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Abstract5

In single-cell RNA-sequencing (scRNA-seq), gene expression is assessed individually for each cell,6

allowing the investigation of developmental processes, such as embryogenesis and cellular differenti-7

ation and regeneration, at unprecedented resolutions. In such dynamic biological systems, grouping8

cells into discrete groups is not reflective of the biology. Cellular states rather form a continuum,9

e.g., for the differentiation of stem cells into mature cell types. This process is often represented via10

a trajectory in a reduced-dimensional representation of the scRNA-seq dataset.11

While many methods have been suggested for trajectory inference, it is often unclear how to handle12

multiple biological groups or conditions, e.g., inferring and comparing the differentiation trajectories13

of wild-type and knock-out stem cell populations.14

In this manuscript, we present a method for the estimation and downstream interpretation of cell15

trajectories across multiple conditions. Our framework allows the interpretation of differences between16

conditions at the trajectory, cell population, and gene expression levels. We start by integrating17

datasets from multiple conditions into a single trajectory. By comparing the conditions along the18

trajectory’s path, we can detect large-scale changes, indicative of differential progression. We also19

demonstrate how to detect subtler changes by finding genes that exhibit different behaviors between20

these conditions along a differentiation path.21

The emergence of RNA sequencing at the single-cell level (scRNA-Seq) has enabled a new degree of22

resolution in the study of cellular processes. The ability to consider biological processes as continuous23

phenomena instead of individual discrete stages has permitted a finer and more comprehensive under-24

standing of dynamic processes such as embryogenesis and cellular differentiation. Trajectory inference25

was one of the first applications that leveraged this continuum [1] and a consequential number of methods26

have been proposed since then [2–4]. Saelens et al. [5] offer an extensive overview and comparison of such27

methods. Analysis of scRNA-Seq datasets using a curated database reveals that about half of all datasets28

were used for trajectory inference (TI) [6]. At its core, TI represents a dynamic process as a directed29

graph. Distinct paths along this graph are called lineages. Individual cells are then projected onto these30

lineages and the distance along each path is called pseudotime. In this setting, developmental processes31

are often represented in a tree structure, while cell cycles are represented as a loop. Following TI, other32

methods have been proposed to investigate differential expression (DE) along or between lineages, either33

as parts of TI methods [3, 7] or as separate modules that can be combined to create a full pipeline [8].34

More recently, other methods have emerged to answer an orthogonal problem, focusing on systems35

under multiple conditions. This includes, for example, situations where a biological process is studied36

both under a normal (or control) condition and under an intervention such as a treatment [9–11] or a37

genetic modification [12]. In other instances, one may want to contrast healthy versus diseased [13] cells38

or even more than two conditions [14]. In such settings, one might look for differential abundance, i.e.,39
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cell population shifts between conditions. Initial analytical approaches ignored the continuous nature of40

biological processes and binned cells into discrete clusters before looking at differences in composition41

between clusters. Borrowing from the field of mass cytometry [15], milo [16], and DAseq [17] rely on42

low-dimensional representations of the observations and define data-driven local neighborhoods in which43

they test for differences in compositions. Each of these methods show clear improvements in performance44

over cluster-based methods, and provide a more principled approach that better reflects the nature of45

the system.46

However, many studies with multiple conditions, if not most, actually involve processes that can be47

described by a trajectory. Utilizing this underlying biology could increase either the interpretability of48

the results or the ability to detect true and meaningful changes between conditions. In this manuscript,49

we present the condiments workflow, a general framework to analyze dynamic processes under multiple50

conditions that leverages the concept of a trajectory structure. condiments has a more specific focus51

than milo or DAseq, but it compensates for this by improving the quality of the differential abundance52

assessment and its biological interpretation. Our proposed analysis workflow is divided into three steps.53

In Step 1, condiments considers the trajectory inference question, assessing whether the dynamic process54

is fundamentally different between conditions, which we call differential topology. In Step 2, it tests55

for differential abundance of the different conditions along lineages and between lineages, which we56

respectively call differential progression and differential differentiation. Lastly, in Step 3, it estimates57

gene expression profiles similarly to Van den Berge et al. [8] and tests whether gene expression patterns58

differ between conditions along lineages, therefore extending the scope of differential expression.59

In this manuscript, we first present the condiments workflow, by detailing the underlying statistical60

model, and providing an explanation and intuition for each step. We then benchmark condiments against61

more general methods that test for differential abundance to showcase how leveraging the existence of a62

trajectory improves the assessment of differential abundance. Finally, we demonstrate the flexibility and63

improved interpretability of the condiments workflow in three case studies that span a variety of biological64

settings and topologies.65

Results66

General model and workflow67

Data structure and statistical model. We observe gene expression measures for J genes in n cells,68

resulting in a J × n count matrix Y. For each cell i, we also know its condition label c(i) ∈ {1, . . . , C}69

(e.g.,“treatment” or “control”, “knock-out” or “wild-type”). We assume that, for each condition c, there70

is an underlying developmental structure Tc, or trajectory, that possesses a set of Lc lineages.71

For a given cell i with condition c(i), its position along the developmental path Tc(i) is defined by a72

vector of Lc(i) pseudotimes Ti and a unit-norm vector of Lc(i) weights Wi (||Wi||1 = 1) (i.e., there is73

one pseudotime and one weight per lineage), with74

Ti ∼ Gc(i) and Wi ∼ Hc(i). (1)

The cumulative distribution functions (CDF) Gc and Hc are condition-specific and we make limited75

assumptions on their properties (see the method section for details). The pseudotime values represent76

how far a cell has progressed along each lineage, while the weights represent how likely it is that a cell77

belongs to each lineage. The gene expression model will be described below. Using this notation, we can78

properly define a trajectory inference (TI) method as a function that takes as input Y – and potentially79

other arguments – and returns estimates of Lc, T, W, and eventually Tc.80

Step 1 - Differential Topology: Should we fit a common trajectory? The first question to ask81

in our workflow is: Should we fit a common trajectory to all cells regardless of their condition? Or are the82

developmental trajectories too dissimilar between conditions? To demonstrate what this means, consider83

two extremes. For a dataset that consists of a mix of bone marrow stem cells and epithelial stem cells,84

using tissue as our condition, it is obvious that the developmental trajectories of the two conditions are85

not identical and should be estimated separately. On the other hand, if we consider a dataset where only86

a few genes are differentially expressed between conditions, the impact on the developmental process will87

be minimal and it is sensible to estimate a single common trajectory.88

Indeed, we favor fitting a common trajectory for several reasons. Firstly, fitting a common trajectory89

is a more stable procedure since more cells are used to infer the trajectory. Secondly, our workflow still90
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Figure 1: Illustrating the first two steps of the condiments workflow with several scenarios (a.) The
examples are all built on a similar wild-type backbone, i.e., two lineages that slowly diverge in the
absence of knocking out. Cells either originate from a wild-type (WT, blue) or a knock-out (KO, orange)
condition. In (b.), the knock-out has no effect, all three tests fail to reject their null hypothesis. In
(c.), the knock-out partly blocks differentiation along Lineage 2, meaning that fewer cells develop along
that lineage. In this case, while the topologyTest fails to reject the null, we have both differential
progression along Lineage 2 and differential differentiation. In (d.), the knock-out speeds development,
so there are more orange cells toward the end of both lineages. This leads to both differential progression
and differentiation. In (e.), the knock-out modifies the intermediate stage for Lineage 1 and changes
where the lineages bifurcates; based on the topologyTest, we fit one trajectory per condition. However,
the skeleton structure is unchanged, so there is a mapping between the two trajectories and we can still
test for differential progression and differentiation. In both cases, we fail to reject the null. Finally, in
(f.), the knock-out fully disrupts the developmental process: all cells in the knock-out condition progress
along a new lineage. Here, we fit separate trajectories and these cannot be reconciled easily, so we cannot
proceed to Steps 2 and 3.

provides a way to test for differences between conditions along and between lineages even if a common91

trajectory is inferred. In particular, fitting a common trajectory between conditions does not require that92

cells of distinct conditions differentiate similarly along that trajectory. Finally, fitting different trajecto-93

ries greatly complicates downstream analyses since we may need to map between distinct developmental94

structures before comparing them (i.e., each lineage in the first trajectory must match exactly one lin-95

eage in the second trajectory). Therefore, our workflow recommends fitting a common trajectory if the96

differences between conditions are small enough.97

To quantify what small enough is, we rely on two approaches. The first is a qualitative diagnostic tool98

called imbalance score. It requires as input a reduced-dimensional representation X of the data Y and the99

condition labels. Each cell is assigned a score that measures the imbalance between the local and global100

distributions of condition labels. Similarly to Dann et al. [16], Burkhardt et al. [18], the neighborhood101

of a cell is defined using a k-nearest neighbor graph on X, which allows the method to scale very well102

to large values of n. Cell-level scores are then locally scaled using smoothers in the reduced-dimensional103

space (see the Methods section).104

However, visual representation of the scores may not always be enough to decide whether or not to105

fit a common trajectory in less obvious cases. Therefore, we introduce a more principled approach, the106
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topologyTest. This test assesses whether we can reject the following null hypothesis:107

