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Abstract

In the mature brain, structural and functional connectivity fingerprints’ can be used to identify the
uniqueness of an individual. However, whether the characteristics that make a brain
distinguishable from others already exist at birth remains unknown. Here, we used neuroimaging
data of preterm born neonates who were scanned twice during the perinatal period to assess the
developing brain fingerprint. We found that 62% of the participants could be identified based on
the congruence of the later structural connectome to the initial connectivity matrix derived from
the earlier timepoint. In contrast, similarity between functional connectomes only allowed to
identify 12% of the participants. These suggests that structural connectivity is more stable in early
life and can represent a potential connectome fingerprint. Thus, a relatively stable structural
connectome appears to support a changing functional connectome at a time when neonates must

rapidly acquire new skills to adapt to their new environment.
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INTRODUCTION

Advances in neuroimaging technology have provided new means to investigate the human brain
in vivo. This has enabled characterization of a connectome delineating the structural and
functional organization of the brain at a macro-scale. This connectome can be represented as a
large-scale correlation matrix where each row and column correspond to brain subunit indices
which may be structural or functional nodes, so that each matrix element describes ‘connectivity’
between two neural parts (Sporns, Tononi and Koétter, 2005; Sporns, 2010). The information
contained in the functional and structural connectome of an individual is highly specific to that
person and has been compared to a personal ‘fingerprint’ (Finn ef al., 2015; Yeh et al., 2016).
Although, the functional connectome has been demonstrated to be highly stable over multiple
years after late adolescence (Horien ef al,, 2019), a delay in establishing a distinctive functional
connectome through adolescence has been linked to mental health difficulties (Kaufmann et al,
2017). However, the structural and functional connectome of an infant differs from older age
groups (Cao, Huang and He, 2017), and the extent to which either is stable (i.e., reproducible at
the level of the individual) is unknown. A better understanding of the extent of malleability of a
given property of an individual's brain and its relation to outcomes may guide personalized

approaches to optimize child neurodevelopmental health.

The developing brain is governed by dynamic processes that transform an amalgam of a few cells
in early gestation into a complex organ capable of rapidly processing and integrating information.
The foetal period is marked by cortical migratory processes, with anomalies at this stage
frequently leading to neuronal migration disorders and atypical brain structure (Ten Donkelaar
and Van der Vliet, 2004; Kostovi¢ ef al., 2014). A hallmark of the third foetal trimester is a change
in the relative proportion of short and long range association fibres (Ouyang ef a/., 2019). These
fast-changing microscopic developmental mechanisms quickly lead to reshaping of
macrostructural features, which can be captured with Magnetic Resonance Imaging (MRI). For
example, despite ongoing rapid growth, cortical folding features show remarkable high similarity
between scans of the same subject across the first year following birth, suggesting a high self-
similarity in cortical macrostructure between birth and the first 2 postnatal years (Duan et al.,
2020). However, the stability of structural/functional network metrics and whether the
connectome is ‘individual’ in early life has not been previously investigated. This is important to
understand because, although the structural and functional connectome are inter-related and
complimentary, they represent models of brain connectivity with distinct developmental influences

(for a review see (Suarez et al., 2020)).
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Useful information about the perinatal brain and its subsequent maturation has already been
acquired. In the perinatal brain, in parallel with structural changes, cortical neurons fire specific
activity patterns which further regulate genetic expression and refine structure into functional
systems (Tau and Peterson, 2010; Kirkby ef al,, 2013). Highly connected structural and functional
nodes/hubs are crucial for information flow and further evolve as myelination matures (Morgan et
al., 2018). A striking difference between the neonatal and the adult brain is that functional hubs,
highly interconnected regions, are more restricted to somatosensory, auditory, visual and motor
regions, unlike the higher order networks seen in adults (Cao ef al, 2017). In childhood, the
identification accuracy of the functional connectome at rest has been estimated to be at 43%
(Vanderwal et al., 2019), relative to 92% reported in adults (Finn et al, 2015), suggesting
acquiring functional diversity and consequent uniqueness is part of the trajectory towards
adulthood. However, the structural connectome fingerprint has only been investigated in adults
and been shown to be relatively plastic globally but very stable within specific white matter
bundles, such as the corpus callosum (Yeh et a/., 2016). On the contrary, the neonatal brain is
still immature and differs from the adult one, so it is possible that nature and extent of identifiable

features of individuals’ structural and functional connectomes that are stable over time also differ.

