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26 Abstract

27  Bioinformatic research relies on large-scale computational infrastructures which have a non-
28 zero carbon footprint. So far, no study has quantified the environmental costs of
29  bioinformatic tools and commonly run analyses. In this study, we estimate the bioinformatic
30 carbon footprint (in kilograms of CO, equivalent units, kgCO,e) using the freely available
31 Green Algorithms calculator (www.green-algorithms.org). We assess (i) bioinformatic
32 approaches in genome-wide association studies (GWAS), RNA sequencing, genome
33 assembly, metagenomics, phylogenetics and molecular simulations, as well as (i)
34  computation strategies, such as parallelisation, CPU (central processing unit) vs GPU
35 (graphics processing unit), cloud vs. local computing infrastructure and geography. In
36  particular, for GWAS, we found that biobank-scale analyses emitted substantial kgCO,e and
37 simple software upgrades could make GWAS greener, e.g. upgrading from BOLT-LMM v1 to
38 v2.3 reduced carbon footprint by 73%. Switching from the average data centre to a more
39 efficient data centres can reduce carbon footprint by ~34%. Memory over-allocation can be a
40  substantial contributor to an algorithm’s carbon footprint. The use of faster processors or
41  greater parallelisation reduces run time but can lead to, sometimes substantially, greater
42  carbon footprint. Finally, we provide guidance on how researchers can reduce power
43  consumption and minimise kgCO,e. Overall, this work elucidates the carbon footprint of
44  common analyses in bioinformatics and provides solutions which empower a move toward
45  greener research.



https://doi.org/10.1101/2021.03.08.434372
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.08.434372; this version posted March 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

46 Introduction

47  Biological and biomedical research now requires the analysis of large and complex datasets,
48  which wouldn’'t be possible without the use of large-scale computational resources. Whilst
49  bioinformatic research has enabled major advances in the understanding of a myriad of
50 diseases such as cancer [1]-[3] and COVID-19 [4], the costs of the associated computing
51 requirements are not limited to the financial; the energy usage of computers causes
52  greenhouse gas (GHG) emissions which themself have a detrimental impact on human
53  health.

54

55  Energy production affects both human and planetary health. The yearly electricity usage of
56 data centres and high performance computing (HPC) facilities (200 TWh [5]) already
57 exceeds the consumption of countries such as Ireland or Denmark [6] and is predicted to
58 continue to rise over the next decade [5], [7]. Power generation, through the associated
59  emissions of GHGs, is one of the main causes of both outdoor air pollution and climate
60 change. Every year, it is estimated that 4.2 million deaths are caused by ambient air
61  pollution alone while 91% of the world’s population suffers from air quality below the World
62 Health Organisation standards [8]. Global warming results in further consequences on
63 human health, economy and society: the daily population exposure to wildfires has
64 increased in 77% of countries [9], 133.6 billion potential work hours were lost to high
65 temperatures in 2018 and with 220 million heatwave exposures, vulnerable populations
66 (aged 65 and older) are affected at an unprecedented level.

67

68  The growth of large biological databases, such as UK Biobank [10], All of Us Initiative [11],
69 and Our Future Health [12], has substantially increased the need for computational
70 resources to analyse these data and will continue to do so. With climate change an urgent
71  global emergency, it is important to assess the carbon footprint of these analyses and their
72  requisite computational tools so that environmental impacts can be minimised.

73

74 In this study, we estimate the carbon footprint of common bioinformatic tools using a model
75  which accounts for the energy use of different hardware components and the emissions
76  associated with electricity production. For each analysis, we contextualise the carbon
77  footprint in multiple ways, such as distances travelled by car or with regards to carbon
78  sequestration by trees. This study raises awareness, provides easy-to-use metrics, and
79  makes recommendations for greener bioinformatics.

so Results

81  We estimated the carbon footprint of a variety of bioinformatic tools and analyses (Table 1,
82  Table 2) using the Green Algorithms model and online tool (Methods). For each software,
83  we utilised benchmarks of running time and computational resources; in the rare cases
84  where published benchmarks were unavailable, we used in-house analyses to estimate
85 resource usage (Methods). The estimations are based on the global average data centre
86 efficiency (PUE) of 1.67 [13], the global average carbon intensity (0.475 kgCO,e/kWh [14])
87 and a usage factor of 1 (Methods).

88
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89  We considered a wide range of bioinformatic analyses: genome assembly, metagenomics,
90 phylogenetics, RNA sequencing, genome-wide association analysis, molecular simulations
91 and virtual screening. Detailed results are provided for each analysis below. Furthermore,
92 we show that choices of hardware and software versions substantially affect the carbon
93 footprint of a given analysis, in particular cloud vs. local computing platforms, memory
94  usage, processor options, and parallel computing. These results provide, for each task,
95 reference values of carbon footprints for researchers; however, we note how the estimations
96 are likely to scale with different parameters (e.g. sample size or number of features) and
97 ultimately would advise researchers to utilise the GA tool (www.green-algorithms.org).

98 Genome assembly

99 Genome assembly is the process by which sequencing reads (short or long reads, or a
100 combination) are combined to arrive at a single or set consensus sequences for an
101  organism. Hunt et al. [15] compared SSPACE [16], SGA [17] and SOAPdenovo2 [18] for
102 genome scaffolding using contigs produced with the Velvet assembler [19] and the human
103 chromosome 14 GAGE dataset [20]; two read sets were compared, one using 22.7 million
104  short reads (fragment length of 3 kb) and the other 2.4 million long reads (35 kb).
105  Scaffolding the short reads resulted in 0.13, 0.0036, and 0.0027 kgCO,e when using SGA,
106 SOAPdenovo2 and SSPACE, respectively (Table 2), which is equivalent to 0.14, 0.0039 and
107  0.0029 tree-months. For long reads scaffolding, the corresponding carbon footprints were
108 lower, 0.029, 0.0015 and 0.0010 kgCO,e (0.032 to 0.0011 tree-months). As the running time
109 of a number of genome assembly tools scale linearly with the number of reads [21], these
110 results equate to between 0.0001 to 0.006 kgCO.e (0.0001 to 0.006 tree-months) per million
111  short reads assembled and 0.0004 to 0.0122 kgCO.e (0.0005 to 0.0133 tree-months) per
112  million long reads assembled. On average, long read assembly had a carbon footprint 3.2x
113 larger than short-read assembly for the tools we measured. All three methods had similar
114  performance on these read sets with SOAPdenovo2 slightly outperforming SGA and
115 SSPACE.