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, Tc1 = Tc2 . (2)

Under the null, the trajectory is common among all conditions and can therefore be estimated using all108

cells. Therefore, an estimation of the pseudotime vectors done by inferring a trajectory for each condition109

should be equivalent to the same procedure after permuting the condition labels. This is what is done110

for the topologyTest. A set of pseudotime vectors is estimated with the true condition labels. Another111

set is generated using permuted labels. Under the null, these two distributions should be equal. We can112

therefore test hypothesis (2) by testing for the equality in distributions of pseudotime using a variety of113

statistical tests (see the Methods section for details). Since we want to favor fitting a common trajectory114

and we only want to discover cases that are not only statistically significant but also biologically relevant,115

the tests typically include a minimum magnitude requirement for considering the difference between116

distributions to be significant (similar to a minimum log-fold-change for assessing DE). More details and117

practical implementation considerations are discussed in the Methods section.118

In practice, the topologyTest requires maintaining a mapping between each of the trajectories,119

both between conditions and between permutations (see the Methods section where we define a mapping120

precisely). Trajectory inference remains a semi-supervised task, that generally cannot be fully automated.121

In particular, the number of estimated lineages might change between different permutations for a given122

condition, precluding a mapping. As such, the topologyTest is only compatible with certain TI methods123

that allow for the specification of an underlying skeleton structure [2, 4], where the adjacency matrix can124

be pre-specified, as well (optionally) start and/or end states.125

In the examples from Fig 1, the skeleton of the trajectory is represented by a series of nodes and126

edges. In examples 1b-d, the knock-out has no impact on this skeleton compared to the wild-type. In127

example 1e, the knock-out (KO) modifies the skeleton, in that the locations of the nodes change. However,128

the adjacency matrix does not change and the two skeletons represent isomorphic graphs: the skeleton129

structure is preserved.130

For some TI methods [2, 4], it is possible to specify and preserve this skeleton structure. This means131

that the mapping of lineages can be done automatically. The topologyTest utilises this, and is thus132

restricted to such TI methods. This common skeleton structure can also be used if the null of the133

topologyTest is rejected. The availability of a mapping between lineages means that the next steps of134

the workflow can be conducted as if we had failed to reject the null hypothesis, as done in Fig 1e. The135

third case study will also present an example of this.136

Even if the null is rejected by the topologyTest and separate trajectories must be fitted for each137

condition, a common skeleton structure can still be used to map between trajectories. This mapping138

means that the next steps of the workflow can be conducted as if we had failed to reject the null hypothesis,139

as done in Fig 1e. The third case study will also present an example of this. In cases where no common140

skeleton structure exists, such as Fig 1f, no automatic mapping exists. Differential abundance can be141

assessed but requires a manual mapping. Differential expression can still be conducted as well.142

Step 2 - Differential abundance: What are the global differences between conditions? The143

second step of the workflow focuses on differences between conditions at the trajectory level. It requires144

either a common trajectory, or multiple trajectories and a mapping. We can then ask whether cells from145

different conditions behave similarly as they progress along the trajectory. To facilitate the interpretation146

of the results, we break this into two separate questions. Note that, at this step and the next, we are no147

longer limited to specific TI methods. Moreover, the mapping can be partial. In that case, Step 2 will148

be restricted to the parts (or subgraphs) of the trajectories that are mappable. See the Methods section149

for proper definitions of mapping and partial mapping.150

Step 2a: Differential Progression. Although the topology might be common, cells might progress151

at different rates along the lineages for different conditions. For example, a treatment might limit the152

differentiation potential of the cells compared to the control, or instead speed it up. In the first case,153

one would expect to have more cells at the early stages and fewer at the terminal state, when comparing154

treatment and control. Using our statistical framework, testing for differential progression amounts to155

testing:156

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, Gc1 = Gc2 . (3)

This test can also be conducted at the individual-lineage level. If we denote by Glc the l
th component157

of the distribution function Gc, we can test for differential progression along lineage l by considering the158
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null hypothesis:159

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, Glc1 = Glc2 . (4)

We can assess either or both null hypotheses in the progressionTest, which relies on non-parametric160

tests to compare two or more distributions, e.g., the Kolmogorov-Smirnov test [19] or the classifier161

test [20]. More details and practical implementation considerations are discussed in the Methods Section.162

Step 2b: Differential Differentiation. Although the topology might be common, cells might also163

differentiate in varying proportions between the lineages for different conditions. For example, an in-164

tervention might lead to preferential differentiation along one lineage over another, compared to the165

control condition; or might alter survival rates of differentiated cells between two end states. In both166

cases, the weight distribution will be different between the control and treatment. Assessing differential167

differentiation at the global level amounts to testing, in our statistical framework, the null hypothesis168

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, Hc1 = Hc2 . (5)

This test can also be conducted for a single pair of lineages (l, l′):169

H0 : ∀(c1, c2) ∈ {1, . . . , C}2, [Hlc1 , Hl′c1 ] = [Hlc2 , Hl′c2 ]. (6)

The above null hypotheses can again be tested by relying on non-parametric test statistics. We also170

discuss specific details and practical implementation in the Methods section.171

The progressionTest and differentiationTest are quite linked since the functions Gc and Hc are172

correlated and will therefore often return similar results. However, they do answer somewhat different173

questions. In particular, looking at single-lineage (progressionTest) and lineage-pair (differentiationTest)174

test statistics will allow for a better understanding of the global differences between conditions. Differ-175

ential differentiation does not necessarily imply differential progression and vice versa.176

Step 3 - Differential Expression: Which genes have different expression patterns between177

conditions? Steps 1 and 2 focus on differences at a global level (i.e., aggregated over all genes) and178

will detect large changes between conditions. However, such major changes are ultimately driven by179

underlying differences in gene expression patterns. Furthermore, even in the absence of global differences,180

conditions might still have some more subtle impact at the gene level. In the third step, we therefore181

compare gene expression patterns between conditions for each of the lineages. Step 3 is even more general182

than Step 2, in that it can be used without mapping between trajectories, i.e., some or all lineages could183

be condition-specific.184

Following the tradeSeq manuscript by Van den Berge et al. [8], we consider a general and flexible185

model for gene expression, where the gene expression measure Yji for gene j in cell i is modeled with186

the negative binomial generalized additive model (NB-GAM) described in Equation (13). We extend the187

tradeSeq model by additionally estimating condition-specific average gene expression profiles for each188

gene. We therefore rely on lineage-specific, gene-specific, and condition-specific smoothers, sjlc. With189

this notation, we can introduce the conditionTest, which, for a given gene j, tests the null hypothesis190

that these smoothers are identical across conditions:191

H0 : sjlc1 = sjlc2 , ∀(c1, c2), ∀l. (7)

As in tradeSeq, we rely on the Wald test to test H0 in terms of the smoothers’ regression coefficients.192

We can also use the fitted smoothers to visualize gene expression along lineages between conditions or193

cluster genes according to their expression patterns.194

Simulations195

We generate multiple trajectories using the simulation framework provided by Cannoodt et al. [22].196

Within this framework, it is possible to knock out a specific gene. Here, we knock out a master regulator197

that drives differentiation into the second lineage. The strength of this knock-out can be controlled via198

a multiplier parameter m. If m = 0, the knock-out is total. If 0 < m < 1, we have partial knock-out. If199

m > 1, the master regulator is over-expressed and cells differentiate much faster along the second lineage.200

Three types of datasets are generated: Simple branching trajectories (two lineages, e.g., Fig. 2a) of201

3, 500 cells, with equal parts wild-type and knock-out; trajectories with two consecutive branchings (and202

thus three lineages, e.g., Fig. 2b) of 3, 500 cells, with equal parts wild-type and knock-out; and branching203
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Figure 2: Simulation results. Three types of datasets are generated, with respectively two, three, and two
lineages, and two, two, and three conditions. Reduced-dimensional representations of these datasets, for
a multiplier value of m = .5, are presented in (a.), (b.), and (c.), respectively. After generating multiple
versions of the datasets for a range of values of m, we compare the performance of the progressionTest
and differentiationTest with that of DAseq[17] and milo[16], when controlling the false discovery rate
at nominal levels 1% and 5% using the Benjamini-Hochberg [21] procedure. In (d.), each cell represents
the performance measure associated with one test on one dataset for one nominal FDR level. Cells are also
colored according to the performance. Overall, with two conditions, the progressionTest ranks first,
followed by DAseq and the differentiationTest. With three conditions, the differentiationTest

ranks first. DAseq is limited to two conditions. Exact simulation parameters and metrics are specified in
the Methods section.

