

1 Allopregnanolone mediates affective switching through
2 modulation of oscillatory states in the basolateral amygdala

3
4 Pantelis Antonoudiou¹, Phillip LW Colmers¹, Najah L Walton¹, Grant L Weiss¹, Anne C Smith²,
5 David P Nguyen², Mike Lewis², Michael C Quirk², Laverne C Melon³, Jamie L Maguire^{*1,4}

6
7
8 ¹Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts,
9 02111, USA
10 ² Sage Therapeutics, Inc., Cambridge, Massachusetts, 02142, USA
11 ³ Department of Biology, Wesleyan University, Middletown, Connecticut, 06459, USA

12 ⁴ Lead Contact
13 Correspondence: Jamie.Maguire@tufts.edu

14

15

16

17

18

19

20

21

22

23

24

25

26 Abstract

27 Brexanolone (allopregnanolone), was recently approved by the FDA for the treatment of post-partum
28 depression, demonstrating long-lasting antidepressant effects. Despite our understanding of the
29 mechanism of action of neurosteroids as positive allosteric modulators (PAMs) of GABA_A receptors, we
30 still do not fully understand how allopregnanolone exerts these persistent antidepressant effects. Here,
31 we demonstrate that allopregnanolone and similar synthetic neuroactive steroid analogs, SGE-516 (tool-
32 compound) and zuranolone (SAGE-217, investigational-compound), are capable of modulating oscillatory
33 states across species, which we propose may contribute to long-lasting changes in behavioral states. We
34 identified a critical role for interneurons in generating oscillations in the basolateral amygdala (BLA) and
35 a role for delta-containing GABA_ARs in mediating the ability of neurosteroids to modulate network and
36 behavioral states. Actions of allopregnanolone in the BLA is sufficient to alter behavioral states and
37 enhance BLA high-theta oscillations (6-12Hz) through delta-containing GABA_A receptors, a mechanism
38 distinct from other GABA_A PAMs, such as benzodiazepines. Moreover, treatment with the
39 allopregnanolone analog SGE-516 induces long-lasting protection from chronic stress-induced disruption
40 of network states, which correlates with improved behavioral outcomes. Our findings demonstrate a
41 novel molecular and cellular mechanism mediating the well-established anxiolytic and antidepressant
42 effects of neuroactive steroids.

43

44

45

46

47

48 Introduction

49 New antidepressant treatments with proposed novel mechanisms of action, brexanolone
50 and esketamine, recently received FDA approval for the treatment of postpartum- and
51 treatment-resistant depression, respectively. Both of these treatments exert rapid and
52 prolonged antidepressant effects which are not well explained by the proposed mechanisms of
53 action of these compounds, offering the opportunity to explore potential novel mechanisms
54 mediating these sustained antidepressant effects(Daly et al. 2018; Meltzer-Brody et al. 2018).

55 An interconnected network of brain areas including the basolateral amygdala (BLA) and
56 prefrontal cortex (PFC) are critical for emotional processing in the brain(Calhoon and Tye 2015;
57 Tovote, Fadok, and Lüthi 2015). Dysfunction of this network has been implicated in several
58 neuropsychiatric disorders including depression, post-traumatic stress and anxiety(Babaev,
59 Piletti Chatain, and Krueger-Burg 2018; Calhoon and Tye 2015; Fenster et al. 2018; Tovote, Fadok,
60 and Lüthi 2015). Accumulating evidence suggests that rhythmic synchronization of BLA and PFC
61 circuits is required for the behavioral expression of fear and anxiety(Davis et al. 2017; Felix-Ortiz
62 et al. 2016; Karalis et al. 2016; Likhtik et al. 2014; Stujenske et al. 2014). Moreover, distinct
63 oscillatory states in BLA/PFC areas seem to be associated with aversion and safety, the expression
64 of which depends on inhibitory networks(Davis et al. 2017; Likhtik et al. 2014; Ozawa et al. 2020).

65 Here, we investigated the effect of neurosteroids on network activity in amygdalo-cortical
66 regions implicated in mood and its effects on animal behavior. We show that allopregnanolone
67 (and its analogs) alters oscillations in brain regions implicated in mood and promotes healthy
68 network and behavioral states, providing a molecular and cellular mechanistic underpinning of
69 neuroactive steroid-mediated affective switching(Schiller, Schmidt, and Rubinow 2014).

70 Methods and Materials

71 Methods are described in detail in Supplement 1. EEG recordings were obtained from awake
72 human cortical- and rat frontal-cortical regions. LFP recordings were obtained from the BLA of
73 awake C57Bl/6J and global *Gabrd*^{-/-} mice in response to administration of saline, allo (10mg/kg,
74 i.p.), SGE-516 (5 mg/kg, i.p.), and diazepam (1 mg/kg, i.p.). Allopregnanolone-potentiated
75 GABAergic currents were measured in BLA principal and PV+ interneurons using whole cell patch-
76 clamp recording and cell type-specific expression of δ -containing GABA_ARs was examined using
77 immunohistochemistry. Ex-vivo BLA oscillations were recorded in an interface recording
78 chamber, induced by application of 800 nM kainic acid and elevated potassium (7.5 mM KCl). For
79 ex-vivo optogenetic experiments, a viral vector (AAV8-EF1a-DIO-hChR2(H134R)-mCherry-WPRE-
80 HGHpA) was delivered in the BLA of PV-cre mice. For optogenetic activation a blue light was
81 delivered through a fiber optic (200 μ m, 0.22 NA) coupled to a DPSS blue laser (473 nm, max
82 power=500 mW, Laserglow technologies). For acute behavioral experiments, C57bl/6j and global
83 *Gabrd*^{-/-} mice were infused with saline solution (0.9 % NaCl) or 5 μ g allo (2.5 μ g/ μ l, Tocris). For
84 chronic unpredictable stress (CUS), mice underwent a three-week protocol consisting of daily
85 subjection to alternating stressors. The fMRI (blood-oxygen-level-dependent) BOLD signal was
86 obtained using a Bruker BioSpec 7.0T with a 20-cm horizontal magnet and 20-G/cm magnetic
87 field gradient quadrature transmit/receive coil (ID 38mm) at the Center for Translational
88 Neuroimaging at Northeastern University.

89

90

91 Results

92 Allopregnanolone analogs alter brain oscillations across species

93 To examine whether SGE-516 and SAGE-217, with similar molecular pharmacology to
94 brexanolone and allopregnanolone, alter brain states, we recorded cortical EEG from human
95 subjects(Jobert et al. 2012) and rats. Oral application of SAGE-217 in healthy human subjects
96 significantly elevated the power of the delta (δ), theta (θ) and beta1 (β_1) frequency bands (δ :
97 $42.7 \pm 12.30\%$, $n=7$, $p=0.01$; θ : $33.9 \pm 9.70\%$, $n=7$, $p=0.01$; β_1 : $34.3 \pm 11.80\%$, $n=7$, $p=0.03$; unpaired
98 t-tests Fig. 1 a-c). Therefore, SAGE-217 seems to produce robust alterations to human brain
99 networks that could promote their anti-depressant effects and serve as a useful readout of target
100 engagement.

101 We also recorded the cortical EEG from rats treated with SGE-516 and SAGE-217 and
102 quantified the power of oscillations in the low-theta (2-5Hz) band (associated with pro-fear
103 states)(Davis et al. 2017; Karalis et al. 2016), high-theta (6-12Hz) band (associated with pro-safety
104 states)(Davis et al. 2017) and beta band (15-30Hz). Similarly, both SGE-516 and SAGE-217
105 significantly increased power in high theta and beta bands in rats (SGE-516:: Norm. Power_{SGE516-}
106 saline^{6-12Hz}: $50.71 \pm 9.13\%$, $n=27$, $p<0.0001$, unpaired t-test; Norm. Power_{SGE516-saline}^{15-30Hz}:
107 $42.46 \pm 9.04\%$, $n=27$, $p<0.0001$, unpaired t-test; SAGE-217:: Norm. Power_{SAGE217-saline}^{6-12Hz}:
108 $66.38 \pm 6.77\%$, $n=20$, $p<0.0001$, unpaired t-test; Norm. Power_{SAGE217-saline}^{15-30Hz}: $78.70 \pm 9.98\%$,
109 $n=20$, $p<0.0001$, unpaired t-test; Fig. 1d-f). Additionally, SAGE-217 increased the power in the low
110 theta band (Norm. Power_{SGE516-saline}^{2-5Hz}: $49.26 \pm 8.66\%$, $n=20$, $p<0.0001$, unpaired t-test; Fig. 1f).

111 These results indicate that both allopregnanolone (allo) analogs elevate the power of oscillations
112 consistently across high-theta and beta bands in rats.

113 Furthermore, we examined the effects of these analogs in mice on the LFP in the
114 basolateral amygdala (BLA), an area implicated in the regulation of mood and anxiety(Babaev,
115 Piletti Chatain, and Krueger-Burg 2018; Calhoon and Tye 2015; Tovote, Fadok, and Lüthi 2015).
116 Acute IP injection of a non-sedative dose of SGE-516 (5 mg/kg) robustly increased the power in
117 high theta and beta bands (Norm. Power_{SGE516-saline}^{6-12Hz}: 1.58±0.35, n=6, p<0.0001; Norm
118 Power_{SGE516-saline}^{15-30Hz}: 1.70±0.18, n=6, p<0.0001, Sidak's multiple comparisons; Fig 1g-i). On the
119 other hand, acute IP injection of SGE-516 in mice lacking δ subunit GABA_{AR}s (Gabrd^{-/-}; (Mihalek
120 et al. 1999) altered only the beta band significantly compared to baseline (Norm. Power_{SGE516-}
121 saline^{15-30Hz}: 1.25±0.26, n=5, p=0.0042; Norm. Power_{SGE516-saline}^{6-12Hz}: 0.80±0.43, n=5, p=0.06, Sidak's
122 multiple comparisons; Fig. 1h-i), indicating that the effects of SGE-516 on network states are
123 partly mediated through GABA_{AR} δ subunit-containing receptors. These findings suggest that the
124 ability of allo analogs to alter oscillations in the theta and beta range are shared across species.

125 Benzodiazepine treatment is classically used to treat anxiety-related disorders. In contrast
126 to neuroactive steroid GABA PAM treatment, diazepam (1 mg/kg) decreased the oscillatory
127 power of the low theta band (Norm. Power_{diazepam – saline}^{2-5Hz}: -0.28±0.09, n=5, p=0.03, Sidak's
128 multiple comparisons; Supplementary Fig. 1a-c) and did not affect the oscillatory power of the
129 high theta band (Norm. Power_{diazepam – saline}^{6-12Hz}: -0.10±0.06, n=5, p=0.43, Sidak's multiple
130 comparisons; Supplementary Fig. 1a-c) in BLA. These effects were not different between Wt and
131 Gabrd^{-/-} mice (p^{2-5Hz}>0.99, p^{6-12Hz}=0.82, p^{15-30Hz}=0.31, n_{wt}=5, n_{Gabrd^{-/-}}=5, Sidak's multiple
132 comparisons; Supplementary Fig. 1c). In addition, a non-sedative dose of diazepam (2.5 mg/kg)

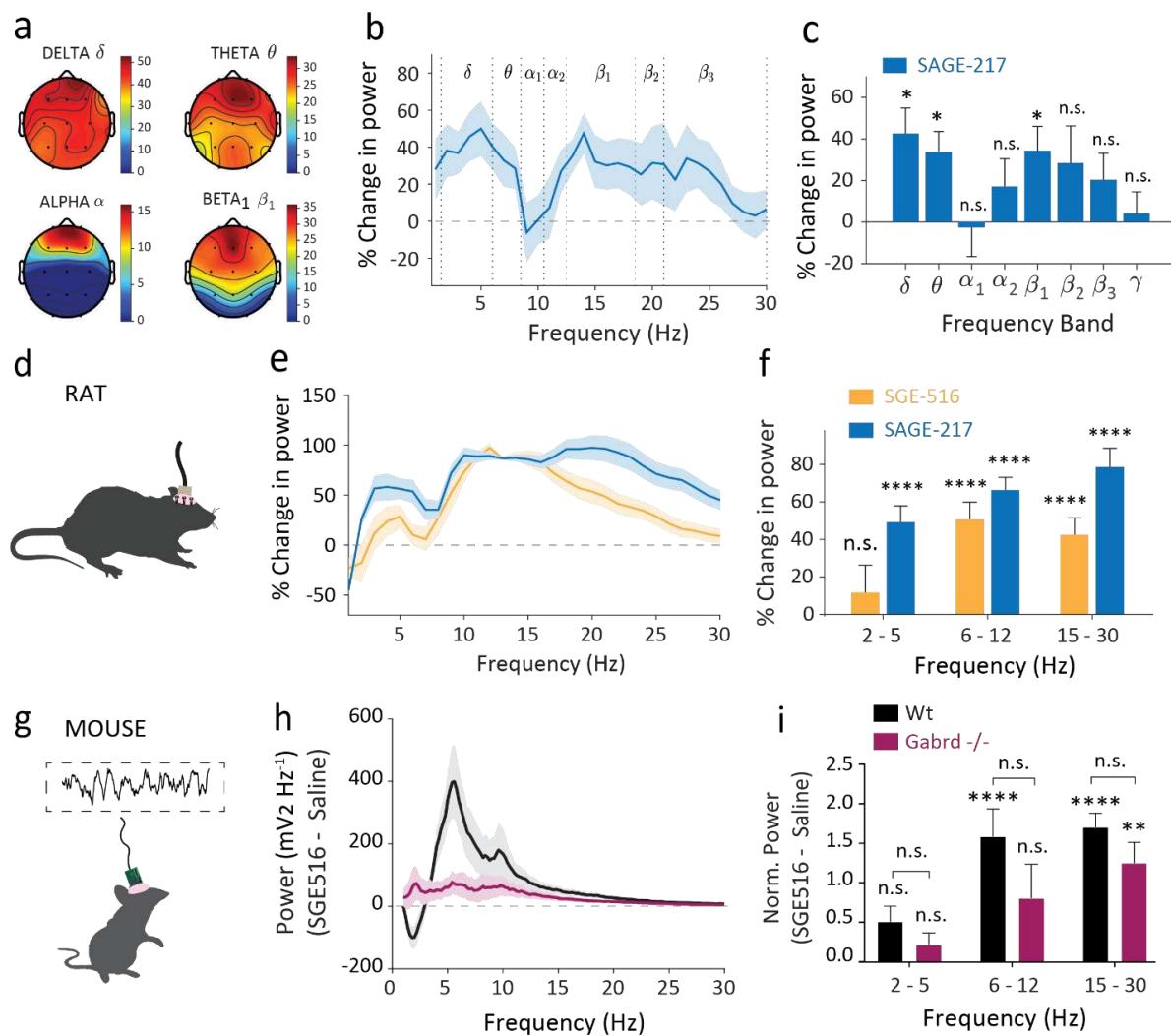
133 did not affect the oscillatory power of cortical rat EEG in either the low or high theta bands (Norm).