Here, we investigate whether a structural and/or functional fingerprint is already established
perinatally, by assessing the similarity of the structural and functional connectome of preterm born
infants, who were scanned soon after birth and then again at term equivalent age. Unlike adults,
the maturing brain is highly dynamic and undergoing rapid reorganization. Therefore, we
hypothesized that connectome similarity would be lowest when the time between scans was
longest. In addition, brain activity becomes experience-driven during this early postnatal period
and experiences increase daily as the infant interacts with the world ex-utero (Greenough, Black
and Wallace, 1987; Khazipov and Luhmann, 2006). Thus, we also hypothesized that this
constantly changing functional activity leads to experience-dependent changes in the functional

connectome upon a (relatively) stable structural connectome.
METHODS
Subjects

Research participants were prospectively recruited as part of the developing Human Connectome
Project (dHCP), an observational, cross-sectional Open Science programme approved by the UK
National Research Ethics Authority (14/LO/1169). Written consent was obtained from all

participating families prior to imaging.
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As part of the dHCP, a total of 63 subjects were scanned twice and had both functional and
diffusion MRI data acquired. After pre-processing, 18 diffusion datasets were discarded due to
poor registration to template space, resulting in a total of 45 subjects (26 males) with good quality
diffusion MRl data. The infants were born at a median of 32.29 weeks gestational age (GA) [range:
25.57-37], with their first scan acquired at a median of 35 weeks post menstrual age (PMA)
[range: 29.29-37.43] and the second acquired at a median of 41 weeks PMA [range: 38.43-
44.86]. From the functional data, 18 subjects were discarded due to poor registration to template
space and additional 14 had to be discarded due to significant signal loss during acquisition. Thus,
there was a total of 31 subjects (21 males) with good quality functional connectome data, born at
a median of 34.57 weeks GA [range: 27.57-37.00], had their first scan at a median of 35.57
weeks PMA [range: 30.86-37.43] and had their second scan at a median of 40.57 weeks PMA
[range: 38.86-44.57]. The final sub-group with both good quality structural and functional data
consisted of 26 subjects (16 males), born at a median age of 34.14 weeks [range: 28.71-37.00],
with their first scan acquired at a median of 35.43 weeks PMA [range: 31.43-37.43] and the
second acquired at a median of 40.93 weeks PMA [range: 38.86-44.86] (details described in
Table 1).

Table 1. Descriptive sample characteristics

Group GA at birth PMA - scan 1 PMA - scan 2
Structural 32.29 [25.57-37.00] 35.00[29.29-37.43] 41.00 [38.43-44.806]
(=45, males n=26)

Functional 34.57 [27.57-37.00] 35.57[30.86-37.43] 40.57 [38.86-44.57]

(=31, males r=21)
Structural and functional ~ 34.14 [28.71-37.00] 35.43 [31.43-37.43] 40.93 [38.86-44.86]
(=26, males n=16)

Data acquisition

All subjects underwent Magnetic Resonance Imaging (MRI) scanning at the Evelina Newborn
Imaging Centre, St Thomas’ Hospital, London, UK. Structural, diffusion and functional data was
acquired using a 3 Tesla Philips Achieva system (Philips Medical Systems, Best, The Netherlands)
with customized neonatal imaging system including a 32-channel phased-array head coil (Rapid
Biomedical, Rimpar, Germany) (Hughes ef a/., 2017). Infants were studied during natural sleep
following feeding and immobilization in a vacuum evacuated bag (Med-Vac, CFl Medical
Solutions, Fenton, MI, USA). Hearing protection (moulded dental putty in the external auditory
meatus (President Putty, Coltene Whaledent, Mahwah, NJ, USA) and earmuffs (MiniMuffs, Natus
Medical Inc., San Carlos, CA, USA)) and physiological monitoring (oxygen saturations, heart rate,

axillary temperature) were applied before data acquisition. MR-compatible foam shielding was
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used for further acoustic noise attenuation. All scans were supervised by a neonatal nurse and/or

paediatrician who monitored heart rate, oxygen saturation and temperature throughout the scan.

A total of 300 volumes of diffusion MRI were acquired over 19 minutes and 20 seconds with b-
values of 400 s/mm?, 1000 s/mm? and 2600 s/mm? spherically distributed in 64, 88 and 128
directions respectively, with 20 b=0 s/mm? images and parameters: Multiband factor 4, SENSE
factor 1.2, partial Fourier 0.86, acquired in-plane resolution 1.5x1.5mm, 3mm slices with 1.5mm
overlap, repetition time (TR)/ echo time (TE) of 3800/90ms and 4 phase-encoding directions
(Hutter et al,, 2018). After reconstruction, image resolution was 1.5 mm isotropic. High-temporal-
resolution BOLD fMRI optimized for neonates was acquired over 15 minutes 3 seconds (2300
volumes) using a multislice gradient-echo echo planar imaging (EPI) sequence with multiband
excitation (multiband factor 9), TR 392 ms, TE 38 ms, flip angle 34°, and acquired spatial
resolution 2.15 mm isotropic (Price et al, 2015). For clinical interpretation and registration
purposes, a Turbo spin echo sequence (parameters: TR = 12s, TE = 156ms, SENSE factor 2.11
(axial) and 2.54 (sagittal)) was used to acquire high-resolution T2-weighted (T2w) images. The
T2w axial and sagittal volumes originally acquired at 0.8x0.8mm, 1.6mm slices with 0.8mm
overlap were motion corrected and super-resolved to a final resolution of 0.8mm isotropic
(Cordero-Grande et al., 2018).