trajectories (two lineages) of 5, 000 cells with three conditions, wild-type, knock-out with multiplier m,204

and induction with multiplier 1/m (Fig. 2c).205

The simulation framework cannot, however, generate distinct trajectories for the different conditions,206

so we start the condiments workflow at Step 2, downstream of slingshot. We compare the progressionTest207

and differentiationTest from condiments to methods that also do not rely on clustering, but instead208

take into account the continuum of differentiation. milo [16] and DAseq[17] both define local neighbor-209

hoods using k-nearest neighbors graphs and look at differences of proportions in these neighborhood to210

test for differential abundance. These methods returns multiple tests per dataset (i.e., one per neigh-211

borhood), so we adjustfor multiple hypothesis testing using the Benjamini-Hochberg procedure [21]. By212

applying milo, DAseq, and condiments on the simulated datasets, we can compare the results of the tests213
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Table 1: Summary of all case study datasets. We report the name, number of cells n, number of conditions
C, number of lineages L of each dataset, as well as the p-value resulting from testing for differential topol-
ogy, progression and differentiation and the number of differentially expressed genes between conditions
according to the conditionTest

Dataset n C L topology progression differentiation DE

TGFB[9] 9, 268 2 1 0.38 ≤ 2.2× 10−16 NA 1, 993
TCDD[10] 9, 951 2 1 0.07 ≤ 2.2× 10−16 NA 2, 144
KRAS[23] 10, 177 3 3 ≤ 2.2× 10−16 ≤ 2.2× 10−16 ≤ 2.2× 10−16 363

versus the values of m: We count a true positive when a test rejects the null and m 6= 1, and a true214

negative if the test fails to reject the null and m = 1.215

We compare the methods’ ability to detect correct differences between conditions using five met-216

rics: The true negative rate (TNR), positive predictive value (PPV), true positive rate (TPR), negative217

predictive value (NPV), and F1-score, when controlling the FDR at two nominal levels of 1% and 5%.218

More details on the simulation scenarios and metrics can be found in the Methods section. Results are219

displayed in Fig. 2d.220

On all simulations, all methods display excellent results for the TNR and PPV (except for the221

differentiationTest with level 1% on the branching dataset). However, the performances for the TPR222

(power), NPV, and F1-rate vary quite widely. On the two types of datasets with two conditions, the rank-223

ing is uniform over all metrics and levels: progressionTest, DAseq, differentiationTest, and milo.224

On the third simulation setting with three conditions, we cannot benchmark DAseq since its testing frame-225

work is restricted to two conditions. Here, also, the ranking is uniform but the differentiationTest226

outperforms the progressionTest. Looking more closely at the results, we can see (Fig S2) that this227

mostly stems from increased power for the differentiationTest when m is close to 1.228

Overall, the tests from the condiments workflow offer a flexible approach that can handle various229

scenarios and still outperform competitors.230

Case studies231

We consider three real datasets as case studies for the application of the condiments workflow. Table 1232

gives an overview of these datasets and summary results. These case studies aim to demonstrate the233

versatility and usefulness of the condiments workflow, as well as showcase how to interpret and use the234

tests in practice.235

TGFB dataset236

McFaline-Figueroa et al. [9] studied the epithelial-to-mesenchymal transition (EMT), where cells migrate237

from the epithelium (inner part of the tissue culture dish) to the mesenchyme (outer part of the tissue238

culture dish) during development. The developmental process therefore is both temporal and spatial. As239

cells differentiate, gene expression changes. Moreover, the authors studied this system under two settings:240

a mock (control) condition and a condition under activation of transforming growth factor β (TGFB).241

After pre-processing, normalization, and integration (see details in the supplementary methods), we242

have a dataset of 9, 268 cells, of which 5, 207 are mock and 4, 241 are TGFB-activated. The dataset243

is represented in reduced dimension using UMAP[24] (Fig. 3a). Adding the spatial label of the cells244

(Fig. 3b) shows that the reduced-dimensional representation of the gene expression data captures the245

differentiation process.246

We can then run the condiments workflow. The imbalance score of each cell is computed and dis-247

played in Fig. 3c. Although some regions do display strong imbalance, there is no specific pattern along248

the developmental path. This is confirmed when we run the topologyTest. The nominal p-value of249

the associated test is 0.38. We clearly fail to reject the null hypothesis and we consequently fit a com-250

mon trajectory to both conditions using slingshot with the spatial labels as clusters. This single-lineage251

trajectory is shown in Fig. 3d.252

Next, we can ask whether the TGFB treatment impacts the differentiation speed. The developmental253

stage of each cell is estimated using its pseudotime. Plotting the per-condition kernel density estimates254

of pseudotimes in Fig. 3e reveals a strong treatment effect. The pseudotime distribution for the mock255

cells is trimodal, likely reflecting initial, intermediary, and terminal states. However, the first mode is256

not present in the TGFB condition, and the second is skewed towards higher pseudotime values. This is257
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Figure 3: TGFB dataset: Differential topology and differential progression. After normalization and
projection on a reduced-dimensional space (using UMAP), the cells can be colored either by treatment
label (a.) or spatial origin (b.). Using the treatment label and the reduced-dimensional coordinates, an
imbalance score is computed and displayed (c.). The topologyTest fails to reject the null hypothesis of
no differential topology and a common trajectory is therefore fitted (d.). However, there is differential
progression between conditions: the pseudotime distributions along the trajectory are not identical (e.)
between conditions and we reject the null using the progressionTest.

very consistent with the fact that the treatment is a growth factor that would increase differentiation, as258

shown in the original publication. Testing for equality of the two distributions with the progressionTest259

confirms the visual interpretation. The nominal p-value associated with the test is smaller than 2.2×10−16
260

and we reject the null that the distributions are identical. Since the trajectory is limited to one lineage,261

there is no possible differential differentiation between pairs of lineages.262

Then, we proceed to identifying genes whose expression patterns differ between the mock and TGFB263

conditions. After gene filtering, we fit smoothers to 10, 549 genes, relying on the model described in264

Equation (13). We test whether the smoothers are significantly different between conditions using the265

conditionTest. Testing against a log-fold-change threshold of 2, we find 1, 993 genes that are dynamically266

differentially expressed between the two conditions when controlling the false discovery rate (FDR) at267

a nominal level of 5%. Fig. 4a and b show the two genes with the highest Wald test statistic. The268

first gene, LAMC2, was also found to be differentially expressed in the original publication and has been269
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Figure 4: TGFB dataset: Differential expression. The tradeSeq gene expression model is fitted using
the trajectory inferred by slingshot. Differential expression between conditions is assessed using the
conditionTest and genes are ranked according to the test statistics. The genes with the highest (a.),
second highest (b.), and smallest (c.) test statistics are displayed. After adjusting the p-values to control
the FDR at a nominal level of 5%, we display genes for both conditions using a pseudocolor image (d.)
after scaling each gene to a [0, 1] range.

shown to regulate EMT [25]. The second gene, TGFBI or TGFB-induced gene, is not surprising, and was270

also labelled as differentially expressed in the original publication. In contrast, the gene that is deemed271

the least differentially expressed exhibits no differences between the smoothers (Fig. 4c.). Looking at all272

1, 993 DE genes, we can cluster and display their expression patterns along the lineage for both conditions273

(Fig. 4) and identify several groups of genes that have different patterns between the two conditions.274

Finally, we perform a gene set enrichment analysis on all the genes that are differentially expressed275

between the conditions. The full results are available in Supplementary Table S1. Top annotations276

include gene sets involved in cell motility, adhesion, and morphogenesis, which are consistent with the277

expected biology.278

TCDD dataset279

Nault et al. [10] collected a dataset of 16, 015 single nuclei to assess the hepatic effects of 2,3,7,8-280

tetrachlorodibenzo-p-dioxin or TCDD. In particular, they focused on the effect of TCDD on the 9, 951281

hepatocytes cells along the central-portal axis. This dataset is not a developmental dataset per se but still282

exhibits continuous changes along a spatial axis, demonstrating the versatility of the trajectory inference283

framework in general, and of the condiments workflow in particular.284

Fig. S3a shows a reduced-dimensional representation of the dataset, with cells labelled according to285

treatment/control condition, while Fig. S3b shows the same plot colored by cell type, as derived by the286

authors of the original publication. The cells are aligned in a continuum, from central to mid-central and287

then mid-portal and portal. The imbalance score shows some spatial pattern (Fig. S3c). However, the288

nominal p-value associated with the topologyTest is .07. We therefore fail to reject the null and we infer289

a common trajectory using slingshot on the spatial clusters. This results in a single-lineage trajectory290

that respects the ordering of the spatial clusters (Fig. S3d). Note that, since the trajectory reflects a291

spatial continuum rather than a temporal one, the start of the trajectory is arbitrary. However, inverting292
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the start and end clusters amounts to an affine transformation of the pseudotimes for all the cells. Step293