134 Power_{diazepam – saline}^{2-5Hz}: -16.66±19.78%, n=18, p=0.37, unpaired t-test; Norm. Power_{diazepam – saline}⁶⁻

135 ^{12Hz}: 9.23±11.04%, n=18, p=0.47, unpaired t-test; Supplementary Fig. 1d-f), again demonstrating

136 similarity across species. In both mice and rats the beta-band power was enhanced after

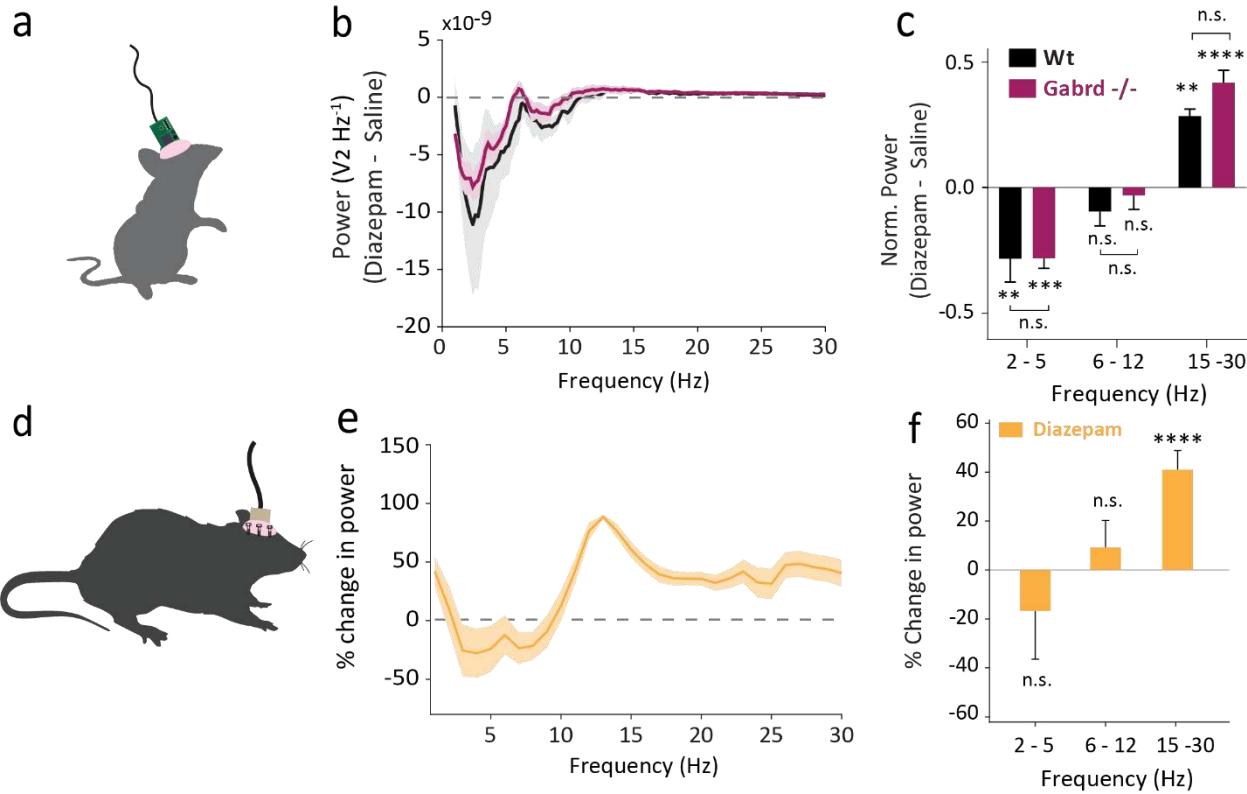
137 diazepam treatment (mouse: Norm. Power_{diazepam – saline}^{15-30Hz}: 0.29±0.029, n=5, p=0.0028, paired


138 t-test; rat: Norm. Power_{diazepam – saline}^{15-30Hz}: 41.00±7.81%, n=18, p<0.0001, unpaired t-test;

139 Supplementary Fig. 3c&f) in agreement with literature reports(Van Lier et al. 2004). These results

140 suggest that neuroactive steroid GABA PAMs confer their effects through distinct network

141 mechanisms from benzodiazepines.


142

143

Figure 1. Neuroactive steroids altered brain network dynamics across species. a-c, humans; d-f, rats; g-i, mice. **a**, Heatmaps organized by frequency band showing regions where percentage change in Human EEG is elevated above vehicle. **b**, Power spectral mean (\pm SEM) difference from vehicle in EEG power (defined as percentage change from baseline) with SAGE-217 averaged from frontal electrodes F3, Fz, and F4. **c**, Mean (\pm SEM) change in power from vehicle (defined as percentage change from baseline) for SAGE-217. Shaded regions and error bars represent SEM ($n=6$ human subjects). **d**, Schematic for cortical EEG recordings in awake rats. **e**, Power spectral mean difference from vehicle in EEG power (defined as percentage change from baseline) in the rat with SGE-516 (orange) and SAGE-217 (blue). **f**, Mean (\pm SEM) change in power across frequency bands ($n_{SGE-516}=27$ rats, $n_{SAGE-217}=20$ rats); stars represent unpaired t-tests. **g**, Schematic for BLA LFP recordings in awake mice. **h**, Power spectral density difference between SGE-516 (5 mg/Kg) and saline IP applications. **i**, Normalized power area difference between acute SGE-516 and saline treatment across multiple frequency bands; Single stars represent paired t-tests between drug treatments. Brackets represent unpaired t-tests between genotypes ($n_{Wt}=6$ mice, $n_{Gabrd^{-/-}}=5$ mice).

144

145

Supplementary Figure 1 (Supporting Figure 1). Diazepam treatment altered theta oscillations differentially from Neurosteroids. a-c, mice; d-f, rats. **a**, Schematic for BLA LFP recordings in awake mice. **b**, Power spectral density difference between diazepam (1 mg/Kg) and saline IP applications. **c**, Normalized power area difference between acute diazepam and saline treatment across multiple frequency bands; Single stars represent paired t-tests between drug treatments. Brackets represent unpaired t-tests between genotypes ($n_{Wt}=5$ mice, $n_{Gabrd^{-/-}}=5$ mice). **d**, Schematic for EEG recordings in awake rats. **e**, Power spectral mean difference from vehicle in EEG power (defined as percentage change from baseline) in the rat with diazepam (orange). **f**, Mean (\pm SEM) change in power across frequency bands. Shaded regions and error bars represent SEM ($n_{Diazepam}=18$ rats); stars represent unpaired t-tests.

