

1 **Evaluating the role of reference-genome phylogenetic distance on evolutionary inference**

2

3 Aparna Prasad¹, Eline D Lorenzen¹, Michael V Westbury^{1*}

4

5 1. GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen,
6 Denmark

7

8 Corresponding author: m.westbury@sund.ku.dk

9

10 **Abstract**

11

12 When a high-quality genome assembly of a target species is unavailable, an option to

13 avoid the costly *de novo* assembly process is a mapping-based assembly. However, mapping

14 shotgun data to a distant relative may lead to biased or erroneous evolutionary inference.

15 Here, we used short-read data from a mammal and a bird species (beluga and rowi kiwi) to

16 evaluate whether reference genome phylogenetic distance can impact downstream

17 demographic (PSMC) and genetic diversity (heterozygosity, runs of homozygosity) analyses.

18 We mapped to assemblies of species of varying phylogenetic distance (conspecific to

19 genome-wide divergence of >7%), and *de novo* assemblies created using cross-species

20 scaffolding. We show that while reference genome phylogenetic distance has an impact on

21 demographic analyses, it is not pronounced until using a reference genome with >3%

22 divergence from the target species. When mapping to cross-species scaffolded assemblies, we

23 are unable to replicate the original beluga demographic analyses, but can with the rowi kiwi,

24 presumably reflecting the more fragmented nature of the beluga assemblies. As for genetic

25 diversity estimates, we find that increased phylogenetic distance has a pronounced impact;

26 heterozygosity estimates deviate incrementally as phylogenetic distance increases. Moreover,

27 runs of homozygosity are removed when mapping to any non-conspecific assembly.

28 However, these biases can be reduced when mapping to a cross-species scaffolded assembly.

29 Taken together, our results show that caution should be exercised when selecting the
30 reference genome for mapping assemblies. Cross-species scaffolding may offer a way to
31 avoid a costly, traditional *de novo* assembly, while still producing robust, evolutionary
32 inference.

33

34 **Introduction**

35

36 The large extent of genetic information within the nuclear genome enables powerful
37 evolutionary inferences using just a single individual. Two options are available for genome
38 assembly: mapping-based assemblies using a closely-related species as reference, or *de novo*
39 assemblies. In the former approach, relatively little time and monetary expense is invested in
40 sequencing one individual to high coverage (>20x). After assembly, it is possible to make
41 population-wide evolutionary inferences of the target species, including levels of genetic
42 diversity and inbreeding, adaptive genomic changes, and demographic history (Barnett et al.,
43 2020; Lord et al., 2020; Michael V. Westbury, Petersen, Garde, Heide-Jørgensen, &
44 Lorenzen, 2019).

45

46 Although mapping-based assemblies are less costly than *de novo* assemblies, there are
47 some caveats. Biases towards the reference genome allele may be an issue when analysing
48 population-level datasets. Such errors can arise during variant calling, when the alternative
49 allele fails to be called altogether, or when heterozygous sites are incorrectly called as
50 homozygous for the reference allele (Brandt et al., 2015; Ros-Freixedes et al., 2018).
51 Although such issues are known to occur when mapping to a conspecific from a different
52 population, biases caused by mapping to phylogenetically more distant taxa have only

53 somewhat been addressed (Armstrong et al., 2020; M. V. Westbury et al., 2021). Problems
54 with correctly identifying variants may arise due to decreased mapping efficiency as
55 reference-genome phylogenetic distance increases (Shapiro & Hofreiter, 2014). However, the
56 consequences of this on downstream analyses have yet to be comprehensively assessed. This
57 leads to the question of whether the potentially costly *de novo* assembly process can be
58 avoided when assemblies from phylogenetically more distant species are available. Insights
59 into this will be especially important for the study of extinct species, where a conspecific
60 reference genome is unlikely to be available (Barnett et al., 2020; Palkopoulou et al., 2018).

61
62 Here, we investigate the influence of the reference genome's phylogenetic distance to
63 the target species on downstream evolutionary analyses. Specifically, we focused on estimates
64 of (i) demographic history (reconstructed using PSMC), (ii) genetic diversity (genome-wide
65 heterozygosity estimated using ANGSD, ROHAn, SAMtools/BCFtools), (iii) inbreeding/runs
66 of homozygosity (using ROHAn). Additionally, we investigated whether biases can be
67 overcome by using cross-species scaffolded con-specific assemblies as mapping reference.
68 We applied our methodology to two taxonomically disparate datasets; one based on mammals
69 (beluga and incrementally divergent cetacean species), and one based on birds (rowi kiwi and
70 incrementally divergent paleognath species). We selected these datasets based on the
71 assumption that mammal and bird genomes may respond differently to reference biases,
72 allowing for more generalised conclusions. Furthermore, while beluga whales are a relatively
73 abundant species (Hobbs et al., 2019), rowi kiwi are threatened with extinction and have
74 much lower population numbers (Robertson et al., 2017), which may play a role.

75
76

77 **Materials and methods**

78

79 A simplified version of the methodologies implemented in this manuscript are
80 presented in figure 1.

81

82 **Data**

83 For the cetacean comparative dataset, we downloaded the raw Illumina reads and an
84 assembled genome of the beluga (*Delphinapterus leucas*, Genbank accession code:
85 GCF_002288925.2, SRA code: SRR5197961). In addition, we downloaded genome
86 assemblies for five other cetacean species with varying genomic distance to the beluga (Table
87 1): narwhal (*Monodon monoceros*, Genbank accession code: GCF_005190385.1), narrow-
88 ridged finless porpoise (*Neophocaena asiaeorientalis*, Genbank accession code:
89 GCF_003031525.1), bottlenose dolphin (*Tursiops truncatus*, Genbank accession code:
90 GCF_001922835.1), sperm whale (*Physeter macrocephalus*, Genbank accession code:
91 GCA_002837175.2), and minke whale (*Balaenoptera acutorostrata*, Genbank accession
92 code: GCF_000493695.1). Assembly length, N50, and level of missing data for each
93 assembly are listed in supplementary table S1.

94

95 For the paleognath comparative dataset, we downloaded raw reads and an assembled
96 genome of the rowi kiwi (Genbank accession: GCF_003343035.1, SRA accession:
97 SRR6918118). We also downloaded published assemblies for three palaeognathae species of
98 varying genomic distance to the rowi kiwi (Table 1): North Island brown kiwi (termed brown
99 kiwi here, *A. mantelli*, Genbank accession: GCF_001039765.1), great spotted kiwi (termed
100 spotted kiwi here, *A. haastii*, Genbank accession: GCA_003342985.1), and emu (*Dromaius*

101 *novaehollandiae*, Genbank accession: GCF_003342905.1). Assembly length, N50, and levels
102 of missing data for each assembly are listed in supplementary table S2.