2 and 3 are fully invariant to this transformation, so we can pick the Central cluster as the start of the294

trajectory.295

The densities of the treatment and control pseudotime distributions differ greatly visually (Fig. S3e),296

with the TCDD density heavily skewed toward the start of the trajectory. Indeed, the progressionTest297

has a nominal p-value ≤ 2.2 × 10−16. This coincides with the finding of the original publication which298

highlighted the periportal hepatotoxicity of TCDD.299

The ability of the progressionTest to correctly find large-scale changes in the spatial distribution300

of cells between conditions underscores why we favor fitting a common trajectory. Indeed, the p-value of301

the topologyTest in Step 1 is rather small and would have been below .05 if we had not conducted a302

test against a threshold. However, testing against a threshold and thus fitting a common trajectory does303

not stop the workflow from finding large-scale differences between conditions in Step 2 and results in a304

more stable estimate of the trajectory.305

After gene filtering, we test 8, 027 genes for spatial differential expression between conditions and we306

find 2, 114 DE genes when controlling the FDR at a nominal level of 5%. The genes with the largest,307

second largest, and smallest test statistics are displayed in Fig.S4a-c. Similarly to Nault et al. [10], we308

obtain a list of zonal genes from Halpern et al. [26]. The proportion of zonal genes among the DE genes309

is twice their proportion among non-DE genes.310

KRAS dataset311

Xue et al. [23] studied the impact of KRAS(G12C) inhibitors at the single-cell level on three models312

of KRAS(G12C) lung cancers. Specifically, they examined how various cell populations react to these313

inhibitors and how some cells can return in proliferation mode shortly after the end of the treatment.314

Here, we want to investigate how the three cancer models (H358, H2122, and SW1573) differ in their315

response to the KRAS(G12C) inhibitors.316

We use the reduced-dimensional representation from the original paper to display the 10, 177 cells317

from the various types (Fig 5a). Using the cancer type labels and the reduced-dimensional coordinates,318

an imbalance score can be computed (Fig 5b); some regions clearly show an imbalance. This is further319

confirmed by the topologyTest, with p-value smaller than 2.2×10−16. We therefore do not fit a common320

trajectory to all cancer types (Fig 5c).321

Note that this does not necessarily imply that the trajectory of reaction to the KRAS(G12C) inhibitors322

is different between cancer types. Indeed, this may also reflect strong batch effects between conditions,323

which the normalization scheme was unable to fully remove when integrating the three cancer types in324

one common reduced-dimensional representation. Thus, it is not really possible to draw a biological325

conclusion at this first step. However, this does mean that a separate trajectory should be fitted to each326

condition.327

Here, the trajectories, although different, are similar enough that we can still use an underlying328

common skeleton (Fig 5d). Indeed, we keep the tree structure derived by computing the minimum329

spanning tree (MST) on the clusters using all cells. This way, it is possible to derive a one-to-one mapping330

between the lineages of the three trajectories and we respect the assumptions detailed in Section 1.2 that331

are necessary for the progressionTest and differentiationTest.332

Using this common mapping, we can then proceed to the progressionTest. At the global trajectory333

level, the nominal p-value is smaller than 2.2×10−16, showing clear differential progression. At the lineage334

level, all three lineages show strong differential progression, with p-values of 2.2 × 10−16, 1.2 × 10−12,335

and 1.2 × 10−14, respectively. The density plots for the pseudotime distributions at the single-lineage336

level (Fig 5e) indicate that the differential progression is driven by a group of cells from cancer type337

H2122A. This matches the top left part of the reduced-dimensional plot, the region where cells exit the338

initial inhibition stage to enter the reactivation stage. The second lineage also shows a difference between339

H2122A and the two other models. The pseudotime distribution is heavily skewed toward earlier points340

in that model compared to the other two. Lineage 2 represents differential progression to a drug-induced341

state. In Lineage 3, it is the SW1573A model that displays more differential progression.342

The differentiationTest also has a p-value smaller than 2.2 × 10−16. Although all pairwise com-343

parisons are significant, the test statistics are much higher for the Lineage 2 vs. 1 and Lineage 2 vs. 3344

comparisons. This again suggests that one model differentiates less into the drug-induced path, compared345

to the other two. Since the weights have to sum to 1, the 3-dimensional distribution can be fully sum-346

marized by any two components. Fig S5 shows clear differences in distributions but visually interpreting347

different 2D distributions is still challenging. A simpler way to compare the distributions is to look at the348

average weight in each condition for each lineage (Fig 5f). This ignores the correlation between lineages349
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Figure 5: KRAS dataset: Differential topology, differential progression, and differential differentiation.
Using the reduced-dimensional representation of the original publication (t-SNE), the cells can be colored
by cancer type (a.). Using the cancer type label and the reduced-dimensional coordinates, an imbalance
score is computed and displayed (b.). The topologyTest rejects the null hypothesis of a common
trajectory, we thus fit one trajectory per condition (c.). However, the skeleton graphs have the same
structure (d.), so we can progress to the next steps in the condiments workflow. There is differential
progression (d.) and we indeed reject the null of identical pseudotime distributions along the trajectory
using the progressionTest. Similarly, there is differential differentiation (e.) and we reject the null of
identical weight distributions along the trajectory using the differentiationTest. Here, we summarize
the distributions by looking at the average weight for each lineage in each condition, which already shows
some clear differences.

but still allows for some interpretation. We can see in particular that Lineages 1 and 3 have greater350

weights for H2122A than for the other two conditions, which is consistent with the different pairwise351

statistics.352

With the mapped trajectories, we can also perform gene-level analysis using the conditionTest.353

When comparing genes across all lineages and conditions, we find 363 differentially expressed genes when354

controlling the FDR at nominal level 5%. We show the genes with the highest, second highest, and355

smallest test statistics in Fig. S6a-c. Displaying these global patterns across all three lineages and all356

three conditions makes it hard to interpret. We therefore focus on the first (and longest) lineage. In that357

lineage, we find 366 DE genes and we show their expression patterns along Lineage 1 in all three cancer358

models in Fig. S6d.359

Discussion360

In this manuscript, we have introduced condiments, a full workflow to analyze dynamic systems under361

multiple conditions. By separating the analysis into several steps, condiments offers a flexible framework362

with increased interpretability. Indeed, we follow a natural progression through a top-down approach, by363

first studying overall differences in trajectories with the topologyTest, then differences in abundances364

at the trajectory level with the progressionTest and differentiationTest, and finally gene-level365

differences in expression with the conditionTest.366
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As demonstrated in the simulation studies, taking into account the dynamic nature of systems via367

the trajectory representation enables condiments to better detect true changes between conditions. The368

flexibility offered by our implementation, which provides multiple tests for non-parametric comparisons369

of distributions, also allows us to investigate a wide array of scenarios. This is evident in the three case370

studies presented in the manuscript. Indeed, in the first case study we have a developmental system371

under treatment and control conditions, while in the second case study the continuum does not represent372

a developmental process but spatial separation. In the third case study, the conditions do not reflect373

different treatments but instead different cancer models. This shows that condiments can be used to374

analyze a wide range of datasets.375

Often, the different conditions also represent different batches. Indeed, some interventions cannot be376

delivered on a cell-by-cell basis and this creates unavoidable confounding between batches and conditions.377

Normalization and integration of the datasets must therefore be done without eliminating the underlying378

biological signal. This balance can be hard to strike, as discussed in Zhao et al. [17]. Proper experimental379

design – such as having several batches per condition – or limiting batch effects as much as possible –380

for example, sequencing a mix of conditions together – can help lessen this impact. Still, some amount381

of confounding is sometimes inherent to the nature of the problem under study.382

The tests used in the workflow (e.g., Kolmogorov-Smirnov test) assume that the pseudotime and383

weight vector are known and independent observations for each cell. However, this is not the case:384

they are estimated using TI methods which use all samples to infer the trajectory, and each estimate385

inherently has some uncertainty. Here, we ignore this dependence, as is the case in other differential386

abundance methods, which assume that the reduced-dimensional coordinates are observed independent387

random variables even thought they are being estimated using the full dataset. We stress that, rather388

than attaching strong probabilistic interpretations to p-values (which, as in most RNA-seq applications,389

would involve a variety of hard-to-verify assumptions and would not necessarily add much value to the390

analysis), we view the p-values produced by the condiments workflow as useful numerical summaries391

for guiding the decision to fit a common trajectory or condition-specific trajectories and for exploring392

trajectories across conditions and identifying genes for further inspection.393

Splitting the data into two groups, where the first is used to estimate the trajectory and the second394

is used for pseudotime and weight estimation could, in theory, alleviate the dependence issue, at the cost395

of smaller sample sizes. However, this would ignore the fact that, in practice, users perform exploratory396

steps using the full data before performing the final integration, dimensionality reduction, and trajectory397

inference. Moreover, results on simulations show that all methods considered keep excellent control of the398

false discovery rate despite the violation of the independence assumptions. This issue of “double-dipping”399

therefore seems to have a limited impact.400

The two issues raised in the previous paragraphs highlight the need for independent benchmarking.401