146

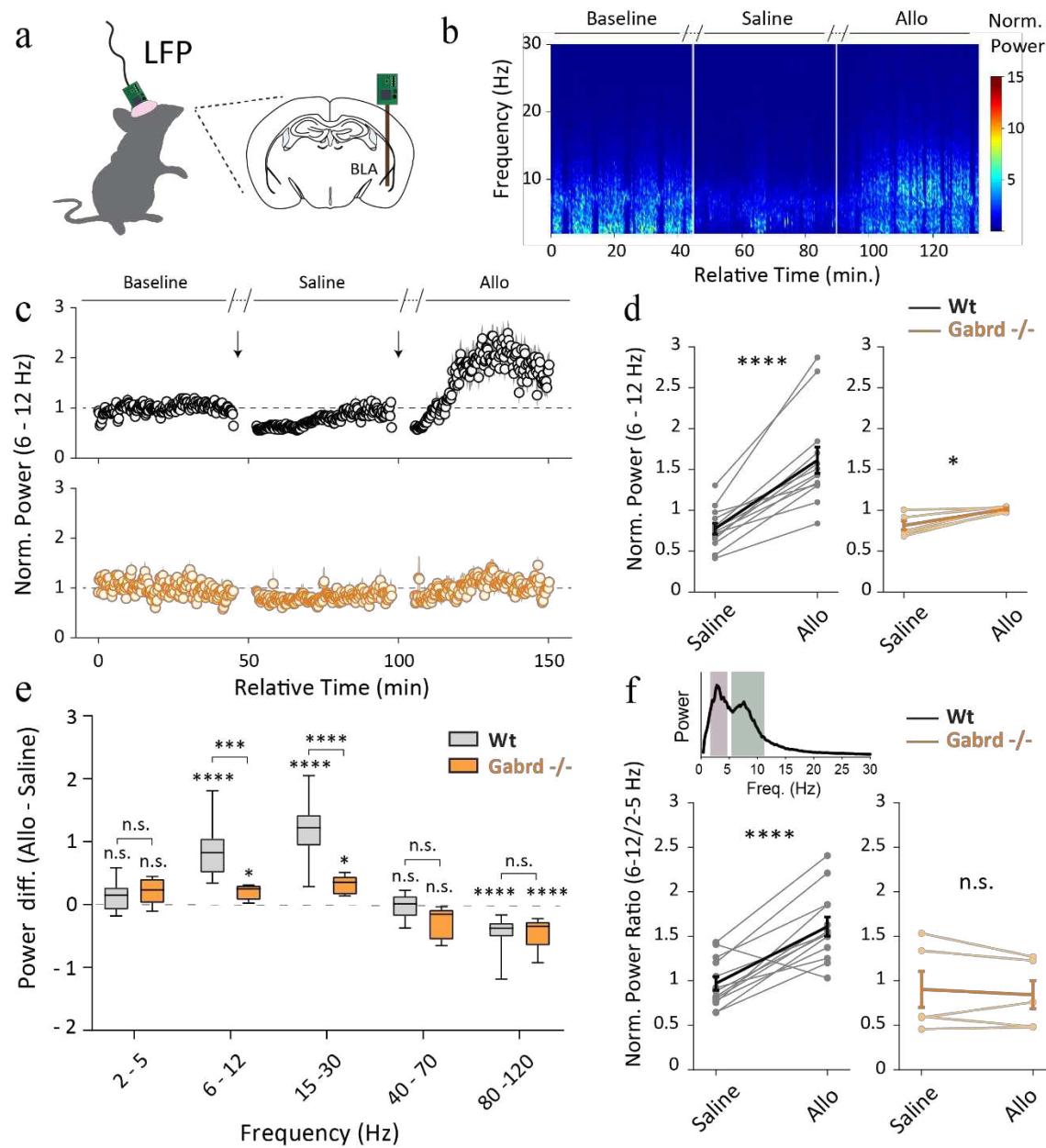
147

148

149

150

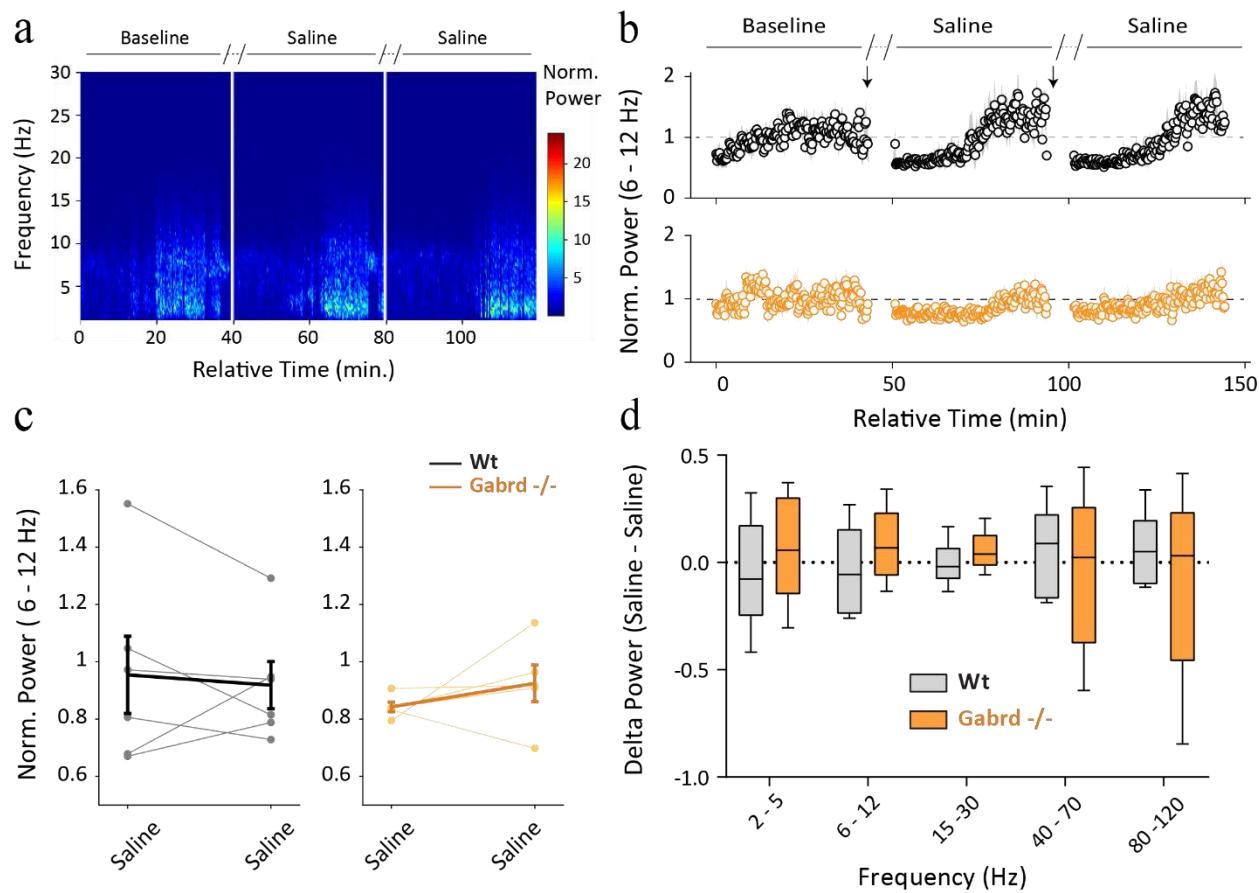
151 **Allopregnanolone modulates BLA network oscillations in part through δ subunit-
152 containing GABA_A receptors**


153 In order to investigate the effects of acute allo treatment on the BLA network, we recorded the
154 LFP in the BLA of mice (Fig. 2a). Acute IP injection of allo (10mg/kg) produced robust changes in
155 the pattern of BLA oscillations across multiple frequency bands. Specifically, acute allo
156 administration strongly potentiated the normalized power in the high theta band (Norm.
157 Power_{allo - saline}^{6-12Hz}: 0.83±0.117, n=13, p<0.0001, Sidak's multiple comparison, Fig. 2b-e),
158 signature oscillations associated with pro-safety states (Davis et al. 2017), and beta band (Norm.
159 Power_{allo - saline}^{15-30Hz}: 1.18±0.117, n=13, p<0.0001, Sidak's multiple comparison, Fig. 2e). To test
160 whether these effects were mediated through GABA_{AR} δ subunit-containing receptors, which are
161 the predominant site of action for neurosteroids(Lee and Maguire 2014), we repeated the same
162 experiments in Gabrd^{-/-} mice. Acute allo application also potentiated the normalized power in
163 the high theta and beta bands (Norm. Power_{allo - saline}^{6-12Hz}: 0.20±0.054, n=5, p=0.02; Norm.
164 Power_{allo - saline}^{15-30Hz}: 0.31±0.068, n=5, p=0.034, Sidak's multiple comparisons, Fig. 2b-e) but to a
165 significantly lesser extent than Wt mice (Abs. Power diff_{wt,Gabrd^{-/-}}^{6-12Hz}: 0.64±0.194, p=0.0005, Abs.
166 Power diff_{wt,Gabrd^{-/-}}^{15-30Hz}: 0.86±0.196, p<0.0001, df=80, Sidak's multiple comparisons). These
167 findings suggest that acute allo treatment promotes the network communication of pro-safety
168 oscillations in the BLA which are partially attributed to signaling via GABA_{AR} δ subunit-containing
169 receptors.

170 On the other hand, acute allo application reduced the power of high-gamma^{80-120Hz} to a
171 similar extent in both Wt and Gabrd^{-/-} mice (Wt:: Norm. Power_{allo - saline}^{80-120Hz}: -0.44±0.07, n=13,
172 p<0.0001; Gabrd^{-/-}:: Norm. Power_{allo - saline}^{80-120Hz}: -0.44±0.12, n=5, p=0.0009, Sidak's multiple

173 comparisons; Fig. 2e) (Abs. Power diff_{wt,Gabrd^{-/-}}^{80-120Hz}: -0.003±0.136, p>0.9999, df=80, Sidak's
174 multiple comparison). Therefore, allo reduced the power of BLA oscillations in the high-gamma
175 band which have not previously been attributed to affective behavioral states and are
176 independent of GABA_AR δ subunit-containing receptors. The alterations observed in BLA
177 oscillation power cannot be attributed to potentiation or habituation of the second IP injection
178 as the LFP power to repeated saline injection is unchanged in both Wt and Gabrd^{-/-} mice (Supp.
179 Figure 2).

180 To examine the relationship between fast and slow theta-band range oscillations,
181 previously demonstrated to have opposing correlations with the behavioral expression of
182 fear(Davis et al. 2017), we measured the power area ratio of high^{6-12Hz} and low^{2-5Hz} theta bands
183 during IP application of saline and allo (10mg/kg). Acute allo application significantly increased
184 the power ratio in comparison to saline injection in Wt mice, indicative of a shift to the signature
185 oscillatory state associated with pro-safety(Davis et al. 2017), but not in Gabrd^{-/-} mice (wt:: Norm.
186 Power_{allo - saline}^{6-12/2-5Hz}: 0.64±0.133, n=13, p<0.0001; Gabrd^{-/-}:: Norm. Power_{allo - saline}^{6-12/2-5Hz}: -
187 0.06±0.281, n=5, p=0.91, Sidak's multiple comparison; Fig. 2f). Therefore, allo administration can
188 switch BLA oscillations to the pro-safety state, an effect which seems to require GABA_AR δ
189 subunit-containing receptors.


190

191

Figure 2. Acute IP application of allopregnanolone altered BLA network oscillations in freely moving mice partly through GABA_{AR} δ subunit-containing receptors. **a**, Schematic for LFP recordings in awake mice. **b**, Representative spectrogram of BLA oscillations during IP application of saline and allo (10 mg/Kg). Normalized power^{6-12Hz} is higher during acute application of allo compared to saline treatment. **c**, Power area^{6-12Hz} normalized to baseline during saline and allo acute treatment across time **d**, Average dot plot; light color lines indicate individual experiments, dark lines the average and error bars the SEM. **e**, Normalized power area difference between acute allo and saline treatment across multiple frequency bands; Paired t-tests. **f**, High(green)/Low(pink) theta power ratio in Wt and Gabrd^{-/-} mice. $n_{Wt}=13$ animals, $n_{Gabrd^{-/-}}=5$ animals.

192

193

Supplementary Figure 2 (Supporting Figure 2). Repeated IP saline application did not alter BLA network oscillations oscillation. **a**, Representative spectrogram of BLA oscillations during repeated IP saline application. Power area^{6-12Hz} normalized to baseline during repeated IP saline application **b**, Across time **c**, Average dot plot; light color lines indicate individual experiments, dark lines the average and error bars the SEM. **d**, Normalized power area difference between repeated saline application across multiple frequency bands. Two-way repeated measures ANOVA was used to assess the interactions between frequency bands and repeated saline injections. Wt: $F(4,25)=0.45$, $p=0.77$; Gabrd $F(4, 20) = 0.30$, $p=0.87$). $n_{\text{Wt}}=6$ animals, $n_{\text{Gabrd}^-/-}=5$ animals.

194

195

196

197

198

199

200 **Allopregnanolone enhances tonic inhibition in BLA PV⁺ interneurons but not in**
201 **principal cells.**

202 Our experiments suggest that allo actions in the BLA modulates network states through GABA_{AR}
203 δ subunit-containing receptors. Given the importance of PV⁺ interneurons in network
204 coordination in BLA(Bartos, Vida, and Jonas 2007; Davis et al. 2017; Karalis et al. 2016; Veres,
205 Nagy, and Hájos 2017) and the role of neuroactive steroids in potentiating tonic inhibition(Lee
206 and Maguire 2014; Stell et al. 2003), we examined GABA_{AR} δ subunit-containing receptor
207 localization and the impact of allo on tonic inhibition on different cell types in BLA. We found that
208 GABA_{AR} δ subunit-containing receptors are uniquely expressed in PV⁺ interneurons in the BLA
209 and are mostly absent in mice lacking the GABA_{AR} δ subunit specifically in PV⁺ interneurons (PV-
210 Gabrd^{-/-} mice) (Fig. 3a), as PV-Gabrd^{-/-} mice displayed a significant reduction in count for δ-
211 positive cells in the basolateral amygdala when compared to Wt mice (wt: 17.00 ± 2.17; n=10
212 slices (3 mice), PV-Gabrd^{-/-}: 4.09 ± 1.54; n=11 slices (4 mice); p<0.0001, Unpaired t-test; Fig. 3c).
213 These data suggest that the expression of GABA_{AR} δ subunit-containing receptors is largely
214 restricted to PV⁺ interneurons in BLA.

215 To investigate the functional effects of GABA_{AR} δ subunit-containing receptors, we
216 performed whole cell patch-clamp recordings and applied 100 nM allo on BLA principal cells and
217 PV⁺ interneurons, a concentration achieved during clinical trials with allo analogs, followed by
218 SR95531 (\geq 100 μM) to unmask the tonic current. We found that allo strongly potentiated the
219 tonic current in PV⁺ but not in principal cells (PV⁺: 21.34±7.68, n=9, p=0.02, paired t-test; Pyr: -
220 1.66±2.19, n=8, p =0.47, paired t-test; Fig. 3b,d) resulting in a significantly higher potentiation of
221 the tonic current between PV⁺ and principal cells (PV⁺= 282.9±118.7%, Pyr=-36.78±15.44; p=0.03;

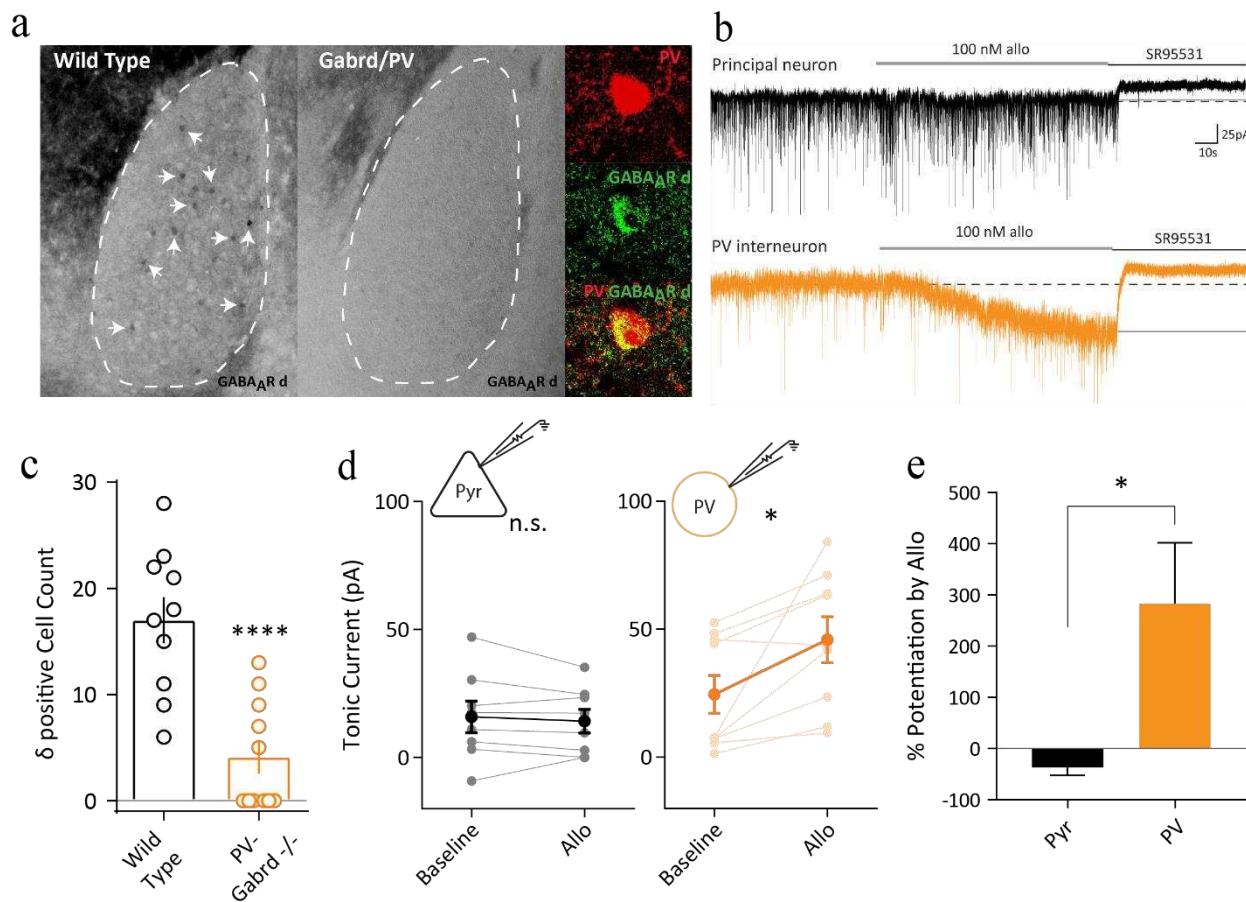
222 Unpaired t-test with Welch's correction; Fig. 3e). These findings suggest that allo potentiates
223 tonic currents in BLA PV⁺ interneurons through neurosteroid-sensitive GABA_{AR} δ subunit-
224 containing receptors, which may contribute to the ability to orchestrate synchrony in the BLA
225 (Pavlov et al. 2014).

