bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433228; this version posted June 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

On the generalizability of diffusion MRI signal
representations across acquisition parameters,
sequences and tissue types: chronicles of the
MEMENTO challenge.

Alberto De Luca'?, Andrada lanus3, Alexander Leemans?, Marco Palombo?* Noam Shemesh?
, Hui Zhang?, Daniel C Alexander?, Markus Nilsson®, Martijn Froeling®, Geert-Jan Biessels?,
Mauro Zucchelli’, Matteo Frigo’, Enes Albay’/2, Sara Sedlar’, Abib Alimi’, Samuel Deslauriers-
Gauthier’, Rachid Deriche’, Rutger Fick®, Maryam Afzalil®, Tomasz Pieciak!'*?, Fabian
Bogusz!!, Santiago Aja-Fernandez!?, Evren Ozarslan314, Derek K Jones??, Haoze Chen?s,
Mingwu Jine, Zhijie Zhang®®, Fengxiang Wang?'>, Vishwesh Nath?’, Prasanna Parvathaneni's,
Jan Morez?®, Jan Sijbers®®, Ben Jeurissen'?, Shreyas Fadnavis?®, Stefan Endres??, Ariel
Rokem??, Eleftherios Garyfallidis?®, Irina Sanchez?3, Vesna Prchkovska?3, Paulo Rodrigues?3,
Bennet A Landman?4, Kurt G Schilling?* 2>

IPROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
’Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the
Netherlands
3Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
4Centre for Medical Image Computing, Department of Computer Science, University College London, London,
United Kingdom
5Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
5Department of Radiology, University Medical Center Utrecht
’Inria Sophia Antipolis — Méditerranée, Université Céte d'Azur, Sophia Antipolis, France
8Istanbul Technical University, Istanbul, Turkey
STRIBVN Healthcare, Paris, France
10Cardiff University Brain Research, Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff,
United Kingdom
1AGH University of Science and Technology, Krakéw, Poland
2 p|, ETSI Telecomunicacién, Universidad de Valladolid, Valladolid, Spain
3Department of Biomedical Engineering, Linkdping University, Linkdping, Sweden
14Center for Medical Image Science and Visualization, Linkdping University, Linképing, Sweden
15School of Instruments and Electronics, North University of China, Taiyuan, China
%Department of Physics, University of Texas at Arlington, Arlington, USA
NVIDIA Corporation, Bethesda, USA
8National Institute of Health, Bethesda, USA
BImec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
D)ntelligent Systems Engineering, Indiana University Bloomington, Indiana, USA
2 eibniz Institute for Materials Engineering — IWT, Faculty of Production Engineering, University of Bremen,
Bremen, Germany
22pepartment of Psychology and the eScience Institute, University of Washington, Seattle, WA USA
ZQMENTA Inc, Boston, USA
Zyanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, USA
ZDepartment of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, USA


https://doi.org/10.1101/2021.03.02.433228
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433228; this version posted June 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural
organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal
encodes specific properties of the underlying diffusion process. In the last two decades,
several signal representations have been proposed to fit the dMRI signal and decode such
properties. Most methods, however, are tested and developed on a limited amount of data,
and their applicability to other acquisition schemes remains unknown. With this work, we
aimed to shed light on the generalizability of existing dMRI signal representations to different
diffusion encoding parameters and brain tissue types. To this end, we organized a community
challenge - named MEMENTO, making available the same datasets for fair comparisons across
algorithms and techniques. We considered two state-of-the-art diffusion datasets, including
single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique
diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data
(DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data
sampled in 5 different voxels was openly distributed, and the challenge participants were
asked to predict the remaining part of the data. After one year, eight participant teams
submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error,
the variance of the prediction error and the Bayesian information criteria. Most predictions
predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE
data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE
remarkably well, with the exception of low and very strong diffusion weightings. The
prediction of DDE and DODE data seemed more challenging, likely because none of the
submissions explicitly accounted for diffusion time and frequency. Next to the choice of the
model, decisions on fit procedure and hyperparameters play a major role in the prediction
performance, highlighting the importance of optimizing and reporting such choices. This work
is a community effort to highlight strength and limitations of the field at representing dMRI
acquired with trending encoding schemes, gaining insights into how different models
generalize to different tissue types and fiber configurations over a large range of diffusion
encodings.
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Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is a powerful tool to investigate
microstructural properties of biologic tissues in-vivo (A. L. Alexander et al. 2007; J. D. Tournier,
Mori, and Leemans 2011) with applications in neuroimaging studying brain development
(Ouyang et al. 2019), plasticity (Blumenfeld-Katzir et al. 2011), aging (Baker et al. 2014), as
well as changes upon disease for diagnostic and monitoring purposes in various conditions
such as Alzheimer’s disease (Doan et al. 2017; Weston et al. 2015), multiple sclerosis (Inglese
and Bester 2010; De Santis et al. 2019), Parkinson’s disease (Atkinson-Clement et al. 2017),
brain tumours (Costabile et al. 2019), etc. The signal measured in dMRI is sensitized to the
microscopic motion of water molecules, which is hindered and restricted by the presence of
biologic membranes, thus carrying information about the cellular organization. Over the last
decade, an increasing number of techniques have been proposed in the literature to describe
the dMRI signal and provide biomarkers of tissue microstructure and have been recently
complemented with various machine learning approaches.(D. C. Alexander et al. 2017; Ghosh,
lanus, and Alexander 2018; D. S. Novikov et al. 2019; Poulin et al. 2019; Ravi et al. 2019)

The standard acquisition strategy for dMRI data is single diffusion encoding (SDE), which
employs a pair of diffusion weighting gradients with identical areas, usually embedded before
and after the refocusing pulse in a spin echo preparation, a sequence widely known also as
pulsed gradient spin-echo (Stejskal and Tanner 1965). The SDE sequences are characterized
by the gradient strength (G), duration (8), time interval between the onset of the two
gradients (A) and gradient orientation (§). The scalar parameters (G, 6, A) are usually
combined to describe the diffusion weighting of the sequence, also referred to as the b-value.
For SDE sequences, b = y>G?8%(A- §/3), where y is the gyromagnetic ratio. In the majority of
SDE acquisitions & and A are fixed and G is varied to change the b-value, although varying the
gradient duration and diffusion time can provide additional orthogonal measurements (D. S.
Novikov et al. 2019). Over the last decade, diffusion sequences which further vary the
gradient waveform within one measurement, such as double diffusion encoding (DDE) (Mitra
1995; Henriques et al. 2020) or b-tensor encoding approaches (Lasic et al. 2014; C. F. Westin
et al. 2016), have been gaining interest as they can further improve the specificity of the
measurements towards the underlying tissue microstructure. Other approaches replace the
pulsed gradients with oscillating gradient waveforms to probe diffusion on a range of
(shorter) time scales (Does, Parsons, and Gore 2003; Burcaw, Fieremans, and Novikov 2015),
measurements which can also be performed with different gradient orientations in a double
oscillating diffusion encoding (DODE) fashion (lanus et al. 2017, 2018). While the majority of
recent dMRI studies employ SDE sequences, such advanced acquisitions are steadily gaining
popularity.

The most widely used dMRI technique for brain imaging in the clinic is diffusion tensor
imaging (DTI)(Basser, Mattiello, and LeBihan 1994), which assumes that water diffusion in the
underlying tissue can be described by a Gaussian anisotropic process. As minimum
requirements, the tensor parameters can be estimated from SDE sequences with a single b-
value (usually about 1000 s/mm?) and at least 6 non-collinear directions in addition to non-
diffusion weighted data (b = 0 s/mm?). Although simple and robust, DTl cannot describe the
signal decay in correspondence of higher b-values (e.g., above about 1500 s/mm? in the living
brain) and cannot distinguish between multiple fibre populations, for instance in areas of
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crossing fibres (B. Jeurissen et al. 2013). After DTI, a plethora of techniques have been
introduced to capture the dMRI signal decay over a wider range of parameter values (D. C.
Alexander et al. 2017; D. S. Novikov et al. 2019).

dMRI models can generally be regarded as biophysical models, signal representations or
somewhere in between (Ghosh, lanus, and Alexander 2018; lleana O. Jelescu and Budde
2017). Biophysical models usually employ multiple water compartments to describe the dMRI
signal in the tissue in order to capture microscopic metrics such as intracellular signal fraction,
cell size, shape etc (Stanisz et al. 1997; Jespersen et al. 2007; Y. Assaf et al. 2008; Daniel C.
Alexander 2008; E. Fieremans et al. 2013; Palombo et al. 2020; Panagiotaki et al. 2012; Fan et
al. 2020; Zhang et al. 2012). Several biophysical models have been proposed in the literature
and vary in terms of the number of compartments, diffusion model (hindered/restricted),
number of fibre populations, fibre orientation distributions, etc. Signal representations on the
other hand, usually provide a statistical description to capture the signal decay without
explicitly modelling the underlying tissue composition (Yablonskiy, Bretthorst, and Ackerman
2003; J. H. Jensen et al. 2005; Ozarslan et al. 2009; Els Fieremans, Jensen, and Helpern 2011;
Steven, Zhuo, and Melhem 2014; Ozarslan et al. 2013). Next to these two main families, there
are also hybrid approaches that, for instance, aim to characterize the fibre orientation
distribution without explicitly modelling the fibre composition (J. D. Tournier et al. 2008; Ben
Jeurissen et al. 2014), or use a statistical model for different compartments (Scherrer et al.
2016; Pasternak et al. 2009; De Luca, Bertoldo, and Froeling 2017), which can be defined a-
priori or driven from the data (Keil et al. 2017; De Luca et al. 2018). Besides these “classical”
approaches to model dMRI, the last couple of years have witnessed a vast increase in the
number of machine learning techniques applied to dMRI to predict signal decay (Golkov et al.
2016; Grussu et al. 2020), fibre orientations (Poulin et al. 2019; Nath, Schilling, et al. 2019) or
the underlying tissue parameters (Nedjati-Gilani et al. 2017).

