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ABSTRACT 27 

Structural variants (SVs) are an important source of human genome diversity but their functional 28 

effects are not well understood. We mapped 61,668 SVs in 613 individuals with deep genome 29 

sequencing data from the GTEx project and measured their effects on gene expression. We 30 

estimate that common SVs are causal at 2.66% of eQTLs, which is a 10.5-fold enrichment 31 

relative to their abundance in the genome and consistent with prior work using smaller sample 32 

sizes. Duplications and deletions were the most impactful variant types, whereas the 33 

contribution of mobile element insertions was surprisingly small (0.12% of eQTLs, 1.9-fold 34 

enriched). Multi-tissue analysis of expression effects revealed that gene-altering SVs show 35 

significantly more constitutive effects than other variant types, with 62.09% of coding SV-eQTLs 36 

active in all tissues with known eQTL activity compared to 23.08% of coding SNV- and indel-37 

eQTLs, while noncoding SVs, SNVs and indels show broadly similar patterns. We also identified 38 

539 rare SVs associated with nearby gene expression outliers. Of these, 62.34% are noncoding 39 

SVs that show strong effects on gene expression yet modest enrichment at known regulatory 40 

elements, demonstrating that rare noncoding SVs are a major source of gene expression 41 

differences but remain difficult to predict from current annotations. Remarkably, both common 42 

and rare noncoding SVs often show strong regional effects on the expression of multiple genes: 43 

SV-eQTLs affect an average of 1.82 nearby genes compared to 1.09 genes affected by SNV- 44 

and indel-eQTLs, and 21.34% of rare expression-altering SVs show strong effects on 2-9 45 

different genes. We also observe significant effects on rare gene expression changes extending 46 

1 Mb from the SV. This provides a mechanism by which individual noncoding SVs may have 47 

strong and/or pleiotropic effects on phenotypic variation and disease. 48 

 49 

 50 

 51 

 52 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.03.06.434233doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.06.434233
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

INTRODUCTION 53 

Structural variants (SVs) are a diverse class of genetic variation that include copy number 54 

variants (CNVs), mobile element insertions (MEIs) and balanced rearrangements at least 50 55 

base pairs (bp) in length. While SVs are relatively rare compared to single-nucleotide variants 56 

(SNVs) and small insertion or deletion (indel) variants, their size and diversity mean that SVs 57 

can disrupt protein-coding genes and genomic regulatory elements through diverse 58 

mechanisms. Furthermore, SVs often have more severe consequences compared to smaller 59 

variants and previous studies have found that SVs have an outsized impact on human gene 60 

expression compared to their relative abundance in the genome (Chiang et al. 2017; Stranger et 61 

al. 2007; Sudmant et al. 2015). SVs have also been implicated in the biology of human diseases 62 

such as autism spectrum disorder (Brandler et al. 2018; Sebat et al. 2007; Turner et al. 2017; 63 

Weiss et al. 2008) and schizophrenia (International Schizophrenia Consortium 2008; Marshall et 64 

al. 2017; McCarthy et al. 2009; Walsh et al. 2008). However, SVs are difficult to detect from 65 

short-read DNA sequencing data and are often excluded from complex trait association studies. 66 

 Advances in high-throughput sequencing technologies that have allowed for widespread 67 

use of whole genome sequencing (WGS), combined with advances in scaling SV detection 68 

algorithms, mean that comprehensive studies of all forms of genetic variation are now possible 69 

for large human cohorts. Recent studies of SV in large, deeply-sequenced human cohorts have 70 

found that SVs account for 4.0-11.2% of rare high-impact coding alleles (Abel et al. 2020) and 71 

are responsible for 25-29% of rare protein-truncating events per genome (Collins et al. 2020). 72 

However, few studies to date have examined the functional effects of SV on gene expression 73 

and these studies are limited to relatively small cohort sizes or only a few tissue types with 74 

available gene expression data (Chiang et al. 2017; Han et al. 2020; Jakubosky et al. 2020; 75 

Sudmant et al. 2015). 76 

 Here, we use deep WGS data and multi-tissue RNA-seq expression data from 613 77 

individuals in the Genotype-Tissue Expression (GTEx) project to comprehensively map SVs and 78 
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to evaluate their impact on both common and rare gene expression changes in up to 48 tissue 79 

types (Supplemental Table S1). This study expands on our prior analysis of SV in 147 human 80 

samples from the GTEx cohort with RNA-seq expression data from 13 different tissues (Chiang 81 

et al. 2017) and is the most comprehensive study of SV-eQTLs to date. The expanded cohort 82 

size provides greater power to evaluate the impact and mechanisms of SV-associated gene 83 

expression changes, particularly for rare SVs.  84 

 85 

RESULTS 86 

Variant calling 87 

We mapped SVs in 613 individuals from the GTEx v7 release using LUMPY (Chiang et al. 2015; 88 

Layer et al. 2014), svtools (Larson et al. 2019), GenomeSTRiP (Handsaker et al. 2011, 2015) 89 

and the Mobile Element Locator Tool (MELT) (Gardner et al. 2017) (see Methods). Variant calls 90 

were filtered and merged using the same approach as in our previous GTEx study (Chiang et al. 91 

