

1 **Title:** Exploring bacterial diversity via a curated and searchable snapshot of archived DNA
2 sequences

3

4 Authors: Grace A. Blackwell^{1,2*}, Martin Hunt^{1,3}, Kerri M. Malone¹, Leandro Lima¹, Gal Horesh^{2#},
5 Blaise T.F. Alako¹, Nicholas R Thomson^{2,4†*} and Zamin Iqbal^{1†*}

6 ¹EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United
7 Kingdom

8 ²Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA,
9 United Kingdom

10 ³Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, United Kingdom

11 ⁴London School of Hygiene & Tropical Medicine, London, United Kingdom

12 [†]Joint Authors

13 * To whom correspondence should be addressed: gblackwell@ebi.ac.uk; zi@ebi.ac.uk;
14 nrt@sanger.ac.uk

15

16 #Current address: Chesterford Research Park, Cambridge, CB10 1XL

17

18 **ORCIDs:**

19 G.A.B.: 0000-0003-3921-3516

20 M.H.: 0000-0002-8060-4335

21 L.L.: 0000-0001-8976-2762

22 K.M.M.: 0000-0002-3974-0810

23 G.H.: 0000-0003-0342-0185

24 B.T.F.A.: 0000-0001-6859-4421

25 N.R.T.:0000-0002-4432-8505

26 Z.I.:0000-0001-8466-7547

27 **ABSTRACT**

28 The open sharing of genomic data provides an incredibly rich resource for the study of
29 bacterial evolution and function, and even anthropogenic activities such as the widespread use
30 of antimicrobials. Whilst these archives are rich in data, considerable processing is required
31 before biological questions can be addressed. Here, we assembled and characterised 661,405
32 bacterial genomes using a uniform standardised approach, retrieved from the European
33 Nucleotide Archive (ENA) in November of 2018. A searchable COBS index has been produced,
34 facilitating the easy interrogation of the entire dataset for a specific gene or mutation. Additional
35 MinHash and pp-sketch indices support genome-wide comparisons and estimations of genomic
36 distance. An analysis on this scale revealed the uneven species composition in the ENA/public
37 databases, with just 20 of the total 2,336 species making up 90% of the genomes. The over-
38 represented species tend to be acute/common human pathogens. This aligns with research
39 priorities at different levels from individuals with targeted but focused research questions, areas
40 of focus for the funding bodies or national public health agencies, to those identified globally as
41 priority pathogens by the WHO for their resistance to front and last line antimicrobials.
42 Understanding the actual and potential biases in bacterial diversity depicted in this snapshot, and
43 hence within the data being submitted to the public sequencing archives, is essential if we are to
44 target and fill gaps in our understanding of the bacterial kingdom.

45

46 **INTRODUCTION**

47 The widespread availability of high-throughput sequencing has resulted in a huge wealth
48 of bacterial genomic data collected from countries all over the world that are shared openly
49 through the public archives, representing a unique and essential resource. Studying the extreme
50 diversity of bacterial species is of broad interest to communities with focuses of basic science,
51 agriculture and medicine. Beyond their primary function of genomic data storage, sequence
52 repositories show trends in funding, biases in the collection strategies of bacteria and even reveal

53 the drive and focus of individuals pursuing particular lines of research. Sequence read data is
54 held by members of the International Nucleotide Sequence Database Collaboration (INSDC) (1),
55 who include DNA Data Bank of Japan (DDBJ), European Bioinformatics Institute (EMBL-EBI) and
56 National Centre for Biotechnology Information (NCBI). Submission of genomic data to the ENA
57 (EMBL-EBI) or its INSDC partners (DRA for DDBJ, SRA for NCBI) has become a central and
58 mandatory step in dissemination of research to the scientific community and a way to ensure open
59 and free access to data (1). Each of these repositories host the raw read data as well as genome
60 assemblies, at different levels of completeness, that have been submitted by a user. These
61 archives are continuing to grow at a remarkable rate with current estimation of doubling time of
62 datasets in the ENA to be just over 2 years (<https://www.ebi.ac.uk/ena/browser/about/statistics>).
63 The ever-increasing data size presents difficulties for storage capacity. Even more, a general
64 user's ability to access and effectively use the data is restricted, whether due to their
65 computational skills, the biological question, the volume of data, the IT infrastructure or other
66 resources required. The capacity to effectively and quickly identify datasets relevant to a user is
67 a significant challenge, and currently DNA searches are not supported across all datasets.
68 Furthermore, once a user has their list of datasets, significant processing for quality control and
69 extraction of relevant data is required prior to applying specific analyses. Over time, many of these
70 processing steps will be performed repeatedly by different researchers worldwide.

71 Other databases exist that provide a higher level of curation, including NCBI's Refseq (2).
72 Refseq (195,316 assemblies in September 2020) is composed of a selection of assemblies that
73 have been submitted to INSDC databases that meet their quality control requirements, and most
74 have been re-annotated using NCBI's prokaryotic genome annotation pipeline (3) to provide
75 consistency across the data. The assemblies are widely used for taxonomic identification (4, 5),
76 but are also commonly used to examine the distribution of genes or elements of interest, or as
77 test sets for new algorithms or programs (6, 7). However, the Refseq assemblies have been
78 collated progressively over time using a range of sequencing technologies and assembly

79 algorithms, making the assemblies less consistent and so potentially more problematic for
80 drawing wide-ranging conclusions (8, 9).

81 Attempts to standardise the assembled dataset tend to have a community focus such as
82 Enterobase which holds sequencing data from the *Enterobacteriaceae*, and includes curated
83 genome data for 466,670 *Salmonella*, *Escherichia/Shigella*, *Clostridioides*, *Vibrio*, *Helicobacter*,
84 *Yersinia* and *Moraxella* genomes (10). Enterobase gathers sequence data with associated
85 metadata by actively searching for new sequence submissions for supported genera or through
86 direct submissions. The raw data is then processed in a uniform way (assembly and annotation)
87 and basic organism-specific typing is performed (10). However, whilst standardised, the scope of
88 this type of database is by definition limited. Depending on an individual's focus this can act to
89 further fragment genome data and lead to even more incompatibility issues if the complete
90 genome dataset, agnostic of organism, is to be analysed.

91 Here, we present a uniformly processed archive of 661K bacterial genomes that were
92 available in the ENA at the end of November in 2018. Through the quality control steps,
93 characterisation of the assemblies and the provision of a searchable database we remove some
94 of the technical barriers for the interrogation of the public sequences. We use this data to examine
95 the composition of the sequencing archives and in doing so highlight the influence of sampling
96 and sequencing trends on the composition of these public databases.