116

117  For whole genome assembly of humans, the well-established softwares Abyss [22] and
118 MEGAHIT [23] were benchmarked by Jackman et al. [22] using Illumina short read
119 sequencing (815M reads, 379M uniquely mapped reads, 6kbp mean insert size) (Table 2).
120 We estimated that this task emits 10.7 kgCO,e using Abyss and 15.1 kgCO,e using
121  MEGAHIT (equivalent to 12 and 16 tree-months) and per million reads, 0.013 kgCO,e
122  (Abyss2.0, 0.014 tree-months) and 0.019 kgCO,e (MEGAHIT, 0.020 tree-months) .

123 Metagenomics

124  Metagenomics is the sequencing and analysis of all genetic material in a sample. Based on
125 a benchmark from Vollmers et al. [24], we estimated the carbon footprint of metagenome
126  assembly with three commonly used assemblers, metaSPAdes [25], MEGAHIT [23] and
127  MetaVelvet (k-mer length 101bp) [26] on 100 samples from forest soil (33M reads, median
128 length 360 bp). We found carbon footprints ranged between 14 and 186 kgCO.e (16 and
129 203 tree-months), corresponding to 0.14 to 1.9 kgCO,e (0.2 to 2 tree-months) per sample.
130 Meta-SPAdes had the greatest carbon footprint but also the best performance followed by
131 MetaVelvet and MEGAHIT, respectively (Table 2).
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132

133  For metagenomic classifiers, Dilthey et al. [27] benchmarked MetaMaps [27], Kraken2 [28],
134  Kraken/Bracken [29], [30], and Centrifuge [31]. They compared these tools on ~5Gb of
135 randomly sampled reads from an Oxford Nanopore GridlON sequencing run from Zymo
136 mock communities, which comprises five Gram-positive bacteria, three Gram-negative
137 bacteria and two types of yeast. Carbon footprints differed by several orders of magnitude,
138 MetaMaps had the largest footprint with 18.25 kgCO,e (19.9 tree-months), followed by
139  Kraken/Bracken 0.092 kgCO,e (0.1 tree-months), Centrifuge 0.013 kgCO.e (0.014 tree-
140 months) and Kraken2 0.0052 kgCO.e (0.0057 tree-months) (Table 2). The carbon footprints
141  of metagenomic classification ranged from 0.001 to 0.018 kgCO,e (0.001 to 0.02 tree-
142 months) per Gb of classified reads using short read classifiers (Kraken2, Centrifuge,
143  Kraken/Bracken). Kraken2 had the highest performance over all taxonomic ranks when all
144  reads were assembled, followed by Kraken/Bracken, Centrifuge and MetaMaps. However,
145  when considering reads >1000bp, MetaMaps had the highest precision and recall for all
146  available taxonomic levels, followed by Kraken2, Kraken/Bracken, and Centrifuge.

147 Phylogenetics

148 Phylogenetics is the use of genetic information to analyse the evolutionary history and
149 relationships amongst individuals or groups. Baele et al. [32] benchmarked nucleotide-based
150 phylogenetic analyses with and without spatial location information to study the evolution of
151 the Ebola virus during the 2013-2016 West African epidemics (1,610 genomes, 18,992
152  nucleotides [33]). The authors also investigated more complex codon models. For all these
153 tasks, they utilised BEAST combined with BEAGLE [34].

154

155 We estimated the carbon footprint of nucleotide-based modelling of the Ebola virus dataset
156 was between 0.01 to 0.08 kgCO,e depending on hardware choices (0.013 to 0.083 tree-
157  months) without modelling spatial information and 0.07 to 0.3 kgCO,e (0.077 to 0.33 tree-
158 months) when including it. More complex codon modelling of extant carnivores and
159  pangolins resulted in a greater footprint, from 0.02 to 0.1 kgCO,e (0.02 to 0.1 tree-months)
160 (Figure 2, Supplementary table 2). These results illustrate a trade-off between running time
161 and carbon footprints, and we discuss it in more detail below (Parallelisation, Processors).
162 It should be noted that the running time of BEAST, and therefore its carbon footprint, scales
163 as a power law, that is, non-linearly with the number of loci [35].

164 RNA sequencing

165 RNA sequencing (RNAseq) is the sequencing and analysis of all RNA in a sample. We first
166  assessed the read alignment step in RNAseq using an extensive benchmarking by Baruzzo
167 et al. [36]. We estimated the carbon footprint of aligning 10 million simulated 100-base read
168 pairs to two different genomes, Homo Sapiens (hgl9) and Plasmodium falciparum [36],
169 which have substantially differing levels of complexity (P. falciparum with higher rates of
170  polymorphisms and errors). The three most-cited software tested, STAR [37], HISAT2 [38]
171  and TopHat2 [39], all had low recall on the malaria dataset, so we also assessed Novoalign
172 [40] as it performed significantly better for this task (Table 2). Despite its greater
173  performance for P. falciparum, Novoalign had the highest carbon footprint (0.67 kgCO.e,
174  0.73 tree-months) followed by STAR (0.37 kgCO.e, 0.40 tree-months), TopHat2 (0.24
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175 kgCO.e, 0.26 tree-months) and HISAT2 with the lowest (0.0052 kgCO.e, 0.0057 tree-
176  months). For human read alignment, all four methods had high recall. HISAT2 had, again,
177  the lowest carbon footprint with 0.0054 kgCO,e (0.0059 tree-months) followed by STAR with
178 0.0097 kgCO.,e (0.011 tree-months), TopHat2 with 0.32 kgCO,e (0.35 tree-months) and
179  Novoalign with 0.98 kgCO,e (1.1 tree-months). As alignment tools are often reported with
180 alignment speed (reads aligned in a given time) [37], [38], the carbon footprints of the
181 analyses above scale accordingly and ranged from 0.001 to 0.1 kgCO.e (0.001 to 0.1 tree-
182  months) per million human or P. falciparum reads.

