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Abstract  

In the mature brain, structural and functional connectivity 8fingerprints9 can be used to identify the 

uniqueness of an individual. However, whether the characteristics that make a brain 

distinguishable from others already exist at birth remains unknown. Here, we used neuroimaging 

data of preterm born neonates who were scanned twice during the perinatal period to assess the 

developing brain fingerprint. We found that 62% of the participants could be identified based on 

the congruence of the later structural connectome to the initial connectivity matrix derived from 

the earlier timepoint. In contrast, similarity between functional connectomes only allowed to 

identify 12% of the participants. These suggests that structural connectivity is more stable in early 

life and can represent a potential connectome fingerprint. Thus, a relatively stable structural 

connectome appears to support a changing functional connectome at a time when neonates must 

rapidly acquire new skills to adapt to their new environment.  
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INTRODUCTION  

Advances in neuroimaging technology have provided new means to investigate the human brain 

in vivo. This has enabled characterization of a connectome delineating the structural and 

functional organization of the brain at a macro-scale. This connectome can be represented as a 

large-scale correlation matrix where each row and column correspond to brain subunit indices 

which may be structural or functional nodes, so that each matrix element describes 8connectivity9 

between two neural parts (Sporns, Tononi and Kötter, 2005; Sporns, 2010). The information 

contained in the functional and structural connectome of an individual is highly specific to that 

person and has been compared to a personal 8fingerprint9 (Finn et al., 2015; Yeh et al., 2016). 

Although, the functional connectome has been demonstrated to be highly stable over multiple 

years after late adolescence (Horien et al., 2019), a delay in establishing a distinctive functional 

connectome through adolescence has been linked to mental health difficulties (Kaufmann et al., 

2017). However, the structural and functional connectome of an infant differs from older age 

groups (Cao, Huang and He, 2017), and the extent to which either is stable (i.e., reproducible at 

the level of the individual) is unknown. A better understanding of the extent of malleability of a 

given property of an individual9s brain and its relation to outcomes may guide personalized 

approaches to optimize child neurodevelopmental health.  

The developing brain is governed by dynamic processes that transform an amalgam of a few cells 

in early gestation into a complex organ capable of rapidly processing and integrating information. 

The foetal period is marked by cortical migratory processes, with anomalies at this stage 

frequently leading to neuronal migration disorders and atypical brain structure (Ten Donkelaar 

and Van der Vliet, 2004; Kostović et al., 2014). A hallmark of the third foetal trimester is a change 

in the relative proportion of short and long range association fibres (Ouyang et al., 2019). These 

fast-changing microscopic developmental mechanisms quickly lead to reshaping of 

macrostructural features, which can be captured with Magnetic Resonance Imaging (MRI). For 

example, despite ongoing rapid growth, cortical folding features show remarkable high similarity 

between scans of the same subject across the first year following birth, suggesting a high self-

similarity in cortical macrostructure between birth and the first 2 postnatal years (Duan et al., 

2020). However, the stability of structural/functional network metrics and whether the 

connectome is 8individual9 in early life has not been previously investigated. This is important to 

understand because, although the structural and functional connectome are inter-related and 

complimentary, they represent models of brain connectivity with distinct developmental influences 

(for a review see (Suárez et al., 2020)).  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.08.434357doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434357
http://creativecommons.org/licenses/by/4.0/


3 

 

Useful information about the perinatal brain and its subsequent maturation has already been 

acquired. In the perinatal brain, in parallel with structural changes, cortical neurons fire specific 

activity patterns which further regulate genetic expression and refine structure into functional 

systems (Tau and Peterson, 2010; Kirkby et al., 2013). Highly connected structural and functional 

nodes/hubs are crucial for information flow and further evolve as myelination matures (Morgan et 

al., 2018). A striking difference between the neonatal and the adult brain is that functional hubs, 

highly interconnected regions, are more restricted to somatosensory, auditory, visual and motor 

regions, unlike the higher order networks seen in adults (Cao et al., 2017). In childhood, the 

identification accuracy of the functional connectome at rest has been estimated to be at 43% 

(Vanderwal et al., 2019), relative to 92% reported in adults (Finn et al., 2015), suggesting 

acquiring functional diversity and consequent uniqueness is part of the trajectory towards 

adulthood. However, the structural connectome fingerprint has only been investigated in adults 

and been shown to be relatively plastic globally but very stable within specific white matter 

bundles, such as the corpus callosum (Yeh et al., 2016). On the contrary, the neonatal brain is 

still immature and differs from the adult one, so it is possible that nature and extent of identifiable 

features of individuals9 structural and functional connectomes that are stable over time also differ. 

Here, we investigate whether a structural and/or functional fingerprint is already established 

perinatally, by assessing the similarity of the structural and functional connectome of preterm born 

infants, who were scanned soon after birth and then again at term equivalent age. Unlike adults, 

the maturing brain is highly dynamic and undergoing rapid reorganization. Therefore, we 

hypothesized that connectome similarity would be lowest when the time between scans was 

longest. In addition, brain activity becomes experience-driven during this early postnatal period 

and experiences increase daily as the infant interacts with the world ex-utero (Greenough, Black 

and Wallace, 1987; Khazipov and Luhmann, 2006). Thus, we also hypothesized that this 

constantly changing functional activity leads to experience-dependent changes in the functional 

connectome upon a (relatively) stable structural connectome. 