Image pre-processing and connectome construction

A neonatal specific segmentation pipeline (Makropoulos ef a/., 2014) was used to obtain tissue
segmentation of each subject’s T2w images in native space. A neonatal adaptation (Shi ef al,
2011) of the AAL atlas (Tzourio-Mazoyer et al., 2002) aligned to the dHCP high-resolution
neonatal template (Schuh et al,, 2018) was used to parcellate each’s subject brain into 90 cortical
and subcortical regions. Previously calculated tissue segmentation and T2w images were used
as input for a non-linear registration based on a diffeomorphic symmetric image normalization
method (SyN) available in ANTS software (Avants et a/., 2011) to bring the 90 regions neonatal

atlas into the subject’s native space (Supplementary Table 1).

Pre-processing of diffusion MRI data and structural connectome construction was performed as
previously reported (Taoudi-Benchekroun et a/., 2020). Briefly, after hybrid SENSE reconstruction
(Zhu et al., 2016), diffusion signal was denoised (Cordero-Grande ef al., 2019), and susceptibility
distortions were corrected (Andersson, Skare and Ashburner, 2003). A spherical harmonics and
radial decomposition (SHARD) slice-to-volume reconstruction was applied to further correct

motion effects and other artefacts (Christiaens ef a/,, 2021). The N4 algorithm (Tustison ef a/.,
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2010) implemented in MRtrix (Tournier et al., 2019) was applied for bias field correction. Multi-
tissue CSD (Jeurissen ef al., 2014) using restricted anisotropic diffusion for brain tissue and free
diffusion for fluid like features (Pietsch ef a/, 2019) was used to estimate fibre orientation
distribution (FOD) in each brain voxel. Response functions for each tissue type were generated
as the average from the response functions in an independent sub-group of 20 healthy term
control neonates from the dHCP (Taoudi-Benchekroun et a/, 2020). Multi-tissue log-domain
intensity normalisation (Raffelt, et al. 2017) was applied to FODs, and normalised brain tissue like
FODs were used to generate 10 million streamlines with anatomically constrained probabilistic
tractography (Smith et al., 2012) with biologically accurate weights (SIFT2) (Smith, et al. 2015).
The fibre density SIFT2 proportionality coefficient (u) for each subject was obtained to achieve
inter-subject connection density normalisation. Atlas parcellation and tissue maps in T2w native
space were registered to diffusion space with a rigid registration using b=0 volumes as target.
(Schnabel et al., 2001). The structural connectome of each infant was constructed in native
diffusion space, by calculating the p x SIFT2-weighted sum of streamlines connecting each pair

of regions into a weighted adjacency matrix of size 90x90.

For functional data, all 2300 volumes of fMRI data acquired per participant were utilized without
undergoing any scrubbing. Data were pre-processed using the Developing Human Connectome
Project pipeline optimized for neonatal fMRI, detailed in (Fitzgibbon et al, 2020). In brief,
susceptibility dynamic distortion together with intra- and inter-volume motion effects were
corrected in each subject using a bespoke pipeline including slice-to-volume and rigid-body
registration (Andersson et al, 2017). In order to regress out signal artifacts related to head
motion, cardiorespiratory fluctuations and multiband acquisition, 24 extended rigid-body motion
parameters were regressed together with single-subject ICA noise bespoke components
identified with the FSL FIX tool (Oxford Centre for Functional Magnetic Resonance Imaging of the
Brain’s Software Library, version 5.0) (Salimi-Khorshidi ef a/., 2014). Atlas parcellation and tissue
maps were propagated from T2w native space using a boundary-based registration (Greve and
Fischl, 2009). Average timeseries of each of the previously parcelled ROIs intersecting with GM
regions were calculated in native fMRI space. Functional connectivity (FC) was calculated as the
Pearson’s partial correlation of the signal between each pair of ROIs, controlling for the signal in
the rest of the ROlIs (Shi et al., 2011) and resulting in a matrix of size 90x90. Negative correlations

were not considered and set to zero.
Similarity Analysis

Global similarity - Identifiability rate quantification
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To identify the optimal network density threshold for structural and functional connectome
similarity, we tested the percentage of correctly identified subjects for all possible thresholds
(Supplementary Figure 1). Based on this analysis, we applied a 25% network density threshold
to the structural and functional connectomes at time-point 1 for each subject. This connectivity
matrix was then binarized and used as a mask for the connectivity matrix in time-point 2 ensuring
that the same inter-regional connections were compared between the two time points.
Spearman’s correlation between each matrix at time-point 1 and time-point 2 was calculated,
resulting in a similarity matrix of 45x45 subjects for structural connectivity and 31x31 subjects for
functional connectivity. If the self-similarity between time-point 1 and time-point 2 (diagonal
correlation) was higher than the self-to-other-similarity, this was quantified as a successful match
(Finn et al., 2015).