2017; Li et al. 2017), resulting in a total of 61,668 “high confidence” SVs that are the basis for all 92 

subsequent analyses (Table 1). Single nucleotide (SNV) and small insertion deletion (indel) 93 

variants were mapped using GATK (McKenna et al. 2010) as part of the official v7 release from 94 

the GTEx Consortium.  95 

 Detection 
method 

No. 
variants 

Median 
size (bp) 

# of common 
variants 

eVariants 

SNV GATK 37,087,030 1 9,609,545 178,000 
Indel GATK 3,081,270 3 818,401 16,460 
Deletion (DEL) BP 20,954 1,311 4,385 210 

RD 10,252 2,151 8,166 66 
Duplication (DUP) BP 3,388 2,632 1,090 64 

RD 1,598 6,891 896 233 
Multi-allelic CNV (mCNV) RD 4,365 3,602 3,238 460 
Inversion BP 295 1,054 96 2 
Reference mobile element insertion (MEI-del) BP 2,681 306 2,026 88 
Non-reference mobile element insertion (MEI-ins) BP 13,066 280 4,496 91 
Other (BND) BP 5,069 - 2,010 57 
All SVs - 61,668 - 26,409 1,271 
All Variants - 40,229,968 - 10,454,355 195,731 

Table 1. Summary of variant types and eQTL mapping. SVs were detected based on breakpoint evidence (BP) or 96 

read-depth evidence (RD). SNVs and indels were called using the Genome Analysis Toolkit (GATK). Common 97 

variants (MAF ≥ 0.01) were used to map cis-eQTLs. 98 
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Effects of common SVs 99 

We performed cis-eQTL mapping of common variants (MAF ≥ 0.01) using a permutation-based 100 

mapping approach with FastQTL (Ongen et al. 2016), limiting comparisons to variants within 1 101 

Mb of the transcription start site (TSS) of each gene. We performed eQTL analyses in each of 102 

the 48 tissues for which expression data was available for at least 70 individuals (Supplemental 103 

Table S1) and defined an eQTL as an eVariant/eGene pair detected in a given tissue. We 104 

performed a “joint” eQTL mapping analysis in which SVs, SNVs and indels were simultaneously 105 

queried for eQTL status, allowing for direct comparisons between their properties and 106 

identification of a likely causal variant. An SV was the lead marker in 2.66% (7,960/299,187) of 107 

eQTLs (Supplemental Table S2), although this is likely an underestimate of SV causality due 108 

to inferior genotyping accuracy for SVs, which biases eQTL fine-mapping analyses against SVs. 109 

While this estimate of the contribution of SVs is relatively small, it represents an 10.5-fold 110 

enrichment over the abundance of SVs in the genome. This result is consistent with our prior 111 

analysis of the initial 147 individuals from the GTEx cohort (Chiang et al. 2017). In the same 13 112 

tissues evaluated in this previous study, the increased sample size used here allowed us to 113 

identify 617 genes with SV-eQTLs that were not identified in the smaller study, though 57 genes 114 

from the initial study are no longer SV-eQTLs. Interestingly, 71.82% (5,717/7,960) of all SV-115 

eQTLs identified in this study are noncoding (Supplemental Fig. S1), meaning the SV does not 116 

intersect with any exons of its associated eGene. This figure is even more striking when eQTLs 117 

are collapsed across tissues, where 1,907/2,318 (82.27%) of unique eGene/eSV pairs are 118 

noncoding. This also suggests that coding SV-eQTLs are more constitutive as more of them are 119 

identified in multiple tissues. 120 

A novel aspect of this study is that we used MELT to sensitively map mobile element 121 

insertion (MEI) variants, including non-reference insertions that were not detected in our prior 122 

GTEx studies. It has been proposed that MEIs may have broad effects on gene expression due 123 
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to their ability to disrupt genes, promote epigenetic gene silencing, and serve as alternate 124 

promoters (Payer and Burns 2019; Chuong et al. 2017); however, there has been scant data in 125 

humans to address this. We found that only 0.12% (353/299,187) of eQTLs had an MEI as the 126 

lead marker. Although this is a 1.9-fold enrichment of predicted causal MEIs relative to their 127 

abundance (0.06% of common variants), MEIs were far less likely than other SV types to be the 128 

lead marker (e.g., mCNVs are enriched 45-fold, duplications 38-fold and deletions 3.3-fold). 129 

Thus, despite compelling molecular evidence for the functional potential of MEIs, our results 130 

suggest that they are only slightly enriched as causal eQTL variants relative to SNVs and indels 131 

and are depleted relative to other SVs, on average. 132 

 We found that not only do SVs have larger effect sizes compared to SNPs and indels, as 133 

noted in previous studies (Supplemental Fig. S1) (Jakubosky et al. 2020; Chiang et al. 2017), 134 

they are also more likely to alter the expression of multiple nearby genes. Each eSV affects an 135 

average of 1.82 unique eGenes while SNVs and indels affect an average of 1.09 unique 136 

eGenes. Although this effect is partially explained by large SVs that alter the copy number of 137 

multiple adjacent genes, there is also a significant difference for genes affected by noncoding 138 

eVariants: on average, eSVs affect 1.50 unique eGenes for which they do not intersect any 139 

exons of the eGene, compared to an average of 1.04 unique eGenes for SNVs and indels 140 