97

98 **RESULTS**

99 **Construction of a unified resource**

100 On the 26th of November of 2018 there were 880,947 bacterial read sets available in the
101 ENA. Those that were single-ended or were sequenced on the PacBio or nanopore platform were
102 removed, and 710,696 unique sample IDs were submitted to an assembly pipeline (see methods),
103 yielding 664,877 assemblies. A subset of these (3,472 assemblies) had a genome length
104 significantly outside that expected of a bacterial organism (smaller than 100 Kb or larger than

105 15Mb), leaving 661,405 standardised assemblies. Quality control and general characterisation
106 were performed on these 661K assemblies (see methods). Standard quality control cut-offs, many
107 of which are consistent with the threshold for inclusion for Refseq, were applied to identify
108 genomes that were of high assembly quality. These assemblies represent complete or almost
109 complete genomes that weren't overly fragmented and had a genome length within an acceptable
110 tolerance (+/- 50%) of that expected of its species. 639,981 assemblies reached or exceeded
111 these thresholds (Supplementary Figure 1A, filter status 4).

112 Using Kraken2 and then refining the output using Bracken, it was evident that of the read
113 sets contributing to these assemblies 94.1% (602,406/639,981) showed the major taxonomic
114 species to account for 90% or greater of the total reads in that read set (Supplementary Figure
115 1C). Hence, there was little evidence of mixed samples or significant contamination. Importantly,
116 lowest common ancestor approaches are not ideal if the major taxa is a member of a species
117 complex. Therefore, we calculated an adjusted abundance (see methods) for members of the
118 *Mycobacterium tuberculosis* complex, *Bacillus cereus* sensu lato group, or where genera or
119 species represent taxonomic anomalies such as the division of *Shigella* sp. and *Escherichia coli*
120 which is based on clinical imperative rather than a true taxonomic distinction (11, 12). For some
121 species, including *Burkholderia pseudomallei*, *Bordetella pertussis*, *Mycobacterium ulcerans* and
122 *Campylobacter helveticus*, the major species abundance in more than 97.6% of their assemblies
123 were less than 90% using these approaches (Supplementary Figure 2), despite passing earlier
124 quality control thresholds for contamination (Supplementary Figure 1D). This indicates that there
125 are likely limitations with the methods for species identification used here. Of note, 89.8%
126 (593,628) of the assemblies in the 661K had been submitted with species metadata that was
127 consistent with the major species we identified *in silico* from sequence.

128 To facilitate access and usage we have added three indices that can be downloaded
129 along with the 661,405 assemblies. The COBS (13) index allows the user to search for single
130 nucleotide variations and polymorphisms, as well as whole genes or even extrachromosomal

131 elements such as plasmids. Secondly the Minhash index (14), containing signatures of the
132 assemblies can be used to search for matches to any query genomes (*i.e.* to find similar
133 genomes). A third index, constructed using the library sketching function of PopPunk (15),
134 includes the calculated core and accessory distances between the 661K assemblies. Genetic
135 distance estimations for any subset of assemblies can be extracted quickly and easily from this
136 index.

137

138 **Diversity and sequencing trends**

139 The 639,981 high-quality assembled genomes comprised 2,336 species (Supplementary
140 Figure 1B), and the breakdown of the genomes based on the year that they were made public in
141 the ENA is shown in Supplementary Figure 3A. Despite the considerable number of species in
142 this dataset, sampling was extremely unevenly distributed, with just 20 species accounting for
143 90.6% of the assembled data set (Figure 1A). Within this, *Salmonella enterica* accounted for
144 almost a third of the data (28.0%), while *E. coli* (13.4%), *Streptococcus pneumoniae* (7.9%),
145 *Staphylococcus aureus* (7.4%) and *M. tuberculosis* (7.3%) combined constituted over 35% of the
146 remaining assemblies (Figure 1A). The final 9.4% of the assemblies comprised 2,315 species *i.e.*
147 99.1% of the species diversity, of which 1,861 species contributed to just 1% of the total submitted
148 and processed data (Figure 1B). A similar trend is revealed when the contributing sequencing
149 projects are examined, with 50% of the data originating from 50 sequencing projects
150 (Supplementary Figure 3B), a small fraction of the total 23,316 projects. The majority of the
151 sequencing projects (20,002) only yielded a single assembly. Unsurprisingly, three of the five
152 largest projects focus on *S. enterica*. These include the PulseNet *S. enterica* genome sequencing
153 project (PRJNA230403, 59,011 assemblies, 2014 onwards) run by the Centre for Disease Control
154 (16), the Salmonella Reference Service (Gastrointestinal Bacteria Reference Unit) from Public
155 Health England (PRJNA248792, 35,942 assemblies, 2014 onwards) (17) and the GenomeTrakr
156 project (PRJNA186035, 19,418 assemblies, 2012 onwards) run by the US Food and Drug

157 Administration Center for Food Safety and Applied Nutrition (18). The ramping up of these large
158 public genomic surveillance projects in 2014 contributed to *S. enterica* dominating as the major
159 bacterium sequenced from 2015 (Figure 1C, Supplementary Figure 3C). The Global
160 Pneumococcal Sequencing GPS study I (PRJEB3084, 20,667 assemblies), which focuses on *S.*
161 *pneumoniae* (19, 20), and a US public health project focusing on *E. coli* and *Shigella*
162 (PRJNA218110, 20,508 assemblies, 2014 onwards) (16) are the 3rd and 4th largest projects in the
163 archive. Specific interests of individuals or groups have also contributed to these sequencing
164 trends, though the impact is more obvious in the earlier years, where organisms such as
165 *Bordetella pertussis* (PRJEB2274) (1) and *Salmonella bongori* (PRJEB2272) (2) were prominent
166 but were overshadowed in later years (Figure 1C).

167

168 **Distribution of and accumulation of antimicrobial resistance genes**

169 One of the major selective forces that has perturbed bacterial populations has been the
170 development and wide-spread therapeutic use of antimicrobials since the 1940's (21–23).
171 Antimicrobial resistance (AMR) is highlighted as one of the greatest threats to human health (24,
172 25). It has been estimated that if no action is taken, 10 million people worldwide could die from
173 drug resistant infections each year by 2050 (26). We have genotypically predicted the presence
174 of AMR, virulence and stress response genes for all assembled genomes (see methods), but the
175 results shown below are for the 602,407 high quality genomes with a confident major species
176 (>90% abundance major species), unless specified otherwise. Our approach detects both genes
177 that are core to a species, usually located on the chromosome(s), as well as those which have
178 been horizontally acquired and are chromosomally located or otherwise located in
179 extrachromosomal elements, such as plasmids. However, specific point mutations/deletions are
180 not considered in this analysis.

181 In total, 1,655 known AMR gene variants were identified. Gene variants showed different
182 distribution ranges across the assembled taxa with 135 gene variants detected in two or more

183 phyla. This reduced to just 73 when a stricter 98% threshold for abundance of the major species
184 was set to limit the effects of low level contamination commonly seen in submitted data
185 (Supplementary Figure 4). Gene variants with more restricted distribution patterns, such as those
186 found only within a particular genus or species could represent variants that have recently arisen
187 within that population, or were restricted directly, through for example gene expression, or
188 indirectly based on the host range of the plasmid or vector that carries them. For example the
189 distribution patterns of the colistin resistance genes, first identified in 2016 (27), are at most
190 detected within a bacterial order (*mcr-9*), or more commonly within a class (eg. *mcr-1*, *mcr-3*, *mcr-*
191 5), while some are only present in a single species (*mcr-1.7*, *mcr-4.1*).