The choice of dMRI technique depends on many factors, such as the purpose of the
experiment, the amount and quality of the data, the number and strength of b-values, angular
resolution, etc, and generally no consensus has been reached on what a state-of-the-art
diffusion experiment should include. Nevertheless, for a given acquisition, comparing
diffusion models can provide valuable information about which approaches best describe the
signal and can be generalized to predict measurements outside the initial range. In the
literature, there have been various studies which aimed to compare brain tissue models in
terms of goodness of fit and signal prediction, with an emphasis on white matter (WM)
(Panagiotaki et al. 2012; U. Ferizi et al. 2015; I. O. Jelescu et al. 2014; Rokem et al. 2015) and
less on gray matter (GM)(Yaniv Assaf 2019). However, such studies usually focused on a
certain group of models, for instance multi-compartment biophysical models were
investigated in (Panagiotaki et al. 2012; U. Ferizi et al. 2015), while (Wang et al. 2017) looked
in more detail at signal representations.

Open challenges play an important role to gain a better understanding of how various models
capture the dMRI signal decay, as they put forward rich datasets and well-defined tasks and
usually receive submissions from across the modelling landscapes (Uran Ferizi et al. 2017;
Schilling et al. 2019; Pizzolato et al. 2020). The last diffusion microstructure challenge which
included a comprehensive dMRI acquisition (Uran Ferizi et al. 2017) was organized in 2015
and focused on modelling the dMRI signal acquired on the Connectome scanner for two ROIs
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in white matter: genu of the Corpus Callosum with mostly aligned fibres and fornix with a
more complex fibre configuration. The challenge included a rich dataset acquired with many
combinations of gradient strengths, durations and diffusion times and the goal was to predict
unseen shells with parameter values within the range used for the provided data. Since the
end of this challenge, many novel approaches have been proposed, including a booming
application of machine learning techniques for data fitting and prediction (Golkov et al. 2016;
Nedjati-Gilani et al. 2017; Nath, Schilling, et al. 2019; Ravi et al. 2019; Poulin et al. 2019).
Moreover, previous challenges (Uran Ferizi et al. 2017; Schilling et al. 2019; Pizzolato et al.
2020) included only diffusion data acquired with standard SDE sequences, and do not provide
any insight into the different approaches available to analyse advanced sequences such as
DDE.

In this challenge we set to evaluate the ability of different dMRI modeling approaches to
capture the dMRI signal contrast from state-of-the-art acquisitions performed with SDE,
including shells with an order of magnitude higher angular resolution compared to previous
challenges (Uran Ferizi et al. 2017; Schilling et al. 2019; Pizzolato et al. 2020), as well as DDE
and DODE data. Further, we aim to investigate the relationship between the goodness of fit
and tissue type, acquisition parameters, and diffusion sensitization. Finally, this challenge acts
as a benchmark database for the evaluation of future models focusing on healthy tissue as
the full datasets are made available (https://github.com/PROVIDI-Lab/MEMENTO.git).

Methods

Section 2.1 presents an overview of the data that was used in the MEMENTO challenge and
of the reasoning behind the selection of specific brain locations. A description of the methods
used in the received submissions is reported in section 2.2, whereas section 2.3 illustrates the
analyses we performed on the collected signal predictions.

Challenge data
MRI acquisition

The main aim of the MEMENTO challenge was to investigate how well existing models can
represent the dMRI signal collected with i) different gradient encoding schemes, and ii) from
different tissue types.

To investigate how the existing models can predict data sampled with different diffusion
sensitization, we selected two datasets containing extensively sampled dMRI brain data with
4 encoding schemes: multi-shell SDE (SDE-MS), SDE with gradients sampled in a cartesian grid
(SDE-GRID), DDE and DODE. The SDE acquisitions were performed in a healthy volunteer with
a 3T scanner as part of the MASSIVE datasets (Froeling et al. 2017a), a collection of 18 MRI
sessions containing unique dMRI data performed with a 3T scanner (Philips Healthcare, The
Netherlands) with voxel-size 2.5mm?3 isotropic, echo time TE=100ms and repetition time TR
between 7 and 7.5s. The DDE and DODE data were sampled from an ex-vivo mouse brain
imaged with a 16.4T scanner (Bruker) with imaging resolution 0.12x0.12x0.7mm3, TE=52ms,
TR=3s (lanus et al. 2018). The diffusion parameters of the acquired data are reported in Table
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1 and Table 2. To establish the signal to noise ratio (SNR) of the data, we considered the
datapoints collected at b = 0 s/mm2, removed eventual outliers and defined the average SNR
as the ratio between the average non-weighted value and its standard deviation. A point was
defined as an outlier when its value was outside the confidence interval defined by the
median value + 2 times the robust standard deviation of the data (see (Chang, Jones, and
Pierpaoli 2005)). The SNR of the 5 selected signals at b =0 s/mm2 was 15 + 3 for SDE-MS, 16
+ 3 for SDE-GRID, 76 + 37 for DDE and 66 + 28 for DODE.

Table 1 - A description of the SDE encoding acquired as part of the MASSIVE data, and their subdivision in training
and evaluation data. No data points of SDE-MS at b = 4000 s/mm? and SDE-GRID at b > 7600 s/mm? were
provided for training. The ratio between training and evaluation data was about 1:3 for SDE-MS and 3:5 for SDE-
GRID.
Diffusion Encoding Number of directions Training Evaluation
SDE-MS data of a healthy volunteer acquired at 3T in 18 sessions (13 shells)
b=0s/mm2 430 20 410
b=5s/mm2 30 8 22
b =10s/mm2 30 7 23
b =25s/mm2 40 10 30
b =40 s/mm2 40 10 30
b =60s/mm2 20 5 15
b =80s/mm2 20 5 15
b =140 s/mm?2 20 5 15
b =250 s/mm?2 30 8 22
b =500 s/mm?2 250 62 188
b =1000 s/mm?2 500 125 375
b =2000 s/mm?2 500 125 375
b =3000 s/mm2 500 125 375
b = 4000 s/mm2 600 0 600
Total 3010 515 2495
SDE-GRID data of a healthy volunteer acquired at 3T in 18 sessions
b=0s/mm2 430 20 410
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b =141-563 s/mm2 58 22 36

b =750-938 s/mm?2 54 22 32

b =1125-1875 s/mm2 170 72 98
b =2016-2766 s/mm2 248 102 146
b =3000-3938 s/mm2 314 129 185
b =4125-4875 s/mm2 168 68 100
b =5016-6891 s/mm2 196 65 131

b = 7687-9000 s/mm?2 32 0 32
Total 1670 500 1170

Table 2 - The table describes the subdivision in training and evaluation data of the unique combinations of
diffusion weighting b and diffusion time (A) / oscillation frequency (f) for the DDE and DODE data, respectively.
In the DDE training set, the data acquired with A = 5ms was provided with the exception of the largest diffusion
weighting (b = 4000 s/mm?), and no data acquired with A = 10ms was provided for training. The mixing time
for DDE sequences was 18.3ms. For DODE, the data points acquired with the three lower oscillation frequencies
(66, 100, 133 Hz) were provided with the exception of b = 4000 s/mm?, and no data acquired with f = 166 and
200 Hz was provided for training. The separation time between gradient waveforms was 5ms. For DDE and
DODE data, the sequence description included information about gradient strengths, directions, timing
parameters as well as the elements of the B-matrix.