Simulation frameworks such as dyngen [22] are crucial. They also need to be complemented by real-world402

case studies, which will become easier as more and more datasets that study dynamic systems under403

multiple conditions are being published. condiments has thus been developed to be a general and flexible404

workflow that will be of use to researchers asking complex and ever-changing questions.405
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Methods423

1.1 Tests for equality of distributions424

1.1.1 General setting425

Consider a set of n i.i.d. observations, X, with Xi ∼ P1, and a second set of m i.i.d. observations, Y,426

with Yj ∼ P2, independent from X. For example, in our setting, X and Y may represent estimated427

pseudotimes for cells from two different conditions. We limit ourselves to the case where X and Y are428

random vectors of the same dimension d.429

The general goal is to test the null hypothesis that X and Y have the same distribution, i.e., H0 :430

P1 = P2.431

1.1.2 Univariate case: The weighted Kolmogorov-Smirnov test432

The two-sample Kolmogorov-Smirnov test. Consider the case where Xi and Yj are scalar random433

variables (i.e., d = 1). The associated empirical cumulative distribution functions (ECDFs) are denoted,434

respectively, by F1,n and F2,m. The univariate case occurs, for example, when there is only one lineage435

in the trajectory(ies), so that the pseudotime estimates are scalars.436

In this setting, one can test H0 using the standard Kolmogorov-Smirnov test [19], with test statistic
defined as:

Dn,m ≡ sup
x

∣

∣F1,n(x)− F2,m(x)
∣

∣

= sup
x∈X∪Y

∣

∣F1,n(x)− F2,m(x)
∣

∣.

The rejection region at nominal level α is

[

√

−
1

2
× log

α

2
×

n+m

n×m
,∞

)

.

That is, we reject the null hypothesis at the α-level if and only if Dn,m ≥
√

−1/2× logα/2× n+m
n×m

.437

The two-sample weighted Kolmogorov-Smirnov test. Consider a more general setting where we
have weights w1,i ∈ [0, 1] and w2,j ∈ [0, 1] for each of the observations. In trajectory inference, the
weights may denote the probability that a cell belongs to a particular lineage in the trajectory. Following
Monahan [27], we modify the Kolmogorov-Smirnov test in two ways. Firstly, the empirical cumulative
distribution functions are modified to account for the weights

F1,n(x) =
1

∑n

i=1 w1,i

n
∑

i=1

w1,i × I(−∞,x](Xi)

F2,m(x) =
1

∑m

j=1 w2,j

m
∑

j=1

w2,j × I(−∞,x](Yj).

Secondly, the definition of Dn,m is unchanged, but the significance threshold is updated, that is, the
rejection region is

[

√

−
1

2
× log

α

2
×

n′ +m′

n′ ×m′
,∞

)

,

where

n′ =

(

n
∑

i=1

w1,i

)2

n
∑

i=1

w2
1,i

and m′ =

(

m
∑

j=1

w2,j

)2

m
∑

j=1

w2
2,j

.
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1.1.3 Multivariate case: The classifier test438

Concept. Suppose that we have a classifier δ(·), which could be, for example, a multinomial regression439

or SVM classifier. This classifier is a function from the support of X and Y into {1, 2}. The data are440

first split into a learning and a test set, such that the test set contains ntest observations, equally-drawn441

from each population, i.e., there are ntest/2 observations X(test) from X and ntest/2 observations Y(test)
442

from Y. Next, the classifier is trained on the learning set. We denote by Acc ≡ |{i : δ(X
(test)
i ) = 1}

⋃

{j :443

δ(Y
(test)
j ) = 2}| the number of correct assignations made by the classifier on the test set.444

If n = m, under the null hypothesis of identical distributions, no classifier will be able to perform
better on the test set than a random assignment would, i.e., where the predicted label is a Bernoulli(1/2)
random variable. Therefore, testing the equality of the distributions of X and Y can be formulated as
testing

H0 : E[Acc] =
ntest

2
vs. H1 : E[Acc] >

ntest

2
.

Under the null hypothesis, the distribution of Acc is:

Acc ∼H0
Binom(ntest, 1/2).

As detailed in Lopez-Paz and Oquab [20], one can use the classifier to devise a test that will guarantee445

the control of the Type 1 error rate.446

The classifier test in practice. In practice, we make no assumptions about the way in which the447

distributions we want to compare might differ, which means the classifier needs to be quite flexible.448

Following Lopez-Paz and Oquab [20], we chose to use either a k-nearest neighbor classifier (k-NN) or449

a random forests classifier [28], since such classifiers are fast and flexible. Hyper-paramters are chosen450

through cross-validation on the learning set. To avoid issues with class imbalance, we downsample the451

distribution with the largest number of samples first so that each distribution has the same number of452

observations. That is, we have n′ = min(m,n) observations in each condition (or class). A fraction (by453

default 30%, user-defined) is kept as test data, so that ntest = .3×n′. We then train the classifier on the454

learning data, and select the tuning parameters through cross-validation on that learning set. Finally, we455

predict the labels on the test set and compute the accuracy of the classifier on that test set. This yields456

our classifier test statistic.457

Power of the classifier test. It is interesting to note that the classifier test is valid no matter the458

classifier chosen. However, the choice of classifier will have obvious impact on the power of the test.459

1.1.4 Multivariate case: Other methods460

Although we have found that the classifier test performs best in practice, there are many methods that461

test for the equality of two multivariate distributions. We have implemented a few such methods in462

condiments, in case users would like to try them: The two-sample kernel test [29] and the permutation463

test relying on the Wasserstein distance (see descriptions in the supplementary methods).464

1.1.5 Extending the setting by considering more than two conditions465

Consider C ≥ 2 sets of samples, such that, for c ∈ {1, . . . , C}, we have nc i.i.d. observations X(c) with466

X
(c)
i ∼ Pc. We want to test the null hypothesis:467

H0 : Pc1 = Pc2 , ∀c1, c2 ∈ {1, . . . , C} and c1 6= c2.

While extensions of the Kolmogorov-Smirnov test [30] and the two-sample kernel test [31] have been468

proposed, we choose to focus only on the framework that is most easily extended to C conditions, namely,469

the classifier test. Indeed, the C-condition classifier test requires choosing a multiple-class classifier470

instead of a binary classifier (which is the case for the k-NN classifier and random forests), selecting471

ntest/C observations for each class in the test set, and testing:472

H0 : E[Acc] =
ntest

C
vs. H1 : E[Acc] >

ntest

C
.

Under the null distributions, the distribution of Acc is:

Acc ∼H0
Binom(ntest, 1/C).
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1.1.6 Extending the setting by considering an effect size473

Effect size for the Kolmogorov-Smirnov test. The null hypothesis of the (weighted) Kolmogorov-
Smirnov test is H0 : P1 = P2. We can modify this null hypothesis by considering an effect size threshold
t, such that H0(t) : supx

∣

∣P1(x)− P2(x)
∣

∣ ≤ t. The test statistic is then modified as:

D′

n,m ≡ max(Dn,m − t, 0)

and the remainder of the testing procedure is left unchanged.474

Effect size for the classifier test. Similarly, the null and alternative hypotheses of the classifier test
can be modified to test against an effect size threshold t as follows

H0 : Acc ≤
ntest

C
+ t vs. H1 : Acc >

ntest

C
+ t.

1.2 General statistical model for the trajectories475

Consider a set of condition labels c ∈ {1, . . . , C} (e.g.,“treatment” or “control”, “knock-out” or “wild-476

type”). For each condition, there is a given topology/trajectory Tc that underlies the developmental477

process. This topology is generally in the form of a tree, with a starting state which then differentiates478

along one or more lineages; but one can also have a circular graph, e.g., for the cell cycle. In general, a479

trajectory is defined as a directed graph.480

We denote by Lc the number of unique paths – or lineages – in the trajectory Tc and by Cc the set of481

cells that belong to condition c. For example, for a tree structure, paths go from the root node (stem cell482

type) to the leaf nodes (differentiated cell type). For a cell cycle, any node can be be used as the start.483

A cell i from condition ci is characterized by the following features:484

Ti ∼ Gci : A vector of pseudotimes, one per lineage of Tci
Wi ∼ Hci : A vector of weights, one per lineage of Tci , s.t. ||Wi||1 = 1.