192 An important trend seen in our data is the relative number of genomes carrying multiple
193 AMR genes. The count of AMR genes in each genome for two of the most represented orders -
194 Bacilli and Gammaproteobacteria - are shown in Figure 2. Most genera within the Bacilli contain
195 genomes with fewer than 10 antimicrobial resistance genes. Some genomes belonging to *Bacillus*
196 and *Streptococcus* possess up to 10 or 11 resistance genes, while those from *Enterococcus* and
197 *Staphylococcus* can carry up to 23 and 25 resistance genes in a single genome, respectively
198 (Figure 2A). It's important to note that some of these resistance genes are core to a species
199 (genes found in >95% of the genomes belonging to that species). For example, 3 of the genes
200 counted in *Enterococcus* (*aac(6')*-*li*, *msrC* and *eatA*) were core, consistent with previous analysis
201 (28, 29). Similarly in *S. aureus*, the *tet38* efflux pump (30) is a core gene.

202 Gammaproteobacteria represent a large proportion of the Gram-negative pathogens with
203 many of the genera in this class possessing high AMR gene counts (Figure 2B). Most notably,
204 *Acinetobacter*, *Escherichia*, *Klebsiella*, *Pseudomonas* and *Salmonella* with a small number of *E.*
205 *coli* and *K. pneumoniae* genomes containing over 30 different AMR genes concurrently, while
206 only 1 and 4 genes of these were species core genes, respectively.

207 The above genera with high AMR gene carriage (Figure 2) harbor species identified by
208 the WHO as priority pathogens for research and development into new antibiotics (24). The

209 different categories described by the WHO (critical, high and medium) are displayed in Figure 2,
210 using the red, orange and yellow triangles. Other genera, not on the WHO priority list, show a
211 high abundance of antimicrobial resistance genes, including *Vibrio*, *Citrobacter*, *Aeromonas* and
212 *Kluyvera*. Apart from *Vibrio*, these genera are not well-represented in the collection. Greater
213 surveillance of these organisms could, as it has done for the other priority organisms, reveal an
214 increasingly resistant trend and stimulate research, essential for the design of rational AMR
215 control strategies.

216 Further to examining the count of resistance genes in discrete genomes, we have
217 predicted how many classes of antimicrobials the genes within a genome confers resistance to.
218 We find 35% of genomes (211,101/602,406) contain resistance to at least 3 classes of
219 antimicrobials and have been defined here to be multi-class resistant (MCR). For a species to be
220 described as MCR (red in Figure 3), at least half of the genomes from this species must be MCR
221 (note this was only calculated for those species with at least 10 representatives). 37 species were
222 classed as MCR. The WHO priority pathogens are well represented, though for *S. enterica* and
223 *E. coli*, despite having some genomes conferring resistance to up to 12 and 14 different classes
224 of antimicrobials respectively, the majority of samples are not MCR, though many may contain
225 mutational resistance to antimicrobials such as fluoroquinolones. At the other end of the spectrum
226 is *Enterobacter bugandensis*, where all 10 samples (from 3 different projects) contain genes
227 conferring resistance to 8 classes of antimicrobials. *E. bugandensis* was only identified in 2016
228 and was associated with neonatal sepsis (31). The species *K. intermedia* and *V. cholerae*, in
229 addition to possessing overall high numbers of AMR genes (Figure 3A), were also MCR. So too
230 were the emerging opportunistic human pathogens *Raoultella planticola* (32) and
231 *Corynebacterium striatum* (33) as well as the zoonotic pathogen *Histophilus somni* (34) and *M.*
232 *tuberculosis*. However, the level of resistance in *M. tuberculosis* is likely to be underestimated as
233 the main mechanism of resistance is through mutation (35) and so are not considered here.

234

235 **DISCUSSION**

236 Bacteria are a vast, diverse and ancient family of single-celled organisms that dominate
237 this planet. In our efforts to understand and categorise this most abundant life form, hundreds
238 upon thousands of bacterial sequences are submitted yearly into sequence archives such as the
239 ENA. In the last two decades and with the advent of cheap high throughput short read sequencing
240 the trend has moved away from the submission of finished or draft genome assemblies to one
241 where simply the raw reads are submitted to public archives. These data usually require
242 substantial preprocessing before they are analysis-ready. This takes significant time, expertise
243 and computational power to do. By uniformly processing the data present in the ENA in November
244 of 2018, we have collated a set of 661,405 standardised assemblies.

245 The additional standard characterisation and quality control we have performed enables
246 the data to be easily subsetted for the purposes of identifying all the assemblies of a particular
247 species or sequence type, or to those containing a specific antimicrobial resistance gene.
248 Furthermore, this dataset can be interrogated for a specific gene or mutation through the use of
249 the COBS search-index, for a specific genome by use of the provided minHash index and glean
250 estimations of genetic distances of genomes of interest using the pp-sketch index. These facilities
251 hint at the power of this unified resource, allowing phylogenetic relationships between genomes
252 to be quickly elucidated, and hypotheses rapidly tested. This resource will empower more
253 scientists to harness the multitude of data in the ENA both for surveillance and public health
254 projects, as well as to address questions of basic science.

255 The count of 2,336 species in this snapshot is well below the number of bacterial species
256 in the taxonomic databases such as NCBI taxonomy (>20,000 species,
257 <https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2>) and GTB (>30,000 species,
258 <https://gtdb.ecogenomic.org/>). Some of the sequence diversity within the snapshot may have
259 been missed due to limitations of the Kraken database used for taxonomic assignment and

260 abundance estimation, a research project in its own right. For a small proportion of the assemblies
261 (6.1%), a major species could not be assigned with high confidence, despite being shown by
262 CheckM to contain little or no contamination, indicating that there was not a good match for it in
263 the database (see Methods, Supplementary Figure 1D). The inclusion of genomes originating
264 from metagenomic sequences from different sources (e.g. gut, skin, soil, ocean) would likely
265 improve the overall species diversity but the methods of assembly and analysis are very different
266 to those used here.

267 Many of the sequenced genomes could be defined as MCR based on the carriage of AMR
268 genes. While we observe many occurrences of antimicrobial resistance mechanisms in the 661K
269 assemblies, both in the organisms which are already known to be problematic (species outlined on
270 the WHO priority pathogens list) and in newly emerged threats (such as *E. bugandensis*, *C.*
271 *striatum* and *R. planticola*), it is difficult to estimate how well these reflect the true prevalence of
272 resistance in a given species. This is due to many projects implementing pre-selection steps with
273 only the antimicrobial resistant strains being then sequenced (36–38). This intrinsically biases the
274 archive, preventing prevalence estimations. It also limits the power to track the origins of
275 accessory genes and consequently the species interactions that can be inferred from this. Ideally,
276 strategies to sequence a wider variety of species, including susceptible isolates, from diverse
277 environments and global locations must be implemented before the dynamics of gene flow can
278 be accurately studied.