Diffusion Encoding | Number of directions Training Evaluation
DDE data from a mouse brain ex-vivo acquired at 16.4T

A=5ms, b =0s/mm2 40 32 8
A=5ms, b = 1000 s/mm2 72 72 0
A=5ms, b = 1750 s/mm?2 72 72 0
A=5ms, b = 2500 s/mm?2 72 72 0
A=5ms, b = 3250 s/mm?2 72 72 0
A=5ms, b = 4000 s/mm?2 72 0 72

A=10ms, b =0s/mm2 40 0 40
A=10ms, b = 1000 s/mm?2 72 0 72
£=10ms, b = 1750 s/mm?2 72 0 72
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A=10ms, b = 2500 s/mm?2 72 0 72
A=10ms, b = 3250 s/mm?2 72 0 72
A=10ms, b = 4000 s/mm2 72 0 72

Total 800 320 480

DODE data from a mouse brain ex-vivo acquired at 16.4T

f=66, 100, 133Hz 3x40 3x32 3x8
b=0s/mm2
f=66, 100, 133Hz 3x72 3x72 0

b =1000 s/mm?2

f=66, 100, 133Hz 3x72 3x72 0
b =1750s/mm2

f=66, 100, 133Hz 3x72 3x72 0
b =2500 s/mm?2

f=66, 100, 133Hz 3x72 3x72 0
b =3250 s/mm2

f=66, 100, 133Hz 3x72 0 3x72
b =4000 s/mm?2

f=166, 200Hz 2x40 0 2x40
b=0s/mm2
f=166, 200Hz 2x72 0 2x72

b =1000 s/mm?2

f=166, 200Hz 2x72 0 2x72
b =1750s/mm2

f=166, 200Hz 2x72 0 2x72
b =2500 s/mm?2

f=166, 200Hz 2x72 0 2x72
b =3250s/mm2

f=166, 200Hz 2x72 0 2x72
b =4000 s/mm?2

Total 2000 960 1040

Signals selection

Five signals were selected for each dataset from brain voxels exhibiting different
microstructural organization. For the human MASSIVE dataset, the voxels aimed to include
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WM signals with an increasing number of crossing fiber configurations from 1 to 3, deep gray
matter (DGM) and cortical gray matter (CGM) and the selection was based on visual
inspection of the fiber orientation distribution (FOD). The FOD was derived with constrained
spherical deconvolution (J.-D. Tournier, Calamante, and Connelly 2007) of data at b = 0, 3000
s/mm? (500 directions) using a recursively calibrated response function(Tax et al. 2014)
approach implemented in ExploreDTI. Given the relatively large imaging resolution of the
MASSIVE dataset, 2.5mm?3 isotropic, care was taken in selecting voxels not located at tissue
interfaces, also using the FOD as guidance. For the mouse brain, the five voxels were placed
in white matter tracts with different microstructures and based on visual comparison with an
anatomical atlas, as the number of collected gradient orientations per diffusion weighting was
insufficient to reliably estimate the FOD. Specifically, the five voxels were placed in medial
corpus callosum, lateral corpus callosum, internal capsule, a fanning region of the internal
capsule and the fimbria, respectively. An illustration of the locations and tissue types of the
selected voxels is shown in Figure 1.

Location of the 5 selected voxels in the human brain (SDE)

Signal 1 Signal 2 Signal 3 Signal 4 Signal 5
[CGM]

Location of the 5 selected voxels in the mouse brain (DDE/DODE)
Signal 1 Signal 2 Signal 3 Signal 4 Signal 5
[Medial CC] [Lateral CC] [IC] [Fanning IC] [Fimbria]

& & &

CC: corpus callosum ~ IC: internal capsule

DDE/DODE

Figure 1: The locations of the 5 voxels selected for the SDE (top) and DDE/DODE data (bottom). The SDE data
are sampled from a human brain scanned at 3T with imaging resolution 2.5mm? isotropic, and is part of the
MASSIVE dataset. The 5 locations were chosen in 5 different tissue types, such as white matter (WM) with
increasing fiber complexity (signals 1-3, as exemplified by the shown fiber orientation distribution), deep gray
matter (DGM) and cortical gray matter (CGM). DDE and DODE were sampled in a mouse brain at 16.4T with
imaging resolution 0.12x0.12x0.7mm?3. The selected signals are all taken from WM locations with well-
established differences in fiber organization, as shown by the red dots overlaid on the fractional anisotropy
map.
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Training and evaluation data

The 20 selected measurement sets (5 signal locations x 4 diffusion encodings) were
subdivided in training and evaluation data. The challenge participants were provided with the
training data and the corresponding diffusion encoding information, and asked to predict the
evaluation data. The proportion of training and evaluation data was not constant among data
encodings. For SDE, the training data consisted of about 500 gradient directions uniformly
subsampled from all available data except for the largest diffusion weightings, which
corresponds to about 17% of SDE-MS, and 30% of SDE-GRID. . For DDE and DODE, we provided
a larger amount of training data to take into account the need to model an additional
encoding dimension (e.g., time and frequency), respectively 40% and 48%. To evaluate the
ability of the tested models to predict unseen data points, all the data corresponding to
specific diffusion weightings was removed from the training data, as reported in Table 1 and
Table 2.

Signal predictions

We received initial submissions from 9 teams, but 2 of the 9 teams did not provide valid
submissions and were not included in this analysis. The remaining 7 teams submitted a total
of 80 valid signal predictions that were considered in the subsequent analyses. Of these, 31
submissions predicted the SDE-MS signals (37%), 16 the SDE-GRID signals (19%), 15 the DDE
signals (18%) and 18 the DODE signals (22%). When a model was applied more than once to
predict a given set of signals, only the submissions corresponding to the best and worst
prediction were analyzed, to simplify the presentation and interpretation of the results. The
final selection of predictions included in this analysis is reported in Table 3. When multiple
predictions with a given model were submitted, the best and worst predictions were
identified by adding the labels “_best” and “_worst” to the model name.

To follow, we present an overview of the submissions we received grouped in four different
categories.

Table 3: The valid signal predictions submitted to the MEMENTO challenge. For each method, we report the
acronym and the main reference, the “category”, special notes on the fit procedure, and the data it has been
applied to. The following predictions were subdivided in the following categories: tensor-based (TENS), multi-
compartment model (MCM), parametric representation (PAR), deep learning-based (DL).

Model Category Notes SDE-MS SDE-GRID DDE DODE

name
DTI (Basser, TENS Linear-Least X X X X
Mattiello, and Squares
LeBihan 1994)

DKI (J. H. TENS Weighted-Least X X X X
Jensen et al. Squares

2005)
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DKI+Offset TENS Constrained
(Morez et al. Non-Linear fit
2020)
DTD-cov (C. F. TENS Constrained
Westin et al. Non-Linear fit
2016)
DTD-cov (C. F. TENS Constrained
Westin et al. Non-Linear fit
2016) + Offset
Ball&Stick MCM Implemented in
(Behrens et al. Dmipy (Fick,
2003) Wassermann,
and Deriche
2019)
Ball&Racket MCM Implemented in
(Sotiropoulos, Dmipy (Fick,
Behrens, and Wassermann,
Jbabdi 2012) and Deriche
2019)
NODDI-Watson MCM Implemented in
(zhang et al. Dmipy (Fick,
2012) Wassermann,
and Deriche
2019)
NODDI - MCM Implemented in
Bingham (Tariq Dmipy (Fick,
et al. 2016) Wassermann,
and Deriche
2019)
SMT (Kaden et MCM Implemented in
al. 2016) Dmipy (Fick,
Wassermann,
and Deriche
2019)
NODDI-SMT MCM Implemented in
Dmipy (Fick,
Wassermann,
and Deriche
2019)
MCMDI (Kaden MCM Implemented in
et al. 2016) Dmipy (Fick,
Wassermann,
and Deriche
2019)
ActiveAx (D. C. MCM Implemented in
Alexander et al. Dmipy (Fick,
2010) Wassermann,
and Deriche
2019)
SHORE PAR From
(Ozarslan et al. DeepSHORE
2009) (Nath, Lyu, et
al. 2019)
MAP-MRI PAR Implemented in
(Fick et al. Dmipy (Fick,
2016) Wassermann,
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and Deriche
2019)
MAP-MRI+Reg PAR Implemented in X X
(Fick et al. Dipy
2016) (Garyfallidis et
al. 2014)
NeuralNet DL Perceptron 1 X X X X
Layer 50 nodes
NeuralNet+Rein DL Perceptron 7 X X X X
f (Williams Layers
1992) optimized with
NAS (Zoph and
Le 2016)

Tensor and beyond

Diffusion tensor imaging (DTI, Basser et al. 1994) is one of the most common quantification
methods for dMRI data acquired with at least one diffusion-weighting and 6+ gradient
directions. DTI is based on the three-dimensional generalization of the seminal works of
Stejskal and Tanner (Stejskal and Tanner 1965), and assumes the diffusion process to be
Gaussian (i.e., not restricted). In the living brain, such assumption is typically satisfied when
collecting dMRI data with diffusion weightings in the range b = 800-1200 s/mm?. While DTI
typically does not accurately characterize complex diffusion environments where, for
example, multiple diffusion mode (e.g., tissue diffusion vs blood pseudo-diffusion (Le Bihan
et al. 1988)) or “crossing-fibers” co-exist (Wedeen et al. 2005), it is one of the most common
dMRI signal representations in clinical application, especially thanks to its sensitivity to
microstructural changes in health and pathology. Keeping in mind all of the above, the DTI
method was applied in this work to SDE-MS, DDE and DODE data to serve as baseline
reference using a weighted-least-squares fit.