METHODS 

Subjects 

Research participants were prospectively recruited as part of the developing Human Connectome 

Project (dHCP), an observational, cross-sectional Open Science programme approved by the UK 

National Research Ethics Authority (14/LO/1169). Written consent was obtained from all 

participating families prior to imaging. 
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As part of the dHCP, a total of 63 subjects were scanned twice and had both functional and 

diffusion MRI data acquired. After pre-processing, 18 diffusion datasets were discarded due to 

poor registration to template space, resulting in a total of 45 subjects (26 males) with good quality 

diffusion MRI data. The infants were born at a median of 32.29 weeks gestational age (GA) [range: 

25.57-37], with their first scan acquired at a median of 35 weeks post menstrual age (PMA) 

[range: 29.29-37.43] and the second acquired at a median of 41 weeks PMA [range: 38.43-

44.86]. From the functional data, 18 subjects were discarded due to poor registration to template 

space and additional 14 had to be discarded due to significant signal loss during acquisition. Thus, 

there was a total of 31 subjects (21 males) with good quality functional connectome data, born at 

a median of 34.57 weeks GA [range: 27.57-37.00], had their first scan at a median of 35.57 

weeks PMA [range: 30.86-37.43] and had their second scan at a median of 40.57 weeks PMA 

[range: 38.86-44.57]. The final sub-group with both good quality structural and functional data 

consisted of 26 subjects (16 males), born at a median age of 34.14 weeks [range: 28.71-37.00], 

with their first scan acquired at a median of 35.43 weeks PMA [range: 31.43-37.43] and the 

second acquired at a median of 40.93 weeks PMA [range: 38.86-44.86] (details described in 

Table 1). 

Table 1. Descriptive sample characteristics 

Group GA at birth PMA - scan 1 PMA - scan 2 

Structural  

(n=45, males n=26) 

32.29 [25.57-37.00] 35.00 [29.29-37.43] 41.00 [38.43-44.86] 

Functional  

(n=31, males n=21) 

34.57 [27.57-37.00] 35.57 [30.86-37.43] 40.57 [38.86-44.57] 

Structural and functional  

(n=26, males n=16) 

34.14 [28.71-37.00] 35.43 [31.43-37.43] 40.93 [38.86-44.86] 

 

Data acquisition 

All subjects underwent Magnetic Resonance Imaging (MRI) scanning at the Evelina Newborn 

Imaging Centre, St Thomas9 Hospital, London, UK. Structural, diffusion and functional data was 

acquired using a 3 Tesla Philips Achieva system (Philips Medical Systems, Best, The Netherlands) 

with customized neonatal imaging system including a 32-channel phased-array head coil (Rapid 

Biomedical, Rimpar, Germany) (Hughes et al., 2017). Infants were studied during natural sleep 

following feeding and immobilization in a vacuum evacuated bag (Med-Vac, CFI Medical 

Solutions, Fenton, MI, USA). Hearing protection (moulded dental putty in the external auditory 

meatus (President Putty, Coltene Whaledent, Mahwah, NJ, USA) and earmuffs (MiniMuffs, Natus 

Medical Inc., San Carlos, CA, USA)) and physiological monitoring (oxygen saturations, heart rate, 

axillary temperature) were applied before data acquisition. MR-compatible foam shielding was 
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used for further acoustic noise attenuation. All scans were supervised by a neonatal nurse and/or 

paediatrician who monitored heart rate, oxygen saturation and temperature throughout the scan.  

A total of 300 volumes of diffusion MRI were acquired over 19 minutes and 20 seconds with b-

values of 400 s/mm2, 1000 s/mm2 and 2600 s/mm2 spherically distributed in 64, 88 and 128 

directions respectively, with 20 b=0 s/mm2 images and parameters: Multiband factor 4, SENSE 

factor 1.2, partial Fourier 0.86, acquired in-plane resolution 1.5x1.5mm, 3mm slices with 1.5mm 

overlap, repetition time (TR)/ echo time (TE) of 3800/90ms and 4 phase-encoding directions 

(Hutter et al., 2018). After reconstruction, image resolution was 1.5 mm isotropic. High-temporal-

resolution BOLD fMRI optimized for neonates was acquired over 15 minutes 3 seconds (2300 

volumes) using a multislice gradient-echo echo planar imaging (EPI) sequence with multiband 

excitation (multiband factor 9), TR 392 ms, TE 38 ms, flip angle 34°, and acquired spatial 

resolution 2.15 mm isotropic (Price et al., 2015). For clinical interpretation and registration 

purposes, a Turbo spin echo sequence (parameters: TR = 12s, TE = 156ms, SENSE factor 2.11 

(axial) and 2.54 (sagittal)) was used to acquire high-resolution T2-weighted (T2w) images. The 

T2w axial and sagittal volumes originally acquired at 0.8x0.8mm, 1.6mm slices with 0.8mm 

overlap were motion corrected and super-resolved to a final resolution of 0.8mm isotropic 

(Cordero-Grande et al., 2018).  

