S1b Fig.2b
T3 | 20,000 | 40,000 | 2,000 | 2 | 3 B3 Fig Sla Fig.2¢c

o1 1.7.2 Measuring the performance of the tests on the simulated datasets

2 'To run the condiments workflow, we first estimate the trajectories using slingshot with the clusters provided
3 by dyngen. Then, we run the progressionTest and the differentiationTest with default arguments.
654 We compare condiments to two other methods. milo [16] and DAseq[17] both look at differences in
s proportions within local neighborhoods, using k-nearest neighbor graphs to define this locality. Then,
s milo uses a negative binomial GLM to compare counts for each neighborhood, while DAseq uses a logistic
7 classifier test. Therefore, both methods test for differential abundance in multiple regions. To account
s for multiple testing, we adjust the p-values using the Benjamini, Yoav ; Hochberg [21] FDR~controlling
69 procedure.

660 We select two adjusted p-value cutoffs, .01 and .05, which amount to controlling the FDR, at nominal
1 level 1% and 5%, respectively. For a given cutoff ¢ and a given dataset, we can look at the results of each
o2 test on all simulated datasets for all values of m. For each test, the number of true positives (TP) is the
63 number of simulated datasets where m # 1 and the adjusted p-value is smaller than ¢, the number of true
see  negatives (TN) is the number of simulated datasets where m = 1 and the adjusted p-value is larger than
s ¢, the number of false positives (FP) is the number of simulated datasets where m = 1 and the adjusted
s p-value is smaller than ¢, and the number of false negatives (FN) is the number of subsampled datasets
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s7  where m # 1 and the adjusted p-value is larger than ¢. We then examine 5 metrics built on these four
s variables:

. TN
True Negative Rate (TNR) = TN T FP
... TP
True Positive Rate (TPR) = TPLFN
Positive Predictive Value (PPV) = rr
ositive Predictive Value = TP+ FP
Negative Predictive Value (NPV) = N
egative Predictive Value = TN I FN
PPV x TPR
Fl_ = _—
score = 2 PPV - TPR
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S-1 Supplementary methods

S-1.1 Other methods implemented in the condiments package to test equality
of distributions

These methods were found to be less efficient in initial benchmarking, but are implemented in case users
want to use them.

S-1.1.1 Multivariate case: The two-sample kernel test

Mean maximum discrepancy. The two-sample kernel test was defined by Gretton et al. [29] and
relies on the mean maximum discrepancy (MMD). Considering a kernel function

E:RYxRI—- R
(2,y) — k(z,y)
the MMD is then defined as
MMDZ(Pla Ps, k) = EPhPl [k(X7 X/)] + EyP27P2 [k(Yv Y/)} - 2]EP17P2 [k(X’ Y)}

For a properly defined kernel, we have MM D?(P1,Pg, k) = 0 i.i.f. P; = Py.

Unbiased statistic. Following Gretton et al. [29], we define the unbiased MMD statistic:

MMDXY) = s Zkax —r 71)sz(yhy iii k(X0 Y)

=1 j#i =1 j#i

Linear statistic for faster computations. While the MM D? offers fast convergence, it can be
burdensome to compute when m and n get large. Gretton et al. [29] propose a linear statistic in the case
m = n. We can extend this in the general setting by just sampling a fixed fraction of the terms of each
sum. This lowers kernel computation costs drastically.

Null distribution of the statistic. For some kernels, the M M D2 follows some theoretical inequalities
under the null that allows one to define rejection regions. However, this is not always the case. Therefore,
in practice, we instead rely on permutations to compute a null distribution for the test statistic. Under
the null, X; and Y ; are from the same distribution so they can be swapped in the sums. We can therefore
generate an empirical distribution and use it to define rejection regions.

S-1.1.2 Multivariate case: Optimal transport

We consider the Wasserstein distance [35, 36], also known as earth’s mover distance, between the two
distributions, estimated using the samples X and Y. We can generate a null distribution for this metric
by permuting observations in the combined X and Y datasets, thereby obtaining a valid test for Hy :
P; = P5. This works in any number of dimensions, but is limited to the two-sample case.

S-1.2 Mutinomial test

We consider a set of categories arbitrarily numbered from 1 to C'. Additionally, we consider a null
distribution Cy, defined on 1 to C by a vector of probabilities p = {p.}¢_ ;. Then, given a set of n i.i.d.
realizations (¢(1),...,c(n)) of a random variable C, we can test the null hypothesis Hy : C ~ Cy or,
equivalently, Hy : P(C = ¢) = p.,Ve € {1,...,C}. Under the null, P(¢;) = p., and the associated p-value
of the multinomial test can be defined as:

P(z,p) = > P, (y).
y€{1,...C}":Pu, (y)<Pu,(z)

It verifies: Voo € [0: 1], Py, (P(z,p) < a) < a.