183

184  To quantify the carbon footprint of a full quality control pipeline with FastQC, we utilised 392
185 RNAseq read sets obtained from PBMC samples [41], [42], with a median depth of 45 million
186 paired-end reads and average length 146bp. Adapters were trimmed with TrimGalore [43],
187 followed by the removal of optical duplicates using bbmap/clumpify [44]. Reads were then
188 aligned to the human genome reference (Ensemble GRCh 38.98) using STAR [37]. We
189 estimated the carbon footprint of this pipeline to be 55 kgCO,e (60 tree-months) for the full
190 dataset, or 1.2 kgCO.e (1.3 tree-months) per million reads (Table 2), which scales linearly
191 (Additional file 2).

192

193  For transcript isoform abundance estimation, we could assess Sailfish [45], RSEM [46], and
194  Cufflinks [47] using the benchmark from Kanitz et al. [48] on simulated human RNA-seq data
195 (hgl19). The Flux Simulator software [49] and GENCODE [50] were used to generate 100
196  million single-end 50bp reads. The carbon footprints of this task were between 0.0081 and
197 1.4 kgCO,e (0.009 to 1.5 tree-months). Sailfish had the lowest footprint, followed by
198 Cufflinks and RSEM. (Table 2). Kanitz et al. showed that the time complexity for most of the
199 tools tested was approximately linear, i.e. the carbon footprint is proportional to the number
200 of reads. Additionally, these tools offer the option of parallelisation. However, for example,
201 the decrease in running time when using 16 cores instead of one was not sufficient to offset
202 the increase in power consumption, which resulted in a 2- to 6-fold increase in carbon
203 footprint when utilising 16 cores (Table 2). RSEM and Sailfish had similar performance in
204  this benchmark, but Sailfish’s carbon footprint was 71-fold less than RSEM's when using 1
205 core and 39-fold less with 16 cores. This difference in carbon footprint was partly due to
206  Sailfish not performing a read alignment step. Lastly, whilst Cufflinks is largely used for
207 abundance estimation, its main purpose is transcript isoform assembly, resulting in a
208 significantly lower accuracy here (at a higher carbon cost).

209 Genome-wide association analysis

210 Genome-wide association analysis aims to identify genetic variants across the genome
211  associated with a phenotype(s). Here, we assessed both genome-wide association studies
212  (GWAS) and expression qualitative trait locus (eQTL) mapping in cis. We estimated the
213  carbon footprint of GWAS with two different versions of Bolt-LMM [51] on the UK Biobank
214  [10] (500k individuals, 93M imputed SNPs). We found that a single trait GWAS would emit
215  17.3 kgCO,e (18.9 tree-months) with Bolt-LMM v1 and 4.7 kgCO,e (5.1 tree-months) with
216  Bolt-LMM v2.3 (Table 2), a reduction of 73%. GWAS typically assess multiple phenotypes,
217  e.g. metabolomics GWAS consider several hundred to thousands of metabolites; since the
218 association models in GWAS are typically fit on a per-trait basis, the carbon footprint is
219  proportional to the number of traits analysed. Bolt-LMM’s carbon footprint also scales linearly
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220 with the number of genetic variants [52], meaning that biobank-scale GWAS using UK
221  Biobank (500k individuals) has a carbon footprint of 0.05 kgCO,e per million variants (0.06
222  tree-months) with Bolt-LMM v2.3 and 0.2 kgCO,e per million variants (0.2 tree-months) with
223  Bolt-LMM v1. However, Bolt-LMM doesn't scale linearly with the number of samples (time ~
224  O(N*®) [52]), which must be taken into account when scaling the values to a different sample
225  size.

226

227  For cis-eQTL mapping, we compared the carbon footprint using either CPUs or GPUs on
228 two example datasets, first on a small scale using skeletal muscle data from GTEx [53] (1
229 gene, 700 individuals) with a benchmark of FastQTL (CPU) [54] and TensorQTL (GPU) [55],
230 [56] from Taylor-Weiner et al. [56]. Secondly, we used an in-house assessment (Methods),
231 to estimate the carbon footprint of a CPU-based analysis with LIMIX [57] to GPU-based
232  TensorQTL using a larger cohort of 2,745 individuals with 18k genetic features and 10.7m
233  SNPs (Table 2). In both cases, footprints were lower using GPUs instead of CPUs. The
234  carbon footprint for the smaller scale GTEx benchmark was 28 times smaller when utilising
235 the GPU instead of the CPU method: 0.0002 kgCO,e (0.0002 tree-months) with FastQTL,
236  0.00001 kgCO.e (0.00001 tree-months) with TensorQTL. Similarly, for the cohort scale cis-
237 eQTL mapping, the carbon footprints were 94 times smaller when utilising the GPU
238 approach: 191 kgCO,e (208 tree-months) with LIMIX and 2 kgCO,e (2 tree-months) with
239 TensorQTL. The scaling of eQTLs is complex, and the carbon footprint doesn’t scale linearly
240  with the number of traits or sample size [56], [57].