 

Image pre-processing and connectome construction 

A neonatal specific segmentation pipeline (Makropoulos et al., 2014) was used to obtain tissue 

segmentation of each subject9s T2w images in native space. A neonatal adaptation (Shi et al., 

2011) of the AAL atlas (Tzourio-Mazoyer et al., 2002) aligned to the dHCP high-resolution 

neonatal template (Schuh et al., 2018) was used to parcellate each9s subject brain into 90 cortical 

and subcortical regions. Previously calculated tissue segmentation and T2w images were used 

as input for a non-linear registration based on a diffeomorphic symmetric image normalization 

method (SyN) available in ANTS software (Avants et al., 2011) to bring the 90 regions neonatal 

atlas into the subject9s native space (Supplementary Table 1). 

Pre-processing of diffusion MRI data and structural connectome construction was performed as 

previously reported (Taoudi-Benchekroun et al., 2020). Briefly, after hybrid SENSE reconstruction 

(Zhu et al., 2016),  diffusion signal was denoised (Cordero-Grande et al., 2019), and susceptibility 

distortions were corrected  (Andersson, Skare and Ashburner, 2003). A  spherical harmonics and 

radial decomposition (SHARD) slice-to-volume reconstruction was applied to further correct 

motion effects and other artefacts (Christiaens et al., 2021). The N4 algorithm (Tustison et al., 
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2010) implemented in MRtrix (Tournier et al., 2019) was applied for bias field correction. Multi-

tissue CSD (Jeurissen et al., 2014) using restricted anisotropic diffusion for brain tissue and free 

diffusion for fluid like features (Pietsch et al., 2019) was used to estimate fibre orientation 

distribution (FOD) in each brain voxel. Response functions for each tissue type were generated 

as the average from the response functions in an independent sub-group of 20 healthy term 

control neonates from the dHCP (Taoudi-Benchekroun et al., 2020). Multi-tissue log-domain 

intensity normalisation (Raffelt, et al. 2017) was applied to FODs, and normalised brain tissue like 

FODs were used to generate 10 million streamlines with anatomically constrained probabilistic 

tractography (Smith et al., 2012) with biologically accurate weights (SIFT2) (Smith, et al. 2015). 

The fibre density SIFT2 proportionality coefficient (μ) for each subject was obtained to achieve 

inter-subject connection density normalisation. Atlas parcellation and tissue maps in T2w native 

space were registered to diffusion space with a rigid registration using b=0 volumes as target. 

(Schnabel et al., 2001). The structural connectome of each infant was constructed in native 

diffusion space, by calculating the μ × SIFT2-weighted sum of streamlines connecting each pair 

of regions into a weighted adjacency matrix of size 90×90. 

For functional data, all 2300 volumes of fMRI data acquired per participant were utilized without 

undergoing any scrubbing. Data were pre-processed using the Developing Human Connectome 

Project pipeline optimized for neonatal fMRI, detailed in (Fitzgibbon et al., 2020). In brief, 

susceptibility dynamic distortion together with intra- and inter-volume motion effects were 

corrected in each subject using a bespoke pipeline including slice-to-volume and rigid-body 

registration (Andersson et al., 2017). In order to regress out signal artifacts related to head 

motion, cardiorespiratory fluctuations and multiband acquisition, 24 extended rigid-body motion 

parameters were regressed together with single-subject ICA noise bespoke components 

identified with the FSL FIX tool (Oxford Centre for Functional Magnetic Resonance Imaging of the 

Brain9s Software Library, version 5.0) (Salimi-Khorshidi et al., 2014). Atlas parcellation and tissue 

maps were propagated from T2w native space using a boundary-based registration  (Greve and 

Fischl, 2009). Average timeseries of each of the previously parcelled ROIs intersecting with GM 

regions were calculated in native fMRI space. Functional connectivity (FC) was calculated as the 

Pearson9s partial correlation of the signal between each pair of ROIs, controlling for the signal in 

the rest of the ROIs (Shi et al., 2011) and resulting in a matrix of size 90×90. Negative correlations 

were not considered and set to zero. 

Similarity Analysis 

Global similarity - Identifiability rate quantification 
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To identify the optimal network density threshold for structural and functional connectome 

similarity, we tested the percentage of correctly identified subjects for all possible thresholds 

(Supplementary Figure 1). Based on this analysis, we applied a 25% network density threshold 

to the structural and functional connectomes at time-point 1 for each subject. This connectivity 

matrix was then binarized and used as a mask for the connectivity matrix in time-point 2 ensuring 

that the same inter-regional connections were compared between the two time points. 