279 The uniform resource of 661K bacterial assemblies that we present here removes several
280 technical barriers to harnessing the wealth of public data stored in the ENA, enabling a broader
281 community to access and leverage this data for their research. We envisage this to be a valuable
282 resource which can provide the substrate for a wide range of future studies. Nevertheless, it is
283 intrinsically limited through the nature of our scientific practice, by the diversity of sequences it
284 holds. Rather, the current composition highlights the influences of the past quarter of century of
285 funding and scientific focus. The enormous contribution of just a few projects shows that even the

286 drive and focus of individual groups has influenced our view of recent bacterial diversity. Sampling
287 and sequencing strategies must change if we want to reveal the bacterial tree of life.

288

289 **METHODS**

290 **Download of reads, assembly and characterisation of genomes**

291 The bacterial WGS datasets in the ENA as of the 26-11-18 were downloaded and
292 assembled as a part of an assembly pipeline (<https://github.com/iqbal-lab-org/assemble-all-ena>)
293 (39, 40). Only paired-end reads were included and those where the instrument platform was
294 'PACBIO_SMRT' or 'OXFORD_NANOPORE' were excluded. In addition, those with a library
295 source of 'METAGENOMIC' and 'TRANSCRIPTOMIC' were also ignored. Available metadata and
296 appropriate reads were downloaded and if multiple read sets were available they were appended
297 together. Reads were assembled using Shovill v1.0.4 (T. Seeman,
298 <https://github.com/tseemann/shovill>) with default options. Shovill uses SPAdes (v3.12.0) (11) for
299 assembly, and includes some additional pre- and post-processing steps that utilise Lighter (41),
300 FLASH (42), Trimmomatic (43), SAMtools (44), BWA-MEM (45, 46), seqtk
301 (<https://github.com/lh3/seqtk>), Pilon (47) and samclip (<https://github.com/tseemann/samclip>), to
302 speed up the assembly and to correct minor assembly errors. 664,877 assemblies were produced
303 by this pipeline.

304 Separate from the assembly pipeline, Kraken v2.0.8-beta (9) was run on the read fastq
305 files using the Kraken2-microbial database (2018, 30GB) and the resulting taxonomy labels
306 assigned by Kraken were analysed by Bracken v2.5 (10) to estimate the species abundance
307 within each set of reads. From the assemblies, contigs of less than 200 bp were removed using
308 the script available at <https://github.com/sanger-pathogens/Fastaq> and contigs of *k*-mer depth
309 less than 10 were noted, but not removed. Quast version 5.0.2 (12) was used to summarise
310 assembly statistics and CheckM v1.1.2 (13) using the "--reduced_tree" flag was used for
311 estimations of completeness and contamination of an assembly. Assemblies with a genome

312 length of less than 100 Kb or longer than 15 Mb were removed (3,472 assemblies), leaving
313 661,405 assemblies. A minHash sketch of each assembly (“-n 5000”) was produced using
314 sourmash v3.5.0 (14). A searchable k-mer database of the 661K assemblies was constructed by
315 COBS (checkout 7c030bb) using “compact-construct” with default options (8). Core and
316 accessory distances were calculated between the assemblies using poppunk_sketch v1.5.1 with
317 default options except “--k-step 3” (15). MLST was determined where possible using mlst v2.19.0
318 (Seeman, T. mlst, <https://github.com/tseemann/mlst>), *E. coli* phylotype determined using
319 clermonTyping version 1.4.1 (15) and *Salmonella* were serotyped using SeqSero2_package.py
320 v1.1.1 (16). Plasmid replicons were detected using Abricate v1.0.1 (Seeman, T. abricate,
321 <https://github.com/tseemann/abricate>) with the plasmidfinder 2020-May-7 database (17) and
322 AMR, heavy metal and virulence genes were detected using AMRFinderPlus v3.6.15 (18), with
323 standard thresholds of minimum identity (curated cut-off if it exists and 0.9 otherwise) and default
324 coverage of 0.5. All figures were generated in R using ggplot2 (19) and where required were
325 edited manually using Inkscape 2 v0.92.

326 **Taxid lineage, species comparison and adjustment species abundance**

327 The taxid lineage of the major bracken species was acquired by NCBI Taxa (20). Where
328 the major species from the Bracken analysis belonged to either of the *M. tuberculosis* complex or
329 *B. cereus* s.l. complex or was identified as a *Shigella* sp. or an *E. coli*, the remainder of the read
330 assignments were examined to see if they belonged to other members of that complex. If they
331 were members, their assigned percentage was added to that of the major species.

332 **High quality assemblies**

333 Filtering was applied using the reports generated by Quast and CheckM analysis for each
334 genome. The high quality assemblies met the requirements of: less than 2,000 contigs, a genome
335 length that is within the acceptable range for that species (50%-150% of the expected length)
336 (ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/species_genome_size.txt.gz, 27th
337 August, 2020), or is unknown, a N50 of greater than 5,000, a completeness score of at least 90

338 and a contamination score of less than or equal to 5. In total, 639,981 assemblies met these
339 requirements.

340 **Multi-class resistance**

341 Multi-class resistance (MCR) was defined as containing genes conferring resistance to at
342 least 3 classes of antimicrobial (antimicrobial classes were extracted from the AMRFinderPlus
343 output). Only species with at least 10 samples were included and a species was classed as MCR
344 if at least 50% of individual assemblies were MCR.

345

346 **DATA AND CODE AVAILABILITY**

347 The 661,405 assemblies as well as the COBS, minHash and pp_sketch indices are available:
348 <ftp://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k>.

349 The pipeline used for download and assembly of reads from the ENA <https://github.com/iqbal-lab-org/assemble-all-ena>.