In 2005, Jensen and colleagues introduced the diffusion kurtosis imaging (DKI) method (J. H.
Jensen et al. 2005), an extension of DTl that allows to account for and quantify the amount of
non-Gaussian diffusion that is observed at stronger diffusion weightings (e.g., b > 1400 s/mm?
in the living brain). The DKI model requires the collection of at least 21 unique measurements,
including 2 non-zero diffusion-weightings and 15+ unique gradient directions, and allows to
guantify the amount of excess kurtosis of the diffusion process. While DKl is suitable for dMRI
data acquired with a stronger diffusion weighting than DTI, nevertheless, there is a theoretical
maximum to the diffusion weighting that can be fit (J. H. Jensen et al. 2005; Jens H. Jensen
and Helpern 2010), and most brain applications use a maximum b-value equal to b = 3000
s/mm?. Despite these theoretical limits, DKI was fit to all data included in this work using a
constrained non-linear least-squares fit enforcing positivity in diffusion and kurtosis metrics
and a monotonic decay of the signal. When fitting data acquired with strong diffusion
weighting, it might be beneficial to take into account the presence of a minimum signal offset
due to Rician noise in the measurements (Gudbjartsson and Patz 1995; Basu, Fletcher, and
Whitaker 2006). One of the submissions considered in this work extended the DKl method
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with an offset term to account for such effect (DKI+Offset)(Morez et al. 2020). This method
was fit to SDE data by extending the classic DKI model with an additional degrees of freedom
(22 + 1 = 23 free parameters), and to DDE and DODE data by extending a fourth order
covariance tensor (28 + 1 = 29 free parameters) (C.-F. Westin et al. 2016).

Multicompartment models

Multi-compartment models are a family of methods that allow to model the dMRI signal by
means of biophysical features (Panagiotaki et al. 2012; Ileana O. Jelescu and Budde 2017).
The assumption behind these models is that the dMRI signal acquired in a voxel can be
described as the linear combination of the signal profiles of each component that is present
in a specific voxel.

All the submissions we received based on multicompartment models were computed with
custom implementations of previously introduced methods with the “Diffusion
Microstructure Imaging in Python” toolbox (dmipy). The submissions considered only SDE
data, and were based on three basic components: the intra-axonal compartment was
modelled as a stick or a cylinder, whereas the extra-axonal anisotropic compartment was
modelled as a zeppelin (axially symmetric tensor) and the cerebrospinal fluid contribution
modelled as isotropic diffusion (sphere). Depending on the specific implemented model, the
anisotropic compartments were optionally convolved with a Watson or a Bingham
distribution to account for fiber orientation dispersion. A summary of the multicompartment
models that were submitted and the components they are based on is shown in Table 4.

Table 4: An overview of the diffusion models used to represent the individual components of the considered
multicompartment models.
Model name Intra-axonal |Extra-Axonal Isotropic Orientation
component |component component dispersion
ActiveAx Cylinder Zeppelin Sphere NA
Ball&Stick Stick NA Sphere NA
Ball&Racket Stick NA Sphere Bingham
MCMDI Stick Zeppelin NA NA
NODDI-Watson Stick Zeppelin Sphere Watson
NODDI-Bingham Stick Zeppelin Sphere Bingham
SMT Zeppelin NA NA NA



https://paperpile.com/c/QFqbTW/DcWML
https://paperpile.com/c/QFqbTW/36Trx
https://paperpile.com/c/QFqbTW/bOYx3+IZX2R
https://doi.org/10.1101/2021.03.02.433228
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433228; this version posted June 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

SMT-NODDI Stick Zeppelin Sphere Watson

For all the above mentioned models, the parallel diffusivity of the anisotropic compartments
was set to 1.7x103mm?/s, whereas the diffusivity of the isotropic compartment was set to
3x103mm?/s, as previously suggested (Zhang et al. 2012; Kaden et al. 2016; Behrens et al.

2003; Sotiropoulos et al. 2012). The perpendicular diffusivity of the anisotropic compartments

was linked to the parallel diffusivity via the tortuosity constraint (Szafer, Zhong, and Gore
1995; Zhang et al. 2012).

Parametric representations

This family of methods focuses on expressing the dMRI signal as a function of mathematical
signal basis without biophysical hypotheses. A popular signal representation is the simple
harmonic oscillator reconstruction (SHORE)(Ozarslan et al. 2009). The SHORE basis has some
degrees of freedom such as the order and a scaling factor. The SHORE method was applied to
predict all the 4 provided data types (SDE-MS, SDE-GRID, DDE, DODE) in combination with a
BFGS fit (Nath, Lyu, et al. 2019) that can be utilized to achieve the best fit of the scaling
parameter. The same method was used for all 4 types of data with harmonics of orders 6, 8
and 12.

MAP-MRI is a signal representation-based technique that expresses the diffusion signal in g-
space and parametrizes its Fourier transform —the mean apparent propagator (MAP)- in
terms of a series involving products of three Hermite functions, thus generalizing the 1D-
SHORE technique to three dimensions. Unlike in 3D-SHORE, an anisotropic scaling parameter
is employed in MAP-MRI, making it an extension of DTI for representing the signal at large g-
values. In this challenge, we received submissions from two different teams based on a
Laplacian regularized version of MAP-MRI. Both submissions (MAP-MRI+Reg) predicted the
unseen data points using penalized least squares and SHORE basis of order 8.

Neural networks

Convolutional neural networks (NeuralNet) are increasingly being used for tasks such as
qguantification and signal representation. In this case, the output of the networks
corresponded to the dMRI signal.

The first family of submissions that we received is based on feed-forward networks with a
single hidden layer of 50 neurons and sigmoid activation functions. These networks were
trained on 80% of the measurements and validated on 20% by minimizing the mean squared
error of the predictions with the AdamW algorithm. For the learning phase, a learning rate of
0.005 and 20000 epochs were used. To predict the SDE signals, the normalized components
of the gradient (3 values) and the b-value were provided as inputs. For the DDE and DODE
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acquisitions, the gradient strength, the normalized components of the two gradients (6
values), the b-value, and the components of the b-matrix (6 values) were concatenated into
one input vector of length 14. The training and prediction phase were repeated independently
for each of the individual signal and data types.

The second family of submissions we received was based on neural networks with
reinforcement learning (NN+Reinf) (Zoph and Le 2016; Williams 1992). A neural architecture
search (NAS) was implemented to search the optimal 7-layer feed-forward model with ReLU
activations for dMRI signal prediction given the acquisition parameters. The search space of
NAS is the number of nodes in each of the seven layers in the set [8, 16, 32, 64, and 128]. and
fit the training data better. And the number of neurons in each of the seven layers belongs to
[8, 16, 32, 64, and 128]. For training, the initial learning rate was set to 0.01, and the adam
optimizer was used.

Data analysis

The data analyses were performed separately for SDE-MS, SDE-GRID, DDE and DODE. For each
encoding type and signal, we evaluated the min-max interval of all predictions, and their 25th
to 75th percentile confidence interval. For each signal, we determined the best prediction as
the one achieving the lowest mean squared residuals (MSE), and visually investigated the
residuals. As the MSE only represents one of the possible metrics that can capture the
goodness of the signal prediction, we also determined the variance of the residuals and the
bayesian information criteria (BIC) associated with the prediction of each individual signal.
These results can be found in the supplementary material Table S2 and S3.

Subsequently, the distribution of the residuals of each model were investigated by means of
boxplots. At this stage, the residuals from all the 5 voxels were considered together. A ranking
of all considered models was derived according to increasing MSE, then the best prediction
model was established per encoding type. The residuals of the best prediction model were
investigated as a function of the b-value, diffusion time (DDE only) and encoding frequency
(DODE only), to understand whether all diffusion encodings were predicted with comparable
accuracy and precision. In the subsequent analysis, the 5 voxels were studied separately.
Specifically for the SDE-MS data, an additional analysis was performed to evaluate how the
best model predicted the directional dependent information of the shell acquired at b =
4000s/mm?. To this end, the measured data and the best signal prediction were projected on
the unit sphere using spherical harmonics of order 12, then the prediction error was
evaluated. The diffusion tensor imaging model was included in this step for reference.

Results

Signal representation of SDE-MS data

The geometric average of the SDE-MS signals and an overview of the predictions is shown in
Figure 2. In general, both the average and the best fitting method predicted the average signal
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decay without apparent biases, with the exception of the average fit of the low diffusion
weightings of signals 3 and 5.