226

227

228

229


230

231

232

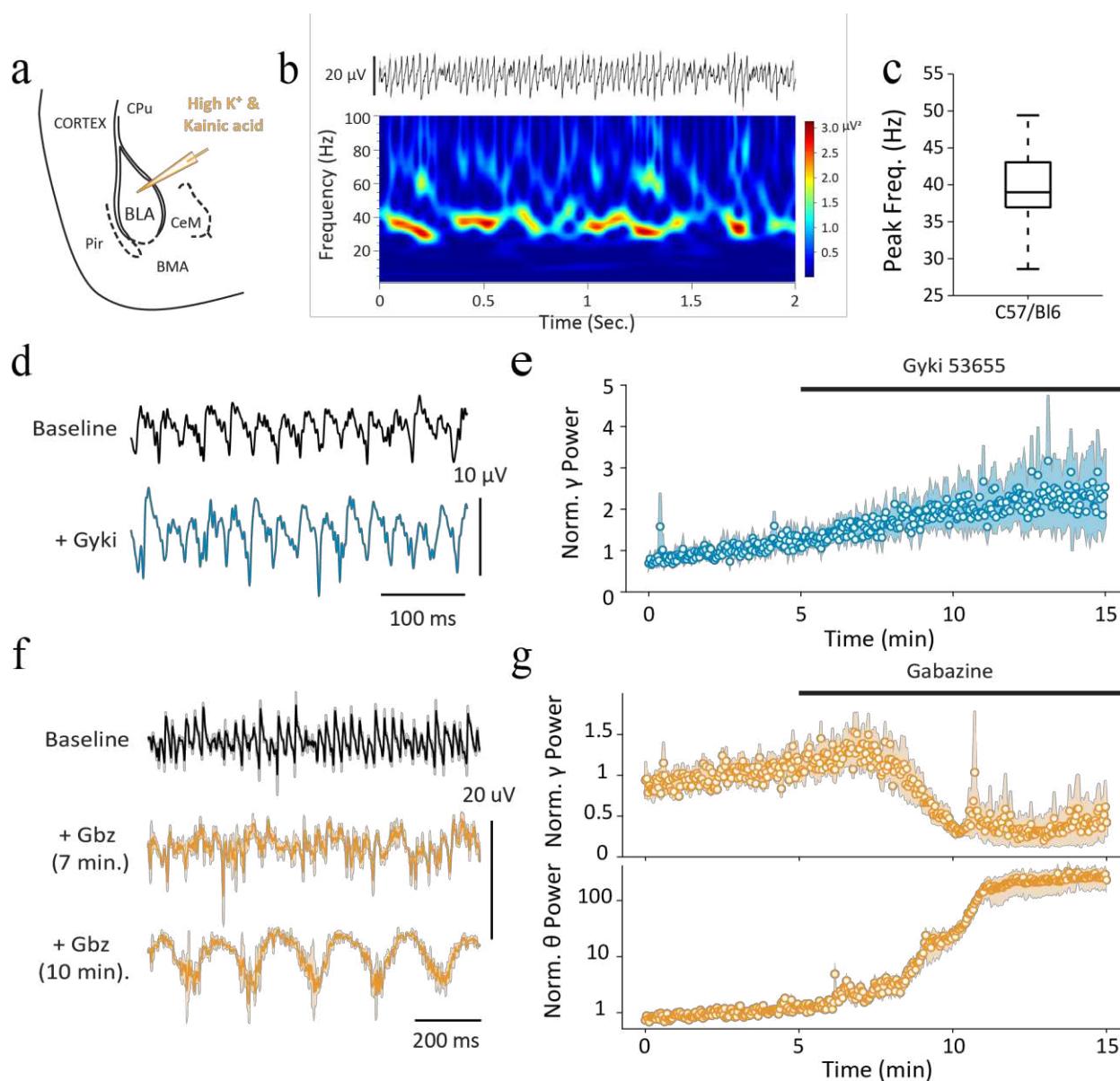
233

234

235

Figure 3. Allopregnanolone enhanced tonic currents in PV⁺ interneurons but not in principal cells of the BLA. **a**, PV⁺ interneurons highly express GABA_{AR} δ subunit-containing receptors and immunoreactivity for these receptors is absent in PV-Gabrd^{-/-} mice. **b**, Representative traces from intracellular recordings in a principal and PV⁺ neurons during 100 nM allo application and block by SR95531 (Gabazine). **c**, PV-Gabrd^{-/-} mice displayed a significant reduction in δ immunoreactive cells in the basolateral amygdala when compared with controls (Unpaired t-test, $t=4.921$, wt: $n=10$ slices (3 mice), PV-Gabrd^{-/-}: $n=11$ slices (4 mice)). **d**, Tonic current in principal cells (Pyr) and PV⁺ interneurons (PV) during baseline and 100 nM allo application; paired t-test. **e**, Percentage potentiation of tonic current between allo and baseline application; Unpaired t-test with Welch's correction. $n_{Pyr}=9$ cells, $n_{PV}=10$ cells.

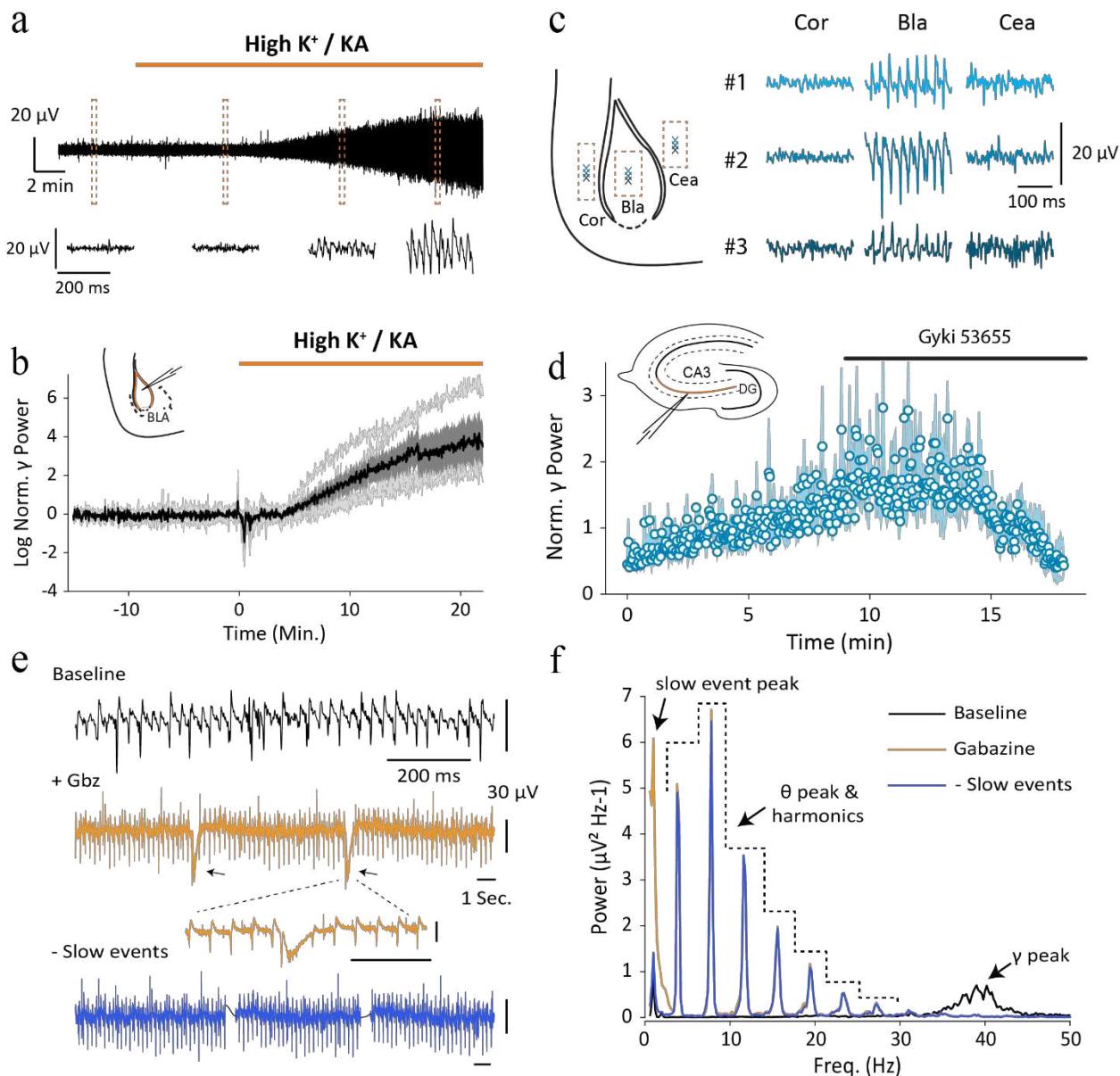
236


237

238

239

240 **Isolated BLA networks can generate local brain oscillations**


241 In order to examine the importance of PV⁺ interneurons in controlling the BLA circuit we sought
242 to establish an *ex-vivo* oscillation model in isolated BLA networks of mice. Under regular aCSF
243 conditions the LFP was silent (Supplementary Fig. 3a-b). However, addition of kainic acid (800
244 nM) and elevated KCl (High K⁺ / KA) into regular aCSF induced robust network oscillations at
245 gamma (γ)-band frequency centered at 40Hz (Fig. 4a-c; Supplementary Fig. 3a-b). The current
246 generator of these oscillations was situated within the BLA circuit, as nearby regions did not
247 exhibit any oscillations (Supplementary Fig. 3c) and the hippocampus was removed to eliminate
248 hippocampal volume conduction. Therefore, the isolated mouse BLA network is capable of
249 intrinsically generating and self-sustaining local brain oscillations at gamma-band range^{30-80Hz}.
250 Furthermore, the generation of these oscillations does not seem to require phasic synaptic
251 excitation as a selective AMPAR antagonist (Gyki 53655, n=7 slices; 6 at 20 μM, 1 at 10 μM) did
252 not significantly alter gamma oscillation peak power (2.14±0.57 of baseline, one-sample t-test:
253 p=0.09, n=7 slices (4 mice); Fig. 4d-e). On the other hand, gabazine application (10 μM) strongly
254 suppressed gamma oscillation peak power (0.17±0.033 of baseline, one-sample t-test: p<0.0001,
255 n=8 slices (4 mice); Fig. 4f-g) indicating that fast synaptic inhibition is critical for gamma oscillation
256 emergence in BLA. Interestingly, following the collapse of gamma oscillations, rhythmic activity
257 in the theta (θ) frequency range^{3-12Hz} emerged (368.52±165.61 of baseline, n=9 slices (4 mice);
258 Fig. 4f-g). In 4 out of 9 of these experiments additional low-frequency events emerged
259 (Supplementary Fig. 3e-f). Therefore, isolated BLA circuits are capable of generating network
260 oscillations and fast-synaptic inhibition is critical for their emergence and may be critical in
261 switching between different oscillatory states.