103

104 ***De novo* and mapping assemblies**

105 All mappings were performed following the same procedure for the beluga/cetacean
106 and rowi kiwi/palaeognathae species datasets. We trimmed adapter sequences and removed
107 reads shorter than 30bp from the raw reads using skewer v0.2.2 (Jiang, Lei, Ding, & Zhu,
108 2014)), and mapped the trimmed reads using BWA v0.7.15 (Li & Durbin, 2009) and the mem
109 algorithm utilising default parameters. We parsed the output and removed duplicates and
110 reads with a mapping quality lower than 30 with SAMtools v1.6 (Li et al., 2009).

111

112 For the beluga, we mapped the beluga short-read data to (i) published assemblies
113 (beluga, narwhal, finless porpoise, bottlenose dolphin, sperm whale, minke whale), (ii) a *de*
114 *novo* contig-level beluga assembly constructed for the purposes of this study, and (iii) five *de*
115 *novo* beluga assemblies produced by cross-species scaffolding the contig-level assembly with
116 each published non-beluga assembly using in-silico mate pair (MP) libraries.

117

118 For the rowi kiwi, we mapped the rowi short-read data to (i) published assemblies
119 (rowi kiwi, brown kiwi, spotted kiwi, emu), (ii) a *de novo* contig-level rowi kiwi assembly
120 constructed for the purposes of this study, and (iii) three *de novo* rowi kiwi assemblies
121 produced by cross-species scaffolding the contig-level assembly with each of the non-rowi
122 kiwi published assemblies using in-silico MP libraries.

123

124 We constructed *de novo* contig-level assemblies for both the beluga and the rowi kiwi
125 by first performing an error-correction step on the adapter-trimmed reads in tadpole from the
126 BBtools toolsuite (Bushnell, 2014) and a kmer size of 31. We constructed the *de novo*
127 assembly with the error-corrected reads using SOAPdenovo2 pregraph and contig (Luo et al.,
128 2012), specifying a kmer size of 51, and otherwise using default parameters.

129

130 To construct the cross-species scaffolded assemblies we used the contig-level
131 assemblies from above and scaffolded them either five times independently in the case of the
132 beluga, or three times independently in the case of the rowi kiwi. For this, we constructed in-
133 silico MP libraries using a modified version of the cross-species scaffolding pipeline (Grau,
134 Hackl, Koepfli, & Hofreiter, 2018) and repeat-masked versions of the published non-beluga
135 assemblies (narwhal, finless porpoise, bottlenose dolphin, sperm whale, minke whale) and
136 published non-rowi assemblies (brown kiwi, spotted kiwi, emu). Repeats were masked based
137 on the Genbank annotations.

138

139 In short, we constructed a fasta consensus sequence using a consensus base-call
140 approach (-doFasta 2) in ANGSD v0.931 (Korneliussen, Albrechtsen, & Nielsen, 2014) and a
141 minimum read depth of 3 (-minInddepth 3), minimum mapping quality of 25 (-minmapq 25),
142 minimum base quality of 25 (-minq 25), and only considered reads that mapped uniquely to
143 one location (-uniqueonly 1). We converted this fasta sequence into a pseudo-fastq sequence
144 with a quality score of 40 for all covered bases using BBtools (Bushnell, 2014), as input for
145 the seq-scripts pipeline.

146

147 From the consensus sequences, we constructed in-silico MP libraries with approximate
148 insert sizes of 1kb, 2kb, 3kb, 5kb, 8kb, 10kb, 15kb, and 20kb using seq-scripts
149 (<https://github.com/thackl/seq-scripts>), specifying a read length of 150bp and read depth of
150 100x. We scaffolded the contig-level beluga and rowi kiwi assemblies using SOAPdenovo2
151 map and scaff. To reduce the chances of mis-assembly by the longer in-silico MP libraries, we
152 specified MP libraries of different insert sizes as different ranks in the SOAP config file. The
153 shortest insert sizes had higher rankings; if a longer-insert library contradicted the shorter
154 inserts, they were not used for scaffolding.

155

156 We assessed the final assembly quality in the form of contiguity (N50) and amount of
157 missing data using QUAST v4.5 (Gurevich, Saveliev, Vyahhi, & Tesler, 2013).

158

159 **Sex-scaffold filtering**

160 To exclude sex-linked scaffolds in downstream demographic and heterozygosity
161 analyses, we determined the scaffolds that likely originated from the sex-chromosomes for
162 each of the scaffolded assemblies (published assemblies and the cross-species scaffolded
163 assemblies) used in this study. We found putative sex-chromosome scaffolds in the cetacean
164 species by aligning all assemblies to the Cow X (Genbank accession: CM008168.2) and
165 Human Y (Genbank accession: NC_000024.10) chromosomes, and putative sex-chromosome
166 scaffolds in the palaeognath species by aligning all assemblies to the chicken (*Gallus gallus*)
167 W (Genbank accession: CM000121.5) and Z (Genbank accession: CM000122.5)
168 chromosomes. We did this using satsuma synteny v2.1 (Grabherr et al., 2010) and default
169 parameters. We also removed scaffolds smaller than 10 kilobase pairs (kb) from all
170 downstream analyses.

171 **Divergence estimates**

172 To ensure comparability between the divergence estimates of our datasets, we
173 calculated the autosome-wide divergence of our species of interest, either beluga or rowi kiwi,
174 to the other species included in the study. To do this, we downloaded the raw reads for all the
175 species (Supplementary table S3) and mapped them back to either the published beluga
176 assembly or rowi kiwi assembly. We calculated the pairwise distance between species from
177 the resultant mapped bam files and a consensus base call approach in ANGSD (-doIBS 2),
178 and specifying the following parameters: -minq 25 -minmapq 25 -minind 4 -setMinDepthInd
179 5 -uniqueonly 1 -docounts 1 make a distance matrix (-makematrix 1), and only including
180 autosomal scaffolds over 10kb in length (-rf).

181

182 **Demographic reconstruction**

183 To determine the influence of (a) phylogenetic distance of the reference genome to the
184 target species, (b) reference genome contiguity, and (c) the utility of cross-species scaffolded
185 reference genomes on demographic reconstruction, we ran a Pairwise Sequentially Markovian
186 Coalescent model (PSMC) (Li & Durbin, 2011) on each diploid genome, resulting in a total of
187 twelve replicates for the beluga dataset and eight for the rowi kiwi dataset. We called diploid
188 genome sequences using SAMtools and BCFtools v1.6 (Narasimhan et al., 2016), specifying
189 a minimum quality score of 20 and minimum coverage of 10.