241 Molecular simulations and virtual screening

242  Molecular simulations and virtual screening are the use of computational simulation to model
243 and understand molecular behaviour and the in silico scanning of small molecules for the
244  purposes of drug discovery. We estimated the carbon footprint of simulating molecular
245  dynamics with the Satellite Tobacco Mosaic Virus (1,066,628 atoms) for 100ns [58], [59] to
246  be 17.8 kgCO,e (19 tree-months) using AMBER [60] and 95 kgCO,e (104 tree-months)
247 using NAMD [61] (Table 2). This corresponds to 1 kgCO.e per ns (1 tree-month) when
248  utilising NAMD and 0.2 kgCO.,e per ns (0.2 tree-months) with AMBER. There are small
249  discrepancies between the simulation parameters used by the tools (Table 1) so they can't
250  be compared directly. Furthermore, due to a lack of information, neither of these estimations
251  include the power usage from memory.

252

253  Using a benchmark from Ruiz-Carmona et al. [62], we estimated the carbon footprint of three
254  molecular docking methods, AutoDock Vina, Glide and rDock [62]-[64]. The data are based
255 on the directory of useful decoys (DUD) benchmark set [65]. This study tested the three
256  docking methods on four DUD systems ADA, COMT, PARP, and Trypsin. Where we used
257  the average computational running time on these four DUD systems to estimate the carbon
258  footprint of a 1 million ligand campaign. Glide, the fastest but not freely available tool had the
259  smallest carbon footprint with 13 kgCO,e (14 tree-months), whilst rDock, which is freely
260 available, had a footprint of 154 kgCO,e (168 tree-months), and AutoDock Vina (also freely
261  available) had the largest impact with 514 kgCO.e (561 tree-months) (Table 2). rDock was
262 the lowest carbon emitting method that was freely available and had comparable
263  performance to Glide [62].
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264 Efficiency of local data centres, geography and cloud
265 computing

266 Cloud computing facilities and large data centres are optimised to significantly reduce
267 overhead power consumption such as cooling and lighting. A report from 2016 estimated
268 that energy usage by data centres in the US could be reduced by 25% if 80% of the smaller
269 data centres were aggregated into larger and more efficient data centres (hyperscale
270 facilities) [66]. This was consistent with the distribution of PUEs (Methods): compared to the
271  global average PUE of 1.67, Google Cloud’'s PUE of 1.11 [67] reduces the carbon footprint
272  of atask by 34%. Other cloud providers also achieve low PUEs, Microsoft Azure reduces the
273  carbon footprint by 33% (PUE=1.125 [68]) and Amazon Web Service by 28% (PUE=1.2
274  [69)).

275

276  The use of cloud facilities may also enable further reductions of carbon footprint by allowing
277  for choice of a geographic location with relatively low carbon intensity. While the kgCO.e for
278  specific analyses utilising cloud or local data centre platforms are best estimated with the
279  Green Algorithm calculator (www.green-algorithms.org), we found that a typical GWAS of
280 UK Biobank considering 100 traits using the aforementioned GWAS framework (see
281 Genome-wide association analysis) together with BoltLMM v2.3 on a Google Cloud server
282  in the UK would lower the carbon footprint by 81% when compared to the average local data
283  centre in Australia (Figure 1), potentially saving 705 kgCO,e (769 tree-months).

284 Parallelisation

285 Numerous algorithms use parallelisation to share the workload between several computing
286  cores and reduce the total running time. However, this can increase carbon footprint [70] and
287  we found that parallelisation frequently results in tradeoffs between running time and carbon
288  footprint. In some cases, the reduction in running time is substantial. For example, executing
289 the phylogenetic codon model (Phylogenetics) on a single core would take 7.8 hours and
290 emit 0.066 kgCO,e, but with two cores, the carbon footprint increased by 4% while running
291 time was decreased by 46% (1.9x speedup). With 12 cores, run time decreased 86% (7.2x
292  speedup) but the carbon footprint increased by 57%. In other cases, speedup was marginal,
293 e.g. the phylogeographic model had a running time of 3.86 hours with a carbon footprint of
294  0.070 kgCO,e when using two cores (Figure 2). Increasing the parallelisation to 10 cores
295  reduced run time by only 5% but increased carbon footprint by 4-fold.

296 Memory

297  Memory's power consumption depends mainly on the memory available, not on the memory
298 used [70], [71]; thus, having too much memory available for a task results in unnecessary
299  energy usage and GHG emissions. Although memory is usually a fixed parameter when
300 working with a desktop computer or a laptop, most computational servers and cloud
301 platforms give the option or require the user to choose the memory allocated. Given it is
302 common practice to over-allocate memory out of caution, we investigated the impact of
303 memory allocation on carbon footprint in bioinformatics (Figure 3, Supplementary table 1).
304
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305 We showed that, while increasing the allocated memory always increases the carbon
306 footprint, the effect is particularly significant for tasks with large memory requirements
307 (Figure 3, Supplementary table 1). For example, in de novo human genome assembly,
308 MEGAHIT had higher memory requirements than ABySS (6% vs 1% of total energy
309 consumption); as a result, a five-fold over-allocation of memory increases carbon footprint by
310 30% for MEGAHIT and 6% for ABySS. Similarly, in human RNA read alignment (Figure 3),
311 Novoalign had the highest memory requirements (37% of its total energy vs less than 7% for
312 STAR, HISAT2, and TopHat2) and a 5x over-allocation in memory would increase its
313 footprint by 186% compared to 32% for STAR, 2% for HISAT2, and 10% for TopHat2.