S-1


https://doi.org/10.1101/2021.03.09.433671
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.433671; this version posted March 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

= 9-1.3 Case studies: Processing.

sz TGFB. The two conditions are normalized separately using SCTransform [37] and then integrated
s using Seurat [38]. The reduced-dimensional representation is computed using UMAP [24] on the top 50
g2 principal components (PC). The imbalance score is computed with parameters k = 20 and smooth = 40.
ss The trajectory is estimated using slingshot. The topologyTest is run with 100 permutations with the
ss  Kolmogorov-Smirnov test and default threshold of .01. The progressionTest is run with defaults. All
sv  genes with at least 2 reads in 15 cells are kept. The smoothers are fitted for each gene using 7 knots
s as recommended by the evaluateK function. Gene set enrichment analysis is done using the fgsea [39]
s package on the GO Biological Process ontology sets.

so  TCCD. The dataset is first filtered using the cell type assignments from the original publication to only
s retains cells labelled as hepatocytes. The count matrix is scaled using Seurat [38] and reduced-dimensional
s22  coordinates are computed using UMAP [24] on the top 30 PCs. The imbalance score is computed with
a3 default k and smooth = 5. The trajectory is estimated using slingshot. The topologyTest is run with
s 100 permutations with the Kolmogorov-Smirnov test and default threshold of .01. The progressionTest
g5 1s run with defaults. All genes with at least 2 reads in 15 cells are kept; all genes with at least 3 reads in
ss 10 cells are kept. The smoothers are fitted for each gene using 7 knots as recommended by the evaluateK
sr  function.

s KRAS. The reduced-dimensional coordinates were obtained from the original publication. The im-
a0 balance score is run with defaults and the topologyTest is run with 100 permutations with the clas-
o sifier test and default threshold of .01. The trajectories are estimated using slingshot with parameters
51 reweight = FALSE and reassign = FALSE. The progressionTest and differentiationTest are
g2 run with defaults. All genes with at least 5 reads in 10 cells are kept. The smoothers are fitted for each
3 gene using 6 knots as recommended by the evaluateK function.

= 95-2 Supplementary figures

s 9-2.1 Simulations
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Figure S1: Simulation ezample. Regulator networks for the (a.) two-lineage and (b.) three-lineage
trajectories.
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Figure S2: Results on the third type of dataset. For all values of m € {.5,.8,.9,.95, 1}, we generate null
datasets with two lineages and three conditions and we compute the adjusted p-values of all tests that
can handle 3 conditions. The distributions of p-values are then displayed. m = 1 is negative (no effect),
while m < 1 is positive (some effect) with smaller values (toward the left) representing stronger effect.
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Figure S3: TCDD dataset: Differential topology and differential progression. After normalization and
projection on a reduced-dimensional space, the cells can be represented, colored either by treatment la-
bel (a.), cell type (b.), or batch (c.). Using the treatment label and the reduced-dimensional coordinates,
an imbalance score is computed and displayed (d.). The diffTopoTest rejects the null and separate
trajectories are fitted for each condition (e.). After mapping the lineages, there is also differential pro-
gression: the pseudotime distribution along the trajectory are not identical (f.) and we indeed reject the
null using the diffProgressionTest.
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Figure S4: TCDD dataset: Differential expression. The tradeSeq gene expression model is fitted using
the trajectory computed with slingshot. Differential expression between conditions is assessed using the
conditionTest and genes are ranked according to the test statistics. The genes with the highest (a.),
second highest (b.), and smallest (c.) test statistics are displayed. After adjusting the p-values to control
the FDR at a nominal level of 5%, we display genes in both conditions using a pseudocolor image (d.).
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Figure S5: KRAS dataset: Differential differentiation.
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Figure S6: KRAS dataset: Differential expression. The tradeSeq gene expression model is fitted using
the trajectory computed with slingshot. Differential expression between conditions is assessed using the
conditionTest and genes are ranked according to the test statistics. The genes with the highest (a.),
second highest (b.), and smallest (c.) test statistics are displayed. Focusing on the first lineage, we
select all differentially expressed genes in that lineage after adjusting the p-values to control the FDR

at a nominal level of 5%. We display the genes for all three conditions using a pseudocolor image (d.)
along this first lineage.
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