262

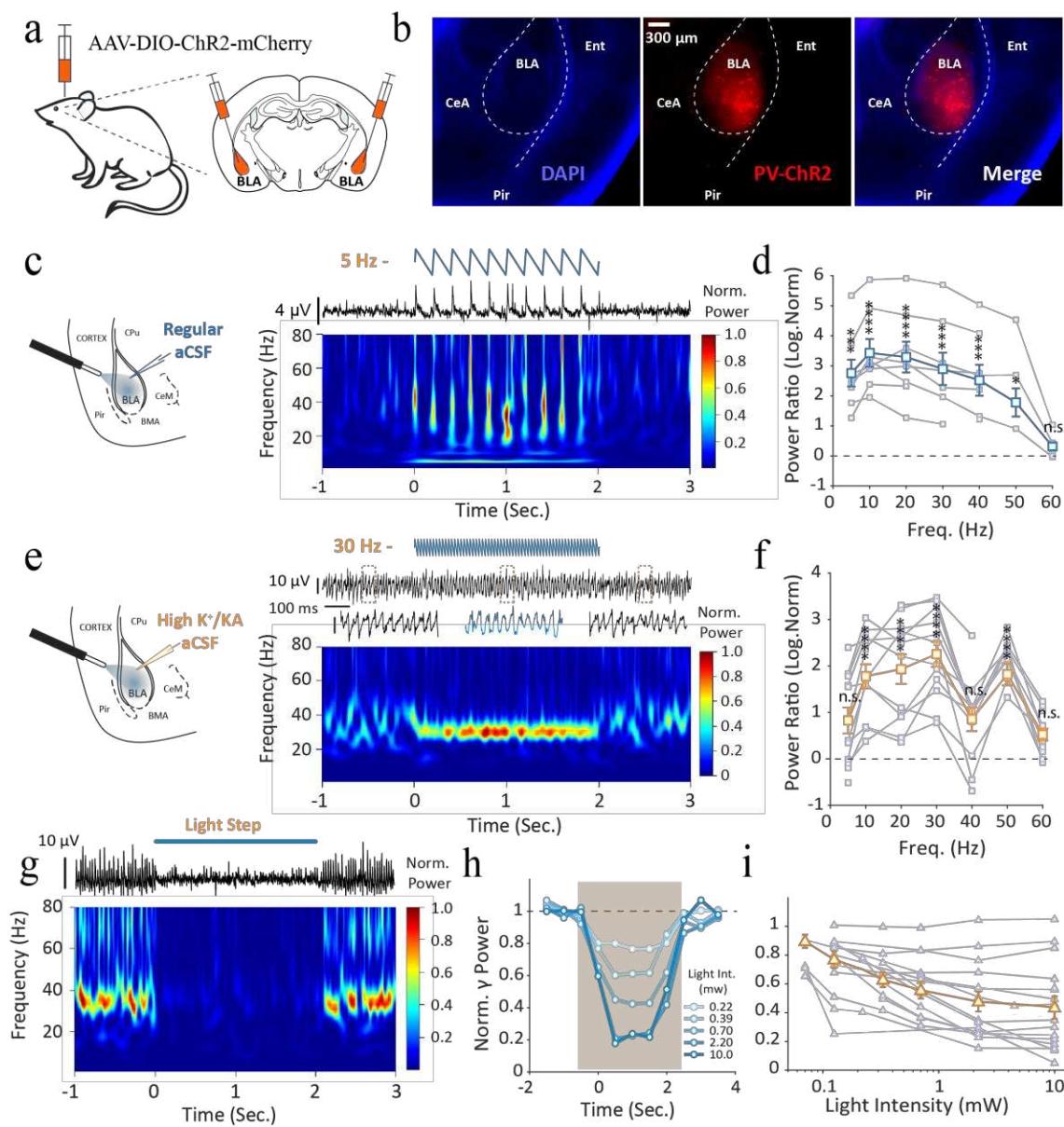
Figure 4: Isolated mouse BLA networks *ex-vivo* generated brain oscillations in the gamma and theta band-range. **a**, Schematic illustration of LFP setup for recording of *ex-vivo* gamma (γ) oscillations in mouse BLA slices. All experiments were performed in the presence of High K⁺/KA solution. **b**, top: Representative gamma oscillation LFP trace from BLA and bottom: Wavelet transformation. **c**, Peak frequency box plot of BLA gamma oscillations (n=42 slices). **d-e**, Gyki 53655 application to BLA gamma oscillations. **d**, Representative LFP traces during baseline (black) and Gyki 53655 application (blue). **e**, Normalized gamma peak power; dots represent mean and shaded region represents SEM (n=7 slices; 6 at 20 μ M, 1 at 10 μ M). **f-g**, Gabazine application to BLA gamma oscillations. **f**, Representative LFP traces during baseline (black) and gabazine application (orange). **g**, Normalized gamma (top) and theta (bottom) peak power change; dots represent mean and shaded region represents SEM (n=9 slices at 10 μ M).

263

264

Supplementary Figure 3 (Supporting Figure 4). **a-b**, Application of kainic acid (800 nM) in aCSF with elevated KCl (7.5 mM) induces gamma oscillations. **a**, Top- Representative LFP trace and Bottom- Magnified traces from orange rectangles. **b**, Normalized gamma peak power^{30-80Hz}. Grey traces represent individual experiments (n=9 slices), black trace the mean and shaded area the SEM. **c**, Gamma oscillations can only be recorded in BLA and not surrounding areas; Left- schematic of approximate LFP recording positions in Right- rows represent LFP recordings from separate slices (n=3 slices). **d**, Gyki 53655 application (20 μM) suppresses carbachol-induced (5 μM) oscillations in CA3; dots represent mean and shaded region represents SEM. **e-f**, Induction of additional slow events from gabazine application in BLA. **e**, Representative LFP recordings from BLA and **f**, respective power spectral density.

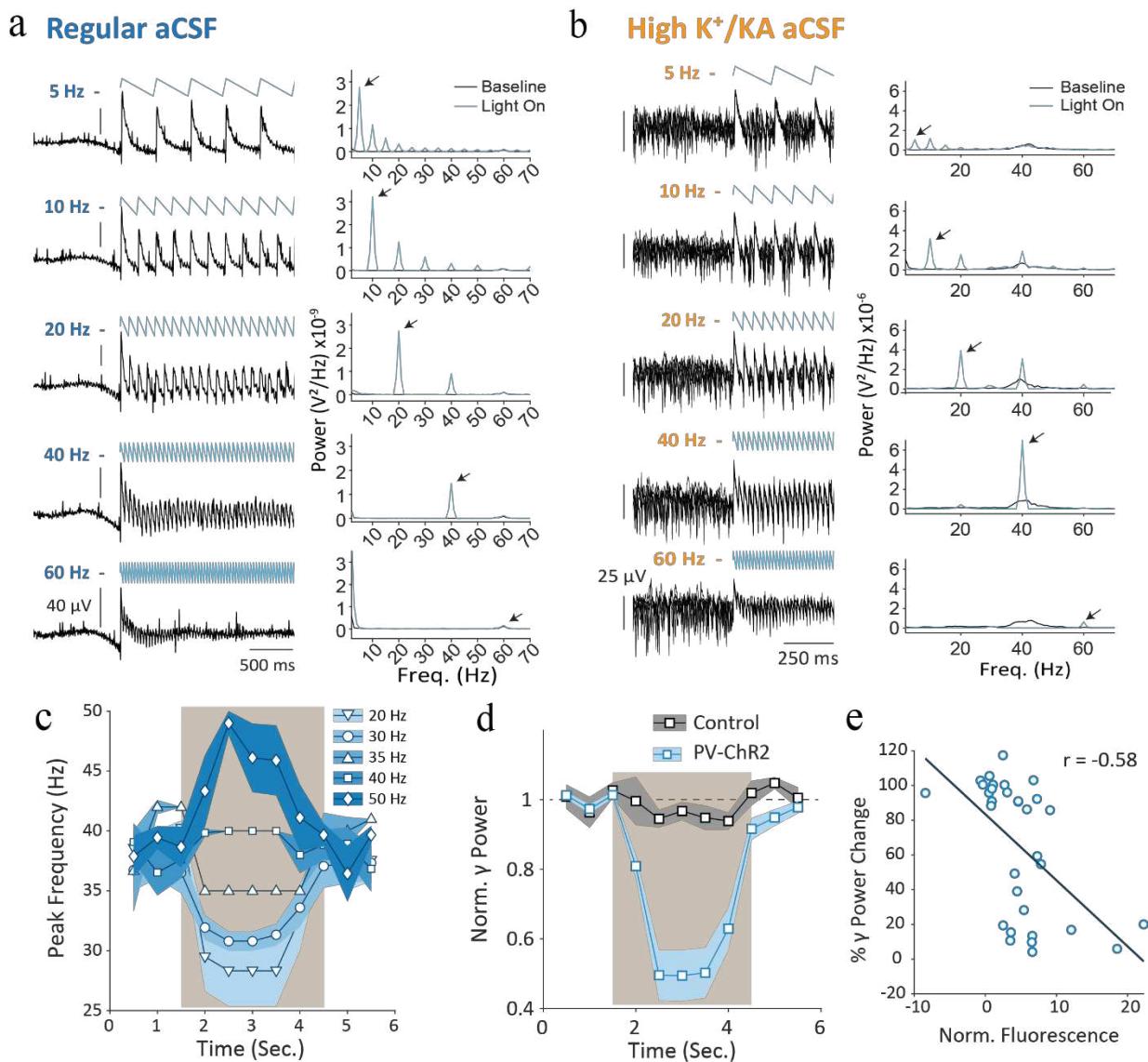
265


266 **PV⁺ interneurons can synchronize and control the BLA network**

267 To assess whether fast-synaptic inhibition is sufficient to entrain the local BLA network and
268 control oscillatory states we employed optogenetics to recruit BLA inhibitory interneurons. We
269 targeted PV⁺ interneurons, which are the major class of GABAergic cells in BLA and have been
270 suggested to provide powerful control over the somatic regions of local neurons(Bartos, Vida,
271 and Jonas 2007; Krabbe, Gründemann, and Lüthi 2018; Veres, Nagy, and Hájos 2017). Infusion of
272 AAV-DIO-ChR2-mCherry viral vector into the BLA of PV-cre mice resulted in expression of ChR2-
273 mCherry in BLA PV⁺ interneurons (Fig. 5a-b). Pulsed blue light (473 nm) photo-excitation^{5-60Hz}
274 produced robust phase-locked LFP responses suggesting that synchronized GABAergic release
275 from PV⁺ interneurons can be detected in the BLA LFP (Fig. 5c-d; Supplementary Fig. 4a;
276 $p^{5Hz}=0.0004$, $p^{10Hz}<0.0001$, $p^{20Hz}<0.0001$, $p^{30Hz}=0.0001$, $p^{40Hz}=0.0006$, $p^{50Hz}=0.016$, $p^{60Hz}>0.99$;
277 Bonferroni's multiple comparisons test). In order to test if PV⁺ interneurons can entrain the BLA
278 network and control BLA oscillatory state *ex-vivo* we examined the effects of pulsed opto-
279 excitation during KA induced gamma. Pulsed blue light photo-excitation (5-60Hz) increased the
280 power ratio (Fig. 5e-f; $p^{5Hz}=0.094$, $p^{10Hz}<0.0001$, $p^{20Hz}<0.0001$, $p^{30Hz}<0.0001$, $p^{40Hz}=0.076$,
281 $p^{50Hz}<0.0001$, $p^{60Hz}=0.80$; Bonferroni's multiple comparisons test) and trains centered around
282 40Hz reliably entrained the ongoing kainate-induced gamma oscillations (Supplementary Fig. 4b-
283 c). These results indicate that PV⁺ interneurons in BLA can powerfully control the local network
284 synchronization across a range of frequencies. Furthermore, sustained photo-excitation of PV⁺
285 interneurons strongly suppressed ongoing gamma oscillations during light stimulation period
286 (0.50±0.073 of baseline, n=23, p=0.0034, Dunnett's multiple comparison; Fig. 5g-h) (Antonoudiou
287 et al. 2020). This gamma power suppression was negatively correlated to light intensity ($r=-0.42$,

288 p=0.0003, n=70, Spearman correlation, Fig. 5i), indicating that the stronger the light intensity the
289 larger the gamma power suppression. Moreover, blue light stimulation had no effect in control
290 slices from PV-cre mice that were not injected with the ChR2 viral vector (0.95±0.023 of baseline,
291 n=6 slices, p=0.29, Dunnett's multiple comparison; Supplementary Fig. 4d). Taken together these
292 results suggest that GABAergic PV⁺ interneurons are powerful regulators of the local network
293 activity and can control oscillatory states in BLA.

