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Summary: Single Particle Tracking (SPT) is one of the most
widespread techniques to evaluate particle mobility in a variety
of situations, such as in cellular and model membrane dynam-
ics. The proposed TRAIT2D Python library is developed to pro-
vide object tracking, trajectory analysis and produce simulated
datasets with graphical user interface. The tool allows advanced
users to customise the analysis to their requirements.
Availability and implementation: the software has been coded in
Python, and can be accessed from: https://github.com/Eggeling-
Lab-Microscope-Software/TRAIT2D, or the pypi and conda-
forge repositories.

A comprehensive user guide is provided at https://eggeling-lab-
microscope-software.github.io/TRAIT2D/.
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Introduction

Single Particle Tracking (SPT) is a method to quantify parti-
cle dynamics in a sample, such as lipids diffusing on biolog-
ical membranes (1). This is indifferent to the microscopy
technique adopted for detection, and in principle only re-
quires the sample to be sparse enough so that the target parti-
cles be identifiable singularly.

Among the earliest example of SPT experiments, we can
mention the testing of Einstein’s theory of Brownian motion
(2). The introduction of electronic camera detection and in-
novative microscopy systems have made it possible to collect
SPT data with framerates up to S0kHz (3-6).

While seemingly straightforward, the analysis of SPT data
is not immune from potential pitfalls. Conventionally, trajec-
tory analysis in diffusive systems is performed following Ein-
stein’s description of Brownian motion (7) and similar mod-
els (8, 9). This theoretical derivation, however, does not take
into account the localization error (10) and motion blurring
(11). Overlooking these sources of error could lead to overes-
timate diffusion coefficients (12), or to erroneously detected
subdiffusion (13).

Several toolboxes and algorithms have been produced to ful-
fill the need to identify and track single particles (14, 15,
etc), and analyse their motion employing conventional Mean
Squared Displacement analysis (16), Deep Learning (17, 18)
and other methods (19, 20). However, while in many cases
the source code is freely available, they are not platform-
agnostic and fully open-source. On the other hand, tools

available on free platforms, such as FIJT or ICY, are not easily
customisable.

With the TRacking Anlysls Toolkit, TRAIT2D, we aim to
provide a fully customisable tool for particle tracking, simu-
lation, and analysis. In TRAIT2D, intuitive graphical user in-
terfaces facilitate users with little to no coding experience to
develop their own analysis pipelines. A simple 2D tracking
algorithm is provided to extract trajectories from SPT data.
The source code allows more advanced users to customize
data analysis. Furthermore, a track simulator is included as
a validation tool of individual analysis pipelines. This al-
lows the user to generate movies of diffusing particles at vari-
able levels of signal-to-noise ratio, with a user-specified point
spread function.

Implementation

TRAIT2D is a cross-platform Python software package with
graphical user interfaces (GUIs) to support SPT experiments.
For simplicity, the software can be divided into three main
sections: the tracker, the simulator and the data analyser,
which can be used jointly (Figure 1). The details presented
here are expanded in the Supplementary Notes.

The tracker extracts particle trajectories from a temporal im-
age sequence. It allows a user to load and visualise TIFF
timelapse stack.Once the image sequence is loaded, the pa-
rameters of the tracking can be set for detection, sub-pixel
localisation and linking. The detection is implemented with
Spot Enhancing Filter (SEF) (21), while sub-pixel localiza-
tion is achieved using the radial symmetry center approach
(22). Particle trajectory linking takes into account spatial and
temporal distances between detections and exploits the Hun-
garian algorithm (23) for data association.

The simulator generates tracks in a virtual sandbox of arbi-
trary dimensions based on user-adjustable parameters, such
as particle diffusion coefficient and time interval between lo-
calization. It is possible to simulate particles diffusing in sim-
ple Brownian diffusion and hop diffusion modes (24). Once
the particle track has been generated, it is also possible to
generate a complete movie by performing the convolution of
the track with a point spread function, using varying levels of
Signal-to-Noise ratio and pixelation. The last phenomenon
has been implemented to model camera detectors usually em-
ployed for SPT. The purpose of this module is to provide
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Fig. 1. Workflow of the TRAIT2D software package. There are three possible av-
enues for the user to analyse their data: the user can import their timelapses, as tiff
stacks, into the Tracker GUI and extract particle trajectories (right), pre-determined
tracks can be imported in the Analyser GUI from CSV files, with the importer func-
tion present in the Analyser GUI center, or control datasets can be simulated in the
Simulator GUI, and analysed like experimental trajectories. Finally, the Analyser
GUI will perform the analysis by following the Mean Squared Displacement (MSD)
or the Apparent Diffusion Coefficient (ADC) pipelines (Supplementary Note 4).

computational controls and validation data sets for SPT de-
tection and tracking algorithms.

Finally, the analyser allows the user to quantitatively evaluate
tracks extracted from SPT movies following a Mean Squared
Displacement (MSD) and Apparent Diffusion Coefficient
(ADC) - based approach. Data analysis algorithms are ac-
cessible via the code or from a readily compilable GUI. Data
can be obtained through the TRAIT2D-tracker, simulated by
the simulator GUI or library, or imported from an externally
generated comma-separated value (csv) file (Figure 1). The
data analysis pipeline hereby employed is described in the
Supplementary Materials (11, 12). The presence of a GUI
for model fitting makes this procedure especially accessible
and intuitive. The user can choose to fix or to put constraints
on the fitting variables, as well as set the interval of data to be
considered for the operation. It is also possible for the user to
adopt alternative motion models which are not pre-compiled
in the system (see documentation). The source code, together
with exemplary Jupyter notebooks for easier understand-
ing, can be retrieved at https://github.com/Eggeling-Lab-
Microscope-Software/TRAIT2D. A comprehensive docu-
mentation can be found at https://eggeling-lab-microscope-
software.github.io/TRAIT2D/.

Conclusions

TRAIT2D is a Python-based, open source and easily deploy-
able toolkit for the analysis and simulation of bidimensional
SPT data. The combination of particle tracking, simulation,
and trajectory analysis in the same package provides a num-
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ber of benefits for the user. Another feature of this software
are its user-friendliness for inexperienced users, owing to the
presence of a clear graphical user interface, while retaining
the potential for customisation for more advanced users.
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