190

191 We ran PSMC specifying atomic intervals 4+25*2+4+6. Beluga PSMC outputs were
192 plotted using a generation time of 32 years (Garde et al., 2015) and mutation rate of 1.65e-08
193 (Michael V. Westbury et al., 2019). To plot the rowi kiwi PSMC outputs, we calculated a
194 mutation rate using the pairwise distance of the rowi kiwi to the brown kiwi (0.003123) and

195 the formula pairwise distance x 2 / divergence time. We used a divergence time ~3.8 Ma (De
196 Cahsan & Westbury, 2020) which resulted in a mutation rate of 1.64×10^{-9} per year or 4.1×10^{-8}
197 per generation assuming a generation time of 25 years (Weir, Haddrath, Robertson,
198 Colbourne, & Baker, 2016).

199

200 **Genetic diversity**

201 To determine the influence of (a) phylogenetic distance of the reference genome to the
202 target species, (b) reference genome contiguity, and (c) the utility of cross-species scaffolded
203 reference genomes on genetic diversity estimates, we estimated the autosome-wide
204 heterozygosity of the beluga mapped to all twelve cetacean assemblies and the rowi kiwi
205 mapped to all eight paleognath assemblies.

206

207 We calculated heterozygosity for each of the datasets using ANGSD. We estimated
208 autosomal heterozygosity using allele frequencies (-doSaf 1), taking genotype likelihoods into
209 account with the GATK algorithm (-GL 2), and specifying the following filters: only include
210 sites with a read depth of at least 5 (-mininddepth 5), minimum mapping and base qualities of
211 30 (-minmapq 30, -minq 30), only include reads mapping uniquely to one location (-
212 uniqueonly 1), only include reads where both read pairs map (-only_proper_pairs 1), only
213 include autosomal scaffolds (-rf), and the extended adjust quality scores around indels
214 parameter (-baq 2). Heterozygosity was computed from the output of this using realSFS from
215 the ANGSD toolsuite, specifying 20 megabase pairs (Mb) windows of covered sites (-nSites).

216

217 We subsequently tested whether the results are consistent regardless of parameter and
218 software selection using the beluga dataset mapped to the six published assemblies. We

219 assessed the influence of parameter selection in ANGSD on heterozygosity estimates by
220 computing heterozygosity using the procedure outlined above, but replacing the ‘extended
221 adjust quality scores around indels’ parameter (-baq 2), with (i) adjust quality scores around
222 insertion/deletions (indels) (-baq 1), (ii) no indel quality score adjustment (-baq 0), or (iii)
223 extended adjust quality scores around indels (-baq 2), and adjust quality for reads with
224 multiple mismatches to the reference (-C 50).

225

226 To assess whether software choice can impact results, we used two additional methods
227 to compute heterozygosity of the beluga mapped to the six published assemblies: ROHan
228 (Renaud, Hanghøj, Korneliussen, Willerslev, & Orlando, 2019), and the PSMC input diploid
229 file (SAMtools/BCFtools).

230

231 In ROHan, we used default parameters to calculate autosome-wide levels of
232 heterozygosity and runs of homozygosity (ROH). The default parameters specify a 1 MB
233 window as being a ROH, if the window has an average heterozygosity of less than 1e-5. To
234 calculate average autosome-wide heterozygosity from the diploid file used for the PSMC
235 analysis, we used seqtk comp (<https://github.com/lh3/seqtk>).

236

237 **Inbreeding (runs of homozygosity)**

238 As ROHan simultaneously outputs runs of homozygosity as well as autosome-wide
239 levels of heterozygosity, we could evaluate how reference genome phylogenetic distance
240 influences perceived inbreeding estimates using ROH. We did not retrieve any significant
241 ROH in the beluga dataset using ROHan, so we were unable to investigate this further using

242 the beluga data. We repeated the above ROHan analysis using the rowi kiwi mapped to all
243 eight assemblies (both published and cross-species scaffolded).

244

245 **Results**

246

247 **Mapping**

248 Mapping results of the beluga raw reads to each cetacean assembly can be found in
249 supplementary tables S4 and S5. Mapping results of the rowi kiwi raw reads to each
250 paleognath assembly can be found in supplementary tables S6 and S7. As phylogenetic
251 distance to the reference genome increases, there is a general trend of a decreasing number of
252 unique reads mapping. This trend is not seen when mapping to the five and three cross-
253 species scaffolded assemblies for beluga and rowi kiwi, respectively. However, less reads
254 map to these assemblies than to the conspecific assemblies.

255

256 **Cross-species scaffolded *de novo* assemblies**

257 Our contig-level beluga assembly had an N50 of ~3.5 kb. The cross-species scaffolded
258 assemblies were more contiguous, with N50s ranging from 283 kb to 614 kb (Supplementary
259 table S8). However, these assemblies also had a lot of introduced missing data (16% - 18%).
260 In comparison, the original assemblies for each species had N50s of 6.3 Mb - 122.2 Mb, and
261 missing data rates of 0.5% - 6% (Supplementary table S1).

262

263 Our contig-level rowi kiwi assembly had an N50 ~6.6 kb. The cross-species
264 scaffolded assemblies were more contiguous, with N50s ranging from 1.9 Mb - 4.9 Mb
265 (Supplementary table S9). These assemblies also had large amounts of introduced missing

266 data (10% - 21%). However, this was comparable to the brown kiwi assembly with 14% data.
267 Assembly contiguities were also more comparable to the published assemblies, which had
268 N50s of 1.4 Mb - 5.7 Mb (Supplementary table S2).

269

270 **Demographic reconstruction**

271 **Beluga** - With increasing phylogenetic distance of the reference genome, we see an
272 incremental increase in deviation from the pattern obtained when mapping to the published
273 beluga assembly (Fig 2A). However, we do not see an incremental change when using our
274 five cross-species scaffolded assemblies as reference. Instead we see that all newly assembled
275 genomes produce the same PSMC output. However, this output differs from the pattern
276 obtained when mapping to the published beluga assembly (Fig 2B).

277

278 When comparing PSMC results produced by mapping to the published beluga
279 assembly, and by mapping to our *de novo* contig-level beluga assembly, we see a pattern of
280 increase in N_e ~500 thousand years ago (kya) followed by a decrease ~150 kya. This is
281 consistent between both assemblies. However, the values of effective population size (N_e) are
282 much lower when mapping to the *de novo* contig-level assembly (Supplementary fig S1).