For visualization purposes, all similarity values were normalised by scaling relative to the maximum
correlation between time-point 1 and all other subjects at time-point 2 dividing by the maximum
value in each row (i.e., for each row, value of 1 indicated the maximum match between time-point
1 and time-point 2). As shown in Figure 1 this scaling results in a value of 1 in the diagonal when
self-similarity is higher than any self-to-other-similarity value. If the value of 1 is not in the diagonal

it indicates self-to-other-similarity is higher than self-similarity.

The same analysis was repeated for a sub-group of participants that had both structural and
functional connectome data. This resulted in two 26x26 matrices containing structural and
functional data, characterising the identifiability rate for the two modalities in the same individuals.
The diagonal values of these matrices were extracted to provide median and range of structural

and functional self-similarity.
Age effect on self-similarity and self-to-other-similarity

In order to assess the effect of age in the structural and functional fingerprint, we first calculated
the partial correlation between PMA at scan at time-point 1 and self-similarity (controlling for days
between scans), and then the partial correlation between days between scans and self-similarity
(controlling for PMA at time-point 1) for the whole group in each modality. Then, for the sub-group
we converted the self-similarity and the self-to-other-similarity into z-scores for better visualization
of the effect of age on self-similarity. If the self-similarity z-score of a subject was higher than any
of the self-to-other-similarity z-score, this would be equivalent to successfully matching a subject

between time-point 1 and time-point 2, as in previous fingerprinting studies (Finn et al., 2015).

To further characterize the effect of age on self-similarity, we ran a general linear model analysis

with PMA at time-point 1 and days between scans as independent variables and self-similarity as
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dependent variable. This allowed quantification of the beta coefficients of the age effect on self-
similarity. To characterize self-to-other-similarity association with age difference between time-
point 1 and time-point 2, we performed a linear mixed-effects model (LME) with days between
scans as fixed effect and with subject at time-point1 dependent random effect for the intercept to

account for repeated measures.
Regional analysis

Given the distinct trajectories of maturation of subcortical and cortical regions, we repeated all
the analysis described above in 7 clusters that represent larger anatomical areas: central, frontal,
limbic, occipital, parietal, deep grey matter and temporal. These regions were composed of 8, 22,
14, 14,10, 8, and 14 nodes respectively. The central cluster was composed of bilateral precentral
and postcentral gyrus, paracentral lobules and supplementary motor areas. The frontal cluster
was composed of superior, middle, inferior and orbitofrontal cortices, as well as the olfactory
lobule and the rectus gyrus. The limbic cluster was composed of the insula, anterior and posterior
cingulate, hippocampus and amygdala. The occipital cluster was composed of the calcarine,
cuneus, lingual cortices together with superior, inferior and middle occipital gyrus and the
fusiform. The parietal cluster was composed of the superior and inferior parietal gyrus,
supramarginal, angular and precuneus gyrus. The deep grey matter cluster was composed of all
basal ganglia structures and thalami. The temporal cluster was composed of the Rolandic
operculum, the Heschl gyrus, and superior, middle and interior temporal cortices as well as the
temporal poles. Supplementary Table 1 contains all 90 regions of the atlas and to which cluster
they belong to. This allowed to calculate similarity identifiability rates, similarity z-scores and age

linear models for each sub-region.

Data availability

The dHCP is an open-access project. The imaging and collateral data can be downloaded by

registering at https://data.developingconnectome.org/.

Derived data including structural and functional connectivity networks used in this study are

available in github.com/code-neuro/neonatalconnectomefingerprint/.
RESULTS
Whole-brain similarity

The structural connectome comparison between the scans at preterm and term equivalent ages
yielded strong correlations not only among the scans of the same subject but also between the

scans of different subjects (Figure 1AB). The mean self-similarity was r=0.90, ranging from /=0.67
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to /=0.96, and the mean self-to-other-similarity was /=0.88, ranging from /=0.65 to /=0.94. The
identifiability rate was 28/45 (62.22%), representing the percentage of times self-similarity was
higher than the self-to-other-similarity. Furthermore, we found a significant correlation between
PMA at first scan and self-similarity values (i.e., the older a subject was at the first scan, the more
“self-similar” their structural connectome was between scans), controlling for days between scans
(=0.49, p=0.006).