SDE Multi-Shell [SDE-MS] prediction
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Figure 2 Signal decay as a function of the b-value of the averaged SDE-MS data over different directions, for the
unprovided measurements. The black dots represent the unprovided data, the red shaded area represents the
min-max of the submissions, the blue error bars represent the 25-75 percentile, the solid red curve represents
the best fit and the red circles represent the residuals of the best fitting model. The 5 different plots illustrate
the predictions of the different signals.

On average, the confidence interval of the submissions (blue error bar) is centered on the
geometric average of the data for diffusion-weightings 400 < b < 4000 s/mm? for all 5 signals.
The prediction of data at b = 4000 s/mm? (which was not provided in the training data) was
overall accurate in WM (signals 1-3), but showed a small and consistent over-estimation in
DGM and GM. The signal measured at low diffusion weightings (i.e. b < 200 s/mm?) was on
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average accurately predicted in the WM voxel containing up to 2 crossing fibers and in deep
gray matter, but not in the complex WM-configuration (Signal 3) and in cortical GM (Signal 5).
The min-max range of the predictions highlights that data at b = 2000 s/mm? is predicted on
average with the lowest uncertainty, whereas the largest spread is observed at b < 200 s/mm?
and b = 4000 s/mm?. The best predicting models for signals 1-5 are SHORE, MAP-MRI+Reg,
MAP-MRI+Reg, Ball&Racket and NeuralNet, respectively.

Figure 3 shows the average residuals of all tested signal predictions when considering the 5
provided signals together. The predictions of the first 7 methods were remarkably accurate,
as shown by the tight confidence interval of the residuals of about 0.03 of the measured data,
which occasionally reached values up to 0.1. MAP-MRI provided the best overall signal
prediction with average MSE 0.00236 + 0.00035 (Supplementary Material Table S1) . When
comparing the residuals of this prediction to those from the remaining models, we found that
only NeuralNet provided equally distributed residuals (sign test, p<0.05). When looking at the
average residuals of each signal individually (colored dots in the boxplots of Figure 3), a
tendency towards a better prediction of WM signals as compared to CGM and DGM was

observed.
Residuals of the unseen signals prediction [SDE-MS]
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Figure 3: Left) Boxplots of the normalized residuals (gray dots) of each prediction of SDE-MS data, when pooling
together all 5 signals. Right) The normalized residuals of the best prediction (MAP-MRI) over individual diffusion
weightings. The red asterisks on the left panel indicate predictions significantly different from the best
prediction, whereas those on the right indicate that residuals at a specific diffusion weighting show a
significantly non-zero mean.

To understand how the fit of the best prediction method (MAP-MRI) varied as a function of
the diffusion-weighting, we evaluated the value of its average residuals for all 5 signals
together for each shell independently. In general, the average residuals of most shells were
close to zero, but a significant overestimation for b-shells 60 <= b <= 250 s/mm? was observed
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(one sample t-test, p < 0.05). The average prediction error was on average less than 0.05 for
all shells, but errors up to about 0.2 can be observed for the non-weighted data and the
unprovided shell at b = 4000 s/mm?.

Having established that model MAP-MRI provided the best average fit, we set to investigate
how this method could predict the angular information of the unprovided shell at b = 4000
s/mm?, and included a prediction with DTl and the average prediction of all methods for
reference. This angular resolution analysis is shown in Figure 4.

Signal 1 Signal 2 Signal 3 Signal 4 (x2) Signal 5 (x2.5)
[WM-1] [WM—Z] [WM-3] [DGM] [GM]

FOD (CSD)

Measured
signal

Signal predictions

B

Best ' ‘
prediction = ,

Projected residuals (x3 magnified)

i
G

Average of all
models

Best
prediction

Figure 4: 3D visualisation of the fiber orientation distribution (FOD), a projection on the unit sphere of the
measured signal, of the signal predictions with DTl and with the best prediction model as well as of the residuals
determined with DTI, average of all models and with the overall best predicting model for the unprovided SDE-
MS data at b = 4000 s/mm?

All methods could well-predict on average the donut-shaped 3D representation of WM-1, and
the average residuals of this signal are smaller than those of the best fitting method. The DTI
prediction of WM-1 well captured the overall shape of the signal, but also showed large errors
in specific directions, likely due to unaccounted signal restrictions at this diffusion weighting.
The best prediction was much better than the average prediction as well as the DTl one in the
more complex configurations WM-2 and WM-3. In the WM-signals, the largest angular errors
were observed in directions parallel and perpendicular to the main diffusion directions
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derived with CSD, as expected. In DGM and CGM, all methods performed overall equally well
and the residuals had an almost isotropic distribution.

Signal representation of SDE-GRID data

Figure 5 reports the average signal predictions for SDE-GRID after binning closely spaced
diffusion-weightings to enhance clarity. In general, the SDE-GRID was well predicted by most
submissions, as highlighted by the tight min-max and confidence intervals. Larger prediction
variance can be observed at low (b < 1000 s/mm?2) and large diffusion weightings (b > 6000
s/mm2) than in the intermediate range. The best predictions of signals 1 and 2 were achieved
with DKI+Offset, whereas MAP-MRI+Reg provided the best prediction of signals 3-5 and the
best overall prediction with MSE 0.00260 + 0.00043 (Supplementary Table S1).
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Figure 5. Signal decay as a function of b-value of the averaged SDE-GRID data over different directions, for the
unprovided measurements. The diffusion weightings were rounded to the closest multiple of 100 before
averaging to enhance clarity. The black dots represent the unprovided data, the red shaded area represents
the min-max of the submissions, the blue error bars represent the 25-75 percentile, the solid red curve
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represents the best fit and the red circles represent the residuals of the best fitting model. The 5 different plots
illustrate the fits of the different signals.

The boxplots of residuals of the SDE-GRID predictions ranked by MSE are reported in Figure
6. The first 7 submissions predicted the signals accurately, without visible biases both at
average level as well as in specific tissue-types, and most prediction errors were in the range
of £0.03 with values occasionally up to 0.1, similar to what was previously observed for SDE-
MS. When considering all predictions together, MAP-MRI+Reg provided the best overall
prediction, but predictions with DKI+Offset and NeuralNet can be considered comparable
according to a signed rank test. When analyzing the average prediction residuals of MAP-
MRI+Reg for the binned diffusion weightings, it is appreciable that most data was well
predicted without biases and errors below 0.05, with the exception of b <= 800 s/mm?, b
around 3000 s/mm? and b > 6000 s/mm?.

Residuals of the unseen signal prediction [SDE-GRID]
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Figure 6: Left) boxplots of the normalized residuals (gray dots) of each prediction of SDE-MS data, when pooling
together all 5 signals. Right) The normalized residuals of the best prediction (MAP-MRI+Reg) over individual
diffusion weightings. The red asterisks on the left panel indicate predictions significantly different from the
best prediction, whereas those on the right indicate that residuals at a specific diffusion weighting show a
significantly non-zero mean.

Signal representation of DDE and DODE data

Figure 7 shows the best and average signal predictions of the unseen DDE and DODE data for
the 5 different voxels. Figure 8 presents the normalized residuals for the different
submissions, averaged over voxels, b-values and diffusion times/frequencies while Figure 9
shows the normalized residuals for the best fitting model as a function of the b-value.
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For DDE we see that the prediction of the directionally averaged signal is well aligned with
the measured data with the DTD-cov+Offset providing the best prediction with MSE 0.00072
+ 0.00023 (Supplementary Table S1). Nevertheless, other methods such as DKI, SHORE and
neural networks also performed reasonably well in providing unbiased predictions, but with
visibly larger errors. In general, we see that the prediction of the higher b-values (> 2500
s/mm?) is better than the prediction of the lower b-values (< 2500 s/mm?). For DODE data,
the best prediction comes from NeuralNet-best with MSE 0.00070 + 0.00036, whereas the
majority of the submissions overestimate the signal, especially for b-values larger than 1750
s/mm?. For both DDE and DODE, the predictions show similar trends in the 5 different white
matter voxels. For the DODE data, both frequencies also show similar trends of the predicted
signal.
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Figure 7 The first three columns show the signal decay as a function of b-value of the geometrically averaged
DDE and DODE data over different directions, for the unprovided measurements. The fourth column shows the
geometric average of the signal measured at b = 4000 s/mm? for different diffusion times A (DDE) and
oscillation frequencies f (DODE). The black dots represent the unprovided data, the red shaded area represents
the min-max of the submissions, the blue error bars represent the 25-75 percentile, the solid red curve
represents the best fit and the red circles represent the residuals of the best fitting model. The 5 different plots
illustrate the fits of the different signals.
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Residuals of the unseen signals prediction [DDE/DODE]
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Figure 8: The boxplots of the normalized residuals (gray dots) of the DDE (left) and DODE (right) predictions.
The red asterisks on the panels indicate predictions significantly different from the best prediction. The first 5
DDE predictions perform reasonably well as shown by the value of most residuals being well-below 0.1,
although a trend towards the overestimation of the signal could generally be observed.
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Figure 9 - Right) The normalized residuals of the best prediction of DDE (DTD-cov+Offset) and DODE (NeuralNet-
best) over individual diffusion weightings. The red asterisks indicate that residuals at a specific diffusion
weighting show a significantly non-zero mean. With DDE data, this was observed only for b-values between
1800 and 3300 s/mm?, whereas no biases were observed for DODE.
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Discussion

We have evaluated the generalizability of existing dMRI methods at predicting diffusion-
weighted data measured with SDE-MS, SDE-GRID, DDE and DODE by analyzing 80 submissions
to the MEMENTO challenge from 7 different teams. In general, our analysis suggests that
models predicting SDE-MS and SDE-GRID data generalized the easiest to unseen diffusion
encodings, whereas the prediction of DDE and DODE seems more challenging. Within the
domain of SDE, the worst prediction was observed in correspondence of low and very strong
diffusion weightings.