283

284 **Rowi kiwi** - Unlike the beluga, the PSMC results of the rowi kiwi were vastly
285 different when mapping to phylogenetic distant references compared to the published rowi
286 assembly (Supplementary fig S2). However, we do see the incremental change as
287 phylogenetic distance increases when mapping to the non-rowi assemblies. We investigated if
288 there was a problem with the published rowi assembly by reassembling it using the published
289 short-read and 3 kb mate-paired libraries (Sackton et al., 2019) with SOAPdenovo. Our

290 reassembled rowi kiwi genome was much less contiguous than the published version (0.3 Mb
291 vs 1.7 Mb) and had more missing data (12.7% vs. 1.6%). However, the PSMC produced when
292 mapping to this assembly was much more consistent with what we would have expected
293 based on the beluga results, and shows a demographic history similar to when mapping to the
294 assemblies from the other three non-rowi kiwi species (Fig 3A). Hence, we only considered
295 this re-assembly when assessing the inference of reference genome on demographic history
296 results in the rowi kiwi. The results produced after mapping to the cross-species scaffolded
297 rowi kiwi assemblies are much more similar to those from the re-assembled published rowi
298 kiwi assembly (Fig 3B).

299

300 When comparing PSMC results produced by mapping to the re-assembled rowi
301 genome, and by mapping to the contig-level assembly, we see similar general trajectories.
302 However, the values of effective population size (N_e) are much lower when mapping to the *de*
303 *novo* contig-level assembly as seen in the beluga (Supplementary fig S3).

304

305 **Genetic diversity**

306 When using ANGSD, ROHan, and SAMtools/BCFtools, we see a general trend of
307 increasing heterozygosity as reference genome phylogenetic distance increases. Which is also
308 consistent when applying the alternative ANGSD parameter sets (i) -baq 1 instead of -baq 2,
309 and (ii) -baq 0 instead of -baq 2 (Fig 4A,B, Supplementary figs S4 and S5, Supplementary
310 tables S10 and S11). In contrast, when using ANGSD parameter set (iii) adjusted for reads
311 with multiple mismatches to the reference (-C 50), we see a general trend of decreasing
312 heterozygosity levels as phylogenetic distance increases (Supplementary fig S6).

313

314 When using the cross-species scaffolded assemblies as reference genomes, we obtain
315 results more comparable to those obtained when using the published conspecific assemblies
316 as reference (Fig 4C,D). However, we do not see this when using SAMtools/BCFtools and the
317 beluga dataset. Instead, we observe a decrease in heterozygosity relative to the published
318 conspecific beluga assembly. The decrease is of a similar magnitude regardless of which
319 cetacean species was used for scaffolding (Supplementary table S12).

320

321 The quality of the assembly also appears to play a role; higher genome-wide
322 heterozygosity was estimated when mapping to the *de novo* contig-level beluga assembly
323 compared to a scaffolded assembly (Supplementary fig S7). This same pattern was also seen
324 when comparing the *de novo* contig-level rowi kiwi assembly to our reassembled version, but
325 not compared to the published assembly (Supplementary fig S8).

326

327 **Inbreeding**

328 When mapping the beluga reads to any reference genome (including the published
329 conspecific beluga assembly), we did not uncover any ROH. When running ROH on the
330 rowi kiwi mapped to a published conspecific rowi kiwi assembly, we uncovered ROH, but not
331 when mapping to any of the non-rowi kiwi assemblies (Table 2).

332

333 **Discussion**

334

335 Through a detailed comparison of results produced after mapping to multiple reference
336 genomes from two unique datasets, we show that the choice of reference genome for mapping
337 of short-read data of a target species can and does impact downstream evolutionary

338 inferences. In general, as the phylogenetic distance of the reference genome increases, results
339 become incrementally less reliable with regards to demographic history, genetic diversity, and
340 inbreeding estimates.

341

342 With regards to demographic history analyses using PSMC, phylogenetic distance of
343 the reference genome to the target species did not appear to affect the overall trajectories, but
344 did result in relatively decreased N_e estimates. However, this only became apparent when
345 using a reference genome more than 0.14% different to the target species (e.g. beluga vs
346 finless porpoise) (Figs 2A, 3A). Based on these results, if a conspecific assembly is not
347 available, using an assembly from a relatively closely-related species is unlikely to interfere
348 with the overall demographic trajectory.

349

350 In contrast with the demographic results, the bias that reference-genome selection
351 plays on genetic diversity estimates is more noticeable. Reference bias can cause
352 heterozygous sites to be incorrectly called as homozygous for the reference allele (Brandt et
353 al., 2015; Ros-Freixedes et al., 2018). However, we see a general increase in heterozygosity,
354 as opposed to the expected decrease (Fig 4). Therefore, misalignments may be a larger factor
355 in falsely calling heterozygous alleles as opposed to simply incorrect base calling. When
356 applying a strict filter that corrects for reads with multiple mismatches to the reference
357 genome (-C 50), it may be possible to eliminate increased heterozygosity due to
358 misalignments (Supplementary figure S6). However, this is still associated with issues, as we
359 observed a general decrease in heterozygosity due to putatively incorrect basecalls.

360

361 Phylogenetic distance driven reference bias was especially apparent when estimating
362 ROH (Table 2). When mapping to a non-conspecific reference genome, we observed a
363 complete loss of ROH, which would lead to the incorrect inference of no inbreeding in this
364 individual. As we show that global heterozygosity rates increase as phylogenetic distance of
365 the reference increases, this could artificially increase the heterozygosity level in ROH,
366 making the ROH no longer observable.

367

368 One method we investigated for its putative ability to overcome these biases, without
369 performing a traditional conspecific *de novo* assembly, is cross-species scaffolding. The
370 biggest attraction of a cross-species scaffolded assembly over a traditional conspecific *de*
371 *novo* assembly is that it only requires a single lane of Illumina sequencing, and an available
372 assembly from a closely-related species. However, at least in the case of the beluga dataset, it
373 can result in much more fragmented assemblies (Supplementary tables S8), and may therefore
374 not always be applicable, especially when highly contiguous assemblies are required (e.g. for
375 PSMC and ROH analyses). Nevertheless, using cross-species scaffolded assemblies as
376 reference resulted in relatively reliable PSMC and ROH results for the rowi kiwi (Fig 3, Table
377 2), as well as reliable genetic results in all comparisons when using ANGSD (Fig 4). The
378 reliability of these results may reflect that ANGSD uses genotype likelihoods to call
379 heterozygosity (Korneliussen et al., 2014), as opposed to direct genotype calls, and therefore
380 may be more reliable when heterozygous sites do not have the perfect near-50/50 allele ratios.