(p=1.02x10-55, one-sided Mann-Whitney U test) (Fig. 1B-D). These noncoding effects are  141 

most pronounced for duplications (p=6.10x10-53) and mCNVs (p=4.75x10-56), which are the only 142 

two categories of noncoding SVs that affect significantly more eGenes than point variants. This 143 

result indicates that causal SVs are generally more impactful than causal point variants, both in  144 

terms of their per-gene effect sizes as well as their potential to affect multiple genes. These 145 

results also suggest that SVs are more likely to disrupt key regulatory elements and/or alter 146 

higher-order genome architecture, allowing individual variants to affect multiple genes.  147 

To investigate the functional mechanisms of expression-altering SVs, we defined a set of 148 

putative causal SVs using a score generated by taking the product of the causal probability 149 
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calculated using CAVIAR (Hormozdiari et al. 2014) and the fraction of heritability attributed to 150 

the SV calculated using GCTA (Yang et al. 2011) (Supplemental Table S3), as described 151 

previously (Chiang et al. 2017). At each eGene we selected the SV within the cis-region that 152 

had the strongest association with the eGene’s expression and allocated these 10,911 unique 153 

SVs into six bins on the basis of causality score quantiles, with the least-causal bin containing 154 

the 50% of SVs with the lowest scores. Next, we measured the enrichment of SVs in each 155 

causality bin at a diverse set of genomic annotations and in the core 15 chromatin segmentation 156 

states from the Roadmap Epigenomics Project using a permutation test based on shuffled 157 

genomic positions (Supplemental Fig. S2-S3; see Methods). SVs in the most causal quantiles 158 

were strongly enriched in the exons of their associated eGenes, which is expected and confirms 159 

that our causality score is informative. We also observed an enrichment of causal SVs in the 10 160 

kb regions upstream of the TSS and downstream of the 3’ UTR of the associated eGene. 161 

Additionally, there is a small enrichment of the causal SVs in segmental duplications, which is 162 

likely driven by large mCNVs at multi-copy genes. However, predicted causal SVs were not 163 

enriched in any other genomic features tested, which suggests that while eSVs are generally 164 

found relatively close to their eGenes, they may be altering expression through diverse 165 

mechanisms and our study is underpowered to identify enrichments in specific regulatory 166 

element classes. Alternatively, existing annotations may be insufficiently informative to detect 167 

functional enrichments for the variants and tissues analyzed here.  168 

 The number and diversity of tissues with available expression data allows us to evaluate 169 

the tissue specificity of eQTLs. We hypothesized that SVs might have more ubiquitous effects 170 

on gene expression than point variants due to constitutively-acting dosage changes or due to 171 

complete deletion or duplication of regulatory elements rather than more subtle effects, for 172 

example, on transcription factor binding. To allow for facile comparisons between variant types, 173 

we limited this analysis to variant-gene pairs with a significant association in our eQTL analysis 174 

for which expression data was available across all 48 tissues. We used METASOFT (Han and 175 
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Eskin 2011) to evaluate eQTL activity across all tissues and limited this analysis to eQTLs for 176 

which active (m>0.9)  or inactive (m<0.1) status could be determined in at least 43 tissues. We 177 

found that coding SV-eQTLs are more constitutive than other eQTL classes, showing activity 178 

across a larger proportion of tissues compared to SNV- and indel-eQTLs (Fig. 1E). Whereas 179 

92.16% of coding SV-eQTLs are constitutively active – defined here as active in >75% of 180 

tissues with known status – only 74.12% of coding SNV- and indel-QTLs are constitutive. 181 

However, the result at noncoding eQTLs is less clear: 74.86% of noncoding SV-eQTLs are 182 

constitutively active as defined above and 74.12% of noncoding SNV- and indel-eQTLs are 183 

constitutive, which suggests that there are not significant differences between these variant 184 

categories. However, when we examine noncoding eQTLs that are active in 100% of tissues 185 

with known activity, 44.44% of noncoding SV-eQTLs are active in all known tissues compared to 186 

26.23% of noncoding SNV- and indel-eQTLs (Supplemental Fig. S4). Overall this analysis 187 

shows that coding SVs typically impact expression across many tissues, whereas smaller and 188 

noncoding variants tend to affect gene expression on a more tissue-specific basis. In contrast to 189 

coding SV-eQTLs, noncoding SV-eQTLs show similar patterns of tissue specificity to noncoding 190 

SNV- and indel-eQTLs, indicating that these variant types are likely to function through similar 191 

mechanisms. However, it is important to note that noncoding SV-eQTL activity could not be 192 

determined by METASOFT in many tissues (Supplemental Fig. S5), so it is possible that the 193 

true tissue specificity of noncoding SVs may differ from noncoding SNVs and indels. This 194 

appears to be the result of relatively large effect-size standard errors for SV-eQTLs that result 195 

from genotyping inaccuracies. While METASOFT can determine cross-tissue eQTL activity 196 

when effect sizes are large despite large standard errors, as seen in coding SV-eQTLs, when 197 

effect sizes are small but effect size errors are large, the algorithm often cannot confidently 198 

judge activity (Supplemental Fig. S6). 199 

 200 

Effects of rare SVs 201 
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Rare SVs are enriched near genes with highly aberrant expression (Chiang et al. 2017) and are 202 

more likely to have large effect sizes compared to other variant types (Li et al. 2017). To assess 203 

the effects of rare SVs on gene expression, we identified genes in which individuals displayed 204 

highly aberrant gene expression levels compared to the dataset as a whole. We limited this 205 

analysis to the 513 individuals of European descent to reduce the effects of population 206 

stratification and limited our analyses to the 47 tissues in which data were available for at least 207 