294


295

296

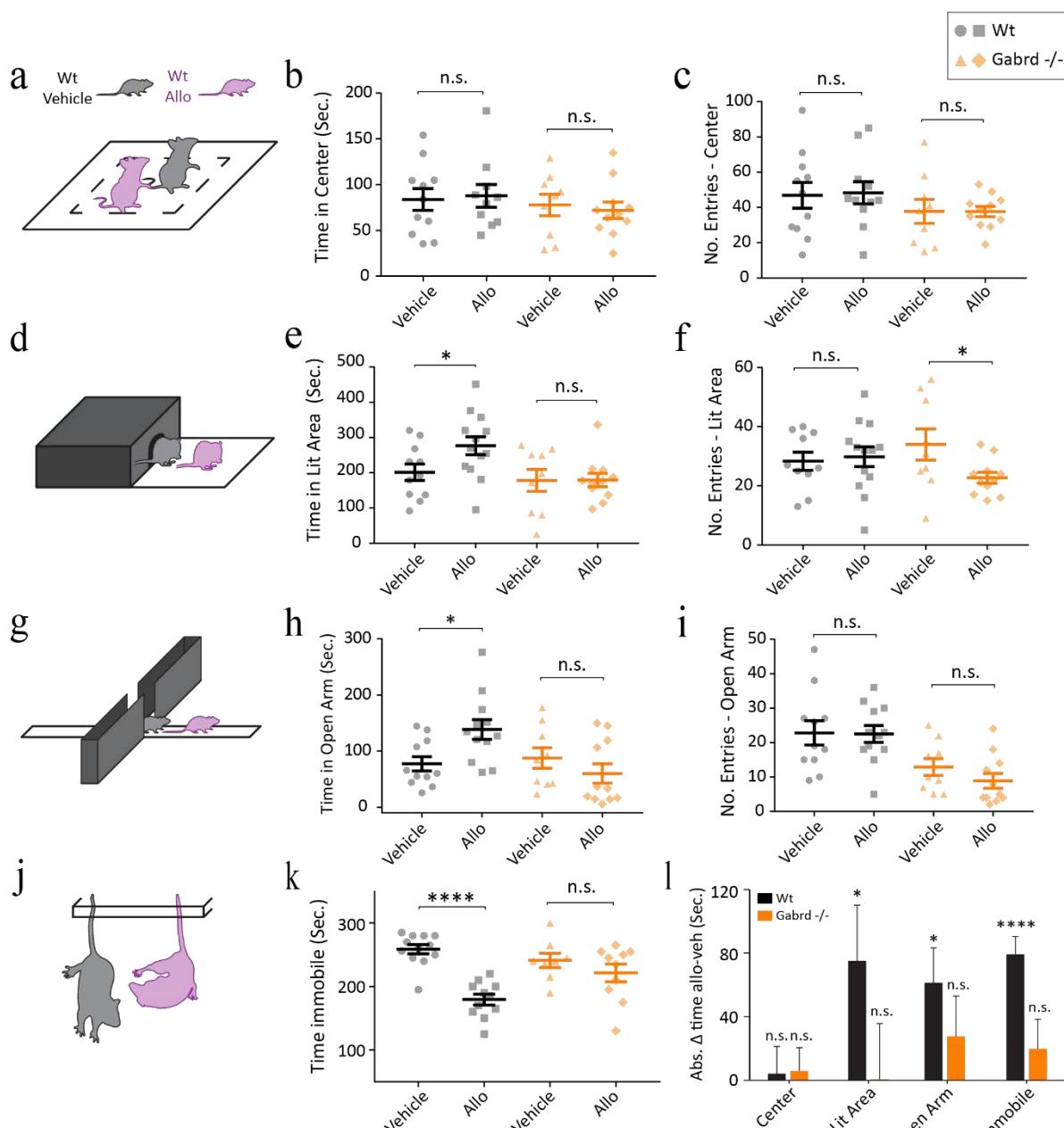
Figure 5. PV^+ interneurons can synchronize and control the BLA network. **a**, Schematic of viral infusion of AAV-DIO-ChR2-mCherry in mouse BLA. **b**, Representative fluorescence images of ChR2-mCherry expression in BLA; CeA=Central Amygdala, BLA=basolateral amygdala, Pir=Piriform Cortex; Ent=Entorhinal Cortex. **c**, Left- schematic illustration of LFP-opto setup for ChR2 experiments in aCSF; Right- top: Representative gamma oscillation LFP trace from BLA and bottom: Wavelet transformation. **d**, LFP power ratio between pulsed stimulation and baseline periods ($n=8$ slices). **e-f**, same as **c-d** during High K^+/KA ($n=12$ slices) Bonferroni's multiple comparisons test. **g-i**, Sustained PV^+ interneuron excitation suppresses kainate-induced gamma oscillations. **g**, top: Representative gamma oscillation LFP trace from BLA and bottom: Wavelet transformation. **h**, Normalized gamma power to baseline across time for different light intensities. **i**, Gamma power normalized to baseline across light intensities ($n=15$ slices).

297

298

Supplementary Figure 4 (Supporting Figure 5). a-b, Left- Representative LFP recordings from BLA and Right- associated PSDs obtained during PV⁺ interneuron pulsed photo-excitation (black arrows indicate peaks at stimulation frequency). **c,** Average Peak frequency of oscillations during PV⁺ interneuron pulsed photo-excitation, shaded region=SEM; n slices: 20Hz=12, 30Hz=15, 35Hz=3, 40Hz=13, 50Hz=9. **d,** Average Normalized gamma power to baseline in controls (n=6 slices) and PV-ChR2 animals during sustained photo-excitation, shaded region=SEM (n=23 slices). **e,** Gamma Power change during sustained PV⁺ interneuron photo-excitation plotted against normalized BLA fluorescence ($r=-0.58$, $p=0.0005$, $n=32$ slices, Spearman Correlation). Light intensity at 10 mW.

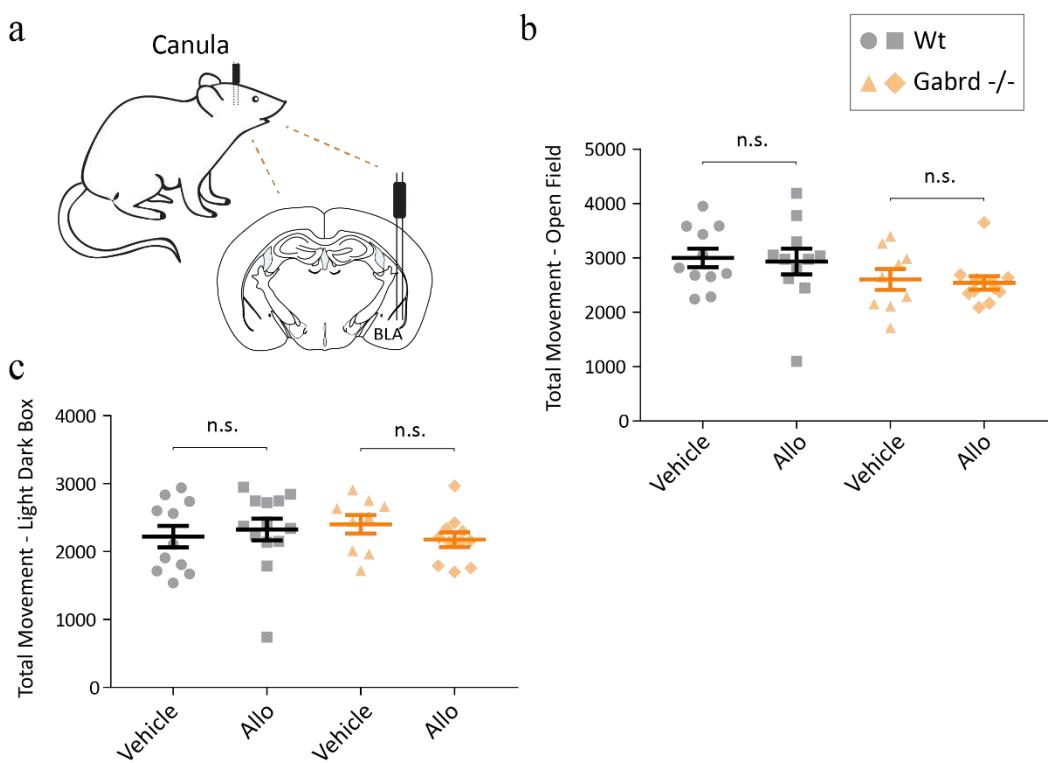
299


300

301 **Acute allopregnanolone infusion into the BLA alters behavioral states mediated**
302 **through GABA_AR δ subunit-containing receptors**

303 In order to determine whether allo can exert effects in the BLA to alter avoidance behaviors, we
304 implanted Wt mice with cannulas in the BLA (Supplementary Fig. 5a) and evaluated the impact
305 of infusions on behavior. Allo infusion (5 μ g) affected neither the total time spent (or their
306 number of entries) in the open field center when compared with vehicle controls (Fig. 6a-c; time
307 in Center_{allo-veh}: 4.07 ± 17.2 s, $n_{veh}=11$, $n_{allo}=10$, $p=0.82$, unpaired t-test; No. Entries- center_{allo-veh}:
308 1.36 ± 9.62 , $n_{veh}=11$, $n_{allo}=11$, $p=0.89$, unpaired t-test), suggesting exploratory behaviors are
309 unaltered by infusion of allo into the BLA. However, infusion of allo significantly increased the
310 time that the mice spent in the lit area of the light dark box (time in lit area_{allo-veh}: 75.17 ± 35.03 s,
311 $n_{veh}=11$, $n_{allo}=13$, $p=0.043$, unpaired t-test) and in the open arms of the elevated plus maze (time
312 in open arm_{allo-veh}: 61.24 ± 22.05 s, $n_{veh}=11$, $n_{allo}=12$, $p=0.011$, unpaired t-test) when compared
313 with vehicle controls (Fig. 6d-e & g-h). The number of entries made in the lit area of the light-
314 dark box and in the open arm of the elevated plus maze did not differ between Wt mice that
315 were infused with allo or vehicle (Fig. 6f & i; time in lit area_{allo-veh}: 1.55 ± 4.68 , $n_{veh}=10$, $n_{allo}=13$,
316 $p=0.75$, unpaired t-test; time in open arm_{allo-veh}: -0.32 ± 4.24 , $n_{veh}=11$, $n_{allo}=12$, $p=0.94$, unpaired t-
317 test). These results suggest that acute allo infusion into the BLA decreases avoidance behaviors
318 in Wt mice, as indicated by the increased time they spend in anxiogenic regions of the behavioral
319 apparatus. Further, mice treated with allo had a robust reduction in the amount of time spent
320 immobile in the tail suspension test compared to vehicle treated controls (Fig. 6j-k; time
321 immobile_{allo-veh}: -79.29 ± 11.15 , $n_{veh}=12$, $n_{allo}=11$, $p<0.0001$, unpaired t-test). These effects cannot
322 be explained from impaired locomotor function as the total movement of vehicle and allo treated

323 mice was not different in the open field and light dark box (Supplementary Fig. 5b-c; open-field_{allo-}
324 veh: -67.73 ± 292.2 s, n_{veh}=11, n_{allo} =11, p=0.82, unpaired t-test; time in lit area_{allo-veh} 105 ± 227.4 s,
325 n_{veh}=11, n_{allo} =13, p=0.65, unpaired t-test). Importantly, these data demonstrate robust
326 behavioral impacts of acute allo infusion restricted only on the BLA network.


327 To assess whether delta (δ) containing GABA receptors might play a role we repeated the
328 same battery of test in Gabrd^{-/-} mice. Acute allo infusion in Gabrd^{-/-} mice (5 μ g) did not change
329 the time spent in the lit area of the light dark box (Fig. 6e; time in lit area_{allo-veh}: 0.56 ± 35.15 s,
330 n_{veh}=9, n_{allo} =11, p=0.99, unpaired t-test), open arm of the elevated plus maze (Fig. 6h; time in
331 open arm_{allo-veh}: -27.67 ± 25.29 s, n_{veh}=9, n_{allo} =11, p=0.29, unpaired t-test) or time immobile in the
332 tail suspension test (Fig. 6k; time immobile_{allo-veh}: -19.75 ± 18.54 s, n_{veh}=8, n_{allo} =10, p=0.30,
333 unpaired t-test). Therefore, these data suggest that the behavioral effects of acute allo infusion
334 into the BLA requires GABA_AR δ subunit-containing receptors.

335

Figure 6. Allopregnanolone promoted anxiolysis in control but not in Gabrd^{-/-} mice. Schematics for behavioral tests and associated phenotypes in Wt mice infused with vehicle or 5 μ g (2.5 μ g/ μ l -inject) Allo: **a**, open field; **d**, light dark box; **g**, elevated plus maze, **j**, Tail suspension test. Time that animals spend in **b**, center; **e**, lit area; **h**, open arms, or **k**, immobile. Number of Entries in **c**, center; **f**, lit area; **i**, open arms. **l**, Summary of average absolute time difference in allo vs vehicle infused conditions across behavioral tests. Error bars represent SEM. Brackets and stars represent unpaired t-tests between vehicle vs allo treated groups.

336

337

Supplementary Figure 5 (Supporting Figure 6). a, Schematic for canula implantation in basolateral amygdala (BLA). Total movement (# total beam breaks) in b, Open Field c, Light Dark Box. Error bars represent SEM. Brackets represent unpaired t-tests between vehicle against allo treated groups.