351 Additional metadata and characterisation files deposited in figshare
352 (<https://dx.doi.org/10.6084/m9.figshare.14061752>):

353 -Full metadata downloaded from the ENA for each assembly in json form
354 (Json1_ENA_metadata)

355 -Full QC and general characterisation including AMR gene and plasmid replicon detection,
356 for each assembly in json form (Json2_QC_characterisation_amr_plasmid)

357 -Kraken/Bracken output including the top 50 species for each assembly
358 (File1_full_krakenbracken)

359 -The taxid lineage of the major species determined using NCBI Taxa
360 (File2_taxid_lineage_661K)

361 -Summarised metadata from the ENA for each assembly (File3_metadata_661K)

362 -Summarised QC and general characterisation for each assembly
363 (File4_QC_characterisation_661K)

364 -Summarised AMR genes, MCR status, plus genes, plasmid replicons for each assembly
365 (File5_AMR_plasmids_661K)

366 -Presence/absence matrix of AMR genes in each assembly
367 (File6_AMR_presenceabsence_661K)

368 -Class of each AMR gene extracted by AMRFinder (File7_gene_class_AMRFinder)

369 -Presence/absence matrix of plasmid replicons in each assembly (File8_plasmidreplicons_presenceabsence_661K)

370 R notebooks used for analysis and figure generation have been deposited in figshare () :

371 -Code used to generate figures in the QC and filtering section
372 (Rnotebook1_QC_filtering_section)

373 -Code used to generate figures in the Species breakdown section
374 (Rnotebook2_species_breakdown_section)

375 -Code used to generate figures in the AMR section (Rnotebook3_AMR_section_figures)

376

377

378 **Author contributions**

379 G.A.B., Z.I. and N.R.T. conceptualised the project. M.H. wrote the assembly pipeline which was
380 run by G.A.B., M.H. and K.M.M. Species identification was performed by G.A.B. and B.T.F.A.
381 G.A.B performed QC and characterisation of assemblies and with the help of G.H., analysed and
382 visualised the results. The minHash and pp-sketch indexes were constructed by G.A.B. and the
383 COBS index was constructed by L.L. and G.A.B. The manuscript was written by G.A.B, Z.I. and
384 N.R.T. All authors read and approved the final manuscript.

385

386 **Funding**

387 This work was supported by Wellcome (206194). G.A.B. was funded by an EMBL-EBI and Sanger
388 ESPOD fellowship. M.H. was funded by a Wellcome Trust/Newton Fund-MRC Collaborative
389 Award (200205) and an award from the Bill & Melinda Gates Foundation Trust (OPP1133541).

390

391 **Conflicts of interest**

392 The authors declare no conflicts of interest.

393

394 **Acknowledgements**

395 We thank Alexandre Almeida, Kate Mellor, Alyce Taylor-Brown and all other members of the Iqbal
396 and Thomson research teams for their useful discussions and suggestions. We would also like to
397 thank John Lees for his helpful guidance and support when creating the pp-sketch index of the
398 661K assemblies.

399

400 **References**

- 401 1. Blaxter,M., Danchin,A., Savakis,B., Fukami-Kobayashi,K., Kurokawa,K., Sugano,S.,
402 Roberts,R.J., Salzberg,S.L. and Wu,C.-I. (2016) Reminder to deposit DNA sequences.
403 *Science*, **352**, 780–780.
- 404 2. Haft,D.H., DiCuccio,M., Badretdin,A., Brover,V., Chetvernin,V., O'Neill,K., Li,W., Chitsaz,F.,
405 Derbyshire,M.K., Gonzales,N.R., *et al.* (2018) RefSeq: an update on prokaryotic genome
406 annotation and curation. *Nucleic Acids Research*, **46**, D851–D860.
- 407 3. Tatusova,T., DiCuccio,M., Badretdin,A., Chetvernin,V., Nawrocki,E.P., Zaslavsky,L.,
408 Lomsadze,A., Pruitt,K.D., Borodovsky,M. and Ostell,J. (2016) NCBI prokaryotic genome
409 annotation pipeline. *Nucleic Acids Res*, **44**, 6614–6624.
- 410 4. Markowitz,V.M., Chen,I.-M.A., Palaniappan,K., Chu,K., Szeto,E., Pillay,M., Ratner,A.,
411 Huang,J., Woyke,T., Huntemann,M., *et al.* (2014) IMG 4 version of the integrated
412 microbial genomes comparative analysis system. *Nucleic Acids Res*, **42**, D560–D567.
- 413 5. Wood,D.E., Lu,J. and Langmead,B. (2019) Improved metagenomic analysis with Kraken 2.
414 *Genome Biol*, **20**, 257.
- 415 6. Ondov,B.D., Treangen,T.J., Melsted,P., Mallonee,A.B., Bergman,N.H., Koren,S. and
416 Phillippe,A.M. (2016) Mash: fast genome and metagenome distance estimation using
417 MinHash. *Genome Biology*, **17**, 132.
- 418 7. Bernheim,A., Bikard,D., Touchon,M. and Rocha,E.P.C. (2020) Atypical organizations and
419 epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic
420 elements. *Nucleic Acids Res*, **48**, 748–760.
- 421 8. Denton,J.F., Lugo-Martinez,J., Tucker,A.E., Schrider,D.R., Warren,W.C. and Hahn,M.W.
422 (2014) Extensive Error in the Number of Genes Inferred from Draft Genome Assemblies.
423 *PLOS Computational Biology*, **10**, e1003998.
- 424 9. Salzberg,S.L. (2019) Next-generation genome annotation: we still struggle to get it right.
425 *Genome Biology*, **20**, 92.
- 426 10. Zhou,Z., Alikhan,N.-F., Mohamed,K., Fan,Y., the Agama Study Group and Achtman,M.
427 (2020) The Enterobase user's guide, with case studies on *Salmonella* transmissions,
428 *Yersinia pestis* phylogeny, and *Escherichia* core genomic diversity. *Genome Res.*, **30**,
429 138–152.

430 11. Nasko,D.J., Koren,S., Phillippy,A.M. and Treangen,T.J. (2018) RefSeq database growth
431 influences the accuracy of k-mer-based lowest common ancestor species identification.
432 *Genome Biol*, **19**, 165.

433 12. Breitwieser,F.P., Lu,J. and Salzberg,S.L. (2019) A review of methods and databases for
434 metagenomic classification and assembly. *Briefings in Bioinformatics*, **20**, 1125–1136.

435 13. Bingmann,T., Bradley,P., Gauger,F. and Iqbal,Z. (2019) COBS: a Compact Bit-Sliced
436 Signature Index. *arXiv:1905.09624 [cs]*.

437 14. Pierce,N.T., Irber,L., Reiter,T., Brooks,P. and Brown,C.T. (2019) Large-scale sequence
438 comparisons with sourmash. *F1000Res*, **8**, 1006.

439 15. Lees,J.A., Harris,S.R., Tonkin-Hill,G., Gladstone,R.A., Lo,S.W., Weiser,J.N., Corander,J.,
440 Bentley,S.D. and Croucher,N.J. (2019) Fast and flexible bacterial genomic epidemiology
441 with PopPUNK. *Genome Res.*, **29**, 304–316.

442 16. Swaminathan,B., Barrett,T.J., Hunter,S.B. and Tauxe,R.V. (2001) PulseNet: The Molecular
443 Subtyping Network for Foodborne Bacterial Disease Surveillance, United States.
444 *Emerging Infectious Diseases*, **7**, 8.

445 17. Whole-Genome Sequencing Is Taking over Foodborne Disease Surveillance: Public health
446 microbiology is undergoing its biggest change in a generation, replacing traditional
447 methods with whole-genome sequencing (2016) *Microbe Magazine*, **11**, 311–317.