70 European individuals (Supplemental Table S1). We defined 26,289 autosomal multi-tissue 208 

gene expression outliers (median |Z| ≥ 2 across all tissues in an individual) and 173,061 209 

autosomal “tissue-restricted” outliers with highly aberrant expression (|Z|≥4) in two or more 210 

tissues in the same individual. Next, we identified 13,768 “singleton” SVs no larger than 1 Mb in 211 

size that were positively genotyped in one individual. These rare SVs are strongly enriched 212 

within the gene body and flanking sequence of multi-tissue gene expression outliers compared 213 

to the null expectation in 1,000 random permutations of the outlier sample names, with 214 

enrichment decreasing as flanking distance increases (Supplemental Fig. S7). The enrichment 215 

of rare SVs in close proximity (14.1-fold enriched within 5 kb; 95% confidence interval (CI), 8.7-216 

25.1; p<0.001) to multi-tissue gene expression outliers is consistent with our prior work (Chiang 217 

et al. 2017), but the increased power in this study allows us to observe enrichment at greater 218 

distances as well. At flanking distances as large as 50 kb we observe a 6.4-fold enrichment 219 

(95% CI 4.9-8.8; p<0.001) of rare SVs around multi-tissue outliers, suggesting that rare SVs 220 

contribute to rare expression differences even from relatively large genomic distances. 221 

Importantly, because gene expression values can only decrease to 0, a conservative Z-score 222 

limit such as the one used for tissue-restricted outliers favors gene expression outliers with 223 

increased expression, thus limiting our ability to detect SVs associated with decreased 224 

expression (Supplemental Fig. S8). However, these conservative outlier definitions, combined 225 

with the above enrichment results, provide confidence in the set of outlier-associated SVs. 226 
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A total of 539 unique outlier-associated SVs are located in the gene body and 50 kb 227 

flanking region of gene expression outliers (Fig. 2A; Supplemental Table S4). Notably, 62.34% 228 

(336/539) of these are noncoding SVs that do not affect the coding sequence of one or more 229 

expression outliers. This contradicts the general assumption that rare SVs typically act through 230 

gene dosage effects. In total, 16.92% (31,978/188,988) of expression outliers are associated 231 

with a rare SV, although outliers can also arise via non-genetic mechanisms. To evaluate the 232 

relative potential of different SV types or sizes to cause expression outliers, we calculated the 233 

odds ratio (OR) of being outlier-associated for the SV category of interest compared to all other 234 

SVs. Duplications (OR 4.07) and mCNVs (OR 1.87) are most likely to be associated with an 235 

expression outlier, MEIs are least likely (OR 0.25) (Fig. 2B) and larger SVs are more likely to be 236 

outlier-associated regardless of type (Fig. 2C). However, many outlier-associated SVs are 237 

smaller in size (Fig. 2D). For example, 13.33% (50/375) of SVs associated with tissue-restricted 238 

outliers are smaller than 1 kb and nearly half (49.33%; 185/375) are smaller than 10 kb. Multi-239 

tissue outlier-associated SVs tend to be slightly larger, with only 4.98% (12/241) smaller than 1 240 

kb and 35.27% (85/241) smaller than 10 kb. Overall these results provide further evidence that 241 

rare SVs often affect gene expression through more complex mechanisms than large, dosage-242 

altering events. 243 

We next sought to determine if rare outlier-associated SVs are enriched in annotated 244 

genomic features. Although there was little signal in our enrichment analysis of common SVs, 245 

as described above, rare variants typically have larger effect sizes and are more likely to be 246 

deleterious. For this analysis, we defined a set of “control” SVs that are located within or near 247 

genes but do not exhibit expression effects. We identified 1,405 singleton SVs (1,327 248 

noncoding) located within 50 kb of autosomal genes that showed consistent expression levels 249 

(|Z| < 1) across all tissues in an individual. Although this is not an ideal set of control SVs 250 

considering that some may in fact alter gene expression in tissues or developmental timepoints 251 

for which expression was not measured, it is nonetheless a relatively conservative set of likely-252 
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nonfunctional SVs that can be used for comparison to outlier-associated SVs. We examined the 253 

overlap of both outlier- and control-associated noncoding SVs with annotated genomic features 254 

and with segmentation states from the Roadmap Epigenomics Project core 15-state model (Fig. 255 

3A). We observed significant enrichment of outlier-associated SVs in 5 of the 34 evaluated 256 

features and chromatin states (Fisher’s Exact test; Bonferonni p < 0.05). Most of these 257 

significant associations are in Roadmap Epigenomics Project segmentation states in close 258 

proximity to transcribed genes, including transcription at the 5’ and 3’ end of genes showing 259 

both promoter and enhancer signatures, active transcription start sites and regions flanking 260 

active transcription start sites. We also observed significant enrichment in the Roadmap 261 

Epigenomics Project segmentation state associated with zinc finger protein genes and in 262 

enhancer annotations from Genehancer. It is important to note, however, that the number of 263 

overlaps observed in this analysis is small and increased power might change these results. 264 