Spearman9s correlation between each matrix at time-point 1 and time-point 2 was calculated, 

resulting in a similarity matrix of 45×45 subjects for structural connectivity and 31×31 subjects for 

functional connectivity. If the self-similarity between time-point 1 and time-point 2 (diagonal 

correlation) was higher than the self-to-other-similarity, this was quantified as a successful match 

(Finn et al., 2015). 

For visualization purposes, all similarity values were normalised by scaling relative to the maximum 

correlation between time-point 1 and all other subjects at time-point 2 dividing by the maximum 

value in each row (i.e., for each row, value of 1 indicated the maximum match between time-point 

1 and time-point 2). As shown in Figure 1 this scaling results in a value of 1 in the diagonal when 

self-similarity is higher than any self-to-other-similarity value. If the value of 1 is not in the diagonal 

it indicates self-to-other-similarity is higher than self-similarity. 

The same analysis was repeated for a sub-group of participants that had both structural and 

functional connectome data. This resulted in two 26x26 matrices containing structural and 

functional data, characterising the identifiability rate for the two modalities in the same individuals. 

The diagonal values of these matrices were extracted to provide median and range of structural 

and functional self-similarity.  

Age effect on self-similarity and self-to-other-similarity  

In order to assess the effect of age in the structural and functional fingerprint, we first calculated 

the partial correlation between PMA at scan at time-point 1 and self-similarity (controlling for days 

between scans), and then the partial correlation between days between scans and self-similarity 

(controlling for PMA at time-point 1) for the whole group in each modality. Then, for the sub-group 

we converted the self-similarity and the self-to-other-similarity into z-scores for better visualization 

of the effect of age on self-similarity. If the self-similarity z-score of a subject was higher than any 

of the self-to-other-similarity z-score, this would be equivalent to successfully matching a subject 

between time-point 1 and time-point 2, as in previous fingerprinting studies (Finn et al., 2015).  

To further characterize the effect of age on self-similarity, we ran a general linear model analysis 

with PMA at time-point 1 and days between scans as independent variables and self-similarity as 
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dependent variable. This allowed quantification of the beta coefficients of the age effect on self-

similarity. To characterize self-to-other-similarity association with age difference between time-

point 1 and time-point 2, we performed a linear mixed-effects model (LME) with days between 

scans as fixed effect and with subject at time-point1 dependent random effect for the intercept to 

account for repeated measures. 

Regional analysis  

Given the distinct trajectories of maturation of subcortical and cortical regions, we repeated all 

the analysis described above in 7 clusters that represent larger anatomical areas: central, frontal, 

limbic, occipital, parietal, deep grey matter and temporal. These regions were composed of 8, 22, 

14, 14, 10, 8, and 14 nodes respectively. The central cluster was composed of bilateral precentral 

and postcentral gyrus, paracentral lobules and supplementary motor areas. The frontal cluster 

was composed of superior, middle, inferior and orbitofrontal cortices, as well as the olfactory 

lobule and the rectus gyrus. The limbic cluster was composed of the insula, anterior and posterior 

cingulate, hippocampus and amygdala. The occipital cluster was composed of the calcarine, 

cuneus, lingual cortices together with superior, inferior and middle occipital gyrus and the 

fusiform. The parietal cluster was composed of the superior and inferior parietal gyrus, 

supramarginal, angular and precuneus gyrus. The deep grey matter cluster was composed of all 

basal ganglia structures and thalami.  The temporal cluster was composed of the Rolandic 

operculum, the Heschl gyrus, and superior, middle and interior temporal cortices as well as the 

temporal poles. Supplementary Table 1 contains all 90 regions of the atlas and to which cluster 

they belong to. This allowed to calculate similarity identifiability rates, similarity z-scores and age 

linear models for each sub-region. 

Data availability 

The dHCP is an open-access project. The imaging and collateral data can be downloaded by 

registering at https://data.developingconnectome.org/.   

Derived data including structural and functional connectivity networks used in this study are 

available in github.com/code-neuro/neonatalconnectomefingerprint/. 

RESULTS 

Whole-brain similarity 

The structural connectome comparison between the scans at preterm and term equivalent ages 

yielded strong correlations not only among the scans of the same subject but also between the 

scans of different subjects (Figure 1AB). The mean self-similarity was r=0.90, ranging from r=0.67 
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to r=0.96, and the mean self-to-other-similarity was r=0.88, ranging from r=0.65 to r=0.94. The 

identifiability rate was 28/45 (62.22%), representing the percentage of times self-similarity was 

higher than the self-to-other-similarity.  Furthermore, we found a significant correlation between 

PMA at first scan and self-similarity values (i.e., the older a subject was at the first scan, the more 

<self-similar= their structural connectome was between scans), controlling for days between scans 

(r=0.49, p=0.006). 

The functional connectome comparison showed less consistent results (Figure 1CD). The 

correlation values between scans were lower compared to structural connectome similarities.  

The mean self-similarity was r=0.56, ranging from r=0.21 to r=0.70, and the mean self-to-other-

similarity was r=0.54, ranging from r=0.17 to r=0.73. Thus, the identifiability rate for functional 

connectome similarity was 3/31 (9.68%). We observed no significant correlation between PMA 

at first scan and functional self- similarity, but there was a significant negative correlation between 

functional self-similarity and days between scans (r=-0.39, p=0.03). 

