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Abstract 
The COVID19 pandemic is a global crisis severely impacting many people across the world.              
An important part of the response is monitoring viral variants and determining the impact              
they have on viral properties, such as infectivity, disease severity and interactions with drugs              
and vaccines. In this work we generate and make available computational variant effect             
predictions for all possible single amino-acid substitutions to SARS-CoV-2 in order to            
complement and facilitate experiments and expert analysis. The resulting dataset contains           
predictions from evolutionary conservation and protein and complex structural models,          
combined with viral phosphosites, experimental results and variant frequencies. We          
demonstrate predictions’ effectiveness by comparing them with expectations from variant          
frequency and prior experiments. We then identify higher frequency variants with significant            
predicted effects as well as finding variants measured to impact antibody binding that are              
least likely to impact other viral functions. A web portal is available at ​sars.mutfunc.com​,              
where the dataset can be searched  and downloaded. 
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Introduction 
A novel coronavirus, SARS-CoV-2, emerged in late 2019 and spread across the world to              
cause the COVID19 pandemic, which remains a global health emergency. The pandemic            
has led to many deaths, an even greater number of other medical consequences and a deep                
and far reaching economic impact. This has made responding to it one of the largest               
challenges in modern times. This response takes many forms, including drug and vaccine             
research, public health policy and economic stimulus. A key aspect to the global response is               
monitoring viral mutations, which allows us to track the virus geographically and follow the              
emergence of mutations that might lead to impactful changes in the virus. This makes the               
ability to quickly analyse the potential consequences of new variants invaluable. 
 
Many viral mutations have occurred, including a small number that have reached high             
frequencies regionally or worldwide, and recently three major viral substrains, B.1.1.7,           
B.1.351 and P.1, have caused significant concern because of their rapid spread and             
potential for antibody evasion (Mahase, 2021). The most common form of mutation is             
substitutions, where one RNA nucleotide changes to another. This impacts both viral RNA             
structure, known to influence function (Ziv et al., 2020), and protein sequence, which we              
focus on here. Amino acid substitutions alter protein’s chemistry and can change structure,             
stability and activity, in turn impacting biological function. While most substitutions have little             
or no effect others have significant impact. For example the N439K variant in the Spike               
protein has been found to reduce binding by some antibodies and increase affinity with              
human ACE2, which is bound during entry to host cells (Thomson et al., 2021). Similarly the                
E484K Spike variant observed in B.1.351 and P.1 has caused concern because it affects              
antibody binding (Greaney et al., 2021; Wise, 2021). 
 
Many computational tools have been developed to predict the consequences of mutations            
based on protein sequence and structure. Sequence is informative because the prevalence            
of a variant at similar positions across species relates to the likelihood of it being tolerated.                
This is utilised by tools like SIFT4G (Vaser et al., 2015) and EVCouplings (Hopf et al., 2019).                 
EVCouplings predictions for SARS-CoV-2 are publicly available online        
(​https://marks.hms.harvard.edu/sars-cov-2/​). Protein structure is used by tools like FoldX         
(Schymkowitz et al., 2005) and Rosetta (Kellogg et al., 2011) to model the effects of               
mutations on thermodynamic properties, including on complex binding if complex models are            
available. Machine learning is also used to combine feature types (Gnad et al., 2013; Gray et                
al., 2018). However, running predictors can be technically challenging and computationally           
expensive, which can be prohibitive for many scientists, preventing them taking advantage of             
predictions.  
 
The Mutfunc web service (Wagih et al., 2018) was developed in our lab to provide an                
interface for pre-computed predictions for all possible ​H. sapiens​, ​M, musculus and ​S.             
cerevisiae variants. We apply a similar analysis to the proteins of SARS-CoV-2, combining             
predictions based on sequence conservation, protein structures, known protein-protein         
interfaces, phosphosites and observed frequencies. A web interface is available at           
sars.mutfunc.com​, which allows users to search and download the dataset and provides            
visualisations of structures and alignments. We analyse the resource, validating the use of             
predictors and showing its benefits for identifying potential variants of interest or concern             
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among higher frequency variants, those in variant strains and those with antibody evasion             
potential. 