Thus, while rare SVs appear to have dramatic effects on gene expression, most existing 265 

functional annotations are not very informative. Consistent with this, the distribution of SV 266 

impact scores (Ganel et al. 2017) is not significantly different between expression-altering SVs 267 

and control SVs (Supplemental Fig. S9). 268 

Interestingly, we found that 115 (21.34%) outlier-associated SVs are associated with 269 

more than one expression outlier and that 8 (1.48%) are associated with 5-9 expression outliers, 270 

suggesting that many rare SVs may have regional effects. In order to evaluate these broader 271 

regional effects of rare expression-altering SVs, we relaxed the definition for aberrant 272 

expression to generate a set of “secondary” expression outliers in which the tissue-restricted 273 

(“primary”) outlier absolute Z-score cutoff was reduced to 3 in at least two tissues. We found 274 

significantly more primary and secondary outliers within 1 Mb of the 469 tissue-restricted outlier-275 

associated SVs compared to the 1,496 control-associated SVs and to a null distribution in which 276 

we randomly shuffled the sample names of outlier-associated SVs 1,000 times and calculated 277 

the median number of associated outlier genes (Fig. 3B,C). This increase is especially 278 
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pronounced for secondary outliers whose coding regions do not overlap with the associated SV. 279 

We observe that noncoding outlier-associated SVs are associated with an average of 1.44 280 

primary outliers (|Z|≥4) compared to an average of 0.02 associated primary outliers surrounding 281 

the shuffled null SVs (p-value=2.78x10-106; one-sided Mann-Whitney U test). These differences 282 

remain for secondary outliers, with an average of 3.34 secondary outliers found in the expanded 283 

region surrounding noncoding outlier-associated SVs compared to an average of 0.54 284 

secondary outliers for the shuffled null  (p-value=4.94x10-76; one-sided Mann-Whitney U test). 285 

These results suggest that rare SVs have far-reaching effects on gene expression and that 286 

these effects are primarily driven by noncoding regulatory mechanisms rather than changes to 287 

gene copy number. 288 

 289 

DISCUSSION 290 

We have comprehensively mapped SVs from WGS data in 613 individuals from the GTEx 291 

dataset and analyzed the impact of both common and rare SV on human gene expression. Our 292 

findings confirm results from previous analyses that SVs make an outsized contribution to 293 

common gene expression changes compared to their abundance in the genome and play an 294 

important role in rare gene expression differences (Chiang et al. 2017). A novel aspect of this 295 

study is the inclusion of a comprehensive set of MEI insertions, including those present in the 296 

GTEx samples but not the reference genome. We observed that MEIs do not play an especially 297 

important role in determining gene expression differences. In contrast, we found that mCNVs 298 

play an extremely impactful role, being 45-fold enriched among eQTL lead markers compared to 299 

their abundance in the genome and more likely to be associated with gene expression outliers 300 

(OR=1.88). mCNVs were found to give rise to most human variation in gene dosage 301 

(Handsaker et al. 2015), but our findings indicate that noncoding functional mCNVs are also 302 

abundant in the human genome. 303 
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 One of the major motivators for studies such as this one is to understand the role of 304 

genetic variation in affecting gene transcription. Unfortunately, expression-altering SVs were not 305 

well correlated with any specific functional annotations other than proximity to genes, and thus 306 

existing annotations are unlikely to be informative for modeling functional variant effects. This 307 

may simply be due to a lack of power given that SVs are such a diverse class of variants that 308 

can affect large genomic segments and have the potential to affect gene expression through 309 

diverse mechanisms, and our sample size is limited to 11,026 common SVs and 539 rare SVs 310 

predicted to be functional. Alternatively, the annotations currently available may be inadequate.  311 

Nonetheless, it is clear that SVs have broad regional impacts on human gene 312 

expression, with individual variants frequently affecting multiple genes. Interestingly, these 313 

effects are not driven by large CNVs that alter the dosage of multiple coding sequences, as one 314 

might naively expect, but are most commonly observed for noncoding variants: common 315 

noncoding eSVs affect an average of 1.50 unique genes and rare noncoding SVs are 316 

associated with an average of 1.44 primary expression outlier genes. This observation suggests 317 

a mechanism by which rare noncoding SVs may be especially deleterious, and may help 318 

explain why prior work has estimated that a surprisingly large number of rare noncoding 319 

deletions – an average of 19.1 per individual – appear to be under strong purifying selection 320 

(Abel et al. 2020). Furthermore, the burden of de novo CNVs has been associated with autism 321 

spectrum disorder, including for noncoding variants (Turner et al. 2017; Turner and Eichler 322 

2019). Our results provide a mechanism through which individual noncoding SVs can have 323 

strong and potentially pleiotropic effects, and thus a higher potential to contribute to disease. 324 

 While this study represents the most comprehensive analysis of the impact of SVs on 325 

human gene expression to date, our callset is missing some of the most repetitive classes of 326 