 

Figure 1. Structural and Functional global similarity. The correlation between the connectome of each subject at time-

point 1 and 2 is depicted by the similarity matrix for structural connectivity (A) and functional connectivity (C). The 

correlations are then plotted against days between scans with a colour gradient showing the age of the subject at time-

point 1 for structural data (B) and functional data (D). The stars represent the correlation between the connectome of 

a subject at time-point 1 with the connectome of the same subject at time-point 2 (i.e., self-similarity), and the dots 

represent the correlation of a subject at time-point 1 with a different subject at time-point 2 (i.e., self-to-other-similarity).   
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Closer inspection of the self-similarity for the structural and functional connectivity in a sub-group 

of participants with data available in both modalities confirmed that all subjects had higher 

similarity between their structural connectomes than their functional connectomes. The median 

structural self-similarity was r=0.93, ranging from r=0.89 to r=0.96, and the median functional 

self-similarity was r=0.55, ranging from r=0.21 to r=0.69. The identifiability rate for structural data 

was 18/26 (69.23%), in contrast with 3/26 (11.54%) for functional data (Figure 2). As the 

structural and functional data examined were from the same individuals, age and time between 

scans was exactly matched.  

 

Figure 2. Self-similarity for structural and functional connectivity. The similarity correlation between the structural 

connectivity (SC) matrices between scans (blue) and between the functional connectivity (FC) matrices (red) is 

plotted again age at first scan (A) and against days between scans (B). 

 

Finally, we converted the self-similarity and self-to-other-similarity values into z-scores for each 

subject and sorted them based on age at time-point 1 to better visualize whether older subjects 

have a more identifiable whole-brain structural connectome (Figure 3). Results show that the 

structural connectome was more stable than the functional connectome against variations on age 

or time between scans. 

Age effect on sub-group similarity 

The general linear model analysis for the sub-group with both structural and functional data further 

showed that age at time-point 1 has a significant effect on global structural connectome self-

similarity (β=0.007, p=0.01). We observed no significant effect of days between scans on 

structural connectome self-similarity; and no effect of age at time point 1 or days between scans 

on global functional connectome self-similarity (Table 2). 
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The LME analysis showed age at first scan also has a significant effect on global structural 

connectome self-to-others-similarity (β2=0.006, p<0.001), but there was no significant effect of 

days between scans. Unlike what was observed for self-similarity, both days between scans (β1=-

0.001, p<0.001) and age at time-point 1 (β2=0.02, p<0.001) had a significant effect on global 

functional connectome self-to-others-similarity. 

 

 

Figure 3. Self-similarity and self-to-other-similarity z-scores arranged by PMA. The boxplots show the similarity scores 

between time-point 1 and time-point 2 converted to z-scores for each participant arranged from left to right (youngest 

to oldest at time-point 1). The stars represent self-similarity and the circles represent self-to-other-similarity. The upper 

row depicts structural connectome similarity (A) and the bottom row shows functional connectome similarity (B). 

 

Regional similarity  

Regional comparison of structural connectomes showed lower identifiability rate compared to the 

global metrics. The limbic cluster (insula, cingulate, hippocampus and amygdala) showed highest 

identifiability rate at 11/45 (24.44%), followed by frontal regions at 10/45 (22.22%), occipital at 

7/45 (15.56%), central at 5/45 (11.11%), both parietal and deep GM at 4/45 (8.89%) and 

temporal at 3/45 (6.67%).  

Functional connectome comparisons yielded similar identifiability rates compared to whole-brain 

metrics. They were still qualitatively lower than structural similarity identifiability rates, except for 

the parietal cluster. Central and parietal regions showed the highest identifiability rate of 3/31 
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(9.68%). Limbic regions showed an identifiability rate of 2/31 (6.45%) and frontal, occipital, sub-

cortical and temporal clusters showed an identifiability rate of 1/31 (3.23%) (Figure 4). 

Closer qualitative inspection of the self-similarity for the structural and functional connectivity in 

the sub-group of participants with both structural and functional connectomes showed structural 

and functional self-similarity closer together in the central cluster and more dispersed in the frontal 

cluster (Figure 5). However, functional similarity identifiability values were always lower than 

structural identifiability rates in this sub-group. 

Age effect on regional self-similarity 

The generalized linear model run independently for each cluster in the sub-group with both 

structural and functional data showed that age at time-point 1 has a significant effect on functional 

connectome similarity in the parietal region after Bonferroni correction (β=0.088, p=0.003). We 

observed no significant effect of age or days between scans on any other cluster for functional 

nor structural self-similarity after multiple comparisons correction (Table 2).  

Table 2. Beta coefficients and p-values for the effect of age and days between scans on self-similarity. 