Note that the distribution functions are condition-specific. We further make the following assumptions:485

• All Gc and Hc distributions are continuous;486

• The support of all Gc is bounded in R
Lc ;487

• The support of all Hc is [0, 1]Lc .488

The gene expression model will be discussed below, in the differential expression section.489

Trajectory inference. Many algorithms have been developed to estimate lineages from single-cell490

data [5]. Most algorithms provide a binary indicator of lineage assignment, that is, the Wi vectors are491

composed of 0s and 1s, so that a cell either belongs to a lineage or it does not (note that when cells fall492

along a lineage prior to a branching event, this vector may include multiple 1s, violating our constraint493

that the Wi have unit norm. In such cases, we normalize the weights to sum to 1).494

Mapping between trajectories. Many of the tests that we introduce below assume that the cells495

from different conditions follow “similar” trajectories. In practice, this means that we either have a496

common trajectory for all conditions or that there is a possible manual mapping from one lineage to497

another. The term “mapping” is more rigorously defined as follows.498

Definition 1 The trajectories {Tc : c ∈ {1, . . . , C}} have a mapping if and only if ∀(c1, c2) ∈499

{1, . . . , C}2, Tc1 and Tc2 are isomorphic.500

If there is a mapping, this implies in particular that the number of lineages Lc per trajectory Tc is501

the same across all conditions c and we call this this value L. Since a graph is always isomorphic with502

itself, a common trajectory is a special case of a situation where there is a mapping.503

Definition 2 The trajectories {Tc : c ∈ {1, . . . , C}} have a partial mapping if and only if504

∀(c1, c2) ∈ {1, . . . , C}2, there is a subgraph T ′
c1 ⊂ Tc1 and a subgraph T ′

c2 ⊂ Tc2 that are505

isomorphic.506
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Essentially, this means that the size of the changes induced by the various conditions do not disturb507

the topology of the original trajectory too much. The above mathematical definitions aim to formalize508

what too much is. Indeed, if the conditions lead to very drastic changes, it will be quite obvious that the509

trajectories are different and comparing them will mostly be either non-informative or will not require a510

complex framework. We aim to build a test that retains reasonable power in more subtle cases.511

1.3 Differential topology512

Imbalance score. Consider a set of n cells, with associated condition labels ci ∈ {1, . . . , C} and513

coordinate vectors Xi in d dimensions, usually corresponding to a reduced-dimensional representation of514

the expression data obtained via PCA or UMAP[24, 32].515

Let p = {pc}c∈{1,...,C} denote the “global” distribution of cell conditions, where pc is the overall516

proportion of cells with label c in the sample of size n. The imbalance score of a cell reflects the deviation517

of the “local” distribution of conditions in a neighborhood of the cell compared to the global distribution518

p. Specifically, for each cell i, we compute its k-nearest neighbor graph using the Euclidean distance in519

the reduced-dimensional space. We therefore have a set of k neighbors and a set of associated neighbor520

condition labels ci,κ for κ ∈ {1, . . . , k}. We then assign to the cell a z-score, based on the multinomial521

test statistic P ({ci,κ}κ∈{1,...,k},p), as defined in Section S-1.2. Finally, we smooth the z-scores in the522

reduced-dimensional space by fitting s cubic splines for each dimension. The fitted values for each of the523

cells are the imbalance scores. Thus, the imbalance scores rely on two user-defined parameters, k and s.524

We set default values of 10 for both parameters. However, since this is meant to be an exploratory tool,525

we encourage users try different values for these parameters and observe the changes to better understand526

their data.527

General setting for the topologyTest. The imbalance score only provides a qualitative visual in-528

spection of local imbalances in the distribution of cell conditions. However, we need a more global and529

formal way to test for differences in topology between condition-specific trajectories. That is, we wish to530

test the null hypothesis531

H0 : Tc1 = Tc2 , ∀(c1, c2) ∈ {1, . . . , C}2. (8)

In practice, in order to test H0, we have a set of cells i with condition labels ci. We can estimates the532

pseudotimes of each cell when fitting a trajectory for each condition. We then want to compare this533

distribution of pseudotimes to a null distribution. To generate this null distribution, we use permutations534

in the following manner535

a) EstimateTi for all i by inferring one trajectory per condition, using any trajectory inference method.536

b) Randomly permute the condition labels ci to obtain new labels c′i, re-estimate T′

i for each i.537

c) Repeat the permutation r times (by default, r = 100).538

Under the null hypothesis, the n Ti should therefore be drawn from the same distribution as the r×n539

T′

i. We can test this using the weighted Kolmogorov-Smirnov test (if L = 1), the kernel two-sample test540

(if C = 2), or the classifier test (any C). This is the topologyTest.541

The aforementioned tests require that the samples be independent between the two distributions542

under comparison. However, here, the two distributions correspond to different pseudotime estimates for543

the same cells so the samples are not independent between distributions. Even within distributions, the544

independence assumption is violated: the pseudotimes are estimated using trajectory inference methods545

that rely on all samples. Moreover, within the T′

i, we have r pseudotime estimates of each cell.546

The first two violations of the assumptions are hard to avoid and are further addressed in the discussion547

section. However, we can eliminate the third one by simply taking the average T′

i for each cell. We548

then compare two distributions each with n samples. Both options (with and without averaging) are549

implemented in the condiments R package, but the default is the average.550

Furthermore, rather than attaching strong probabilistic interpretations to p-values (which, as in most551

RNA-seq applications, would involve a variety of hard-to-verify assumptions and would not necessarily552

add much value to the analysis), we view the p-values produced by the condiments workflow simply as553

useful numerical summaries for exploring trajectories across conditions and identifying genes for further554

inspection.555

16

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.433671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.433671
http://creativecommons.org/licenses/by/4.0/


Running the topologyTest in practice. Under the null, there should exist a mapping between556

trajectories, both within conditions and between permutations. However, in practice, most trajectory557

inference methods will be too unstable to allow for automatic mapping between the runs. Indeed, they558

might find a different number of lineages for some runs. Moreover, even if the number of lineages and559

graph structure remained the same across all permutations, mapping between permutations would break560

even more the independence assumption since the condition labels would need to be used.561

Therefore, for now, the topologyTest test is limited to two trajectory inference methods, slingshot [2]562

and TSCAN [4], where a set graph structure can be prespecified. Both methods rely on constructing563

a minimum spanning tree (MST) on the centroids of input clusters in a reduced-dimensional space to564

model branching lineages. In TSCAN, a cell’s pseudotime along a lineage is determined by its projection565

onto a particular branch of the tree, and its weight of assignment is determined by its distance from the566

branch. slingshot additionally fits simultaneous principal curves. A cell’s pseudotime along a lineage is567

determined by its projection onto a particular curve and its weight of assignment is determined by its568

distance from the curve. We therefore construct the MST on the full dataset (i.e., using all the cells569

regardless of their condition label), based on user-defined cluster labels. Then, we keep the same graph570

structure as input to either TI method: the nodes are the centers of the clusters, but restrained to cells571

of a given condition. This way, the path and graph structure are preserved. Note however, that there no572

guarantee that the graph remains the MST when it is used for TI on a subset of cells.573

1.4 Testing for differential progression574

The differential progression test requires that a (partial) mapping exists between trajectories. If the575

mapping is only partial, we restrict ourselves to the mappable parts of the trajectories (i.e., subgraphs).576

Testing for differential progression for a single lineage. For a given lineage l, we want to test577

the null hypothesis that the pseudotimes along the lineage are identically distributed between conditions,578

which we call identical progression. Following the above notation, we want to test that the lth components579

Glc of the distribution functions Gc are identical across conditions580

H0 : Glc1 = Glc2 , ∀(c1, c2). (9)

Testing for global differential progression. We can also test for global differences across all lineages,581

that is,582

H0 : Gc1 = Gc2 , ∀(c1, c2). (10)

Possible tests. If C = 2, all tests introduced in Section 1.1 can be used to test the hypothesis in583

Equation (9). If C > 2, we need to rely on the classifier test.584

If L = 1, the hypotheses in Equations (9) and (10) are identical. However, for L > 1, the functions585

Gc are not univariate distributions.586

Using the Kolmogorov-Smirnov test in the L > 1 setting. For L > 1, we can use lineage-level587

weights as observational weights for each individual lineage, which is an appealing property. Two settings588

are possible.589

• Test the null hypothesis in Equation (9) for each lineage using the Kolmogorov-Smirnov test and590

perform a global test using the classifier test or the kernel two-sample test.591

• Test the null hypothesis in Equation (9) for each lineages using the Kolmogorov-Smirnov test and
combine the p-values pl for each lineage l using Stouffer’s Z-score method [33], where each lineage
is associated with observational weights Wl =

∑n

i=1 Wi[l]. The nominal p-value associated with
the global test is then

pglob ≡

L
∑

l=1

Wlpl
√

∑L

i=1 W
2
l

.