SV, such as short tandem repeats. As long read sequencing and variant calling methods 327 

improve, we will be able to gain additional insights into repetitive variants in the most complex 328 

regions of the genome. Despite the limitations of short-read sequencing data, this study 329 
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demonstrates the importance of comprehensive variant detection when evaluating genomic 330 

variants that contribute to gene expression and disease. SVs have a disproportionately large 331 

effect on common and rare gene expression changes and often affect multiple genes. Our 332 

findings reinforce the importance of comprehensive variant detection in the design of future trait 333 

mapping studies. 334 

 335 

METHODS 336 

Call set generation 337 

We obtained 613 whole-genome sequencing BAM files from the GTEx v7 release (dbGap 338 

accession phs000424.v7.p2, accessed 1 June 2016). Structural variant calls were generated 339 

using both the SpeedSeq v0.1.1 pipeline (Chiang et al. 2015), which performs sample-level 340 

breakpoint detection via LUMPY v.0.2.13 (Layer et al. 2014) followed by population-scale 341 

merging and genotyping of SV calls via svtools v0.3.1 (Larson et al. 2019) and the 342 

GenomeSTRiP v2.00.1636 read-depth analysis pipeline (Handsaker et al. 2011), as described 343 

in our preliminary GTEx study (Chiang et al. 2017). GenomeSTRiP false discovery rate (FDR) 344 

was evaluated based on available Illumina Human Omni 5M gene expression array data 345 

(n=161) using the GenomeSTRiP IntensityRankSumAnnotator. We limited GSCNQUAL to ≥ 1 346 

for GenomeSTRiP deletions and to ≥8 for multiallelic copy number variants, corresponding to an 347 

FDR of 10%. The GSCNQUAL cutoff for GenomeSTRiP duplications was set at ≥17, the point 348 

at which the FDR plateaued at 15.1% and did not fluctuate more than ±1% for over 50 steps of 349 

increasing GSCNQUAL score. Redundant Lumpy and GenomeSTRiP calls were merged as 350 

previously described (Chiang et al. 2017). Additionally, we ran the Mobile Element Locator Tool 351 

(MELT) v2.1.4 using MELT-SPLIT to identify ALU, SVA and LINE1 insertions into the test 352 

genomes (Gardner et al. 2017). We retained MELT calls categorized as “PASS” in the VCF info 353 

field that had an ASSESS score ≥3 and SR count ≥3. Genome Analysis Toolkit (GATK) 354 

HaplotypeCaller v3.4 (McKenna et al. 2010) SNV and indel calls were obtained from the GTEx 355 
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consortium (dbGap accession phs000424.v7.p2, accessed 1 June 2016). We use allele balance 356 

instead of genotype for analyses described in this paper because it is tolerant to alignment 357 

inefficiencies for the alternate SV allele. For MEIs identified by MELT, we converted generated 358 

genotypes (0/0, 0/1, 1/1) to integer values (0, 1, 2) that were used as a proxy for allele balance 359 

to allow for comparable analyses on these variants.  360 

 361 

Common eQTL mapping  362 

We mapped cis-eQTLs in each of the 48 tissues for which both WGS data and RNA-seq data 363 

was available in ≥70 individuals. Available tissues and those used in each analysis are listed in 364 

Supplemental Table S1. We refer to EBV-transformed lymphocytes and transformed 365 

fibroblasts as tissue types throughout this study for convenience. Biospecimen collection, RNA-366 

seq data alignment, RPKM calculations and data normalization were previously described 367 

(Lappalainen et al. 2013; Chiang et al. 2017). 368 

 We selected common genetic markers, defined as having MAF ≥ 0.01, for eQTL 369 

mapping. We performed a joint cis-eQTL analysis that included 26,409 common SVs, as well as 370 

9,609,545 common SNVs and 818,401 common indels detected using GATK, to allow for a fair 371 

comparison of the contribution of different variant types. We used FastQTL v2.184 (Ongen et al. 372 

2016) to perform cis-eQTL mapping, customized to accomidate the unique architecture of SVs 373 

(Chiang et al. 2017), using a cis window of 1 Mb on either side of the TSSs of autosomal and X-374 

chromosome genes with a permutation analysis to identify the most significant marker for each 375 

gene. For each tissue we applied the same covariates described in Chiang et al. 2017. We 376 

corrected for multiple-testing at the gene-level using the Benjamini-Hochberg method with a 377 

10% FDR. 378 

 379 

Feature enrichment 380 
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To evaluate whether SVs that cause common gene expression changes are enriched in 381 

particular genomic features, we calculated a previously described causality score (Chiang et al. 382 

2017) generated by taking the product of the SV heritability fraction obtained from GCTA (Yang 383 

et al. 2011) and the causal probability generated by CAVIAR (Hormozdiari et al. 2016) for the 384 

strongest-associated SV within the cis region of each eQTL. No associated SVs were identified 385 

in 199 eQTLs due to the subset of samples with available data in the relavent tissue and thus 386 

were not included in enrichment analyses. GCTA heritability estimates could not be calculated 387 

for a small number of eQTLs (6,146/299,187) due to nonpositive definite matrices, likely 388 

resulting from small sample sizes, and these loci were excluded from feature enrichment 389 

analyses. For SVs that were associated with multiple eQTLs or the same eQTL in multiple 390 

tissues, we selected the eQTL (tissue/gene pair) for which the SV had the highest causality 391 

score. SVs were allocated into bins based on causality score quantiles, with the first bin 392 

consisting of SVs in the bottom 50% of causality scores and the other five consisting of deciles 393 