Trends in SDE data predictions

The large majority of the analyzed submissions predicted SDE data, with a considerable
preference for SDE-MS over SDE-GRID, which also reflects the overall larger number of studies
which employ shell data. When looking at SDE-MS, we can observe that the majority of
submissions could well predict the global signal decay, and 14 out of 18 predictions had a
median error smaller than 0.04. Of these, however, only 7 had an interquartile range (25th-
75th percentile) of the residuals smaller than 0.05 in absolute value, which suggests how the
prediction of the isotropic component of the signal decay (which captures the average decay
of a given diffusion weighting) is an easier task than the prediction of the anisotropic
component. Interestingly, the 7 predictions with the lowest MSE can account for complex
fiber configurations such as 2+ crossing fibers, whereas predictions with single-fiber based
methods result in higher MSE. Looking at the angular analysis reported in Figure 4, it becomes
clear that MAP-MRI provides the best prediction of both SDE-MS and SDE-GRID by well
representing the signal in voxels with complex fiber configurations (WM-2, WM-3) as well as
in DGM, whereas the prediction error in voxels with a single fiber population (WM-1) or
almost isotropic diffusion (CGM) is worse than the average submission.

A second aspect regarding the analysis of SDE data is the dependence of the prediction
accuracy and precision on the diffusion weighting and on the specific tissue type. Our results
suggest that current dMRI methods can well represent and predict dMRI data with commonly
used diffusion weightings. Indeed, we observed that most submissions could predict SDE data
remarkably well within the range of commonly employed diffusion weightings (e.g., 1000 <=
b <= 4000 s/mm?), whereas the prediction of low (b < 800 s/mm2) and strong (b > 6000
s/mm?) diffusion weightings was generally less accurate. While the latter might originate from
Rician-related biases, it might also highlight the limited specificity of existing models to
genuine components such as perfusion contributions at low diffusion weightings (Le Bihan et
al. 1988; Pasternak et al. 2009) and WM-restriction at strong diffusion weightings (Cohen and
Assaf 2002). In this context, a trend towards a worse prediction of the DGM and CGM signals
as compared to WM signals emerges with SDE-MS and, to a lesser extent, with SDE-GRID. This
seems to be mostly driven by the inaccurate prediction of the signal measured at low diffusion
weightings where the sensitivity to blood pseudo-diffusion is maximal, which once again
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suggests a lack specificity at taking into account specific properties of the GM like its higher
perfusion as compared to WM (Ahlgren et al. 2016). This holds also for the best prediction
(MAP-MRI) as shown by the significant overestimation of the signal at b < 250s/mm?, where
the contribution of pseudo-diffusion effects becomes non-negligible. A bias in the prediction
of SDE-GRID with MAP-MRI is also revealed for b > 6000 s/mm?2. While this effect might be
partially explained by Rician noise, the observation that its effect is larger in WM than GM,
and that it grows in magnitude with fiber complexity being the largest for WM-3, suggests the
presence of a genuine unaccounted trend in the signal. Interestingly, smaller errors are
observed for the prediction of SDE-GRID than of SDE-MS on average, and even methods
providing visibly biased SDE-MS predictions such as SHORE-worst, performed well at
predicting SDE-GRID. This might be explained by the larger range of unique diffusion
weightings included in SDE-GRID providing less redundant information than many
measurements in few shells, or to the larger minimum diffusion weighting included in SDE-
GRID (b = 141 s/mm?) as compared to SDE-MS (b = 10 s/mm?).

Trends in DDE and DODE data predictions

The prediction of DDE and DODE data seems more challenging than that of SDE. Indeed, the
signal measured with DDE and DODE is encoded with additional dimensions as compared to
SDE, namely parallel and orthogonal gradient orientations within one measurement, leading
to linear and planar b-tensors, respectively, as well as different diffusion times and oscillation
frequencies. In the challenge design, this aspect was stressed by requiring the prediction of
unseen diffusion-weightings and gradient directions for 1 completely unseen diffusion time
(DDE) and 2 unseen oscillation frequencies (DODE) provided a training set encoded with a
different diffusion time and 3 different oscillation frequencies, which is arguably a harder task
than the prediction of SDE data. The first take home message from the analysis of the DDE
and DODE predictions is the need to take into account the additional encoding dimension,
which is in line with our expectations given that the previous analysis of the data showed a
clear diffusion time/frequency dependence over this parameter range (e.g. Fig. 9 in (lanus et
al. 2018)). For models which do not account for diffusion time / frequency (e.g. DTI / DKI /
DTD, etc), we expect the predictions for the unseen DDE with A = 10 ms to be the same as the
model prediction for the provided DDE data with A =5 ms. Since for DDE only one diffusion
time was provided, the neural networks could not learn the effect of this parameter, so in
practice none of the submissions could account for diffusion time. For the unseen DDE data
with A =10 ms, the best model from the current pool of submissions is DTD-cov+Offset, which
nevertheless resulted in a small bias between the measurements and the predictions. The
prediction errors of the directionally averaged signal provided by the best model are larger
for intermediate b-values (e.g., b = 1800 — 3300 s/mm?) than for the highest b-value of 4000
s/mm?2. This might be the case because the effect of diffusion time on the signal over this
parameter range becomes smaller at higher b-value, for instance due to a smaller
contribution of extracellular space.
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For DODE data, multiple frequencies were provided for training. The best DODE predictions
were achieved with methods able to account for the frequency implicitly, such as in the case
of neural networks, whereas most submissions overestimated the measured signal.
Interestingly, the error increases on average with the oscillation frequency, and even the best
prediction, NeuralNet-best, could not predict well the data at b = 4000 s/mm? for f=200Hz.
All submissions but one achieved a 25th to 75th percentile error below 0.1, but 8 out of 10
submissions exhibited a consistent median error of about 0.04. Altogether, this suggests in
our opinion that we currently do not fully understand how to properly model the effect of
frequency, and highlights the need for further research in the optimal modelling of DODE
data.

Deep learning-based methods

The application of machine learning and deep learning is currently booming across all science
fields dealing with large data. MRl and dMRI are no exception, and in this very own challenge
we have received 32 submissions based on deep learning methods next to established signal
representations and biophysical models, which represents 40% of the total submissions.
Interestingly, neural network-based methods provided accurate predictions for different
diffusion encodings, achieving the 2nd best prediction for SDE-MS, the 3rd best prediction for
SDE-GRID and DDE, and the best prediction of DODE data. The latter performance is
remarkable, because NeuralNet-best and NeuralNet-worst provided the only two unbiased
DODE predictions, showing ability to learn the relation between the diffusion signal and its
encoding parameters, including the oscillation frequency, without the need for explicit
modelling. These results certainly showcase the potential of these methods, and support their
applicability as excellent interpolators, able to learn data features from a rich dataset and to
provide good predictions of unseen data - within the boundaries of their training set. Most
deep-learning based methods do not quantify metrics that can be used to extract properties
of in-vivo tissues, and are thus unlikely to spread into clinical use at the current moment.
Nevertheless, their good prediction performance make them favorable for tasks where a
direct manipulation of the signal is required, such as denoising, artefact removal or even data
augmentation, and their application in combination with classic methods might prove
advantageous to enhance the quality of the results or to shorten acquisition time.