The functional connectome comparison showed less consistent results (Figure 1CD). The
correlation values between scans were lower compared to structural connectome similarities.
The mean self-similarity was /=0.56, ranging from /~=0.21 to /=0.70, and the mean self-to-other-
similarity was r=0.54, ranging from =0.17 to r=0.73. Thus, the identifiability rate for functional
connectome similarity was 3/31 (9.68%). We observed no significant correlation between PMA
at first scan and functional self- similarity, but there was a significant negative correlation between

functional self-similarity and days between scans (/=-0.39, p=0.03).
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Figure 1. Structural and Functional global similarity. The correlation between the connectome of each subject at time-
point 1 and 2 is depicted by the similarity matrix for structural connectivity (A) and functional connectivity (C). The
correlations are then plotted against days between scans with a colour gradient showing the age of the subject at time-
point 1 for structural data (B) and functional data (D). The stars represent the correlation between the connectome of
a subject at time-point 1 with the connectome of the same subject at time-point 2 (i.e., self-similarity), and the dots
represent the correlation of a subject at time-point 1 with a different subject at time-point 2 (i.e., self-to-other-similarity).
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Closer inspection of the self-similarity for the structural and functional connectivity in a sub-group
of participants with data available in both modalities confirmed that all subjects had higher
similarity between their structural connectomes than their functional connectomes. The median
structural self-similarity was r=0.93, ranging from =0.89 to r=0.96, and the median functional
self-similarity was /=0.55, ranging from r=0.21 to /=0.69. The identifiability rate for structural data
was 18/26 (69.23%), in contrast with 3/26 (11.54%) for functional data (Figure 2). As the
structural and functional data examined were from the same individuals, age and time between

scans was exactly matched.
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Figure 2. Self-similarity for structural and functional connectivity. The similarity correlation between the structural
connectivity (SC) matrices between scans (blue) and between the functional connectivity (FC) matrices (red) is
plotted again age at first scan (A) and against days between scans (B).

Finally, we converted the self-similarity and self-to-other-similarity values into z-scores for each
subject and sorted them based on age at time-point 1 to better visualize whether older subjects
have a more identifiable whole-brain structural connectome (Figure 3). Results show that the
structural connectome was more stable than the functional connectome against variations on age

or time between scans.
Age effect on sub-group similarity

The general linear model analysis for the sub-group with both structural and functional data further
showed that age at time-point 1 has a significant effect on global structural connectome self-
similarity (3=0.007, p=0.01). We observed no significant effect of days between scans on
structural connectome self-similarity; and no effect of age at time point 1 or days between scans

on global functional connectome self-similarity (Table 2).
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The LME analysis showed age at first scan also has a significant effect on global structural
connectome self-to-others-similarity (3.=0.006, p<0.001), but there was no significant effect of
days between scans. Unlike what was observed for self-similarity, both days between scans (3+1=-
0.001, p<0.001) and age at time-point 1 (8.=0.02, p<0.001) had a significant effect on global

functional connectome self-to-others-similarity.
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Figure 3. Self-similarity and self-to-other-similarity z-scores arranged by PMA. The boxplots show the similarity scores
between time-point 1 and time-point 2 converted to z-scores for each participant arranged from left to right (youngest
to oldest at time-point 1). The stars represent self-similarity and the circles represent self-to-other-similarity. The upper
row depicts structural connectome similarity (A) and the bottom row shows functional connectome similarity (B).

Regional similarity

Regional comparison of structural connectomes showed lower identifiability rate compared to the
global metrics. The limbic cluster (insula, cingulate, hippocampus and amygdala) showed highest
identifiability rate at 11/45 (24.44%), followed by frontal regions at 10/45 (22.22%), occipital at
7/45 (15.56%), central at 5/45 (11.11%), both parietal and deep GM at 4/45 (8.89%) and
temporal at 3/45 (6.67%).

Functional connectome comparisons yielded similar identifiability rates compared to whole-brain
metrics. They were still qualitatively lower than structural similarity identifiability rates, except for

the parietal cluster. Central and parietal regions showed the highest identifiability rate of 3/31
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(9.68%). Limbic regions showed an identifiability rate of 2/31 (6.45%) and frontal, occipital, sub-

cortical and temporal clusters showed an identifiability rate of 1/31 (3.23%) (Figure 4).

Closer qualitative inspection of the self-similarity for the structural and functional connectivity in
the sub-group of participants with both structural and functional connectomes showed structural
and functional self-similarity closer together in the central cluster and more dispersed in the frontal
cluster (Figure 5). However, functional similarity identifiability values were always lower than

structural identifiability rates in this sub-group.
Age effect on regional self-similarity

The generalized linear model run independently for each cluster in the sub-group with both
structural and functional data showed that age at time-point 1 has a significant effect on functional
connectome similarity in the parietal region after Bonferroni correction (=0.088, p=0.003). We
observed no significant effect of age or days between scans on any other cluster for functional

nor structural self-similarity after multiple comparisons correction (Table 2).

Table 2. Beta coefficients and p-values for the effect of age and days between scans on self-similarity.