381

382 Despite the promising results when using cross-species scaffolded assemblies with our
383 rowi kiwi dataset, PSMC results were less reliable using the beluga dataset. This could result
384 from the low quality and highly-fragmented nature of the beluga cross-species scaffolded

385 assemblies (Supplementary table S8). The inability to produce contiguous scaffolds like the
386 rowi kiwi, may have arisen due to the highly fragmented nature of the beluga contig
387 assembly, with an N50 of only ~3.5 kb. To create a more contiguous final assembly, the N50
388 would need to be increased. Here, we implemented SOAPdenovo on a single library of
389 random insert sizes. The use of different software (Butler et al., 2008) and lab protocols
390 (Weisenfeld et al., 2014) to ensure the insert sizes are uniform may improve the contiguity of
391 the final assembly, and make results reliant on highly contiguous data, such as PSMC, more
392 reliable.

393

394 Although the assemblies are more fragmented, this does not mean they are completely
395 devoid of information for the PSMC analysis. Results using the cross-species scaffolded
396 assemblies still present the increase in N_e ~500 kya and decrease ~150 kya seen when using
397 the published beluga assembly as reference, but with slightly decreased N_e values (Fig 2).
398 Furthermore, when comparing PSMC results produced via mapping to the scaffold-level and
399 contig-level assemblies, we also see a similar pattern of population size change, but with
400 different values of N_e (Supplementary figs S1 and S3). This suggests that contiguity may not
401 influence the pattern as much as the scale, and may still be useful for investigating relative
402 changes in N_e rather than absolute values of N_e itself.

403

404 Our analyses uncovered a potential problem with the published rowi kiwi assembly.
405 When comparing results mapped to the published assembly against non-conspecific
406 assemblies, cross-species scaffolded assemblies, and a reassembly of the published data, we
407 uncover large discrepancies in the results, especially in the PSMC results (Supplementary figs
408 S2 and S3). As our assemblies all used the same published raw data, we suspect that these

409 discrepancies resulted from miss-assemblies during the original *de novo* assembly process in
410 Allpaths-LG (Butler et al., 2008). Although outside of the scope of the present study, these
411 results show that caution should be exercised in reference genome selection for mapping
412 assemblies; if multiple assemblies are available, it may be beneficial to test robustness of
413 results against multiple reference genomes.

414

415 Taken together, our results show that demographic analyses of a single individual
416 mapped to a phylogenetically distant reference genome may be considered reliable with
417 regards to demographic trajectories (as in relative changes in N_e , rather than absolute values
418 of N_e). However, the phylogenetic distance of the reference genome can lead to
419 overestimation of heterozygosity and, in turn, underestimations of ROH. Finally, if no
420 assembly from a suitably closely related species is available as a mapping reference, cross-
421 species scaffolded assemblies appear to be a valid and likely more suitable option for
422 evolutionary inference.

423

424 **Acknowledgements**

425 The work was also supported by the Independent Research Fund Denmark | Natural Sciences,
426 Forskningsprojekt 1, grant no. 8021-00218B to EDL.

427

428 **References**

429 Armstrong, E. E., Taylor, R. W., Miller, D. E., Kaelin, C. B., Barsh, G. S., Hadly, E. A., &
430 Petrov, D. (2020). Long live the king: chromosome-level assembly of the lion (*Panthera*
431 *leo*) using linked-read, Hi-C, and long-read data. *BMC Biology*, 18(1), 3.

432 Barnett, R., Westbury, M. V., Sandoval-Velasco, M., Vieira, F. G., Jeon, S., Zazula, G., ...

433 Gilbert, M. T. P. (2020). Genomic Adaptations and Evolutionary History of the Extinct

434 Scimitar-Toothed Cat, *Homotherium latidens*. *Current Biology*: *CB*, 30, 1–8.

435 Brandt, D. Y. C., Aguiar, V. R. C., Bitarello, B. D., Nunes, K., Goudet, J., & Meyer, D.

436 (2015). Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in

437 the 1000 Genomes Project Phase I Data. *G3*, 5(5), 931–941.

438 Bushnell, B. (2014). BBTools software package. *URL* <Http://sourceforge>.

439 *Net/projects/bbmap*.

440 Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., ...

441 Jaffe, D. B. (2008). ALLPATHS: de novo assembly of whole-genome shotgun

442 microreads. *Genome Research*, 18(5), 810–820.

443 De Cahsan, B., & Westbury, M. V. (2020). Complete mitochondrial genomes offer insights

444 into the evolutionary relationships and comparative genetic diversity of New Zealand's

445 iconic kiwi (*Apteryx* spp.). *New Zealand Journal of Zoology*, 1–9.

446 Garde, E., Hansen, S. H., Ditlevsen, S., Tvermosegaard, K. B., Hansen, J., Harding, K. C., &

447 Heide-Jørgensen, M. P. (2015). Life history parameters of narwhals (*Monodon*

448 *monoceros*) from Greenland. *Journal of Mammalogy*, 96(4), 866–879.

449 Grabherr, M. G., Russell, P., Meyer, M., Mauceli, E., Alföldi, J., Di Palma, F., & Lindblad-

450 Toh, K. (2010). Genome-wide synteny through highly sensitive sequence alignment:

451 Satsuma. *Bioinformatics*, 26(9), 1145–1151.

452 Grau, J. H., Hackl, T., Koepfli, K.-P., & Hofreiter, M. (2018). Improving draft genome

453 contiguity with reference-derived in silico mate-pair libraries. *GigaScience*, 7(5), giy029.

454 Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool

455 for genome assemblies. *Bioinformatics*, 29(8), 1072–1075.

456 Hobbs, R. C., Reeves, R. R., Prewitt, J. S., Desportes, G., Breton-Honeyman, K., Christensen,
457 T., ... Watt, C. A. (2019). Global Review of the Conservation Status of Monodontid
458 Stocks. *Marine Fisheries Review*, 81, 1+.

459 Jiang, H., Lei, R., Ding, S.-W., & Zhu, S. (2014). Skewer: a fast and accurate adapter trimmer
460 for next-generation sequencing paired-end reads. *BMC Bioinformatics*, 15, 182.

461 Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of Next
462 Generation Sequencing Data. *BMC Bioinformatics*, 15, 356.

463 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler
464 transform. *Bioinformatics*, 25(14), 1754–1760.

465 Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-
466 genome sequences. *Nature*, 475(7357), 493–496.

467 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... 1000 Genome
468 Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and
469 SAMtools. *Bioinformatics*, 25(16), 2078–2079.

470 Lord, E., Dussex, N., Kierczak, M., Díez-Del-Molino, D., Ryder, O. A., Stanton, D. W. G., ...
471 Dalén, L. (2020). Pre-extinction Demographic Stability and Genomic Signatures of
472 Adaptation in the Woolly Rhinoceros. *Current Biology: CB*, 30(19), 3871–3879.e7.