Importance of hyperparameters and user choices

Our analysis highlights how user choices and hyperparameters can remarkably affect the
prediction accuracy. The SHORE method, for example, achieved both one of the best
predictions of SDE-MS data as well as the worst, with an average error difference between
the two of about 8%. Similarly, the addition of a degree of freedom to DKI or DTD-cov (i.e.,
+Offset) appreciably improved its accuracy. DKI+Offset, for example, predicted the SDE-MS
and DDE data with an average prediction error 10% and 92% smaller than DKI, respectively.
Large variability in the prediction performance was also observed for neural networks
methods, which flexibility in design allows the implementation of very diverse architectures
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with performance strongly influenced by the optimization of hyperparameters. Altogether,
we believe that this highlights the importance of not only reporting the specific method used
for data analysis, but also to explain the choice of its hyperparameters and, where possible,
to share its implementation to maximize the comparability of results obtained in different
studies. Next to user settings and hyperparameters, model assumptions are an important
factor that might limit the generalizability of a prediction method. This is especially the case
for multi-compartment models based on physiological assumptions, including fixing the intra-
cellular diffusivity to literature values or using tortuosity principles to constraint the cellular
fraction, as recently suggested (Lampinen et al. 2019; Henriques et al. 2019).

Link to previous challenges

Various dMRI challenges have been organized in the past (Ferizi et al. 2017; Schilling et al.
2019; Pizzolato et al. 2020), with a focus on different data aspects. For instance the ones
described by Schilling et al. 2019 focused on tractography, while others have focused on data
prediction, including diffusion measurements at multiple echo times (Ferizi et al. 2017) as well

as inversion times (Pizzolato et al. 2020). In terms of challenge requirements, the one

organized by (Ferizi et al. 2017) is the most similar to the current one, as it also evaluated the

submissions based on the prediction of unseen SDE data shells.

Nevertheless, the majority of models submitted to the SDE part of this challenge do not
overlap with the models included in the previous challenge, making a direct comparison
difficult. One notable exception is MAP-MRI, which performed very well for the current SDE
datasets, but not for the one considered by (Ferizi et al. 2017) which included multiple

diffusion and echo times. In that case, models which accounted for multiple compartments
with different T2 properties provided better estimates, an effect not considered here. In
addition to the development of more models and signal representations, the current work
investigates generalizability over a wider range of diffusion weightings, angular directions,
and diffusion times.

Limitations

Some limitations of this study should be acknowledged for a more comprehensive
interpretation of the presented results.

Data limitations: Firstly, the SDE-MS/SDE-GRID and DDE/DODE data have been acquired in
very different settings. The SDE data were acquired as part of the MASSIVE data (Froeling et
al. 2017b) and represent an unique collection of thousands of unique diffusion measurements
in an in-vivo human brain at 3T, but were spreaded in 18 acquisition sessions - which might
introduce additional variability in the data - and are characterized by an overall modest SNR
at b =0s/mm? (~15). Conversely, the DDE/DODE data were acquired in an ex-vivo mouse brain
with a state-of-the-art 16.4T scanner, and characterized by very high SNR. Consequently, the
generalizability of our results to DDE/DODE data acquired in in-vivo humans at 3T requires
thus further research. While we expect our findings to generalize to individuals with similar
characteristics, e.g., healthy adult humans (SDE) and mice (DDE/DODE), some results might
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be driven by the unique characteristics of these brains, and will likely not extrapolate well in
presence of pathology, as well as in infants and elderlies.

Data selection: A further element of variability in the comparison of the two datasets is
introduced by the different criteria used for the selection of the signals: on the SDE data, we
sampled signals from WM voxels with different configurations (1 to 3 fibers), but also included
GM voxels, which allowed us to investigate tissue-specific performance. As a consequence of
this choice, any submissions regarding SDE-MS and SDE-GRID needed to perform well in both
WM and GM to achieve a good score. Differently, all signals sampled from the DDE/DODE
datasets were located in WM and offer a more thorough overview of the prediction
performances across different fiber configurations - including regions with known fiber
fanning - but no insights into their applicability to GM. For all of the above, the prediction
performance obtained by the submissions on SDE and DDE/DODE should not be directly
compared. In the selection of the voxels, we attempted to avoid tissue interfaces in order to
minimize partial volume effects between different tissue types, but these cannot be ruled out
and are expected to be more detrimental for methods not explicitly dealing with partial
volume effects. Nevertheless, we argue that some extent of partial volume is ubiquitous in
brain dMRI applications, and that taking it into account is likely part of the challenge to
accurately model the dMRI signal.

Challenge evaluation: As a community challenge, we chose to calculate a single metric (the
mean squared error) in order to determine a “winning” algorithm. Other choices of the score
criteria were possible, and would likely result in a different ranking. For example, according
to modelling theory it would seem more appropriate to investigate a goodness of fit criteria
as the Bayesian information criteria rather than considering the signal residuals alone, to
penalize signal overfitting (Supplementary Material Table S2 and S3). However, it is arguable
that these kinds of metrics are not suitable to characterize methods based on machine
learning / deep learning where thousands to millions of parameters are fitted, and that the
mean squared error captures, in its simplicity and limitation, the basic ability to predict an
unseen signal. Nevertheless, doing well in the current challenge does not automatically
guarantee that these algorithms are the most appropriate models in all cases. Here, we have
focused on the ability to explain (i.e. predict) the signal over a wide range of diffusion
weightings, diffusion times, and frequencies. Furthermore, some modelling approaches in
this study may be suitable only for a subset of the wide range of acquisitions in this database,
and may be more/less sensitive at different areas of the diffusion sensitization space. Tensor-
based models such as DTl and DKI, for example, are known to well fit data in the range b =
800-1200 s/mm? and b = 1000-3000 s/mm?, respectively. Unsurprisingly, in this challenge we
indeed observe very large residuals for the DTI model at b < 500 s/mm? and b > 2000 s/mm?,
and for the DKI model at b < 800 s/mm? and b > 5800 s/mm?, respectively, which penalize the
final scoring of these methods. Another aspect that might influence the evaluation is the pre-
processing of the data, which is well-established to have a major impact on the subsequent
data analysis. To rule out its potential confounding effect on our results, we have provided
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the participants with standardized - already pre-processed data, but the inclusion of
additional pre-processing steps (i.e., denoising, Gibbs ringing correction, outliers
replacement, etc.) might have resulted in different prediction performance and “winners”.

Lack of validation: The ability of a method to accurately predict unseen data offers a measure
of fidelity to the underlying tissue microstructure, but it is by no means a substitute for
validation efforts that compare signal models to the actual biological tissue structure
obtained through orthogonal measurements such as, for example, high-resolution
microscopy. Thus, we argue that the appropriateness and specificity of the tested methods
cannot be adequately captured by signal fitting alone, and requires external validation, which
is particularly critical in the case of biophysical multicompartment models. In addition to
empirically assessing data, future work should continually strive to validate these measures
against orthogonal information through simulations, physical phantoms, and animal models
of tissue microstructure in order to paint the complete picture of the models successes and
abilities.

What is a good model?

As described in past challenges (Panagiotaki et al. 2012; U. Ferizi et al. 2015; lleana O. Jelescu
et al. 2020) and in reviews (lleana O. Jelescu et al. 2020; Dmitry S. Novikov, Kiselev, and
Jespersen 2018), a good model or signal representation must well-capture trends in the signal
(explain seen signal and predict unseen signal), and also have stability and robustness of fit
(leana O. Jelescu et al. 2016), for the appropriate signal regime.

On the other hand, a good model fit to the data, and ability to predict unseen data, does not
guarantee that the estimated model parameters have a sensible physiological meaning.
Similarly, a visually appealing map of quantitative indices also does not equate to a “good
model”. While the “best” model is the one that well-explains the underlying physiology that
the signal is sensitive to (within the experimental design), the process of converging on the
most-appropriate model is complex, and examining the generalizability of the model to
various diffusion sensitizations is only one step in that process. This specific step lends insight
into the information uncovered and captured in the signal, and successes and limitations of
various attempts to describe the signal.

Conclusions

We have reported the results of a community effort to investigate the generalizability of
existing methods at predicting unseen diffusion MRI signals collected over a large range of
diffusion encodings. Our results highlight that existing models perform well at predicting SDE
data in white matter and, to a lesser extent, in grey matter. Conversely, future work is needed
to better understand and model the information content of DDE and DODE data. Next to the
method choice, hyperparameters play a key role in the generalizability of fit methods,
highlighting the importance of their optimization, and of reporting their values to support
reproducibility. These challenge results serve not only as a snapshot of the current status quo
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in the field, but also as an openly available benchmark to support the development of novel
methods.
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Appendix

Tensor-based models

e DTI: The diffusion tensor imaging method was fitted with a linear least squares
procedure to determine the diffusion tensor (6 parameters) and the average non-
weighted signal (1 parameter).

e DKI: The diffusion kurtosis imaging extends the DTI method to account for restricted
diffusion. It was fitted with a weighted least squares procedure using ExploreDTI to
determine 22 parameters: 6 for the diffusion tensor, 15 for the kurtosis tensor and the
non-weighted signal. No additional constraints were considered in this fit.

e DKI+Offset: The DKI model was extended to accommodate an additional degree of
freedom modelling a positive constant bias in the signal due to, for example, Rician
noise. The 23 free parameters of this model were fitted with a non-linear least squares
procedure implemented in MATLAB, constraining a monotonic signal decay and
enforcing both the diffusion and kurtosis tensor to be positive definite.

e DTD-cov: The diffusion tensor distribution (DTD) method describes the diffusion signal
as the sum of a distribution of microscopic tensors. The 28 parameters of the fourth
order covariance tensor method were fitted to the data with a non-linear least squares
procedure implemented in MATLAB, constraining a monotonic signal decay and
enforcing both the diffusion and kurtosis tensor to be positive definite.

e DTD-cov+Offset: The DTD-cov method was extended with one additional degree of
freedom modelling a positive constant bias in the signal due to, for example, Rician
noise. The 29 free parameters of this model were fit with a non-linear least squares
procedure implemented in MATLAB, constraining a monotonic signal decay and
enforcing both the diffusion and kurtosis tensor to be positived definite.