314 Processors

315 We estimated the carbon footprint of a number of algorithms executed on both GPUs and
316 CPUs. For cis-eQTL mapping (Genome-wide association analysis), we estimated that,
317 compared to CPU-based FastQTL and LIMIX, using a GPU-based software like TensorQTL
318 can reduce the carbon footprint by 96% and 99% and the running time by 99.63% and
319 99.99%, respectively (Table 2). For the codon modelling benchmark (Phylogenetics),
320 utilising GPUs had a speedup factor of 93x and 13x when compared to 1 and 12 CPU cores,
321 resulting in a decrease in carbon footprint of 75% and 84% respectively. These estimations
322 demonstrate that GPUs can be well suited to both reducing running time and carbon
323  footprint for algorithms.

324

325 However, there are situations where the use of GPUs can increase carbon footprint. Using a
326 GPU for phylogenetic nucleotide modelling (Phylogenetics), instead of 8 CPU cores,
327  decreased running time by 31% but also doubled the carbon footprint. We estimated that a
328 single GPU would need to run the model in under four minutes in order to have the lowest
329 carbon footprint for this analysis, as opposed to the 16 minutes it currently takes. Similarly,
330 using a GPU for the phylogeographic modelling of the Ebola virus dataset (Phylogenetics)
331 reduced the running time by 83% (6x speedup) when compared to the method with the
332 lowest footprint (2 CPU cores) however, this increased carbon footprint by 84%. There are
333  equations used for this estimation (Supplementary Note 1); however, a fast approximation
334 can be used by scaling the running time of the GPU by the ratio of the power draw of the
335 CPU cores to the GPU. For example, we compared the popular Xeon E5-2683 CPU (using
336  all 16 cores) to the Tesla V100 GPU and found that, to have the same carbon footprint with
337  both configurations, an algorithm needs to run 2.5 times faster on GPU than CPU.

s3s  Discussion

339 We estimated the carbon footprint of various bioinformatic algorithms. Additionally, we
340 investigated how memory over-allocation, processor choice and parallelisation affect carbon
341 footprints, and showed the impact of transferring computations to hyperscale data centres.
342

343  This study made a series of important findings:

344 1. Limiting parallelisation can reduce carbon footprints. Especially when the running
345 time reduction is marginal, the carbon cost of parallelisation should be closely
346 examined.
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347 2. Despite being often faster, GPUs don’t necessarily have a smaller carbon footprint
348 than CPUs, and it is useful to assess whether the running time reduction is large
349 enough to offset the additional power consumption.

350 3. Using currently optimised data centres, either local or cloud-based, can reduce
351 carbon footprints by ~34% on average.

352 4. Substantial reductions in carbon footprint can be made by performing computations
353 in energy-efficient countries with low carbon intensity.

354 5. Carbon offsetting, which consists of supporting GHG-reducing projects can be a way
355 to balance the greenhouse gas emissions of computations. Although a number of
356 cloud providers take part in this, [69], [72], [73], the real impact of carbon offsetting is
357 debated and reducing the amount of GHG emitted in the first place should be
358 prioritised.

359 6. Over-allocating memory resources can unnecessarily, and significantly, increase the
360 carbon footprint of a task, particularly if this task has high memory usage already. To
361 decrease energy waste, one should only allocate as closely as possible the required
362 memory for a given job. Additionally, softwares could be optimised to minimise
363 memory requirements, potentially moving some aspects to disk where energy usage
364 is far lower.

365 7. A simple way to reduce the carbon footprint of a given algorithm is to use the most up
366 to date software. We showed that updating common GWAS software reduced carbon
367 footprint by 73%, indicating that this may be the quickest, easiest, and potentially
368 most impactful way to reduce one’s carbon footprint.

369

370 There are a number of assumptions made when estimating the energy and carbon footprint
371  of a given computational algorithm. These assumptions, and the associated limitations, have
372  been discussed in detail within Lannelongue et al. [70]. A particularly important limitation of
373  our study is that many of the carbon footprints estimated are from a single run of any given
374  tool; however, many analyses have parameters that must be fine-tuned through trial and
375 error, frequently extensively so. For example, in machine learning, thousands of optimisation
376  runs may be required. We would stress that the total carbon footprint of a given project will
377 likely scale linearly with the number of times each analysis is tuned or repeated, so a caveat
378  to our estimations and the underlying published benchmarks is that the real carbon footprints
379 could be orders of magnitude greater  than that reported here.
380

381 Finally, the parameters needed to estimate the carbon footprint are often missing from
382  published articles, such as running time, hardware information, and often software versions.
383 If we are to fully understand the carbon footprint of the field of bioinformatics or
384  computational research as a whole, there is a need for reporting this information as well as,
385 ideally, for authors to estimate their carbon footprint using freely available tools.

ss6  Conclusion

387  This study is, to the best of our knowledge, the first to estimate the carbon footprint for
388 common bioinformatics tools. We further investigated how parallelisation, memory over-
389 allocation, and hardware choices affect carbon footprints. We also show that carbon
390 footprints could be reduced by utilising efficient computing facilities. Finally, we outline a
391 number of ways bioinformaticians may reduce their carbon footprint.
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302  Methods

393 Selection of bioinformatic tools

394  We estimated the carbon footprint of a range of tasks across the field of bioinformatics:
395 genome and metagenome assembly, long and short reads metagenomic classification,
396 RNA-seq and phylogenetic analyses, GWAS, eQTL mapping algorithms, molecular
397 simulations and molecular docking algorithms (Table 1). For each task, we curated the
398 published literature to identify peer-reviewed studies which computationally benchmarked
399 popular tools. For our analysis, we used 10 published scientific papers. To be selected,
400 publications had to report at least the running time and preferably the following: memory
401 usage, and hardware used for the experiments, in particular the model and number of
402  processing cores. We selected 10 publications for this study (Table 1). Besides, as we could
403 not find suitable benchmarks to estimate the carbon footprint of cohort-scale eQTL mapping
404 and RNA-seq quality control pipelines, we estimated the carbon footprint of these tasks
405 using in-house computations. These computations were run on the Baker Heart and
406  Diabetes Institute computing cluster (Intel Xeon E5-2683 v4 CPUs and a Tesla T4 GPU) and
407  the University of Cambridge’s CSD3 computing cluster (Tesla P100 PCle GPUs and Xeon
408 Gold 6142 CPUs).