SC FC
PMA Days between scan PMA Days between scan

B p B p B p B p
global 0.00611 | 0.01 -0.00058 0.01 0.02413 | 0.15 -0.00265 0.08

central 0.00126 | 0.72 ] -0.00024 0.44 1-0.03211 ] 0.06 | -0.00258 0.09
frontal 0.00031 | 0.91 -0.00044 0.07 | 0.02662 | 0.31 -0.00270 0.25
limbic 0.00444 | 0.28 | -0.00069 0.07 | 0.01875 | 0.28 | -0.00187 0.23
occipital | -0.00107 | 0.74 | -0.00046 0.13 | 0.06104 | 0.01 -0.00007 0.97
parietal | -0.00002 | 1.00 0.00029 0.60 | 0.08789 | 0.00 0.00174 0.47
sub-cortical | -0.00150 | 0.61 -0.00019 0.47 1-0.00186 | 0.91 -0.00069 0.64
temporal | 0.00216 | 0.44 | -0.00015 0.56 | 0.01117 ] 0.54 | -0.00041 0.80
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Figure 5. Regional self-similarity for structural and functional connectivity cluster-wise. The structural self-similarity
(blue) and the functional self-similarity (red) is plotted against age at first scan (PMA at time-point 1) in the first column
and against days between scans in the second column for central (A), frontal (B), limbic (C), occipital (D), parietal (E),
deep grey matter (F) and temporal (G) cluster. Grey lines provide visual guidance to match structural and functional
similarity values of the same subject.
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DISCUSSION

In the current study we used a unique set of longitudinal high quality structural and functional
neonatal brain MRI data from the Developing Human Connectome Project to investigate the
status of the connectome fingerprint at an early stage of neurodevelopment. To do so, we
selected data from preterm born infants that were scanned soon after birth and then again at term
equivalent age. Our results show that the whole-brain structural connectome can already identify
an older individual at birth. In contrast, the whole-brain functional connectome changes more
noticeably between scan timepoints, so individual identification is less stable based on their

functional connectome regardless of their age at birth or time between scans.

A structural connectivity fingerprint s present during the perinatal period

During the perinatal period, the brain undergoes marked micro and macrostructural changes
(Kunz et al., 2014; Batalle et al., 2017; Pietsch et al., 2019).Nevertheless, our observations
suggest that by the normal time of birth, an individual’'s brain structural connectome is relatively
stable. This suggests that the individual template of structural connectivity is predominately
genetically determined, in the absence of an external insult. Consistent with this, macroscale
structural white matter tractography has been shown to be highly heritable with axial diffusivity,
radial diffusivity and fractional anisotropy of commissural fibres found to have the highest genetic
influence and association fibres the least (Lee ef a/,, 2015). By term equivalent age, the neonatal
brain has an established framework of thalamocortical fibres, a large abundance of u-shaped
cortico-cortical fibres, and visible long range association pathways such as the cingulum bundle
and callosal fibres (Takahashi et a/., 2012). The abundance of u-shaped cortico-cortical fibres at
termis in line with an early establishment of cortical folding patterns that remain individually unique
throughout the first two postnatal years (Duan et al., 2020). Thus, the acquisition of a stable
structural connectome appears to coincide with the attainment of more mature brain structural
appearance and may therefore be a marker of maturity. This fits with the observed relationship
between higher structural connectome self-similarity and an older age at the time of the first scan.
Alongside self-similarity, we also observed high self-to-other-similarity values in the structural
connectome which likely represents the development of common macroscale features (structural

connectivity backbone).

Functional connectivity fingerprint is absent at birth
Task-based fMRI studies in neonates have demonstrated that the primary sensory cortices (e.g.
somatosensory, auditory, olfactory and visual) are capable of processing external stimuli and are

undergoing activity-dependent maturation during the perinatal period (Anderson ef al., 2001;
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Arichi et al., 2010; Perani ef al,, 2010; Lee et al., 2012; Baldoli ef al.,, 2015; Allievi et al., 2016;
Adam-darque et al., 2018; Dall’'Orso et al., 2018). Resting state studies have reported significant
age-dependent increases in functional short-range connectivity in the somatosensory, visual,
auditory and language networks throughout the perinatal time window, further suggesting rapid
functional plasticity and maturation within these systems (Cao ef al., 2017). These changes in
local degree centrality may represent functional reshaping of primary resting state networks that
resemble adult networks by term equivalent age, while higher-order association networks appear
immature (Eyre et a/., 2020). Such fast reorganization across multiple functional systems during
the perinatal time window may explain why we did not observe a single case where self-similarity

was higher than self-to-others-similarity.