of the top 50% of scores. 394 

 Next, we counted the number of SVs in each bin that intersected with various genomic 395 

annotations. We allowed 1 kb of flanking distance surrounding all annotations with the following 396 

exceptions: GENCODE exons, no flanking distance; proximity to TSS and 3’ gene end, 10 kb of 397 

directional flanking distance; topologically associated domain boundaries, 5 kb of flaking 398 

distance; Roadmap Epigenomics segmentation states, no flanking distance. SVs associated 399 

with multiple eGenes were considered to touch an eGene if they overlapped with the exons of 400 

any associated gene. SVs that touched an exon of an associated eGene were excluded from all 401 

feature enrichment analyses except for the enrichment of affected eGenes. To generate a 402 

shuffled null for comparison, SVs within each causality bin were shuffled with BEDTools v2.23.0 403 

(Quinlan and Hall 2010) into non-gapped regions of the genome within 1 Mb of the TSS of a 404 

gene. We did not allow shuffled SVs to intersect any exons of their new eGene. We calculated 405 

the fold enrichment of the number of SVs that intersect with each genomic feature compared to 406 
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the median number of intersections observed for 100 randomly shuffled sets within each 407 

causality bin. These shuffled sets were also used to empirically derive the 95% confidence 408 

intervals. 409 

 Regions 10 kb upstream of TSS and downstream of 3’ gene end were defined based on 410 

GENCODE v19 gene positions. DNAse hypersensitive regions and enhancer regions with a 411 

minimum support of 2 were obtained from the Dragon ENhancers database (DENdb) (Ashoor et 412 

al. 2015). We downloaded FunSeq 2.1.0 (Fu et al. 2014) regions and topologically associated 413 

domain boundaries from human embryonic stem cells from author websites 414 

(http://archive.gersteinlab.org/funseq2.1.0_data/ and 415 

http://compbio.med.harvard.edu/modencode/webpage/hic/hESC_domains_hg19.bed). 416 

GeneHancer (Fishilevich et al. 2017) enhancer regions for b38 were downloaded from the 417 

UCSC genome browser (Kent et al. 2002) and lifted over to b37 using CrossMap v0.2.6 (Zhao 418 

et al. 2014). Regions defined by the ENCODE (Encode Project Consortium 2012) project were 419 

downloaded from the UCSC genome browser. To evaluate the intersection with the chromatin 420 

segmentation state annotations from the Roadmap Epigenomics Project (Kundaje et al. 2015), 421 

we downloaded the core 15-state model annotations for all 127 available epigenomes 422 

(https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core423 

Marks/jointModel/final). We used BEDTools multiIntersectBed (Quinlan and Hall 2010) to 424 

identify genomic intervals where each of the 15 annotations is found in at least 10 of the 127 425 

available epigenomes and used these collapsed regions as the annotation intervals for SV 426 

intersections. 427 

 428 

eQTL tissue specificity 429 

We selected significant gene-variant pairs identified in eQTL mapping with available expression 430 

data available across all 48 tissues in which eQTL analyses were performed. These pairs were 431 

only required to have a significant eQTL in one tissue. We used METASOFT v2.0.0 (Han and 432 
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Eskin 2011) to perform a meta-analysis of the selected eQTL effect sizes and their standard 433 

errors across all 48 tissues. METASOFT employs a mixed effects model (RE2) to generate a 434 

posterior probability that an effect exists in each tissue (m-value) (Han and Eskin 2012). To 435 

allow computational feasibility with the relatively large number of tissues sampled, the Markov 436 

Chain Monte Carlo (MCMC) method was used to approximate these values. The m-values 437 

generated indicate whether a tested eQTL is active (m>0.9), inactive (m<0.1), or has ambiguous 438 

activity (0.1≤m≤0.9). Only eQTLs with at least 43 tissues having known (active or inactive) 439 

activity were included in analyses. eQTLs with active status in at least 75% of tissues with 440 

known activity were defined as “constitutively active.” 441 

 442 

Identification of expression outliers 443 

We limited outlier analyses to the 513 European individuals, the largest subpopulation in the 444 

cohort, who had available WGS data. We performed Z transformation of PEER-corrected 445 

expression values without quantile normalization across the 47 tissues for which RNA-seq data 446 

was available from the GTEx consortium for at least 70 European individuals (Supplemental 447 

Table S1). We defined two sets of gene expression outliers (gene/sample pairs) among these 448 

individuals: “multi-tissue” expression outliers in which an individual’s absolute median Z-score of 449 

a gene’s expression across all available tissues was ≥2, as previously described in (Chiang et 450 

al. 2017), and “tissue-restricted” outliers in which an individual’s absolute Z score for a gene’s 451 

expression was ≥4 in at least two different tissues. The two tissue requirement was necessary 452 

to eliminate false positive expression outliers resulting from individual tissues with systematically 453 

aberrant gene expression profiles for an individual. Additionally, we defined a set of control 454 

gene/sample pairs in which an individual’s absolute Z score of a gene’s expression was less 455 

than 1 across all tissues for which RNA-seq data was available. For all definitions we limited to 456 

gene/sample pairs with data available in at least 5 tissues. We removed one individual (GTEX-457 

14753) from this analysis due an excessive number of expression outliers. 458 
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Rare variant association with expression outliers 459 