448 18. Hoffmann,M., Luo,Y., Monday,S.R., Gonzalez-Escalona,N., Ottesen,A.R., Muruvanda,T.,
449 Wang,C., Kastanis,G., Keys,C., Janies,D., *et al.* (2016) Tracing Origins of the
450 *Salmonella* Bareilly Strain Causing a Food-borne Outbreak in the United States. *J Infect*
451 *Dis*, **213**, 502–508.

452 19. Metcalf,B.J., Gertz,R.E., Gladstone,R.A., Walker,H., Sherwood,L.K., Jackson,D., Li,Z.,
453 Law,C., Hawkins,P.A., Chochua,S., *et al.* (2016) Strain features and distributions in
454 pneumococci from children with invasive disease before and after 13-valent conjugate
455 vaccine implementation in the USA. *Clinical Microbiology and Infection*, **22**, 60.e9–
456 60.e29.

457 20. du Plessis,M., Allam,M., Tempia,S., Wolter,N., de Gouveia,L., von Mollendorf,C.,
458 Jolley,K.A., Mbelle,N., Wadula,J., Cornick,J.E., *et al.* (2016) Phylogenetic Analysis of
459 Invasive Serotype 1 Pneumococcus in South Africa, 1989 to 2013. *J. Clin. Microbiol.*, **54**,
460 1326–1334.

461 21. Cirillo,V.J. (2008) Two faces of death: fatalities from disease and combat in America's
462 principal wars, 1775 to present. *Perspect Biol Med*, **51**, 121–133.

463 22. Davies,J. and Davies,D. (2010) Origins and Evolution of Antibiotic Resistance. *Microbiol Mol*
464 *Biol Rev*, **74**, 417–433.

465 23. Holmes,A.H., Moore,L.S.P., Sundsfjord,A., Steinbakk,M., Regmi,S., Karkey,A., Guerin,P.J.
466 and Piddock,L.J.V. (2016) Understanding the mechanisms and drivers of antimicrobial
467 resistance. *The Lancet*, **387**, 176–187.

468 24. Tacconelli,E., Carrara,E., Savoldi,A., Harbarth,S., Mendelson,M., Monnet,D.L., Pulcini,C.,
469 Kahlmeter,G., Kluytmans,J., Carmeli,Y., *et al.* (2018) Discovery, research, and
470 development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and
471 tuberculosis. *The Lancet Infectious Diseases*, **18**, 318–327.

472 25. Centers for Disease Control and Prevention (U.S.) (2019) Antibiotic resistance threats in the
473 United States, 2019 Centers for Disease Control and Prevention (U.S.).

474 26. Interagency Coordination Group on Antimicrobial Resistance. No Time to Wait: Securing the
475 future from drug-resistant infections. *WHO*.

476 27. Liu,Y.-Y., Wang,Y., Walsh,T.R., Yi,L.-X., Zhang,R., Spencer,J., Doi,Y., Tian,G., Dong,B.,
477 Huang,X., *et al.* (2016) Emergence of plasmid-mediated colistin resistance mechanism
478 MCR-1 in animals and human beings in China: a microbiological and molecular
479 biological study. *The Lancet Infectious Diseases*, **16**, 161–168.

480 28. Hollenbeck,B.L. and Rice,L.B. (2012) Intrinsic and acquired resistance mechanisms in

481 enterococcus. *Virulence*, **3**, 421–569.

482 29. Miller,W.R., Munita,J.M. and Arias,C.A. (2014) Mechanisms of antibiotic resistance in
483 enterococci. *Expert Rev Anti Infect Ther*, **12**, 1221–1236.

484 30. Truong-Bolduc,Q.C., Bolduc,G.R., Medeiros,H., Vyas,J.M., Wang,Y. and Hooper,D.C.
485 (2015) Role of the Tet38 Efflux Pump in *Staphylococcus aureus* Internalization and
486 Survival in Epithelial Cells. *Infection and Immunity*, **83**, 4362–4372.

487 31. Doijad,S., Imirzalioglu,C., Yao,Y., Pati,N.B., Falgenhauer,L., Hain,T., Foesel,B.U., Abt,B.,
488 Overmann,J., Mirambo,M.M., *et al.* (2016) *Enterobacter bugandensis* sp. nov., isolated
489 from neonatal blood. *Int J Syst Evol Microbiol*, **66**, 968–974.

490 32. Fager,C. and Yurteri-Kaplan,L. (2019) Urinary tract infection with rare pathogen *Raoultella*
491 *Planticola*: A post-operative case and review. *Urology Case Reports*, **22**, 76–79.

492 33. Alibi,S., Ferjani,A., Boukadida,J., Cano,M.E., Fernández-Martínez,M., Martínez-Martínez,L.
493 and Navas,J. (2017) Occurrence of *Corynebacterium striatum* as an emerging antibiotic-
494 resistant nosocomial pathogen in a Tunisian hospital. *Sci Rep*, **7**, 9704.

495 34. Liljebjelke,K. (2018) Integrative Conjugative Element ICEHs1 Encodes for Antimicrobial
496 Resistance and Metal Tolerance in *Histophilus somni*. *Frontiers in Veterinary Science*, **5**,
497 12.

498 35. Gygli,S.M., Borrell,S., Trauner,A. and Gagneux,S. (2017) Antimicrobial resistance in
499 *Mycobacterium tuberculosis*: mechanistic and evolutionary perspectives. *FEMS*
500 *Microbiology Reviews*, **41**, 354–373.

501 36. Roberts,L.W., Hoi,L.T., Khokhar,F.A., Hoa,N.T., Giang,T.V., Bui,C., Ninh,T.H., Co,D.X.,
502 Binh,N.G., Long,H.B., *et al.* (2020) A genomic epidemiology study of multidrug-resistant
503 *Escherichia coli*, *Klebsiella pneumoniae* and *Acinetobacter baumannii* in two intensive
504 care units in Hanoi, Vietnam. *medRxiv*, 10.1101/2020.12.09.20246397.

505 37. Sheppard,A.E., Stoesser,N., Wilson,D.J., Sebra,R., Kasarskis,A., Anson,L.W., Giess,A.,
506 Pankhurst,L.J., Vaughan,A., Grim,C.J., *et al.* (2016) Nested Russian Doll-Like Genetic
507 Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene *bla*_{KPC}.
508 *Antimicrobial Agents and Chemotherapy*, **60**, 3767–3778.

509 38. Sherry,N.L., Lane,C.R., Kwong,J.C., Schultz,M., Sait,M., Stevens,K., Ballard,S.,
510 Williamson,D.A., Brett,J., van Diemen,A., *et al.* (2019) Genomics for Molecular
511 Epidemiology and Detecting Transmission of Carbapenemase-Producing
512 *Enterobacteriales* in Victoria, Australia, 2012 to 2016. *Journal of Clinical Microbiology*,
513 **57**, 12.