Our results markedly contrast with those of previously reported work in children. To our
knowledge, the youngest previously investigated population for connectome similarity analysis to
date has been a sample of 6-year-old children, where they reported an identification rate of 43%
between resting state functional connectomes (Vanderwal ef a/,, 2019). Another study in children
aged 7 to 15 years reported high correlation coefficients between functional connectivity matrices
of the same participant, almost on par with adult similarity values (Horien et a/., 2019). While our
results indicate that a functional connectome fingerprint is barely present at birth, future studies

should investigate when this starts to increase between infancy and childhood.
Impact of age at first scan and days between scans on similarity

To disentangle the impact of inter-scan interval and age at first scan on similarity of the structural
and functional connectome, we examined a sub-group of 26 neonates who had both data types.
We observed a significant effect of age at time-point 1 on the global structural self-similarity. This
effect might be determined by the individual-specific developmental trajectory of white matter
microstructure and not necessarily indicative of an adult-like unique structural connectome
(Ouyang et al.,, 2019).

The absence of any significant effect of age on global functional self-similarity at this early stage
of development might be explained by the reshaping of long-range functional connectivity, which
matures within the first postnatal year (Damaraju et al., 2014). However, we cannot exclude the
possibility that the low functional connectome self-similarity in the perinatal period is a false
negative. For example, there may be a non-linear effect that cannot be captured with a linear
model or an anatomical parcellation might not be optimal to characterize the stability of the

functional connectome in early development. Future studies focusing in functional connectome


https://doi.org/10.1101/2021.03.08.434357
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.08.434357; this version posted March 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

17

similarity should investigate if an appropriate parcellation derived from functional data or multi-

modal information based parcellations (Glasser et a/.,, 2016) yields higher self-similarity rates.

Interestingly, we observed the same age effect on global structural connectome self-to-other-
similarity. This suggests certain age dependent organization patterns are also common across
subjects. The same was observed for functional self-to-other-similarity, which significantly
decreased with longer intervals between scans being compared and increased with older age at
time point 1. The low self-similarity, combined with strong self-similarity-to others and its age
dependency roots for time constrained functional changes at a developmental time where there
is a strong mixture of finely tuned spontaneous neural activity patterns and sensory experience
dependent mechanisms (Hanganu-Opatz, 2010; Toyoizumi et al., 2013). The strong dependency
of age and similarity patterns across subjects may also be related to genetic expression patterns

that are highly dynamic and fast changing during this time of development (Silbereis et a/., 2015).
Regional fingerprinting of the connectorme

Brain development broadly follows a posterior to anterior maturational trajectory (Huttenlocher
and Dabholkar, 1997) with sensory systems developing before higher order networks (Cao,
Huang and He, 2017). Structural connectome identifiability rate was lower when investigating
regions separately, suggesting global metrics with more data points is more informative as a
fingerprint when using structural data. Later developing networks such as frontal and limbic
cortices had the highest structural self-similarity. Given the late maturation of these regions, we
speculate the high self-similarity might be driven by the fact that these regions are undergoing the

least amount of structural change during the interval between scans.

We saw the highest identifiability rate in the central cluster of the functional connectome. This
suggests that functional sensory-motor networks can provide higher identifiability rates in babies,
while in comparison frontal-parietal structures appear more unique in adults (Finn ef a/,, 2015).
However, it will require a larger sample of data specifically comparing somatosensory and frontal
regions in infants and adults to test this hypothesis. In addition, structural and functional coupling
is a sign of maturation which appears more robust after adolescence (Baum et a/., 2020). Thus,
the closer resemblance between structure and function self-similarity in the central cluster might
be indicative of the relatively mature state of somatosensory and motor cortices in the perinatal

time window.

Limitations
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The main limitation of this study is that to assess the connectome fingerprint across weeks in the
perinatal period ex-utero there is no other option but to investigate a preterm born population.
Hence, to what extent the fingerprint is affected by preterm birth or is representative of normal
development will have to be investigated in older infant cohorts or using foetal MRI. Another
limitation pertains the multiple developmental factors which may influence the acquired signal in
different ways and consequently the connectome. Despite the robustness of SIFT to characterize
structural connections (Smith et a/, 2015), using the most advanced pipelines available for
neonatal fMRI data processing (Fitzgibbon et a/., 2020), and being very stringent on data quality
measures, the potential influence of developmental factors on the signal is out of our control. For
diffusion data, developmental changes such as cortical folding or tissue water content reduction
among others can affect the signal differently at different ages. Similarly, developmental effects
which may influence the BOLD signal in different ways might relate to vascular density or
neurovascular coupling, which can affect the sensitivity and specificity at different ages.
Therefore, MR signal changes on the similarity values reported might be beyond differences in
the neural “fingerprint”. On this line, it is also important to note we used anatomical parcellations
to characterize the functional nodes and future studies should investigate whether diverse

functional parcellation methods mimic or differ from the findings reported in this study.
CONCLUSION

The brain structural connectome fingerprint is already present in the perinatal period. It is relatively
stable and individually unique at this stage of development, while functional connectivity is either
too dynamic or immature to provide strong identification features. Region-wise analysis suggested
that the functional fingerprint in early development might be more stable within clusters, although
identifiability rates were still higher for structural data. Future studies should investigate regional
differences throughout development, the association of the global structural fingerprint to
developmental outcome, and whether genetic or environmental risk impact the stability of the

fingerprint.
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Supplementary Figure 1. Network Density dependent identifiability rate for structural (blue -SC) and functional (red-
FC) connectivity.
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Supplementary Table