Note that the second setting violates the assumption of Stouffer’s Z-score method, since the p-values592

are not i.i.d. However, this violation does not seem to matter in practice and this test outperforms others593

so we set it as default.594
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1.5 Testing for differential differentiation595

The differential progression test requires that a (partial) mapping exists between trajectories. If the596

mapping is only partial, we restrict ourselves to the mappable parts of the trajectories.597

Testing for differential differentiation for a single pair of lineages. For a given pair of lineages598

l, l′, we want to test the null hypothesis that the cells differentiate between l and l′ in the same way599

between all conditions, which we call identical differentiation. Following the above notation, we want to600

test that the lth and l′th components of the distibution function Hc are the same601

H0 : ∀(c1, c2), [Hlc1 , Hl′c1 ] = [Hlc2 , Hl′c2 ]. (11)

Testing for global differential differentiation. We can also test for a global difference across all602

pairs of lineages, that is,603

H0 : ∀(c1, c2), Hc1 = Hc2 (12)

Possible tests. Since all variables are multivariate, we cannot use the Kolmogorov-Smirnov test. By604

default, this test relies on the classifier test with random forest as a classifier.605

1.6 Testing for differential expression606

Notation. The gene expression model does not require a mapping or even a partial mapping. Indeed,
it can work as well with a common trajectory, different trajectories, or even a mix where some lineages
can be mapped between the trajectories for various conditions and others cannot. To reflect this, we
consider all Ltot lineages together. We introduce a new weight for each cell

Zi = {Zilc}l∈{1,...,Ltot},c∈{1,...,C} s.t.







Zilc = 0, if i 6= Cc or l /∈ Tci

{Zilci}l∈{1,...,C} ∼ M(Wi), otherwise
,

where M(Wi) is a binary (or one-hot) encoding representation of a multinomial distribution with pro-607

portions Wi as in tradeSeq.608

Likewise, we modify the pseudotime vector to have length Ltot such that

Tli =

{

0, if l /∈ Tci
Ti[l], otherwise

.

Gene expression model. We adapt the model from Van den Berge et al. [8] to allow for condition-609

specific expression. For a given gene j, the expression measure Yji for that gene in cell i can be modeled610

thus:611














Yji ∼ NB(µji, φj)
log(µji) = ηji

ηji =
Ltot
∑

l=1

C
∑

c=1
sjlc(Tli)Zilc +Uiαj + log(Ni)

, (13)

where the mean µji of the negative binomial distribution is linked to the additive predictor ηji using612

a logarithmic link function. The U matrix represents an additional design matrix, representing, for613

example, a batch effect.614

The model relies on lineage-specific, gene-specific, and condition-specific smoothers sjlc, which are615

linear combinations of K cubic basis functions, sjlc(t) =
∑K

k=1 bk(t)βjlck.616

Testing for differential Expression. With this notation, we can introduce the conditionTest,617

which, for a given gene j, tests the null hypothesis that the smoothers are identical across conditions:618

H0 : ∀(c1, c2), ∀k, ∀l, βjlc1k = βjlc2k. (14)

We fit the model using the mgcv package [34] and test the null hypothesis using a Wald test for619

each gene. Note that, although the gene expression model can be fitted without any mapping, the620

conditionTest only exists for lineages with at least a mapping for two conditions.621
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1.7 Simulation study622

1.7.1 Simulating datasets623

The simulation study relies on the dyngen framework of Cannoodt et al. [22] and all datasets are simulated624

as follows. 1/ A common trajectory is generated, with an underlying gene network that drives the625

differentiation along the trajectory. 2/ A set of NWT cells belonging to the wild-type condition (i.e., with626

no modification of the gene network) is generated. 3/ One master regulator that drives differentiation into627

one of the lineages is impacted, by multiplying the wild-type expression rate of that gene by a factor m. If628

m = 1, there is no effect; if m > 1, the gene is over-expressed; and if m < 1, the gene is under-expressed,629

with m = 0 amounting to a total knock-out. 4/ A set of NKO = NWT cells is generated using the630

common trajectory with the modified gene network. 5/ A common reduced-dimensional representation631

is computed.632

We generate three types of datasets, over a range of values of m: a simple trajectory with L = 2633

lineages and C = 2 conditions (WT and KO) named T1 ; a trajectory with two consecutive branchings634

with L = 3 lineages and C = 2 conditions (WT and KO) named T2; and a simple trajectory with L = 2635

lineages and C = 3 conditions (WT, KO, and UP) named T3. For the latter case, Steps 3-4/ are repeated636

twice, with values of m for KO and 1/m for UP.637

For T1 and T2, we use values of m ∈ {.5, .8, .9, .95, 1, 1/.95, 1/.9, 1/.8, 1/.5}, such that at the extremes638

the KO cells fully ignore some lineages. Values of .95 and 1/.95 represent the closest to no condition effect639

(m = 1), where the effect was still picked out by some tests. For T3, since the simulation is symmetrical640

in m, we pick m ∈ {.5, .8, .9, .95, 1}. We have one large dataset per value of m and per trajectory type.641

We use those large datasets to generate smaller ones of size n, by sampling 10% of the cells from each642

condition 50 times and applying the various tests on the smaller datasets. The reason for first generating643

a large dataset and then smaller ones by subsampling instead of generating small ones straightaway are644

computational: the generation of the datasets is time-consuming and the part that scales with NWT can645

be parallelized. Hence, it is almost as fast to generate a large dataset than a small one with dyngen. We646

pick NWT = 20, 000 (for the large dataset) and thus n = 2, 000.647

Since we generate many datasets with true effect (m 6= 1) but only one null dataset, the size of NWT648

for m = 1 is doubled to 40, 000. To be comparable, the fraction of cells sampled is decreased to 5% so649

that n = 2, 000 and we perform 100 subsampling. Table 2 recapitulates all this.650

Table 2: Summary of all simulated datasets. We report the name, number of cells nWT for values of
m 6= 1 and m = 1, number of conditions C, number of lineages L, impacted master regulator, and figure
numbers for the associated gene network and an example of low-dimensional representation.

Dataset
NWT n L C

Impacted Gene Network Reduced Dimension
m 6= 1 m = 1 Regulator Figure Representation

T1 20, 000 40, 000 2, 000 2 2 B3 Fig S1a Fig.2a
T2 20, 000 40, 000 2, 000 3 2 D2 Fig S1b Fig.2b
T3 20, 000 40, 000 2, 000 2 3 B3 Fig S1a Fig.2c

1.7.2 Measuring the performance of the tests on the simulated datasets651

To run the condiments workflow, we first estimate the trajectories using slingshot with the clusters provided652

by dyngen. Then, we run the progressionTest and the differentiationTest with default arguments.653

We compare condiments to two other methods. milo [16] and DAseq[17] both look at differences in654

proportions within local neighborhoods, using k-nearest neighbor graphs to define this locality. Then,655

milo uses a negative binomial GLM to compare counts for each neighborhood, while DAseq uses a logistic656

classifier test. Therefore, both methods test for differential abundance in multiple regions. To account657

for multiple testing, we adjust the p-values using the Benjamini, Yoav ; Hochberg [21] FDR-controlling658

procedure.659

We select two adjusted p-value cutoffs, .01 and .05, which amount to controlling the FDR at nominal660

level 1% and 5%, respectively. For a given cutoff c and a given dataset, we can look at the results of each661

test on all simulated datasets for all values of m. For each test, the number of true positives (TP) is the662

number of simulated datasets where m 6= 1 and the adjusted p-value is smaller than c, the number of true663

negatives (TN) is the number of simulated datasets where m = 1 and the adjusted p-value is larger than664

c, the number of false positives (FP) is the number of simulated datasets where m = 1 and the adjusted665

p-value is smaller than c, and the number of false negatives (FN) is the number of subsampled datasets666
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where m 6= 1 and the adjusted p-value is larger than c. We then examine 5 metrics built on these four667

variables:668

True Negative Rate (TNR) =
TN

TN + FP

True Positive Rate (TPR) =
TP

TP + FN

Positive Predictive Value (PPV) =
TP

TP + FP

Negative Predictive Value (NPV) =
TN

TN + FN

F1-score = 2
PPV × TPR

PPV + TPR
.
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[3] Tapio Lönnberg, Valentine Svensson, Kylie R. James, Daniel Fernandez-Ruiz, Ismail Sebina, Ruddy678

Montandon, Megan S. F. Soon, Lily G. Fogg, Arya Sheela Nair, Urijah N. Liligeto, Michael J. T.679

Stubbington, Lam-Ha Ly, Frederik Otzen Bagger, Max Zwiessele, Neil D. Lawrence, Fernando Souza-680