514 39. Di Tommaso,P., Chatzou,M., Floden,E.W., Barja,P.P., Palumbo,E. and Notredame,C.
515 (2017) Nextflow enables reproducible computational workflows. *Nature Biotechnology*,
516 **35**, 316–319.

517 40. Kurtzer,G.M., Sochat,V. and Bauer,M.W. (2017) Singularity: Scientific containers for mobility
518 of compute. *PLOS ONE*, **12**, e0177459.

519 41. Song,L., Florea,L. and Langmead,B. (2014) Lighter: fast and memory-efficient sequencing
520 error correction without counting. *Genome Biology*, **15**, 509.

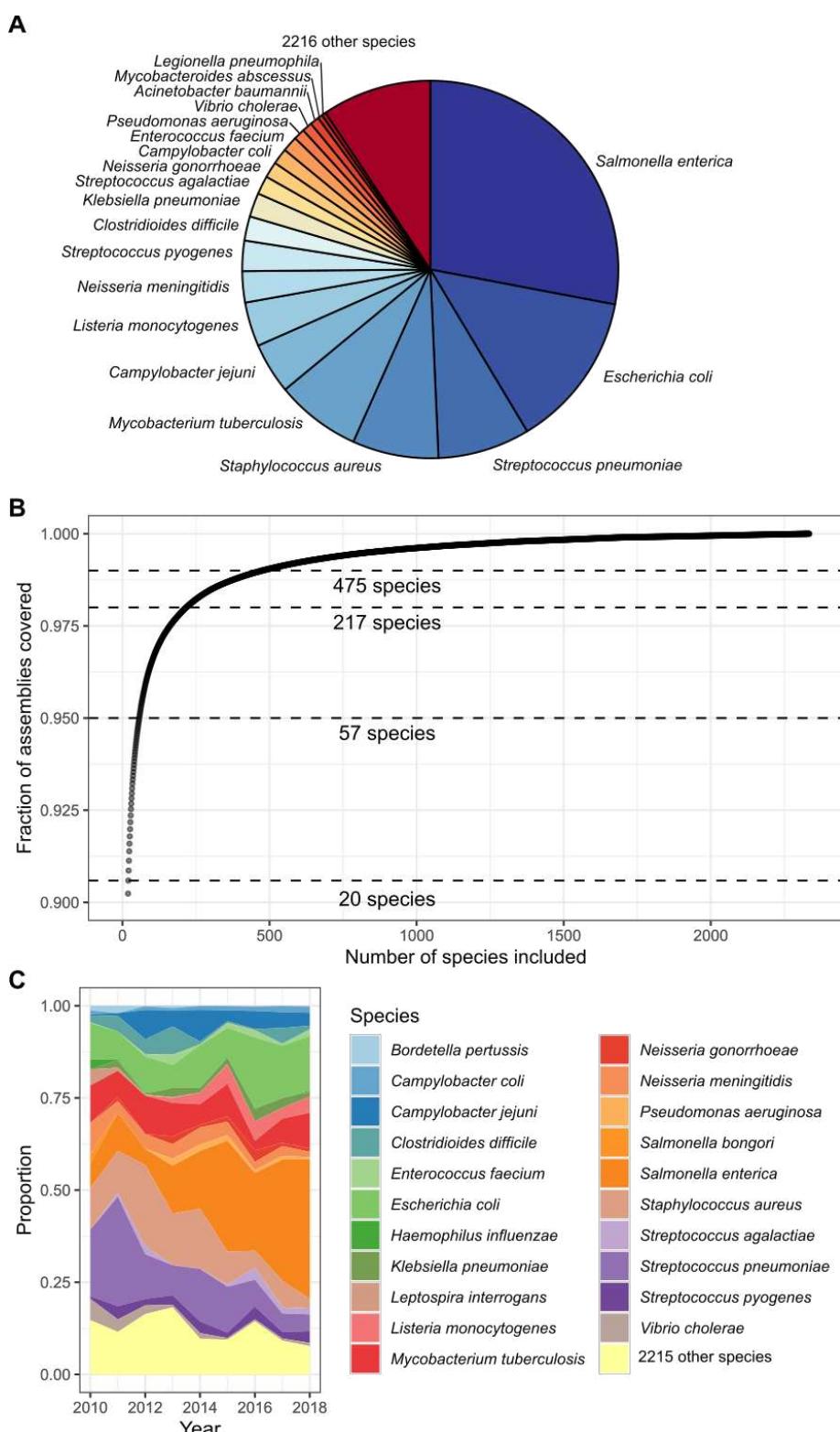
521 42. Magoč,T. and Salzberg,S.L. (2011) FLASH: fast length adjustment of short reads to improve
522 genome assemblies. *Bioinformatics*, **27**, 2957–2963.

523 43. Bolger,A.M., Lohse,M. and Usadel,B. (2014) Trimmomatic: a flexible trimmer for Illumina
524 sequence data. *Bioinformatics*, **30**, 2114–2120.

525 44. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G.,
526 Durbin,R., and 1000 Genome Project Data Processing Subgroup (2009) The Sequence
527 Alignment/Map format and SAMtools. *Bioinformatics*, **25**, 2078–2079.

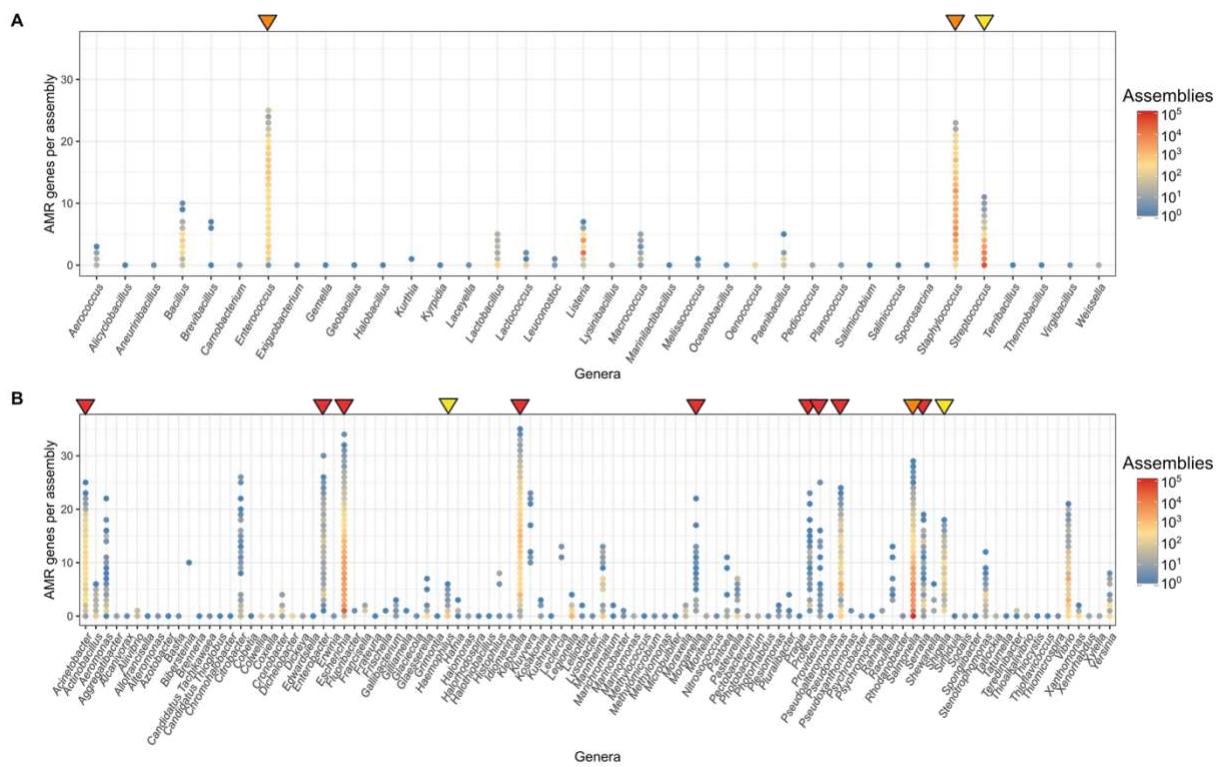
528 45. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows–Wheeler
529 transform. *Bioinformatics*, **25**, 1754–1760.