409 Estimating the carbon footprint

410 The carbon footprint of a given tool was calculated using the framework described in
411  Lannelongue et al. [70] and the corresponding online calculator www.green-algorithms.org.
412  We present here an overview of the methodology.

413

414  Electricity production emits a variety of greenhouse gases, each with a different impact on
415 climate change. To summarise this, the carbon footprint is measured in kilograms of CO,-
416  equivalent (COze), which is the amount of carbon dioxide with an equivalent global warming
417  impact as a mix of GHGs. This indicator depends on two factors: the energy needed to run
418 the algorithm, and the global warming impact of producing such energy, called carbon
419  intensity. This can be summarised by:

420

C =E XCI(1)

421
422  Where C is the carbon footprint (in kilograms of CO,e - kgCO,e ), E is the energy needed (in
423 W) and Cl is the carbon intensity (in kgCO.e/W).
424
425  The energy needs of an algorithm are measured based on running time, processing cores
426  used, memory deployed and efficiency of the data centre:
427

E=tXxn,XP, Xu,+n, +PB,) XPUE x0.001 (2)
428
429  Where t is the run time (h), n. is the number of computing cores, used at uc%, the core
430 usage factor (between 0 and 1), and each drawing a power P, (W). n,, is the size of memory
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431  available (GB), drawing a power P, (W/GB). PUE is the Power Usage Effectiveness of the
432  data centre.

433

434  The power drawn by a processor (CPU or GPU) is estimated by its Thermal Design Power
435 (TDP) per core, which is provided by the manufacturer, and then scaled by the core usage
436  factor uc. The power draw from memory was estimated to be 0.3725 W/GB [70]. The PUE
437  represents how much extra energy is needed to run the computing facilities, mainly for
438  cooling and lighting.

439

440 The carbon intensity (Cl) varies between countries because of the heterogeneity in energy
441  production methods, from 0.012 kgCO,e/kWh in Switzerland to 0.88 kgCO,e/kWh in
442  Australia [74]. In order to be location-agnostic in this study, we used the global average
443  value (0.475 kgCO,e/kWh [14]), unless otherwise specified.

444  Reference values for carbon footprints

445 A quantity of carbon dioxide is not a metric most scientists are familiar with. To put the
446  results presented here into perspective, we compare them to the impact of familiar activities.
447  The first metric is the “tree-month”, defined as the number of months an average mature tree
448  would take to fully sequester (absorb) an amount of carbon dioxide. A tree-month is defined
449  as 0.917 kgCOze [70]. Another way to contextualise a carbon footprint is to compare it with
450  driving an average European car, which emits 0.175 kgCO,e/km [75], [76].

451
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so1 Tables

692 Table 1: A description of the tasks, tools and experiments used in this study.
693

. Details about the Benchmarking
Task Tool Version . —
experiments publication
SSPACE 2.0
Genome Scaffolding with long (2.4 M) and Hunt et al., Genome
foldi SGA 0.9.43 short (23 M) reads from human Biology. 2014
Sy chromosome 14. i
SOAPdenovo r223
Abyss 2.0
Genome gt?ni);Zvlf:oarisllelrtjﬁliﬁ:f:s:qhuueﬂiﬁg Jackman et al.,Genome
assembly reads Res., 2017
MEGAHIT 1.0.6 ’
metaSPAdes 3.8.0
Metagenome MEGAHIT 1.0.3 Metagenome assembly from 100 Vollmers et al, PLOS One,
assem bly soil samples. 2017
MetaVelvet k101 1.2.01
Metamaps -
Metagenomic classification of
Kraken2 2.0.7 5Gb of randomly sampled reads
Metagenome from Zymo mock community Dilthey et al., Nature
classification (batch ZRC190633), containing Communications, 2019
kraken/Bracken 0.10.5/1.0.0 yeast, gram-negative and positive
bacteria

Centrifuge 1.0.4

Codon substitution modelling of
extant carnivores and a pangolin .
pang Baele et al. Evolutionary

Phylogenetics BEAST/BEAGLE 1.8.4/2.1.2  group. Nucleotide substitution .
. . Genomics, 2019
and phylogeographic modelling of
Ebola virus genomes.

STAR 2.5.0a Reads alignment to two
RNA reads HIAST2 2.0.0beta genomes: Ho?no Sapiens hg1 Baruzzo et al., Nature
a|ignment TopHat2 2.1.0 ) . . Methods, 2017
PI fal .
Novoalign 3.02.13 and Plasmodium falciparum
FastQC, TrimGalore, NO.6.0J- Quality control analysis of raw
RNA-seq QC bbmap/clumpify and N2 '7 .Oe reads quality of 392 samples from In-house
STAR o the Childhood Asthma Study.
Sailfish 0.6.3
Transcript Transcript isoform quantification
isoform of 100 million in silico reads Kanitz et al. Genome
RSEM 1.2.18 generated from Flux Simulator ) '
ab u.ndal.‘lce with hg19 genome and Biology, 2015
estimation GENCODE v19 annotation set
Cufflinks 2.1.1
Analyses of a single trait in UK Loh et al., Nature
- 2.3 .
GWAS Bolt-LMM Biobank (N=500,000) Genetics, 2018
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Bolt-LMM 1.0
LIMIX 2.0.3 Cis-eQTL mapping of 10.7M
Cohort scale SNPs against 18,373 genetic In-house
eQTL analysis features in a cohort of 2,745
TensorQTL 1.0.2 individuals.
Single cis-eQTL FastQTL - Cis-eQTL mapping one gene Taylor-Weiner et al.
. from skeletal muscle in GTEx .
gene mapping TensorQTL - (v6p) Genome Biology, 2019
Simulation of a Satellite Tobacco
AMBER 18 Mosaic Virus with 1,06?,628 https://ambermd.org/GPU
Molecular atoms for 100ns. Note different Performance.ph
. simulation parameters AMBER18 . ..p P
dynamics i https:/iwww.ks.uiuc.edu/R
. . (4fs timestep, 9A cutoff) NAMD esearch/namd/benchmark
simulation NAMD 213 (2fs timestep with rigid bonds, S/
’ 12A cutoff with PME every 2
steps).
AutDock Vina -
Molecular i Molecular docking of four DUD sz—Carmqna et §I. PLOS
) Glide 57111 . Computational Biology,
Docking systems, scaled to 1m ligands
2014
rDock N
694
695
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Table 2: The estimated carbon footprint of bioinformatic tasks. This table details and
contextualises the carbon footprint of the tasks detailed in Table 1. In addition to the carbon
footprints are the number of tree-months it would take an adult tree to sequester the CO,,
and the number of kilometres one could travel in an average European car to output the
same amount of CO,. *These methods were estimated in-house and not from a published