Multi-compartment models

e Ball&Stick: originally proposed from Behrens and colleagues, this model consists of
two compartments: a stick (impermeable cylinder with zero radius) to model
anisotropic restricted intra-cellular diffusion, and a ball to model isotropic hindered
extra-cellular diffusion. The model was implemented in Python using the Dmipy
package, and its 4 parameters fitted to the data using a two stages procedure
consisting of an initial grid search, followed by a constrained non-linear fit procedure
based on a limited-memory quasi-Newton method.

o Ball&Racket: this model is an extension of the Ball&Stick that explicitly takes into
account fanning configurations. The 7 parameters of the model were fitted to the data
using the same procedure described for the Ball&Stick model.

e NODDI-Watson: originally introduce from Zhang et al., this model accounts for intra-
cellular diffusion modelled as a tensor convolved with a Watson distribution to
account for axonal dispersion, an extracellular compartment modelled with a
Zeppelin, and an isotropic free water component to account for partial volume with
the cerebrospinal fluid. The volumes of the intracellular and extracellular
compartments are linked with a tortuosity principle, and the parallel diffusivity of the
tensor is set to 1.7x103 mm?/s. The 5 parameters of the model were fitted to the data
using the same procedure described for the Ball&Stick model.

e NODDI-Bingham: this model extends the NODDI-Watson model to account for
asymmetric fiber dispersion using a Bingham distribution. The 7 parameters of the
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model were fitted to the data using the same procedure described for the Ball&Stick
model.

e SMT: The spherical mean technique (SMT) model provides estimates of neurite
density and of the intrinsic tissue diffusivity unconfounded by fibre crossings and
orientation dispersion. The 51 parameters of the model were fitted to the data using
the same procedure described for the Ball&Stick model.

e NODDI-SMT: This is a reformulation of the NODDI-Watson model using the SMT
technique. The 50 parameters of the model were fitted to the data using the same
procedure described for the Ball&Stick model.

e MCMDI: this model describes intra-cellular diffusion with a stick, and extra-cellular
diffusion with a Zeppelin. The SMT technique is used to achieve invariance to fibre
crossing and orientation dispersion. The 50 parameters of the model were fitted to
the data using the same procedure described for the Ball&Stick model.

e ActiveAx: introduced from Dyrby and colleagues, this model describes intra-cellular
diffusion as a cylinder with finite radius, extracellular diffusion as a zeppelin, and
accounts for isotropic contamination due to cerebrospinal fluid. The 7 parameters of
the model were fitted to the data using the same procedure described for the
Ball&Stick model.

Parametric representations

e SHORE: The method is based on the original simple harmonic oscillator reconstruction
(SHORE) [1]. SHORE with optimized reconstruction was tested at different orders of 6,
8 and up to 12. However, the best results or lower errors were determined to be at
either order 6 or 8. The 50 parameters of the model were fitted to the data using a
linear least-squares approach.

e MAP-MRI: Mean Apparent Propagator Magnetic Resonance Imaging (MAP-MRI) is a
linear representation of the diffusion signal that uses a 3D generalization of the SHORE
basis. The 95 parameters of the method were fitted using a penalized least-squares
procedure with generalized cross validation implemented in Dmipy.

e MAP-MRI+Reg: This submission used the Laplacian-regularized MAP-MRI method of
order 8 implemented in the Dipy software library with no positivity constraint in the
propagator and a regularization weight of 0.47 to fit the 95 free parameters of the
method.

Deep-learning methods

e NeuralNet: A fully connected neural network with a single hidden layer of 50 neurons
and using sigmoid activation functions was trained to predict the unprovided signal
amplitudes for each measurement independently. The 50 parameters of the network
were optimized based on the mean squared error of the predictions using the ADAM
algorithm with a learning rate of 0.005 over 20000 epochs. For SDE-MS and SDE-GRID
the normalized components of the gradient (3 values) and the b-value were provided
as inputs to the network. For the DDE and DODE acquisitions, the gradient strength,
the normalized components of the two gradients (6 values), the b-value, and the
components of the b-matrix (6 values) were concatenated into one input vector of
length 14.
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e NeuralNet+Reinf: A fully connected neural network with reinforcement learning. The
authors adopted a neural architecture search (NAS) to identify the optimal 7-layer
perceptron model for dMRI signal prediction with either 8. 16, 32, 64 or 128 nodes
per layer. The free parameters of the network ranged between 56 and 896, and their
values was optimized with the ADAM method using an initial learning rate equal to
0.01 and 200 training epochs.

Table Al: The valid signal predictions submitted to the MEMENTO challenge. For each method, we report the
acronym and the main reference, the “category”, special notes on the fit procedure, and the data it has been
applied to. The following predictions were subdivided in the following categories: tensor-based (TENS), multi-
compartment model (MCM), parametric representation (PAR), deep learning-based (DL).

Model name | Category | Implementation | Computation | Number of Noise Optimization
details time free assumptions algorithm
[voxel] parameters

DTI (Basser, TENS - <1s 7 Gaussian Linear Least
Mattiello, and Squares
LeBihan 1994)

DKI (J. H. Jensen et TENS Implemented in <1s 22 Gaussian Weighted Least
al. 2005) ExploreDTI Squares
DKI+Offset (Morez TENS Monotonic signal <1s 23 Rician Non-linear
et al. 2020) decay, positive least-squares
definite tensor
DTD-cov (C. F. TENS Monotonic signal <1s 28 Gaussian Non-linear
Westin et al. 2016) decay, positive least-squares
definite tensor
DTD-cov (C. F. TENS Monotonic signal <1s 29 Rician Non-linear
Westin et al. 2016) decay, positive least-squares
+ Offset definite tensor
Ball&Stick MCM Implemented in <1s 4 Gaussian Constrained
(Behrens et al. Dmipy (Fick, non-linear
2003) Wassermann, and least-squares
Deriche 2019)

Ball&Racket MCM Implemented in <1s 7 Gaussian Constrained
(Sotiropoulos, Dmipy (Fick, non-linear
Behrens, and Wassermann, and least-squares
Jbabdi 2012) Deriche 2019)

NODDI-Watson MCM Implemented in <1s 5 Gaussian Constrained
(zhang et al. 2012) Dmipy (Fick, non-linear
Wassermann, and least-squares
Deriche 2019)
NODDI-Bingham MCM Implemented in <1s 7 Gaussian Constrained
(Tariq et al. 2016) Dmipy (Fick, non-linear
Wassermann, and least-squares
Deriche 2019)
SMT (Kaden et al. MCM Implemented in <1s 51 Gaussian Constrained
2016) Dmipy (Fick, non-linear
Wassermann, and least-squares
Deriche 2019)
NODDI-SMT MCM Implemented in <1s 50 Gaussian Constrained

Dmipy (Fick,

non-linear
least-squares
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Wassermann, and

Deriche 2019)
MCMDI (Kaden et MCM Implemented in <1s 50 Gaussian Constrained
al. 2016) Dmipy (Fick, non-linear
Wassermann, and least-squares
Deriche 2019)
ActiveAx (D. C. MCM Implemented in <1s 7 Gaussian Constrained
Alexander et al. Dmipy (Fick, non-linear
2010) Wassermann, and least-squares
Deriche 2019)
SHORE (Ozarslan PAR From DeepSHORE <1s 50 Gaussian Regularized
et al. 2009) (Nath, Lyu, et al. least squares
2019)
MAP-MRI PAR Implemented in <1s 95 Gaussian Regularized
(Fick et al. 2016) Dmipy (Fick, least squares
Wassermann, and
Deriche 2019)
MAP-MRI+Reg PAR Implemented in 33s 95 Gaussian Regularized
(Fick et al. 2016) Dipy (Garyfallidis least squares
et al. 2014)
NeuralNet DL Perceptron 1 Training: ~ 70s, Signal Gaussian Adam
Layer 50 nodes | Prediction: <1s dependent
NeuralNet+Reinf DL Perceptron 7 NA Up to 896 Gaussian Adam

(Williams 1992)

Layers optimized
with NAS (Zoph
and Le 2016)
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