530 46. Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-
531 MEM. *arXiv:1303.3997 [q-bio]*.

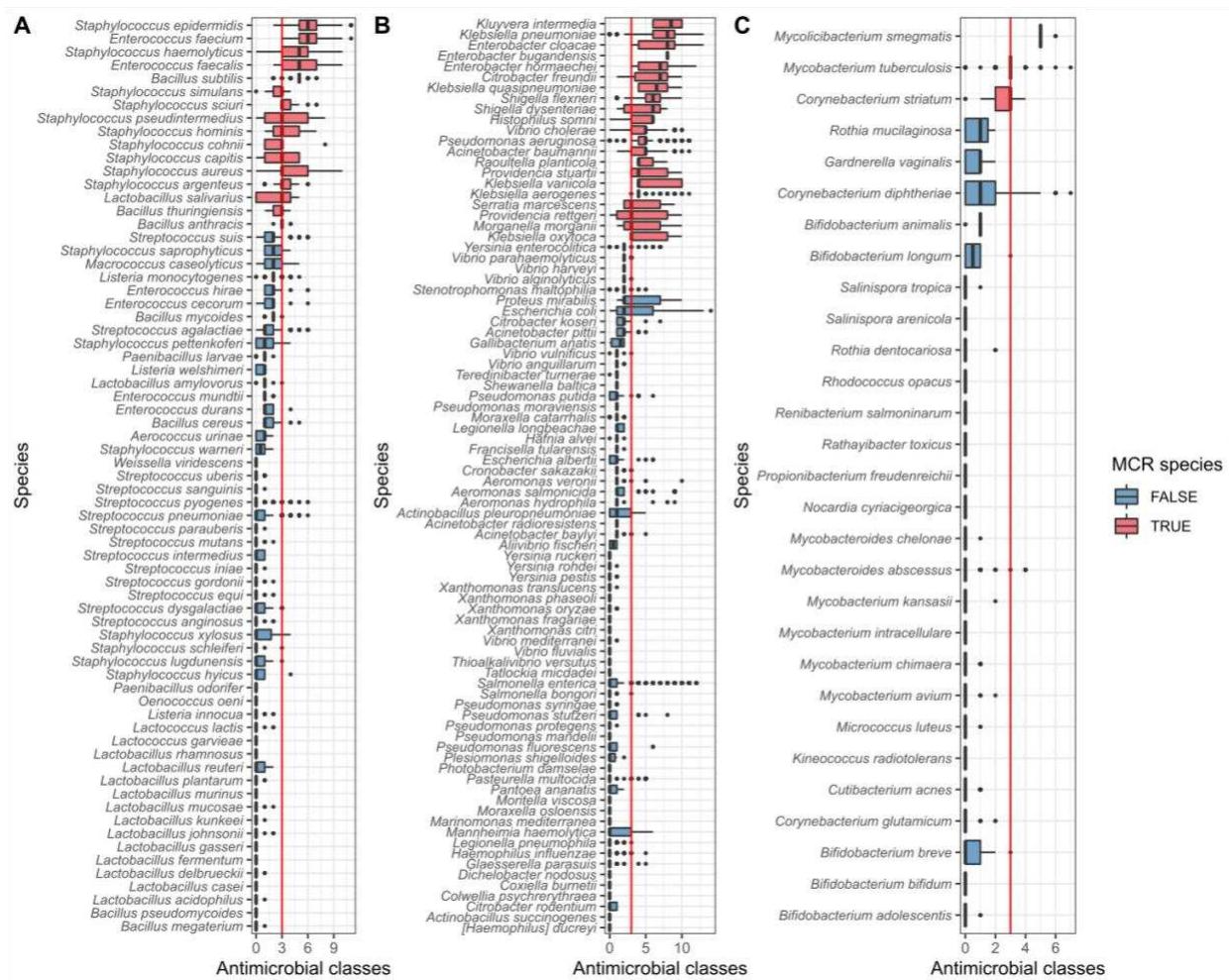

532 47. Walker,B.J., Abeel,T., Shea,T., Priest,M., Abouelliel,A., Sakthikumar,S., Cuomo,C.A.,
533 Zeng,Q., Wortman,J., Young,S.K., *et al.* (2014) Pilon: An Integrated Tool for
534 Comprehensive Microbial Variant Detection and Genome Assembly Improvement. *PLOS
535 ONE*, **9**, e112963.

536

537


538

539 **FIGURES**


540

541 **Figure 1.** Species composition of the 639,981 high-quality assemblies. A) Relative proportions of
542 species to the data as a pie chart. Note that 90% of the assemblies are from 20 bacterial species.
543 B) Fraction of assemblies covered by accumulating bacterial species. C) Tracking proportions of
544 the top 10 bacterial species for each year.

545

546 **Figure 2.** Number of AMR genes in individual genomes of the orders A) Bacilli and B)
547 Gammaproteobacteria. Arrows above indicate genera that contain species that have been
548 determined by the WHO to be of critical (red), high (orange) and medium (yellow) priority
549 pathogens for research and development into new antibiotics (24).
550

551
552
553
554
555
556
557

Figure 3. Predicted antimicrobial resistance profiles of species from A) Bacilli, B) Gammaproteobacteria and C) Actinobacteria, showing the number of predicted antimicrobial classes each isolate is resistant to, based on genetic profile. The red line indicates the threshold for MCR (predicted resistance to three classes of antimicrobials or more). Species are classed as MCR (red in figure) if at least 50% of the assemblies are MCR. Species included have at least 10 assemblies.