benchmark.
Carbon footprint kmin a car
Task Tool (kgCOse) tree-months (EV)
Genome scaffoldin SGA 0.0293 0.0319 0.2
o o] g SSPACE 0.0010 0.0011 0.01
g SOAPdenovo2 0.0015 0.0016 0.01
Genome scaffoldin SGA 0.1302 0.1420 0.7
T — 9 SSPACE 0.0027 0.0029 0.02
SOAPdenovo2 0.0036 0.0039 0.02
De novo assembly of Abyss2.0 10.66 11.63 60.9
one human genome
MEGAHIT 15.11 16.48 86.3
metaSPAdes 186.46 203.41 1,065.5
Metagenome MEGAHIT 76.81 83.79 438.9
assembly
Meta Velvet k101 14.28 15.58 81.6
Metagenome Centrifuge 0.013 0.0138 0.1
classification (short Kraken2 0.0052 0.0057 0.03
read) Kraken/Bracken 0.092 0.1000 0.5
Metagenome
classification (long MetaMaps 18.25 19.91 104.3
read)
STAR v2.5.0a 0.0097 0.0105 0.1
RNA read alignment HISAT2 0.0054 0.0059 0.03
Homo Sapiens hg19 TopHat2 0.3173 0.3461 1.8
Novoalign 0.9766 1.0653 5.6
RNA read alianment STAR v2.5.0a 0.3693 0.4029 21
D digum HISAT2 0.0052 0.0057 0.03
falciparum TopHat2 0.2394 0.2612 14
P Novoalign 0.6710 0.7320 3.8
+
*RNA sequencing FastQC
. TrimGalore +
quality control . 54.97 59.97 314.1
ipeline clumpify +
P STARV2.7.0e
Cufflinks - 1 core 0.045 0.049 0.3
Transcript isoform RSEM - 1 core 0.57 0.63 3.3
abundance Sailfish - 1 core 0.0081 0.0088 0.05
estimation Cufflinks - 16 cores 0.27 0.30 1.6
RSEM - 16 cores 1.40 1.53 8.0
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Sailfish - 16 core 0.036 0.039 0.2

GWAS on a biobank Bolt-LMM v1 17.29 18.86 98.8

with 1 trait Bolt-LMM v2.3 4.70 5.13 26.9

*eQTL mapping for a TensorQTL 2.04 2.22 11.6
cohort LIMIX 190.73 208.07 1,089.9

cis-eQTL mapping for FastQTL 0.0002 0.0002 0.001
1 gene TensorQTL 0.00001 0.00001 0.00004

Virus molecular AMBER18 17.85 19.47 102.0

dynamics

simulations NAMD 2.13 95.19 103.84 543.9
AutoDock Vina 514.12 560.86 2,937.9

Molecular docking Glide 12.90 14.07 73.7

rDock 153.71 167.69 878.4
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703 Figures

704
Carbon footprint of a biobank GWAS for 100 traits
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706  Figure 1, Location and computational platforms affect carbon footprint. This plot
707  details the carbon footprint (in kgCO,e, tree-months, and European car km) of a biobank
708  scale 100 trait GWAS in various locations and platforms. Average data centres have a PUE
709 of 1.67 [13], Google cloud has PUE of 1.11[67], Australia has a carbon intensity of 0.88
710  kgCO.e/kWh, USA 0.453 kgCO,e/kWh, and UK 0.253 kgCO,e/kWh [74].
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711
712  Figure 2: The effect of hardware choices and parallelisation on carbon footprint. The

713  carbon footprint of BEAST/Beagle implemented on multi-core CPU or GPUs for three
714  different tasks. The plots on the left detail both the running time and carbon footprint against
715 the number of cores utilised. The plots on the right detail the running time solely against
716  carbon footprint (contextualised with tree-months) for both CPUs and GPUs. The numerical
717  datais available in Supplementary Table 2.
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718
719 Figure 3: Over-allocating memory increases a given algorithm’s carbon footprint.

720 Each plot details the percentage increase in carbon footprint as a function of memory
721  overestimation for a variety of bioinformatic tools and tasks. The numerical data is available
722  in Supplementary Table 1.

723
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724 Supplementary materials

725  Supplementary table 1: The percentage increase of carbon footprint as a function of
726  memory over-allocation for a given algorithm.