473 Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., ... Wang, J. (2012). SOAPdenovo2: an
474 empirically improved memory-efficient short-read de novo assembler. *GigaScience*,
475 1(1), 18.

476 Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., & Durbin, R. (2016).
477 BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-
478 generation sequencing data. *Bioinformatics*, 32(11), 1749–1751.

479 Palkopoulou, E., Lipson, M., Mallick, S., Nielsen, S., Rohland, N., Baleka, S., ... Reich, D.

480 (2018). A comprehensive genomic history of extinct and living elephants. *Proceedings of*
481 *the National Academy of Sciences of the United States of America*, 115(11), E2566–
482 E2574.

483 Renaud, G., Hanghøj, K., Korneliussen, T. S., Willerslev, E., & Orlando, L. (2019). Joint
484 Estimates of Heterozygosity and Runs of Homozygosity for Modern and Ancient
485 Samples. *Genetics*, 212(3), 587–614.

486 Robertson, H. A., Baird, K., Dowding, J. E., Elliott, G. P., Hitchmough, R. A., Miskelly, C.
487 M., ... Taylor, G. A. (2017). *Conservation status of New Zealand birds, 2016* (p. 23).
488 Department of Conservation, Wellington: New Zealand Threat Classification Series 19.

489 Ros-Freixedes, R., Battagin, M., Johnsson, M., Gorjanc, G., Mileham, A. J., Rounseley, S. D.,
490 & Hickey, J. M. (2018). Impact of index hopping and bias towards the reference allele on
491 accuracy of genotype calls from low-coverage sequencing. *Genetics, Selection,
492 Evolution: GSE*, 50(1), 64.

493 Sackton, T. B., Grayson, P., Cloutier, A., Hu, Z., Liu, J. S., Wheeler, N. E., ... Edwards, S. V.
494 (2019). Convergent regulatory evolution and loss of flight in paleognathous birds.
495 *Science*, 364(6435), 74–78.

496 Shapiro, B., & Hofreiter, M. (2014). A paleogenomic perspective on evolution and gene
497 function: new insights from ancient DNA. *Science*, 343(6169), 1236573.

498 Weir, J. T., Haddrath, O., Robertson, H. A., Colbourne, R. M., & Baker, A. J. (2016).
499 Explosive ice age diversification of kiwi. *Proceedings of the National Academy of
500 Sciences of the United States of America*, 113(38), E5580–E5587.

501 Weisenfeld, N. I., Yin, S., Sharpe, T., Lau, B., Hegarty, R., Holmes, L., ... Jaffe, D. B.
502 (2014). Comprehensive variation discovery in single human genomes. *Nature Genetics*,
503 46(12), 1350–1355.

504 Westbury, M. V., Le Duc, D., Duchêne, D. A., Krishnan, A., Prost, S., Rutschmann, S., ...

505 Hofreiter, M. (2021). Ecological Specialisation and Evolutionary Reticulation in Extant

506 Hyaenidae. *Molecular Biology and Evolution*, msab055.

507 Westbury, M. V., Petersen, B., Garde, E., Heide-Jørgensen, M. P., & Lorenzen, E. D. (2019).

508 Narwhal Genome Reveals Long-Term Low Genetic Diversity despite Current Large

509 Abundance Size. *iScience*, 15, 592–599.

510

511 **Author contributions**

512 Conceptualization, MVW; Formal analysis, AP, MVW; Writing – Original Draft MVW;

513 Writing – Review & Editing EDL, MVW; Funding Acquisition, EDL; Supervision, EDL,

514 MVW.

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537 **Tables**

538

539 **Table 1:** Genome-wide pairwise divergence estimates of the species used in this study.

Species	Compared to	Divergence
Narwhal	Beluga	0.0050
Finless porpoise	Beluga	0.0143
Bottlenose dolphin	Beluga	0.0202
Sperm whale	Beluga	0.0318
Minke whale	Beluga	0.0344
Brown kiwi	Rowi kiwi	0.0031
Spotted kiwi	Rowi kiwi	0.0079
Emu	Rowi kiwi	0.0734

540

541

542 **Table 2:** Autosomal heterozygosity and runs of homozygosity (ROH) estimates of the rowi
543 kiwi when mapped to a variety of different reference genomes. Reference genomes named
544 ‘Rowi -’ are constructed using cross-species scaffolding and the species depicted after the
545 hyphen.

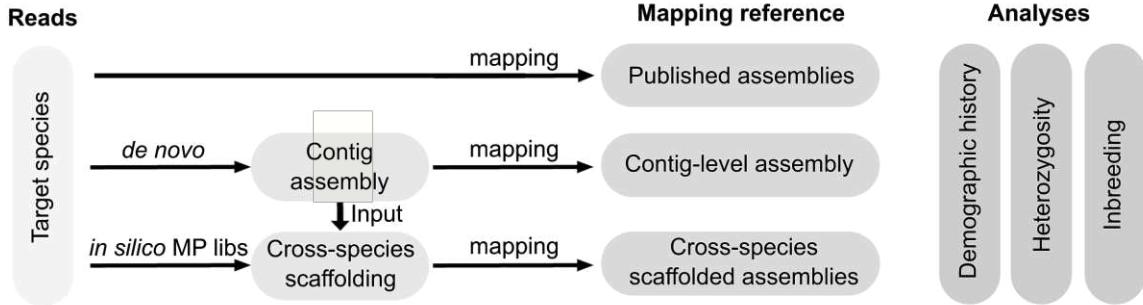
Reference genome	Global heterozygosity rate	Lower limit	Upper limit	Segments in ROH (%)	Avg. length of ROH (bp)
Rowi (published)	0.00121	0.00111	0.00126	4.42	1,644,440
Rowi (re-assembled)	0.00105	0.00086	0.00123	1.57	1,076,920
Brown kiwi	0.00121	0.00107	0.00139	0.22	1,000,000
Spotted kiwi	0.00119	0.00108	0.00134	0.00	0
Emu	0.00177	0.00157	0.00193	0.00	0
Rowi - brown kiwi	0.00107	0.00097	0.00116	2.74	1,833,330
Rowi - spotted kiwi	0.00106	0.00098	0.00117	2.82	1,444,440
Rowi - emu	0.00099	0.00089	0.00107	3.28	1,558,140