 

 

 
SC FC  

PMA Days between scan PMA Days between scan  
β p β p β p β p 

global 0.00611 0.01 -0.00058 0.01 0.02413 0.15 -0.00265 0.08 

central 0.00126 0.72 -0.00024 0.44 -0.03211 0.06 -0.00258 0.09 

frontal 0.00031 0.91 -0.00044 0.07 0.02662 0.31 -0.00270 0.25 

limbic 0.00444 0.28 -0.00069 0.07 0.01875 0.28 -0.00187 0.23 

occipital -0.00107 0.74 -0.00046 0.13 0.06104 0.01 -0.00007 0.97 

parietal -0.00002 1.00 0.00029 0.60 0.08789 0.00 0.00174 0.47 

sub-cortical -0.00150 0.61 -0.00019 0.47 -0.00186 0.91 -0.00069 0.64 

temporal 0.00216 0.44 -0.00015 0.56 0.01117 0.54 -0.00041 0.80 
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 1 

Figure 4. Structural and Functional cluster-wise similarity. Similarity matrices together with plots to depict the association of the similarity with days between scans underneath are 2 

shown for structural connectivity (A, B) and functional connectivity (C, D). These figures are presented in different columns for different anatomical clusters: somatosensory-motor or 3 

central region, frontal, limbic, occipital, parietal, deep grey matter, and temporal.  4 

https://doi.org/10.1101/2021.03.08.434357
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Figure 5. Regional self-similarity for structural and functional connectivity cluster-wise. The structural self-similarity 

(blue) and the functional self-similarity (red) is plotted against age at first scan (PMA at time-point 1) in the first column 

and against days between scans in the second column for central (A), frontal (B), limbic (C), occipital (D), parietal (E), 

deep grey matter (F) and temporal (G) cluster. Grey lines provide visual guidance to match structural and functional 

similarity values of the same subject.   
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DISCUSSION 

In the current study we used a unique set of longitudinal high quality structural and functional 

neonatal brain MRI data from the Developing Human Connectome Project to investigate the 

status of the connectome fingerprint at an early stage of neurodevelopment. To do so, we 

selected data from preterm born infants that were scanned soon after birth and then again at term 

equivalent age. Our results show that the whole-brain structural connectome can already identify 

an older individual at birth. In contrast, the whole-brain functional connectome changes more 

noticeably between scan timepoints, so individual identification is less stable based on their 

functional connectome regardless of their age at birth or time between scans.  

A structural connectivity fingerprint is present during the perinatal period 

During the perinatal period, the brain undergoes marked micro and macrostructural changes 

(Kunz et al., 2014; Batalle et al., 2017; Pietsch et al., 2019).Nevertheless, our observations 

suggest that by the normal time of birth, an individual9s brain structural connectome is relatively 

stable. This suggests that the individual template of structural connectivity is predominately 

genetically determined, in the absence of an external insult. Consistent with this, macroscale 

structural white matter tractography has been shown to be highly heritable with axial diffusivity, 

radial diffusivity and fractional anisotropy of commissural fibres found to have the highest genetic 

influence and association fibres the least (Lee et al., 2015).  By term equivalent age, the neonatal 

brain has an established framework of thalamocortical fibres, a large abundance of u-shaped 

cortico-cortical fibres, and visible long range association pathways such as the cingulum bundle 

and callosal fibres (Takahashi et al., 2012). The abundance of u-shaped cortico-cortical fibres at 

term is in line with an early establishment of cortical folding patterns that remain individually unique 

throughout the first two postnatal years (Duan et al., 2020). Thus, the acquisition of a stable 

structural connectome appears to coincide with the attainment of more mature brain structural 

appearance and may therefore be a marker of maturity. This fits with the observed relationship 

between higher structural connectome self-similarity and an older age at the time of the first scan. 

Alongside self-similarity, we also observed high self-to-other-similarity values in the structural 

connectome which likely represents the development of common macroscale features (structural 

connectivity backbone). 

Functional connectivity fingerprint is absent at birth 

Task-based fMRI studies in neonates have demonstrated that the primary sensory cortices (e.g. 

somatosensory, auditory, olfactory and visual) are capable of processing external stimuli and are 

undergoing activity-dependent maturation during the perinatal period (Anderson et al., 2001; 
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Arichi et al., 2010; Perani et al., 2010; Lee et al., 2012; Baldoli et al., 2015; Allievi et al., 2016; 

Adam-darque et al., 2018; Dall9Orso et al., 2018). Resting state studies have reported significant 

age-dependent increases in functional short-range connectivity in the somatosensory, visual, 

auditory and language networks throughout the perinatal time window, further suggesting rapid 

functional plasticity and maturation within these systems (Cao et al., 2017). These changes in 

local degree centrality may represent functional reshaping of primary resting state networks that 

resemble adult networks by term equivalent age, while higher-order association networks appear 

immature (Eyre et al., 2020). Such fast reorganization across multiple functional systems during 

the perinatal time window may explain why we did not observe a single case where self-similarity 

was higher than self-to-others-similarity.  