Percentage increase in carbon
footprint as a function of memory
over-allocation (%)

2X 5x 10x 20X 50x
fold fold fold fold fold

Analysis type Tool

RNA sequencing quality FastQC + TrimGalore

. + clumpify + 250 | 6.25 | 12.49 | 24.99 | 62.47
control pipeline STARV2.7.0e
ABySS2.0 226 | 564 | 11.29 | 2258 | 56.44
De novo assembly of one
human genome MEGAHIT 12.00 | 29.99 | 59.98 | 119.96 | 299.91
MetaSPAdes 0.33 | 0.84 167 | 335 | 8.37
Metagenome assembly MEGAHIT 0.09 0.22 0.43 0.86 2.16

from 100 soil samples [ vetavelvetk10l | 035 | 0.89 | 1.77 | 354 | 8.86

BOLT-LMM v1 45.87 | 114.68 | 229.36 | 458.72 |1146.81
GWAS on a biobank with

1 trait BOLT-LMM v2.3 45.87 | 114.68 | 229.36 | 458.72 [1146.80

STARvV 2.5.0 12.77 31.92 63.84 | 127.69 | 319.22

Human
(Homo HISAT2 v2.0.0beta 0.98 2.46 491 9.83 24.57
sapiens Tophat v2.1.0 4.00 9.99 19.99 39.97 99.93
hg19)

Read Novoalign 74.65 | 186.63 | 373.25 | 746.51 |1866.27

alignment STARvV 2.5.0 1.89 4,71 9.43 18.86 47.15

Malaria HISAT2 v2.0.0beta | 0.20 0.51 1.02 2.04 5.10
(Plasmodium

falciparum) Tophat v2.1.0 273 | 682 | 1364 | 27.29 | 68.22
Novoalign 42.16 | 105.41 | 210.81 | 421.63 [1054.07
Codon 830 | 20.75 | 41.49 | 82.98 | 207.45
modelling
. Nucleotide BEAST/
Phylogenetics| ' " Salling BEAGLE 15.55 | 38.87 | 77.74 | 155.47 | 388.68
Phylogeograp 1554 | 38.86 | 77.72 | 155.44 | 388.61

hic modelling

24
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SGA 57.61 | 144.03 | 288.05 | 576.10 | 1440.26
Long read SSPACE 63.70 | 159.24 | 318.49 | 636.97 |1592.44
genome
Scaffolding SOAPdenovo2 56.62 | 141.55 | 283.10 | 566.20 |1415.50
SGA 57.73 | 144.32 | 288.64 | 577.29 |1443.22
Short read
genome SSPACE 55.05 | 137.62 | 275.24 | 550.47 |1376.18
scaffolding SOAPdenovo2 56.03 | 140.08 | 280.15 | 560.30 | 1400.76
Transcript RSEM 26.15 | 65.39 | 130.77 | 261.54 | 653.86
isoform Sailfish 21.41 | 5352 | 107.04 | 214.07 | 535.18
abundance
estimation Cufflinks 30.48 | 76.20 | 152.40 | 304.79 | 761.98
Centrifuge - short read 32.69 | 81.73 | 163.46 | 326.91 | 817.28
Metagenomic Kraken2 - short read 47.16 | 117.90 | 235.80 | 471.61 [1179.02
classification [ kraken/Bracken - short read 99.25 | 248.12 | 496.24 | 992.47 |2481.18
MetaMaps - long read 106.65 | 266.62 | 533.24 | 1066.48 | 2666.19

727
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728  Supplementary table 2: The carbon footprint of hardware changes and parallelisation,
729  using benchmarks from Beale et al [32].

Task Algorith | Number of CPU | Running time Carbon

m cores or GPU (hours) footprint

devices (kgCO2e)
1 7.75 0.066
2 417 0.069
4 2.42 0.078
Codon 6 1.72 0.083
substitution | BEAST/ 8 1.42 0.091
T BEAGLE 10 1.25 0.10
9 12 1.08 0.10
1 GPU 0.08 0.017
2 GPU 0.06 0.023
2 0.67 0.012
4 0.43 0.015
—_— id 6 0.40 0.020
ucleotiae 8 0.39 0.026
substitution SEEAA‘GSE{E 10 0.43 0.035
modelling 12 0.43 0.042
1 GPU 0.27 0.054
2 GPU 0.19 0.076
2 3.86 0.070
4 3.73 0.13
6 3.69 0.18
Phylogeographic | BEAST/ 8 3.71 0.24
modelling BEAGLE 10 3.68 0.30
1 GPU 0.64 0.13
2 GPU 0.54 0.22

730
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731 Supplementary Note 1:

732

733  Estimating the running time at which a GPU has a lower carbon footprint:

734

735  From rearranging the Green Algorithms carbon footprint formula it can be shown that the
736  running time at which GPU has a lower carbon footprint is:

ncpyXPcpyXUcpy + nmem,CPUXPmem) 1)

737 t =

GPUeq = Lepux (”GPUXPGPUXUGPU + Nmem,GPUXPmem
738
739  Where, ngpyis the number of CPU cores, ngpyis the number of GPUs, P.py is the power
740  drawn by the CPU cores. P;py is the power drawn by the GPU. U.pyis the core usage factor
741  for the CPU. Ugpy is the usage factor of the GPU. n,,., cpyis the amount of memory (GB)
742  utilised when running the CPU, n,.,pyis the amount of memory (GB) utilised when
743 running the GPU. P,.,is the power draw for memory. t;py ¢qiS the running time when the
744  GPU would have the same carbon footprint as the CPU, and t.pyis the running time of the
745  CPU. If the GPU implementation is to have a lower carbon footprint, it must finish within the
746 time tgpy,eq-
747
748  When ignoring memory and utilising 1 CPU and 1 GPU with identical core usage factors, this
749  simplifies to:

P
CPU
tepu = tepux (—P ) (2)
GPU
750  Where, t.p, is scaled by the ratio of the power required to utilise the CPU to the GPU.
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Descriptions of additional files:
Additional file 1: Hardware details for each analysis presented in this manuscript.

Additional file 2: The ratio of RNA reads per million and ratio of CPU time of 10 random in-
house PBMC samples, from the RNA sequencing quality control pipeline task.
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