Fonseca-Guimaraes, Patrick T. Bunn, Christian R. Engwerda, William R. Heath, Oliver Billker,681

Oliver Stegle, Ashraful Haque, and Sarah A. Teichmann. Single-cell RNA-seq and computational682

analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Science Im-683

munology, 2(9), 2017. URL http://immunology.sciencemag.org/content/2/9/eaal2192.full.684

[4] Zhicheng Ji and Hongkai Ji. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-685

seq analysis. Nucleic Acids Research, 44(13):e117–e117, 7 2016. ISSN 0305-1048. doi: 10.1093/nar/686

gkw430. URL https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw430.687

[5] Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-688

cell trajectory inference methods. Nature Biotechnology, page 1, 4 2019. ISSN 1087-0156. doi:689

10.1038/s41587-019-0071-9. URL http://www.nature.com/articles/s41587-019-0071-9.690

[6] Valentine Svensson, Eduardo da Veiga Beltrame, and Lior Pachter. A curated database reveals691

trends in single-cell transcriptomics. Database : the journal of biological databases and curation,692

2020, nov 2020. ISSN 17580463. doi: 10.1093/database/baaa073. URL https://academic.oup.693

com/database/article/doi/10.1093/database/baaa073/6008692.694

[7] Xiaojie Qiu, Qi Mao, Ying Tang, Li Wang, Raghav Chawla, Hannah A Pliner, and Cole Trapnell.695

Reversed graph embedding resolves complex single-cell trajectories. Nature Methods, 14(10):979–982,696

2017. ISSN 1548-7105. doi: 10.1038/nmeth.4402. URL https://doi.org/10.1038/nmeth.4402.697
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S-1 Supplementary methods807

S-1.1 Other methods implemented in the condiments package to test equality808

of distributions809

These methods were found to be less efficient in initial benchmarking, but are implemented in case users810

want to use them.811

S-1.1.1 Multivariate case: The two-sample kernel test812

Mean maximum discrepancy. The two-sample kernel test was defined by Gretton et al. [29] and
relies on the mean maximum discrepancy (MMD). Considering a kernel function

k : Rd × R
d → R

(x, y) 7→ k(x, y)

the MMD is then defined as

MMD2(P1,P2, k) ≡ EP1,P1
[k(X,X ′)] + EyP2,P2

[k(Y, Y ′)]− 2EP1,P2
[k(X,Y )].

For a properly defined kernel, we have MMD2(P1,P2, k) = 0 i.i.f. P1 = P2.813

Unbiased statistic. Following Gretton et al. [29], we define the unbiased MMD statistic:814

MMD2
u(X,Y) ≡

1

n(n− 1)

n
∑

i=1

n
∑

j 6=i

k(Xi,Xj) +
1

m(m− 1)

m
∑

i=1

m
∑

j 6=i

k(Yi,Yj)−
2

mn

n
∑

i=1

m
∑

j=1

k(Xi,Yj).

Linear statistic for faster computations. While the MMD2 offers fast convergence, it can be815

burdensome to compute when m and n get large. Gretton et al. [29] propose a linear statistic in the case816

m = n. We can extend this in the general setting by just sampling a fixed fraction of the terms of each817

sum. This lowers kernel computation costs drastically.818

Null distribution of the statistic. For some kernels, theMMD2
u follows some theoretical inequalities819

under the null that allows one to define rejection regions. However, this is not always the case. Therefore,820

in practice, we instead rely on permutations to compute a null distribution for the test statistic. Under821

the null, Xi and Yj are from the same distribution so they can be swapped in the sums. We can therefore822

generate an empirical distribution and use it to define rejection regions.823

S-1.1.2 Multivariate case: Optimal transport824

We consider the Wasserstein distance [35, 36], also known as earth’s mover distance, between the two825

distributions, estimated using the samples X and Y. We can generate a null distribution for this metric826

by permuting observations in the combined X and Y datasets, thereby obtaining a valid test for H0 :827

P1 = P2. This works in any number of dimensions, but is limited to the two-sample case.828

S-1.2 Mutinomial test829

We consider a set of categories arbitrarily numbered from 1 to C. Additionally, we consider a null
distribution C0, defined on 1 to C by a vector of probabilities p = {pc}

C
c=1. Then, given a set of n i.i.d.

realizations (c(1), . . . , c(n)) of a random variable C, we can test the null hypothesis H0 : C ∼ C0 or,
equivalently, H0 : P(C = c) = pc, ∀c ∈ {1, . . . , C}. Under the null, P(ci) = pci and the associated p-value
of the multinomial test can be defined as:

P (x,p) =
∑

y∈{1,...C}n:PH0
(y)≤PH0

(x)

PH0
(y).

It verifies: ∀α ∈ [0 : 1],PH0
(P (x,p) ≤ α) ≤ α.830
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S-1.3 Case studies: Processing.831

TGFB. The two conditions are normalized separately using SCTransform [37] and then integrated832

using Seurat [38]. The reduced-dimensional representation is computed using UMAP [24] on the top 50833

principal components (PC). The imbalance score is computed with parameters k = 20 and smooth = 40.834

The trajectory is estimated using slingshot. The topologyTest is run with 100 permutations with the835

Kolmogorov-Smirnov test and default threshold of .01. The progressionTest is run with defaults. All836

genes with at least 2 reads in 15 cells are kept. The smoothers are fitted for each gene using 7 knots837

as recommended by the evaluateK function. Gene set enrichment analysis is done using the fgsea [39]838

package on the GO Biological Process ontology sets.839

TCCD. The dataset is first filtered using the cell type assignments from the original publication to only840

retains cells labelled as hepatocytes. The count matrix is scaled using Seurat [38] and reduced-dimensional841

coordinates are computed using UMAP [24] on the top 30 PCs. The imbalance score is computed with842

default k and smooth = 5. The trajectory is estimated using slingshot. The topologyTest is run with843

100 permutations with the Kolmogorov-Smirnov test and default threshold of .01. The progressionTest844

is run with defaults. All genes with at least 2 reads in 15 cells are kept; all genes with at least 3 reads in845

10 cells are kept. The smoothers are fitted for each gene using 7 knots as recommended by the evaluateK846

function.847

KRAS. The reduced-dimensional coordinates were obtained from the original publication. The im-848

balance score is run with defaults and the topologyTest is run with 100 permutations with the clas-849

sifier test and default threshold of .01. The trajectories are estimated using slingshot with parameters850

reweight = FALSE and reassign = FALSE. The progressionTest and differentiationTest are851

run with defaults. All genes with at least 5 reads in 10 cells are kept. The smoothers are fitted for each852

gene using 6 knots as recommended by the evaluateK function.853

S-2 Supplementary figures854

S-2.1 Simulations855

Figure S1: Simulation example. Regulator networks for the (a.) two-lineage and (b.) three-lineage
trajectories.
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Figure S2: Results on the third type of dataset. For all values of m ∈ {.5, .8, .9, .95, 1}, we generate null
datasets with two lineages and three conditions and we compute the adjusted p-values of all tests that
can handle 3 conditions. The distributions of p-values are then displayed. m = 1 is negative (no effect),
while m < 1 is positive (some effect) with smaller values (toward the left) representing stronger effect.

S-2.2 TCDD856
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Figure S3: TCDD dataset: Differential topology and differential progression. After normalization and
projection on a reduced-dimensional space, the cells can be represented, colored either by treatment la-
bel (a.), cell type (b.), or batch (c.). Using the treatment label and the reduced-dimensional coordinates,
an imbalance score is computed and displayed (d.). The diffTopoTest rejects the null and separate
trajectories are fitted for each condition (e.). After mapping the lineages, there is also differential pro-
gression: the pseudotime distribution along the trajectory are not identical (f.) and we indeed reject the
null using the diffProgressionTest.
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Figure S4: TCDD dataset: Differential expression. The tradeSeq gene expression model is fitted using
the trajectory computed with slingshot. Differential expression between conditions is assessed using the
conditionTest and genes are ranked according to the test statistics. The genes with the highest (a.),
second highest (b.), and smallest (c.) test statistics are displayed. After adjusting the p-values to control
the FDR at a nominal level of 5%, we display genes in both conditions using a pseudocolor image (d.).
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S-2.3 KRAS857

Figure S5: KRAS dataset: Differential differentiation.

Figure S6: KRAS dataset: Differential expression. The tradeSeq gene expression model is fitted using
the trajectory computed with slingshot. Differential expression between conditions is assessed using the
conditionTest and genes are ranked according to the test statistics. The genes with the highest (a.),
second highest (b.), and smallest (c.) test statistics are displayed. Focusing on the first lineage, we
select all differentially expressed genes in that lineage after adjusting the p-values to control the FDR
at a nominal level of 5%. We display the genes for all three conditions using a pseudocolor image (d.)
along this first lineage.
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