Our results markedly contrast with those of previously reported work in children. To our 

knowledge, the youngest previously investigated population for connectome similarity analysis to 

date has been a sample of 6-year-old children, where they reported an identification rate of 43% 

between resting state functional connectomes (Vanderwal et al., 2019). Another study in children 

aged 7 to 15 years reported high correlation coefficients between functional connectivity matrices 

of the same participant, almost on par with adult similarity values (Horien et al., 2019). While our 

results indicate that a functional connectome fingerprint is barely present at birth, future studies 

should investigate when this starts to increase between infancy and childhood.  

Impact of age at first scan and days between scans on similarity 

To disentangle the impact of inter-scan interval and age at first scan on similarity of the structural 

and functional connectome, we examined a sub-group of 26 neonates who had both data types. 

We observed a significant effect of age at time-point 1 on the global structural self-similarity. This 

effect might be determined by the individual-specific developmental trajectory of white matter 

microstructure and not necessarily indicative of an adult-like unique structural connectome 

(Ouyang et al., 2019).  

The absence of any significant effect of age on global functional self-similarity at this early stage 

of development might be explained by the reshaping of long-range functional connectivity, which 

matures within the first postnatal year (Damaraju et al., 2014). However, we cannot exclude the 

possibility that the low functional connectome self-similarity in the perinatal period is a false 

negative. For example, there may be a non-linear effect that cannot be captured with a linear 

model or an anatomical parcellation might not be optimal to characterize the stability of the 

functional connectome in early development. Future studies focusing in functional connectome 
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similarity should investigate if an appropriate parcellation derived from functional data or multi-

modal information based parcellations (Glasser et al., 2016) yields higher self-similarity rates.  

Interestingly, we observed the same age effect on global structural connectome self-to-other-

similarity. This suggests certain age dependent organization patterns are also common across 

subjects. The same was observed for functional self-to-other-similarity, which significantly 

decreased with longer intervals between scans being compared and increased with older age at 

time point 1. The low self-similarity, combined with strong self-similarity-to others and its age 

dependency roots for time constrained functional changes at a developmental time where there 

is a strong mixture of finely tuned spontaneous neural activity patterns and sensory experience 

dependent mechanisms (Hanganu-Opatz, 2010; Toyoizumi et al., 2013). The strong dependency 

of age and similarity patterns across subjects may also be related to genetic expression patterns 

that are highly dynamic and fast changing during this time of development (Silbereis et al., 2015).  

Regional fingerprinting of the connectome 

Brain development broadly follows a posterior to anterior maturational trajectory (Huttenlocher 

and Dabholkar, 1997) with sensory systems developing before higher order networks (Cao, 

Huang and He, 2017). Structural connectome identifiability rate was lower when investigating 

regions separately, suggesting global metrics with more data points is more informative as a 

fingerprint when using structural data. Later developing networks such as frontal and limbic 

cortices had the highest structural self-similarity. Given the late maturation of these regions, we 

speculate the high self-similarity might be driven by the fact that these regions are undergoing the 

least amount of structural change during the interval between scans. 

We saw the highest identifiability rate in the central cluster of the functional connectome.  This 

suggests that functional sensory-motor networks can provide higher identifiability rates in babies, 

while in comparison frontal-parietal structures appear more unique in adults (Finn et al., 2015). 

However, it will require a larger sample of data specifically comparing somatosensory and frontal 

regions in infants and adults to test this hypothesis. In addition, structural and functional coupling 

is a sign of maturation which appears more robust after adolescence (Baum et al., 2020). Thus, 

the closer resemblance between structure and function self-similarity in the central cluster might 

be indicative of the relatively mature state of somatosensory and motor cortices in the perinatal 

time window.   

Limitations 
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The main limitation of this study is that to assess the connectome fingerprint across weeks in the 

perinatal period ex-utero there is no other option but to investigate a preterm born population. 

Hence, to what extent the fingerprint is affected by preterm birth or is representative of normal 

development will have to be investigated in older infant cohorts or using foetal MRI. Another 

limitation pertains the multiple developmental factors which may influence the acquired signal in 

different ways and consequently the connectome. Despite the robustness of SIFT to characterize 

structural connections (Smith et al., 2015), using the most advanced pipelines available for 

neonatal fMRI data processing (Fitzgibbon et al., 2020), and being very stringent on data quality 

measures, the potential influence of developmental factors on the signal is out of our control. For 

diffusion data, developmental changes such as cortical folding or tissue water content reduction 

among others can affect the signal differently at different ages. Similarly, developmental effects 

which may influence the BOLD signal in different ways might relate to vascular density or 

neurovascular coupling, which can affect the sensitivity and specificity at different ages. 

Therefore, MR signal changes on the similarity values reported might be beyond differences in 

the neural <fingerprint=.  On this line, it is also important to note we used anatomical parcellations 

to characterize the functional nodes and future studies should investigate whether diverse 

functional parcellation methods mimic or differ from the findings reported in this study. 