546

547

548

549

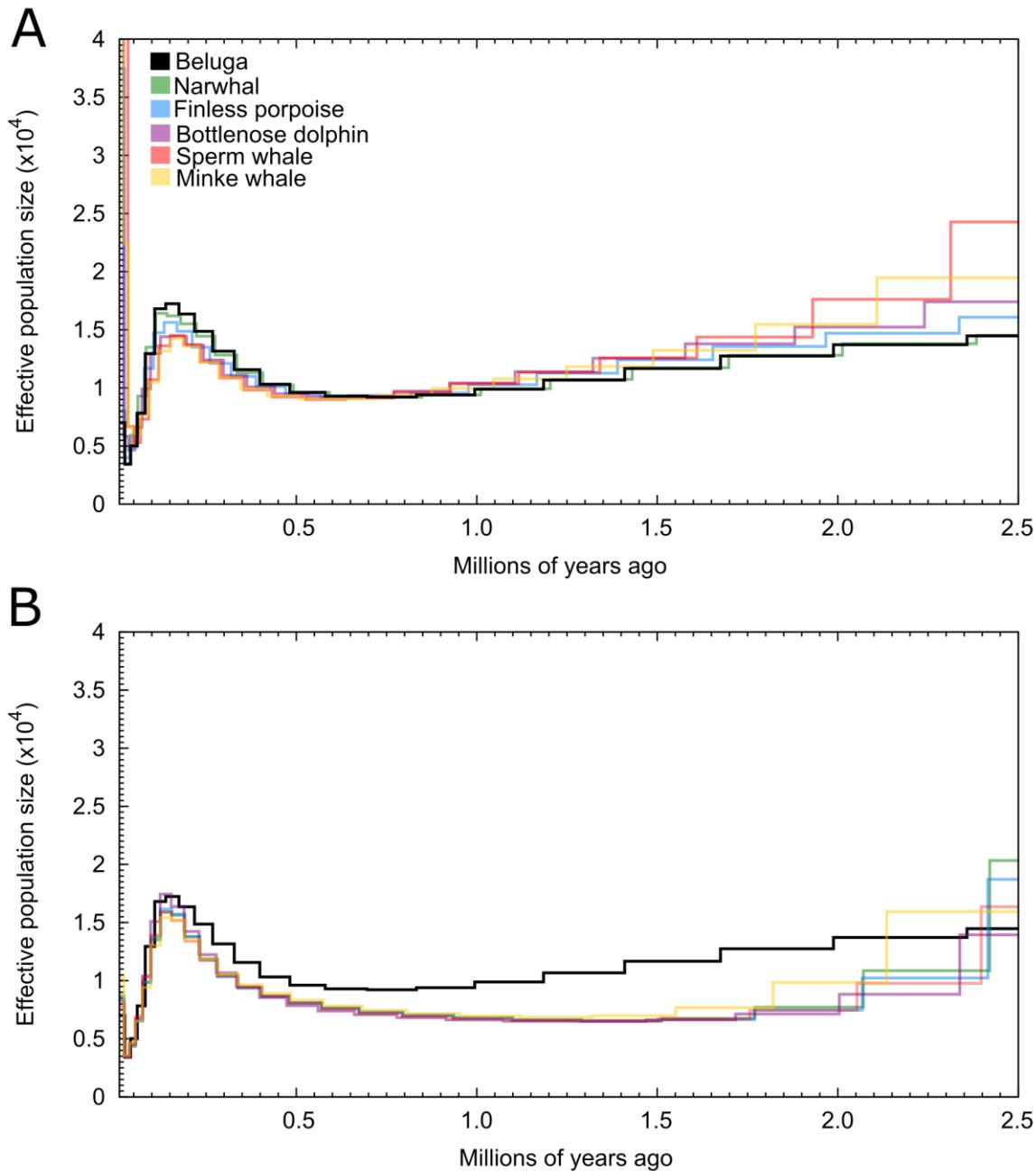

550

551

552

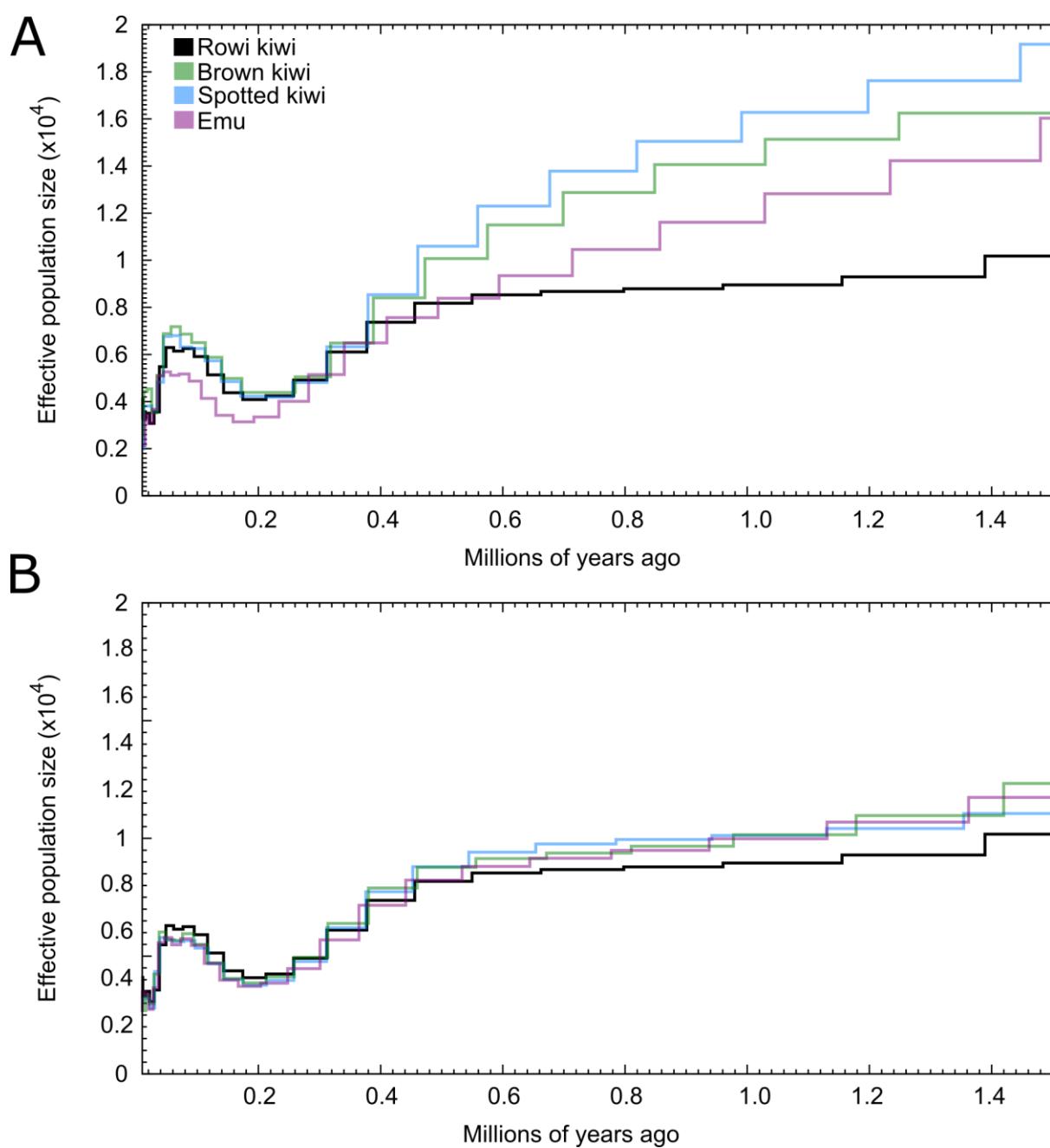
553 **Figures**

554


555

556

557 **Figure 1:** Overview of the approaches used to investigate the role reference genome plays in
558 downstream demographic history and genetic diversity results. Raw reads are mapped to
559 published assemblies, a *de novo* contig-level assembly, or cross-species scaffolded
560 assemblies. Contig-level assemblies are constructed using the raw reads. Cross-species
561 scaffolded assemblies are made by scaffolding the contig assembly using *in-silico* mate-pair
562 (MP) libraries.


563

564

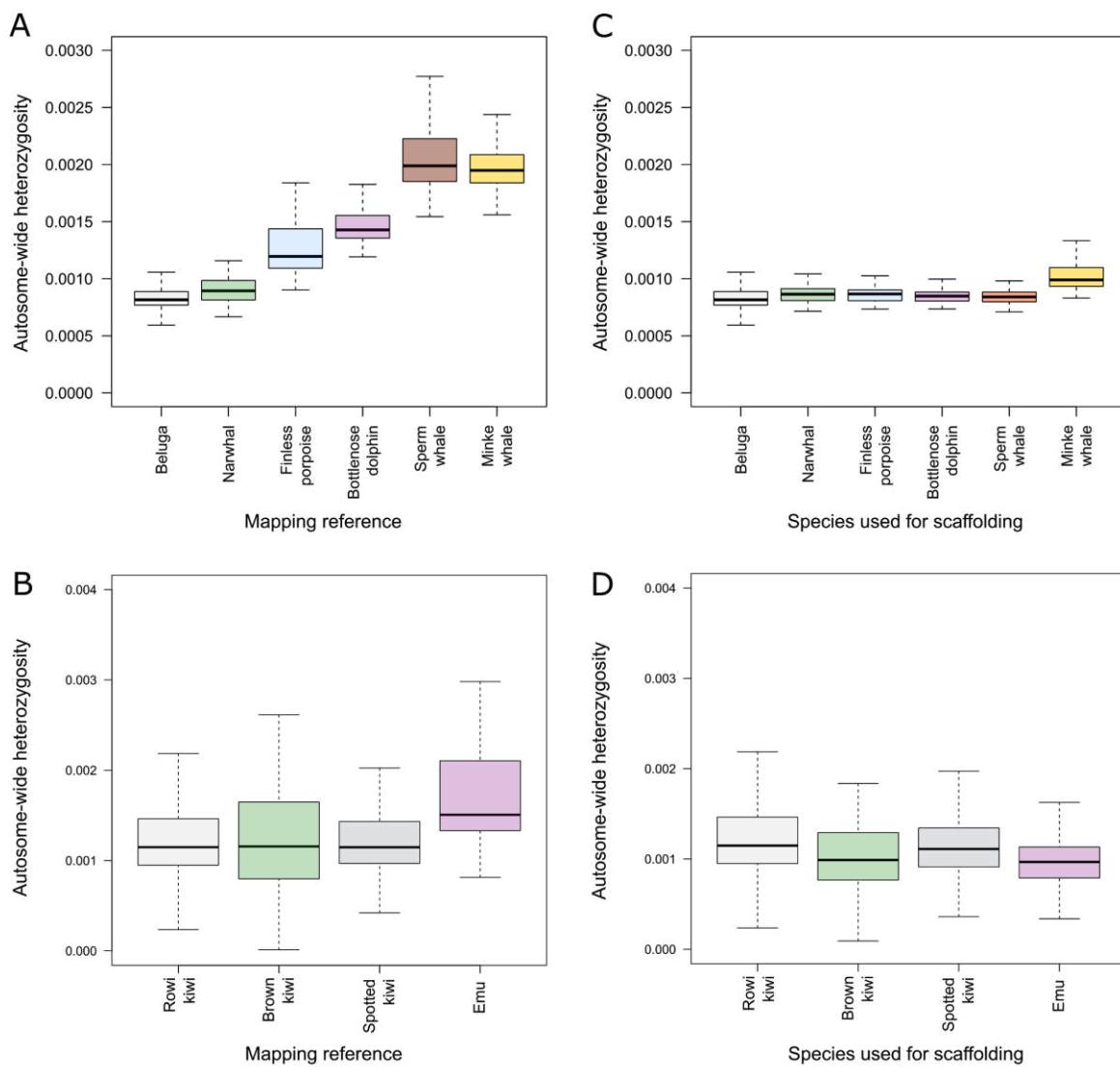

565
566
567
568
569
570
571

Figure 2: Beluga demographic history over the last 2.5 million years. Demographic trajectories in each panel represent genomes generated by mapping beluga reads to (A) assemblies of six different phylogenetically distant species (including a conspecific), colours indicate species of the reference genome, and (B) *de novo* assemblies constructed using cross-species scaffolding and the published beluga assembly, colours show the species used to scaffold the *de novo* beluga contig-level assembly.

572
573
574
575
576
577
578
579
580

Figure 3: Rowi kiwi demographic history over the last 1.5 million years. Demographic trajectories in each panel represent genomes generated by mapping rowi kiwi reads to (A) assemblies of four different phylogenetically distant species (including our re-assembled rowi kiwi assembly), colours indicate species of the reference genome, and (B) *de novo* rowi kiwi assemblies constructed using cross-species scaffolding and our reassembled rowi kiwi assembly - colours show the species used to scaffold the *de novo* rowi kiwi contig-level assembly.

581
582
583
584
585
586
587
588
589

Figure 4: Autosome-wide heterozygosity estimates of the beluga and rowi kiwi mapped to different reference genomes. A single beluga individual was mapped to (A) six downloaded assemblies, and (B) a published beluga assembly and *de novo* beluga assemblies constructed using cross-species scaffolding. A single rowi kiwi individual was mapped to (C) our re-assembled rowi kiwi genome and the three downloaded non-rowi kiwi assemblies, and (D) *de novo* rowi kiwi assemblies constructed using either the published rowi kiwi mate-pair libraries or using cross-species scaffolding with mate-pair (MP) libraries constructed from each of the three non-rowi kiwi assemblies.