Supplementary Table 2. Connectome nodes: anatomical regions and clusters

Node | Region Cluster Node | Region Cluster
1 | Precentral gyrus left Central 46 | Cuneus right Occipital
2 | Precentral gyrus right Central 47 | Lingual gyrus left Occipital

Superior frontal gyrus . . -
3 (dorsal) left Frontal 48 | Lingual gyrus right Occipital
Superior frontal gyrus . - -
4 (dorsal) right Frontal 49 | Superior occipital gyrus left Occipital
Orbitofrontal cortex . - . L
5 (superior) left Frontal 50 | Superior occipital gyrus right | Occipital
Orbitofrontal cortex . L -~
6 (superior) right Frontal 51 | Middle occipital gyrus left Occipital
7 | Middle frontal gyrus left Frontal 52 | Middle occipital gyrus right Occipital
8 | Middle frontal gyrus right Frontal 53 | Inferior occipital gyrus left Occipital
9 I(;[tbltofrontal cortex (middle) Frontal 54 | Inferior occipital gyrus right Occipital
10 Ei)grﬁltofrontal cortex (middle) Frontal 55 | Fusiform gyrus left Occipital
Inferior frontal gyrus . ' -
11 (opercular) left Frontal 56 | Fusiform gyrus right Occipital
12 Inferior fro”“’?" gyrus Frontal 57 | Postcentral gyrus left Central
(opercular) right
Inferior frontal gyrus .
13 (triangular) left Frontal 58 | Postcentral gyrus right Central
Inferior frontal gyrus . . .
14 (triangular) right Frontal 59 | Superior parietal gyrus left Parietal
15 I(;[tbltofrontal cortex (inferior) Frontal 60 | Superior parietal gyrus right Parietal
16 Sgrmtofrontal cortex (inferior) Frontal 61 | Inferior parietal lobule left Parietal
17 | Rolandic operculum left Temporal 62 | Inferior parietal lobule right Parietal
18 | Rolandic operculum right Temporal 63 | Supramarginal gyrus left Parietal
19 IszJtpplementary motor area Central 64 | Supramarginal gyrus right Parietal
20 ﬁ;ﬁflementary motor area Central 65 | Angular gyrus left Parietal
21 | Olfactory left Frontal 66 | Angular gyrus right Parietal
22 | Olfactory right Frontal 67 | Precuneus left Parietal
23 Superlor frontal gyrus Frontal 68 | Precuneus right Parietal
(medial) left
24 Superlor frontal gyrus Frontal 69 | Paracentral lobule left Central
(medial) right
25 l(;[tbltofrontal cortex (medial) Frontal 70 | Paracentral lobule right Central
. . Deep
26 Qrbltofrontal cortex (medial) Frontal 71 | Caudate left Grey
right
Matter
Deep
27 | Rectus gyrus left Frontal 72 | Caudate right Grey
Matter
Deep
28 | Rectus gyrus right Frontal 73 | Putamen left Grey
Matter
Deep
29 | Insula left Limbic 74 | Putamen right Grey
Matter
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Deep
30 | Insula right Limbic 75 | Pallidum left Grey
Matter
Deep
31 | Anterior cingulate gyrus left Limbic 76 | Pallidum right Grey
Matter
Deep
32 | Anterior cingulate gyrus right | Limbic 77 | Thalamus left Grey
Matter
Deep
33 | Middle cingulate gyrus left Limbic 78 | Thalamus right Grey
Matter
34 | Middle cingulate gyrus right Limbic 79 | Heschl gyrus left Temporal
35 | Posterior cingulate gyrus left | Limbic 80 | Heschl gyrus right Temporal
36 Ei’gﬁtenor cingulate gyrus Limbic 81 | Superior temporal gyrus left Temporal
37 | Hippocampus left Limbic 82 | Superior temporal gyrus right | Temporal
38 | Hippocampus right Limbic 83 | Temporal pole (superior) left | Temporal
39 | ParaHippocampal gyrus left Limbic 84 ;Smporal pole (superior) Temporal
40 | ParaHippocampal gyrus right | Limbic 85 | Middle temporal gyrus left Temporal
41 | Amygdala left Limbic 86 | Middle temporal gyrus right Temporal
42 | Amygdala right Limbic 87 | Temporal pole (middle) left Temporal
43 | Calcarine cortex left Occipital 88 | Temporal pole (middle) right | Temporal
44 | Calcarine cortex right Occipital 89 | Inferior temporal gyrus left Temporal
45 | Cuneus left Occipital 90 | Inferior temporal gyrus right Temporal
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