CONCLUSION 

The brain structural connectome fingerprint is already present in the perinatal period. It is relatively 

stable and individually unique at this stage of development, while functional connectivity is either 

too dynamic or immature to provide strong identification features. Region-wise analysis suggested 

that the functional fingerprint in early development might be more stable within clusters, although 

identifiability rates were still higher for structural data. Future studies should investigate regional 

differences throughout development, the association of the global structural fingerprint to 

developmental outcome, and whether genetic or environmental risk impact the stability of the 

fingerprint.  
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Supplementary Figure 

 

 Supplementary Figure 1. Network Density dependent identifiability rate for structural (blue -SC) and functional (red-
FC) connectivity.  
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Supplementary Table 

Supplementary Table 2. Connectome nodes: anatomical regions and clusters  

Node Region Cluster Node Region Cluster 

1 Precentral gyrus left Central 46 Cuneus right Occipital 

2 Precentral gyrus right Central 47 Lingual gyrus left Occipital 

3 
Superior frontal gyrus 

(dorsal) left 
Frontal 48 Lingual gyrus right Occipital 

4 
Superior frontal gyrus 

(dorsal) right 
Frontal 49 Superior occipital gyrus left Occipital 

5 
Orbitofrontal cortex 

(superior) left 
Frontal 50 Superior occipital gyrus right Occipital 

6 
Orbitofrontal cortex 

(superior) right 
Frontal 51 Middle occipital gyrus left Occipital 

7 Middle frontal gyrus left Frontal 52 Middle occipital gyrus right Occipital 

8 Middle frontal gyrus right Frontal 53 Inferior occipital gyrus left Occipital 

9 
Orbitofrontal cortex (middle) 

left 
Frontal 54 Inferior occipital gyrus right Occipital 

10 
Orbitofrontal cortex (middle) 

right 
Frontal 55 Fusiform gyrus left  Occipital 

11 
Inferior frontal gyrus 

(opercular) left 
Frontal 56 Fusiform gyrus right Occipital 

12 
Inferior frontal gyrus 

(opercular) right 
Frontal 57 Postcentral gyrus left Central 

13 
Inferior frontal gyrus 

(triangular) left 
Frontal 58 Postcentral gyrus right Central 

14 
Inferior frontal gyrus 

(triangular) right 
Frontal 59 Superior parietal gyrus left Parietal 

15 
Orbitofrontal cortex (inferior) 

left 
Frontal 60 Superior parietal gyrus right Parietal 

16 
Orbitofrontal cortex (inferior) 

right 
Frontal 61 Inferior parietal lobule left Parietal 

17 Rolandic operculum left Temporal 62 Inferior parietal lobule right Parietal 

18 Rolandic operculum right Temporal 63 Supramarginal gyrus left Parietal 

19 
Supplementary motor area 

left  
Central 64 Supramarginal gyrus right Parietal 

20 
Supplementary motor area 

right 
Central 65 Angular gyrus left Parietal 

21 Olfactory left Frontal 66 Angular gyrus right Parietal 

22 Olfactory right Frontal 67 Precuneus left Parietal 

23 
Superior frontal gyrus 

(medial) left 
Frontal 68 Precuneus right Parietal 

24 
Superior frontal gyrus 

(medial) right 
Frontal 69 Paracentral lobule left Central 

25 
Orbitofrontal cortex (medial) 

left 
Frontal 70 Paracentral lobule right Central 

26 
Orbitofrontal cortex (medial) 

right 
Frontal 71 Caudate left 

Deep 

Grey 

Matter 

27 Rectus gyrus left Frontal 72 Caudate right 

Deep 

Grey 

Matter 

28 Rectus gyrus right Frontal 73 Putamen left 

Deep 

Grey 

Matter 

29 Insula left Limbic 74 Putamen right 

Deep 

Grey 

Matter 
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30 Insula right Limbic 75 Pallidum left 

Deep 

Grey 

Matter 

31 Anterior cingulate gyrus left Limbic 76 Pallidum right 

Deep 

Grey 

Matter 

32 Anterior cingulate gyrus right Limbic 77 Thalamus left 

Deep 

Grey 

Matter 

33 Middle cingulate gyrus left Limbic 78 Thalamus right 

Deep 

Grey 

Matter 

34 Middle cingulate gyrus right Limbic 79 Heschl gyrus left Temporal 

35 Posterior cingulate gyrus left Limbic 80 Heschl gyrus right Temporal 

36 
Posterior cingulate gyrus 

right 
Limbic 81 Superior temporal gyrus left Temporal 

37 Hippocampus left Limbic 82 Superior temporal gyrus right Temporal 

38 Hippocampus right Limbic 83 Temporal pole (superior) left Temporal 

39 ParaHippocampal gyrus left Limbic 84 
Temporal pole (superior) 

right 
Temporal 

40 ParaHippocampal gyrus right Limbic 85 Middle temporal gyrus left Temporal 

41 Amygdala left Limbic 86 Middle temporal gyrus right Temporal 

42 Amygdala right Limbic 87 Temporal pole (middle) left Temporal 

43 Calcarine cortex left Occipital 88 Temporal pole (middle) right Temporal 

44 Calcarine cortex right Occipital 89 Inferior temporal gyrus left Temporal 

45 Cuneus left Occipital 90 Inferior temporal gyrus right Temporal 
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