338

339

340

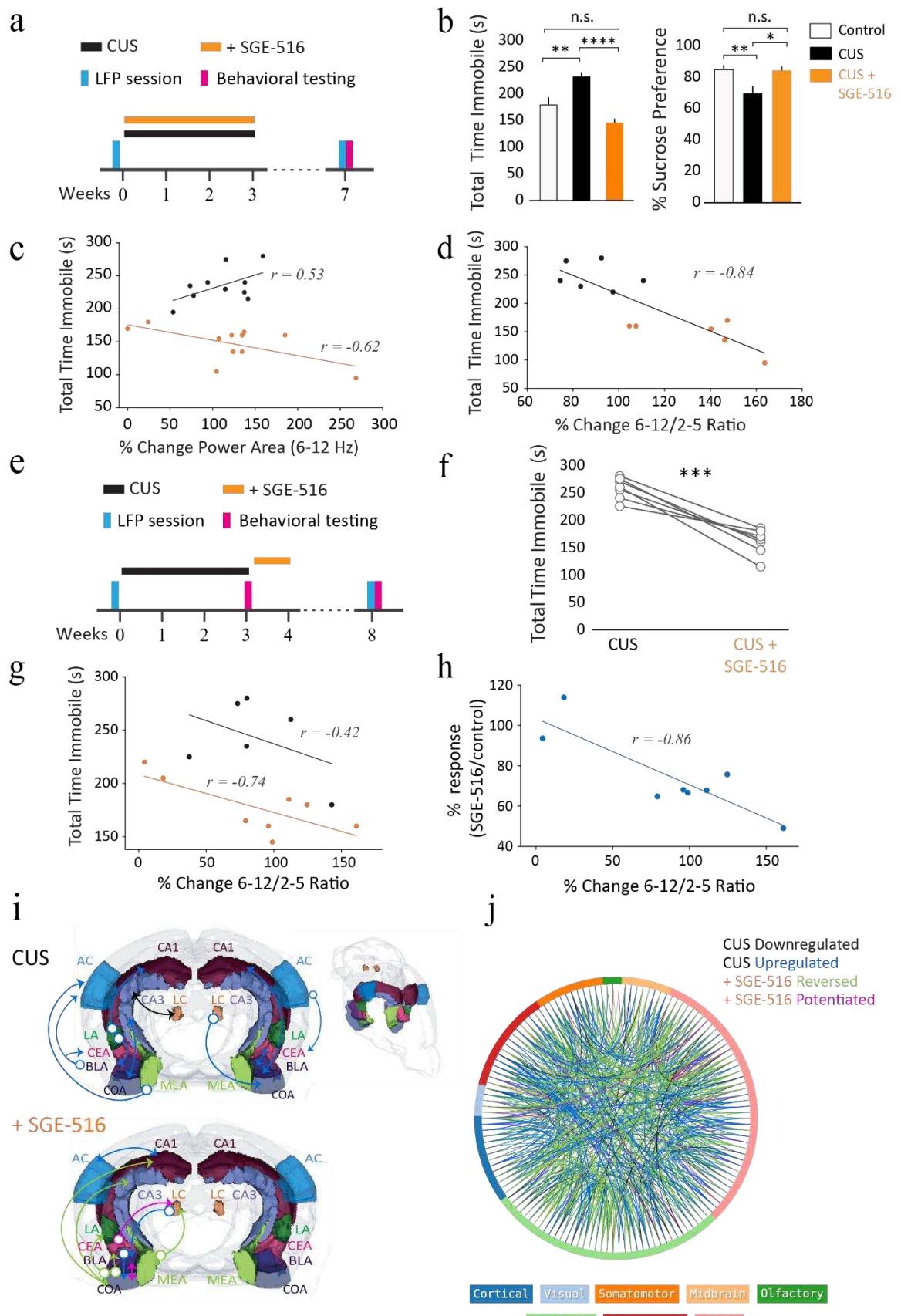
341

342

343

344 **SGE-516 prevents depressive-like behavior induced by chronic unpredictable
345 stress**

346 Our data show that neuroactive steroids alter behavioral states in WT mice. To assess the impact
347 of neuroactive neurosteroids on sustained threat, WT mice were exposed to chronic
348 unpredictable stress (CUS). Animals were subjected to 3 consecutive weeks of alternating
349 stressors (see methods). LFP and behavioral tests were performed prior to and 4 weeks post CUS
350 induction (Fig. 7a). The 4 weeks post CUS timepoint was chosen due to the demonstrated
351 sustainment of allo efficacy at least 30 days post-injection in phase 3 clinical trials of post-partum
352 depression(Meltzer-Brody et al. 2018).


353 Mice that underwent CUS spend more time immobile in the tail suspension test (Fig. 7b;
354 Control: 180.0 ± 13.76 s, n=10 animals; CUS: 233.2 ± 7.75 s, n=11 animals; p=0.0019, Tukey's
355 multiple comparison test) and had a lower preference for sucrose than control mice (Fig. 7b;
356 Control: $85.3 \pm 2.72\%$, n=15 animals; CUS: $70.0 \pm 4.41\%$, n=10 animals; p=0.0053, Tukey's multiple
357 comparison test). SAGE-516 application during CUS had the opposite effects as it decreased time
358 immobile in the tail suspension test (Fig. 7b; CUS + SAGE-516: 146.3 ± 7.49 s, n=12 animals,
359 p<0.0001, Tukey's multiple comparison test) and elevated sucrose preference (Fig. 7b; CUS +
360 SAGE-516: $84.6 \pm 2.56\%$, n=8, p=0.0243, Tukey's multiple comparison test) near to levels observed
361 in controls (Fig. 7b). These results suggest that sustained threat through CUS induces behavioral
362 deficits in WT mice which are prevented by SGE-516 treatment. To investigate how BLA network
363 activity is associated with behavioral changes, we compared BLA high theta (6 -12Hz) power
364 change prior to and post CUS induction with time spend immobile in the tail suspension test. We
365 found that mice that underwent CUS had a positive non-significant correlation (Fig. 7c; $r = 0.53$,

366 n=10 animals, $p=0.11$, Pearson correlation) between time immobile and high theta change.
367 However, there was a significant negative correlation between (Fig. 7c; $r = -0.62$, n=11 animals,
368 $p=0.041$, Pearson correlation) time immobile and high theta change in CUS mice that were
369 treated with SGE-516, indicating that larger increases in high theta power were associated with
370 less time spend immobile and depressive-like behavior in mice ($z = 2.54$, $p = 0.01$, Fisher
371 transformation). Furthermore, when including animals with the most extreme changes in
372 behavioral outcomes from both CUS and CUS+SAGE-516 groups, there was a strong negative
373 correlation (Fig. 7d; $r = -0.84$, n=12 animals, $p=0.00057$, Pearson correlation) between time spent
374 immobile and change of high/low (6-12/2-5Hz) theta power. These data suggest that larger
375 high/low theta power increases in BLA are associated with improved behavioral outcomes.

376 Our results show that SGE-516 can counteract the behavioral deficits induced by
377 sustained threat. In order to see if they can also reverse these behavioral deficits, we treated a
378 separate group of animals with SGE-516 after CUS induction (Fig. 7e). SGE-516 treatment
379 following CUS exposure robustly reduced the total time spent immobile during a tail suspension
380 test tests 4 weeks following treatment (Fig. 7f; CUS: 257.9 ± 7.47 s, CUS + SGE-516: 160 ± 9.00 , n=7,
381 $p=0.0003$, paired t-test). Therefore, our data suggest that treatment with allo analog SGE-516
382 reduces behavioral deficits induced by sustained threat. Moreover, in CUS mice treated with SGE-
383 516 increases in high/low theta power from prior to post-CUS were associated with reduced time
384 spent immobile in the tail suspension test (Fig. 7g; $r = -0.74$, n=8 animals, $p=0.035$, Pearson
385 correlation). In addition, increased high/low theta ratio change in BLA (post-CUS/pre-CUS) was
386 associated with the behavioral response elicited from SGE-516 treatment (Fig. 7h; $r = -0.86$, n=8
387 animals, $p=0.006$, Pearson correlation). Overall, these results suggest that increases in high/low

388 theta ratio are associated with a reduction in behavioral deficits resulting from sustained threat
389 in mice.

390 To more broadly and unbiasedly examine the effects of CUS on global brain connectivity
391 we acquired the fMRI blood-oxygen-level-dependent (BOLD) signal. Mice that underwent the
392 CUS protocol exhibited altered functional connectivity across multiple brain areas when
393 compared to controls (Fig. 8i-j; CUS altered 84.95% of control connections: 254/299 and 325 new
394 connections). Interestingly, SGE-516 treatment during CUS reversed 47.32% (274/579) of the CUS
395 altered connections restoring control connectivity (Fig. 8j). Additionally, 89.78% (246/274) of the
396 reversed network connections were baseline control connections, indicating most of the new
397 connections made by CUS were not affected by SGE-516 treatment. These data show that
398 sustained threat produces brain-wide changes in functional connectivity of WT mice and suggest
399 that treatment with a synthetic neurosteroid analog of allo could act to partially restore those
400 changes.

Figure 7. Synthetic Allopregnanolone analog SGE-516 prevents depressive-like behavior induced by chronic unpredictable stress (CUS) in C57bl/6 mice. a-d, SGE-516 application during CUS. a, Timeline of CUS paradigm with LFP and behavioral sessions. b, Left - Time spent immobile in tail suspension test (TST) and Right- % sucrose preference in control/no CUS (white), CUS (black), and CUS +SGE-516 (orange) animals. c, Time spent immobile in TST plotted against high theta (6-12Hz) power change prior to and post CUS induction in CUS (black) and CUS + SGE-516 (orange) mice. d, Time spent immobile in TST plotted against theta ratio change (6-12/2-5HzHz) in both CUS (black) and CUS +SGE-516 (orange) using outlier selection. e-h, SGE-516 application after CUS. e, Timeline of CUS paradigm with LFP and behavioral sessions. f, Time spent immobile in TST before and after SGE-516 application. g, Time spent immobile in TST plotted against theta ratio (6-12/2-5HzHz) change prior to and post CUS induction in CUS (black) and CUS + SGE-516 (orange) mice. h, TST response difference prior to and post SGE-516 application plotted against theta ratio (6-12/2-5HzHz) change prior to and post CUS. Power changes in correlation plots were calculated as the percent difference between 4 weeks post-CUS and 24 hours prior to CUS; r -values represent the Pearson correlation coefficient. i-j, Resting state functional connectivity; **type-of-connection legend: black: downregulated, blue: upregulated, green: reversed by SGE-516, pink: potentiated by SGE-516. i, Representative brain volumes of resting state functional connectivity in CUS and CUS+SGE-516 mice. Arrows indicate directionality of connections from the indicated seed regions; arrow color reflects type of connection change based on type-of-connection legend; *AC*: Auditory Cortex, *BLA*: Basal Lateral Amygdaloid Area, *CA1*: Cornu Ammonis 1, *CA3*: Cornu Ammonis 3, *CEA*: Central Nucleus of the Amygdala, *COA*: Cortical Amygdaloid Area, *LA*: Lateral Amygdaloid Area, *LC*: Locus Coeruleus, *MEA*: Medial Amygdaloid Area. j, Connectome map indicating significant changes in BOLD signal connectivity, Outer circle lines represent brain areas of the respective color as indicated in the bottom legend.**

402

403

404

405

406

407

408

409

410 Discussion

411 Here we demonstrate that neurosteroids alter network oscillations across multiple species (Fig.1)
412 and in rodents they potentiate high-theta^{6-12Hz} power unlike other GABA agonists (Fig.1-2 &
413 Supplementary Fig.1). This increase in BLA high-theta power was found to be largely mediated
414 through δ subunit-containing GABA_{AR}s which are uniquely expressed in PV+ interneurons in the
415 BLA (Fig.2-3). Furthermore, the BLA network *ex-vivo* can self-sustain oscillations that are under
416 PV+ interneuron control (Fig.4-5). Importantly, we show that acute allo infusion into the BLA is
417 sufficient to alter behavioral states (Fig. 6) and systemic neurosteroid (SGE-516) treatment
418 protects mice from behavioral deficits induced from sustained threat (Fig. 7).

419 It has been shown that distinct oscillatory states in BLA-PFC areas seem to be associated
420 with aversion and safety(Davis et al. 2017; Karalis et al. 2016; Likhtik et al. 2014). Indeed, the
421 behavioral expression of fear and safety associated with shifts in the low-^{~4Hz} and high-theta^{~8Hz}
422 bands, respectively(Davis et al. 2017; Karalis et al. 2016; Ozawa et al. 2020). Here, we observed
423 that acute allo increased the high/low theta^{6-12/2-5Hz} power in the BLA (Fig. 2f) and decreased
424 behaviors relevant to anxiety- and depressive-like states (Fig. 6). Furthermore, allo-analog (SGE-
425 516) treatment restored healthy behavioral states in mice that underwent sustained threat (Fig.
426 7e-f), where larger restoration was associated with greater increases in BLA high/low theta^{6-12/2-}
427 ^{5Hz} power (Fig. 7g-h). Therefore, our findings reinforce the evidence that increases in high/low
428 theta band are associated with safety(Davis et al. 2017; Ozawa et al. 2020) and further suggest
429 that they could generalize them to healthy brain states beyond the realm of fear. We also
430 observed that high-theta^{6-12Hz} and beta^{15-30Hz} oscillations in BLA were significantly higher during
431 allo application in WT compared to *Gabrd*^{-/-} mice (Fig. 2e) indicating that they could also be an

432 important component of neurosteroid treatment. Beta^{15-30Hz} power was also strongly elevated
433 by diazepam in both mice and rats (Supplementary Fig. 1), in agreement to previous findings(Van
434 Lier et al. 2004). These results could suggest that high-theta^{6-12Hz} and not beta^{15-30Hz}-oscillation
435 elevation is unique to the proposed mechanisms of action mediated by neuroactive steroids and
436 potentially contribute to their superior antidepressant effects.

437 We also examined whether the BLA network can support rhythmic oscillations. To the
438 best of our knowledge, we are the first to show that the mouse BLA can generate *ex-vivo*
439 oscillations at gamma-band range^{~40Hz} during high K⁺/Kainate (K⁺/KA) tone (Fig. 4, Supplementary
440 Fig. 3). Gamma power is stronger in the BLA than nearby regions in awake mice, and BLA multi-
441 units are phase-locked to BLA gamma oscillations(Kanta, Pare, and Headley 2019). Together,
442 these findings indicate that the BLA can generate and self-sustain network oscillations in the
443 gamma-band range despite the lack of an apparent laminar organization with parallel pyramidal
444 cell organization. The generation of gamma rhythmogenesis in the *ex-vivo* BLA seems to rely
445 exclusively on GABAergic interneuron signaling as these gamma-oscillations were only blocked
446 by a GABA_AR blocker and not by an AMPAR blocker (Fig. 4d-g), in agreement to gamma
447 oscillations in the rat BLA(Randall, Whittington, and Cunningham 2011). Furthermore, prolonged
448 exposure of a GABA_A receptor antagonist induced oscillations in the theta band-range^{3-12Hz} (Fig.
449 4f-g). Therefore, it is possible that under certain conditions, such as reduced inhibitory tone, the
450 BLA can generate theta-oscillations intrinsically that can be detected by LFP recordings.