We identified 15,016 structural variants that were positively genotyped in no more than one 460 

individual in the European cohort. Because large rare structural variants tend to affect gene 461 

expression through dosage changes, we removed 12 variants larger than 1 Mb in size from this 462 

analysis. We calculated the enrichment of singleton SVs overlapping with multi-tissue outlier 463 

transcripts and the flanking 5 kb sequence by randomly shuffling the outlier individual names 464 

1,000 times to determine the median number of times a rare variant randomly co-occurred with 465 

an outlier, as described in (Chiang et al. 2017). We also performed the reciprocal analysis 466 

counting the number of outliers that co-occurred within 5 kb of a rare SV. We repeated these 467 

calculations for increased outlier-flanking regions of 10 kb, 25 kb, 50 kb and 100 kb. We 468 

calculated the odds ratio of being outlier-associated by dividing the ratio of outlier-associated 469 

SVs to non-outlier associated SVs in a category of interest (SV type or size) by the ratio of 470 

outlier-associated SVs to non-outlier associated SVs for all SVs not included in the category. 471 

 472 

Feature enrichment for outlier-associated SVs 473 

We performed intersections between the 369 noncoding outlier-associated SVs and the same 474 

genomic features and chromatin segmentation states evaluated for eSVs. The above 475 

intersections were repeated for the 1,416 noncoding control-associated SVs. We calculated the 476 

fold enrichment of outlier-associated SVs in each feature compared to control-associated SVs 477 

and determined significant enrichments using a Fisher’s Exact Test with Bonferroni correction 478 

for multiple testing. 479 

 480 

Regional effect of rare SVs 481 

To evaluate the broader regional effects of rare, gene expression-altering SVs, we counted the 482 

number of tissue-restricted outlier genes, referred to as “primary” outliers, located in the 483 

spanning region and 1 Mb of flanking sequence both upstream and downstream of the 469 SVs 484 
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previously identified as being associated with an expression outlier. We repeated this analysis 485 

with a relaxed definition of tissue-restricted expression outliers, referred to as “secondary” 486 

outliers, in which the absolute Z score cutoff was reduced from |Z|≥4 to |Z|≥3. We compared the 487 

number of primary and secondary outliers found in the expanded region surrounding outlier-488 

associated SVs to the expanded region surrounding the 1,224 control-associated SVs. Finally, 489 

because the controls defined above do not represent a null expectation, we performed 1,000 490 

random permutations of the outlier-associated SV sample names and calculated the median 491 

number of associated primary and secondary outliers for each SV in order to determine how 492 

frequently rare expression-altering SVs co-occurred with primary and secondary outliers in 493 

random individuals.  494 

 495 
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Figure 1. Features of SV-eQTLs. (A) Size distribution of eSVs compared to all common SVs. (B) Distribution of 

the number of eGenes per eVariant for SVs compared to SNVs and indels. “Coding” eGenes refer to eGenes 

whose exons are intersected by the associated eVariant and “noncoding” eGenes are not intersected by the 

associated eVariant. Counts are shown for every eVariant, thus eVariants with zero coding or zero noncoding 

eGenes are included in the distributions. (C,D) The number of eVariants, as shown by dot size and color, with the 

indicated combination of coding and noncoding eGenes, as defined above. Shown for SVs (C) and SNV/indels 

(D), with histograms showing the total number of eVariants with the indicated number of associated coding or 

noncoding eGenes above the y- and x-axes, respectively. (E) Distribution of tissue specificity of eQTLs across 

tissues as evaluated by METASOFT, separated into the lowest quartile, middle two quartiles and top quartile, for 

eQTLs in which the activity status is known in at least 43 of 48 evaluated tissues. The points indicate the fraction 

of SV-eQTLs or SNV- and indel-eQTLs that are active (m>0.9) in the proportion of tissues indicated on the x-axis.
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Figure 2. Features of outlier-associated SVs. (A) Location of outlier-associated SVs relative to their associated outlier 
gene and the number of SV/outlier gene associations identified in each category. Percentages indicate the fraction of 
outlier/SV pairs found at each relative location compared to the total number of SV/outlier gene associations. Note that 
this definition allows one SV to be associated with multiple outlier genes and thus the SV is counted in multiple catego-
ries. Gene diagrams provide examples of possible SV location, shown in red, relative to the outlier gene. (B,C) Odds 

ratio (OR) of being outlier-associated by SV type (B) and SV size (C) for the SV category of interest compared to all 
other SVs. Note that BNDs were excluded from the size OR calculations due to their ambiguous nature and thus size. 
(D) Distribution of SV sizes for singleton SVs smaller than 1 Mb identified in European individuals that were used in 
outlier analyses. Panels depict size distributions for all European-cohort singletons, control-associated singletons, 
multi-tissue outlier-associated singletons and tissue-restricted outlier-associated singletons.
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Figure 3. Mechanistic insights into outlier-associated SVs. (A) Enrichment of outlier-associated SVs in 

functional genomic annotations compared to control-associated SVs. Asterisks indicate statistical significance 

based on a Fisher’s exact test with Bonferroni correction for multiple testing. (B,C) The distribution of the 

number of noncoding primary (B) and secondary (C) outliers found within 1 Mb of the region surrounding 
tissue-restricted outlier-associated SVs, control-associated SVs and a shuffled null.
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