451 We also demonstrate that rhythmic photo-excitation of PV⁺ interneurons could entrain
452 network activity in BLA slices (Fig. 5e-f, Supplementary Fig. 4b,c). PV⁺ interneurons form a large
453 interconnected network in the BLA(Muller, Mascagni, and McDonald 2005) and release GABA

454 onto the perisomatic regions of their post-synaptic neurons, allowing them to effectively control
455 their output(Bartos, Vida, and Jonas 2007; Veres, Nagy, and Hájos 2017). Indeed, it has been
456 shown that rhythmic optogenetic BLA PV+ activation in awake mice entrains BLA multi-unit
457 activity(Ozawa et al. 2020). Thus, our findings together with existing literature suggest that PV+
458 interneurons are ideally poised to synchronize and control the oscillatory state of the BLA
459 network and pharmacological agents targeting this cellular mechanism are capable of altering
460 network and behavioral states.

461 We further observed that allo application enhances tonic inhibition on BLA PV+
462 interneurons but not on principal cells (Fig. 3), similar to previous reports(Liu et al. 2014). Tonic
463 inhibition on interneurons has been previously proposed to promote network
464 synchronization(Pavlov et al. 2014). It is possible that the ability of allo to modulate BLA network
465 synchronization involves the potentiation of tonic inhibition on PV+ interneurons.

466 The current study focused on the impact of allopregnanolone on oscillations within the
467 BLA. Future studies are required to resolve the impact of allopregnanolone on coupling between
468 anxiety-related networks, such as communication between the BLA and medial prefrontal cortex
469 or the ventral hippocampus(Calhoon and Tye 2015; Likhtik et al. 2014; Tovote, Fadok, and Lüthi
470 2015). Further, the impact of the saline injections on oscillations in the BLA, which interestingly
471 oppose the effects of allopregnanolone (Fig. 2c & Supplementary Fig. 2a-b), are likely the result
472 of the stress of the injection and suggest that acute stress may also impact network and
473 behavioral states.

474 It was observed that the long-lasting antidepressant effect in clinical trials which outlasts
475 the pharmacokinetics of the drug exposure and is not easily explained by the known mechanism

476 of action (Daly et al. 2018; Meltzer-Brody et al. 2018). Our data demonstrate that
477 allopregnanolone is able to shift the network oscillation state in the BLA through δ subunit-
478 containing GABA_{AR}s, though not exclusively through this mechanism (Fig. 2, Fig. 7j). One could
479 envision that allopregnanolone acts on δ subunit-containing GABA_{AR}s to shift the network to a
480 healthy network state that is more stable and can persist in the absence of the compound. Future
481 studies are required to fully understand the long-term effects of allopregnanolone on the
482 network, which will be informative for understanding the mechanisms mediating the clinical
483 effectiveness of allopregnanolone as an antidepressant treatment. These data demonstrate a
484 novel molecular and cellular mechanism orchestrating network and behavioral states, although,
485 we do not presume that this is the only mechanism involved in switching between network
486 states. In fact, there are likely numerous mechanisms which can alter the network in a similar
487 manner (Swensen and Marder 2000).

488

489

490

491

492

493

494

495

496

497

498 **References**

499 Antonoudiou, Pantelis et al. 2020. "Parvalbumin and Somatostatin Interneurons Contribute to the
500 Generation of Hippocampal Gamma Oscillations." *Journal of Neuroscience* 40(40): 7668–87.
501 <https://doi.org/10.1523/JNEUROSCI.0261-20.2020> (February 1, 2021).

502 Babaev, Olga, Carolina Piletti Chatain, and Dilja Krueger-Burg. 2018. "Inhibition in the Amygdala Anxiety
503 Circuitry." *Experimental and Molecular Medicine* 50(4).

504 Bartos, Marlene, Imre Vida, and Peter Jonas. 2007. "Synaptic Mechanisms of Synchronized Gamma
505 Oscillations in Inhibitory Interneuron Networks." *Nature reviews. Neuroscience* 8(1): 45–56.

506 Calhoun, Gwendolyn G., and Kay M. Tye. 2015. "Resolving the Neural Circuits of Anxiety." *Nature
507 Neuroscience* 18(10): 1394–1404.

508 Daly, Ella J. et al. 2018. "Efficacy and Safety of Intranasal Esketamine Adjunctive to Oral Antidepressant
509 Therapy in Treatment-Resistant Depression: A Randomized Clinical Trial." *JAMA Psychiatry* 75(2):
510 139–48.

511 Davis, Patrick, Yosif Zaki, Jamie Maguire, and Leon G Reijmers. 2017. "Cellular and Oscillatory Substrates
512 of Fear Extinction Learning." *Nature Neuroscience* 20(11): 1624–33.
513 <http://www.nature.com/articles/nn.4651> (August 2, 2019).

514 Felix-Ortiz, A. C. et al. 2016. "Bidirectional Modulation of Anxiety-Related and Social Behaviors by
515 Amygdala Projections to the Medial Prefrontal Cortex." *Neuroscience* 321: 197–209.

516 Fenster, Robert J., Lauren A.M. Lebois, Kerry J. Ressler, and Junghyup Suh. 2018. "Brain Circuit
517 Dysfunction in Post-Traumatic Stress Disorder: From Mouse to Man." *Nature Reviews Neuroscience*
518 19(9): 535–51.

519 Jobert, Marc et al. 2012. "Guidelines for the Recording and Evaluation of Pharmaco-EEG Data in Man:
520 The International Pharmaco-EEG Society (IP-EEG)." *Neuropsychobiology* 66(4): 201–20.
521 <https://www.karger.com/Article/FullText/343478> (March 9, 2020).

522 Kanta, Vasiliki, Denis Pare, and Drew B. Headley. 2019. "Closed-Loop Control of Gamma Oscillations in
523 the Amygdala Demonstrates Their Role in Spatial Memory Consolidation." *Nature Communications*
524 10(1): 1–14.

525 Karalis, Nikolaos et al. 2016. "4-Hz Oscillations Synchronize Prefrontal-Amygdala Circuits during Fear
526 Behavior." *Nature Neuroscience* 19(4): 605–12.

527 Krabbe, Sabine, Jan Gründemann, and Andreas Lüthi. 2018. "Amygdala Inhibitory Circuits Regulate
528 Associative Fear Conditioning." *Biological psychiatry* 83(10): 800–809.
529 <http://www.ncbi.nlm.nih.gov/pubmed/29174478> (August 2, 2019).

530 Lee, Vallen, and Jamie Maguire. 2014. "The Impact of Tonic GABA Receptor-Mediated Inhibition on
531 Neuronal Excitability Varies across Brain Region and Cell Type." *Frontiers in Neural Circuits* 8(FEB).

532 Van Lier, Hester, Wilhelmus H.I.M. Drunkenburg, Yvonne J.W. Van Eeten, and Anton M.L. Coenen. 2004.
533 "Effects of Diazepam and Zolpidem on EEG Beta Frequencies Are Behavior-Specific in Rats."
534 *Neuropharmacology* 47(2): 163–74.

535 Likhtik, Ekaterina et al. 2014. "Prefrontal Entrainment of Amygdala Activity Signals Safety in Learned
536 Fear and Innate Anxiety." *Nature Neuroscience* 17(1): 106–13.

537 Liu, Zhi Peng et al. 2014. "Chronic Stress Impairs GABAergic Control of Amygdala through Suppressing
538 the Tonic GABA Receptor Currents." *Molecular Brain* 7(1): 32.
539 <http://molecularbrain.biomedcentral.com/articles/10.1186/1756-6606-7-32> (February 27, 2020).

540 Meltzer-Brody, Samantha et al. 2018. "Brexanolone Injection in Post-Partum Depression: Two
541 Multicentre, Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trials." *The Lancet*
542 392(10152): 1058–70.

543 Mihalek, Robert M. et al. 1999. "Attenuated Sensitivity to Neuroactive Steroids in γ -Aminobutyrate Type
544 A Receptor Delta Subunit Knockout Mice." *Proceedings of the National Academy of Sciences of the*
545 *United States of America* 96(22): 12905–10.

546 Muller, Jay F., Franco Mascagni, and Alexander J. McDonald. 2005. "Coupled Networks of Parvalbumin-
547 Immunoreactive Interneurons in the Rat Basolateral Amygdala." *Journal of Neuroscience* 25(32):
548 7366–76.

549 Ozawa, Minagi et al. 2020. "Experience-Dependent Resonance in Amygdalo-Cortical Circuits Supports
550 Fear Memory Retrieval Following Extinction." *Nature Communications* 11(1): 1–16.
551 <https://doi.org/10.1038/s41467-020-18199-w> (February 2, 2021).

552 Pavlov, Ivan et al. 2014. "Tonic GABA_A Conductance Bidirectionally Controls Interneuron Firing Pattern
553 and Synchronization in the CA3 Hippocampal Network." *Proceedings of the National Academy of
554 Sciences of the United States of America* 111(1): 504–9.

555 Randall, Fiona E., Miles A. Whittington, and Mark O. Cunningham. 2011. "Fast Oscillatory Activity
556 Induced by Kainate Receptor Activation in the Rat Basolateral Amygdala in Vitro." *European Journal
557 of Neuroscience* 33(5): 914–22. <http://doi.wiley.com/10.1111/j.1460-9568.2010.07582.x> (February
558 26, 2020).

559 Schiller, Crystal Edler, Peter J. Schmidt, and David R. Rubinow. 2014. "Allopregnanolone as a Mediator of
560 Affective Switching in Reproductive Mood Disorders." *Psychopharmacology* 231(17): 3557–67.

561 Stell, Brandon M. et al. 2003. "Neuroactive Steroids Reduce Neuronal Excitability by Selectively
562 Enhancing Tonic Inhibition Mediated by δ Subunit-Containing GABA_A Receptors." *Proceedings of
563 the National Academy of Sciences of the United States of America* 100(SUPPL. 2): 14439–44.

564 Stujenske, Joseph M., Ekaterina Likhtik, Mihir A. Topiwala, and Joshua A. Gordon. 2014. "Fear and Safety
565 Engage Competing Patterns of Theta-Gamma Coupling in the Basolateral Amygdala." *Neuron* 83(4):
566 919–33.

567 Swensen, Andrew M., and Eve Marder. 2000. "Multiple Peptides Converge to Activate the Same Voltage-
568 Dependent Current in a Central Pattern-Generating Circuit." *Journal of Neuroscience* 20(18): 6752–
569 59.

570 Tovote, Philip, Jonathan Paul Fadok, and Andreas Lüthi. 2015. "Neuronal Circuits for Fear and Anxiety."

571 *Nature Reviews Neuroscience* 16(6): 317–31.

572 Veres, Judit M, Gergő A Nagy, and Norbert Hájos. 2017. "Perisomatic GABAergic Synapses of Basket Cells

573 Effectively Control Principal Neuron Activity in Amygdala Networks." *eLife* 6.

574 <https://elifesciences.org/articles/20721> (August 2, 2019).

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590 **Author Contributions**

591 Conceptualization & Writing-Original: P.A and J.L.M., Project Administration, Supervision &
592 Funding Acquisition: J.L.M., Visualization: P.A and P.L.W.C, Data curation, programming and
593 mouse LFP analysis: P.A., Writing-Review & Editing: P.A, J.L.M, P.L.W.C, N.L.W, G.L.W, A.C.S,
594 D.P.N, M.K. and M.C.Q.
595 J.L.M conducted and analyzed whole-cell, mouse awake LFP and behavior experiments, P.A and
596 P.L.W.C conducted ex-vivo LFP experiments, A.C.S, D.P.N, M.K. and M.C.Q conducted and
597 analyzed Human and Rat EEG experiments. L.C.M conducted and analyzed quantification delta-
598 subunit GABAA receptor experiments. N.L.W conducted the fMRI experiments. N.L.W and G.L.W
599 analyzed the fMRI experiments.

600

601 **Acknowledgements**

602 The authors would like to thank Dr. Leon Reijmers for providing constructive comments on the
603 manuscript. The authors would also like to thank the Biostatistics, Epidemiology, and Research
604 Design (BERD) Center and specifically Dr. Jessica Paulus, ScD, for consultation and assistance
605 with the correlational analysis and statistical measures. Collectively we also thank the Center
606 for Translational Neuroimaging at Northeastern University for providing access to the Bruker
607 BioSpec 7.0T and for assisting in fMRI data collection and analysis. J.L.M., P.A., N.L.W, G.L.W,
608 P.L.W.C., and L.C.M. were supported by R01AA026256, R01NS105628, R01NS102937, and a
609 sponsored research agreement with SAGE Therapeutics.

610

611 **Declaration of Interests**

612 J.M. serves as a member of the Scientific Advisory Board for SAGE Therapeutics, Inc. A.S., D.N.,

613 M.L, and M.Q. are employees of SAGE Therapeutics, Inc.,