Results 

Mutfunc: SARS-CoV-2 Dataset 
We collected sequences and structures of the 28 SARS-CoV-2 proteins from a range of              
sources (​Figure 1A​). Sequences came from Uniprot (The UniProt Consortium, 2019) and            
were fed to SIFT4G to make conservation based predictions for all possible variants.             
SWISS-MODELs SARS-CoV-2 repository (Bienert et al., 2017; Waterhouse et al., 2018) was            
used to source the highest quality experimental or homology structural models for each             
protein, using multiple models to cover more positions where possible (see methods).            
Structural coverage was high for the 19 proteins with structures (​Figure 1B​); only nsp4 has               
coverage below 50%. These models were used to generate FoldX ΔΔG predictions for all              
possible variants at positions covered by models. Complex models from SWISS-MODEL           
and PDBe were analysed with FoldX to identify interface residues and predict the effect on               
binding energy of all possible interface mutations. Sixteen complex structures were identified            
at the time of publication (​Figure 1C​), 10 between viral proteins, 2 with human proteins and 4                 
with antibodies. Viral phosphosites were integrated from Bouhaddou et al. (2020). Variant            
frequencies across all samples up to February 2021 were calculated from a sequence             
alignment of over 235,900 public SARS-CoV-2 sequences (Lanfear and Mansfield, 2020;           
Turakhia et al., 2020). Sequences are dominated by samples from the UK (75.0%) and USA               
(14.4%), meaning frequencies mostly reflect these regions. Experimental antibody evasion          
data (Greaney et al., 2021) and some individual variant annotations (Public Health England,             
2020; Tegally et al., 2020; Faria et al., 2021; Mahase, 2021; Kemp et al., 2021) complete the                 
Mutfunc: SARS-CoV-2 dataset. 
 
High frequency variants are not typically expected to impact protein function or viral fitness              
strongly. We used this to validate SIFT4G scores and FoldX ΔΔG predictions by comparing              
them to variant frequencies. In addition, we compared the predictions with the results of a               
deep mutational scan (DMS) experiment on Spike protein variants (Starr et al., 2020). As              
expected, SIFT4G scores are lower for rarer variants on average (​Figure 1D​), although there              
are significant deleterious predictions (< 0.05) in all frequency ranges. Variants SIFT4G            
predicts to be deleterious also have significantly lower fitness measurements based on the             
DMS experiments (​Figure 1E​). These observations support SIFT4G scores being informative           
for viral variants. Similar results are found for FoldX ΔΔG predictions, with higher frequency              
variants tending to have lower magnitude ΔΔG values (​Figure 1F​). Variants FoldX predicts             
are destabilising (ΔΔG > 1) have significantly lower DMS expression fitness scores (​Figure             
1G​). Variants predicted stabilising (ΔΔG < -1) are not as different to neutral variants in terms                
of expression fitness, which is expected because stabilising proteins does not generally            
affect expression. 
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Figure 1 ​ - ​A ​: Data generation pipeline schematic. ​B​: Percentage of residues covered by 
structural models for each protein. ​C​: Protein complex structures currently included in the 
dataset. ​D​: Distribution of SIFT4G scores for variants across frequencies. NA indicates 

variants that were not observed at all. The threshold for prediction being significant (0.05) is 
marked as is the number of variants in each category ​E​: Distribution of Spike DMS variant 
expression fitness scores for variants predicted deleterious (< 0.05) or neutral (> 0.05) by 
SIFT4G. The p-value from a Wilcoxon signed-rank test is shown. ​F​: Distribution of FoldX 
ΔΔG predictions for variants of varying frequencies. The thresholds for a variant being 

considered destabilising (1) and stabilising (-1) are marked. ​G​: Distribution of Spike deep 
mutational scan variant expression fitness for variants predicted destabilising, neutral or 

stabilising by FoldX. P-values from Wilcoxon signed-rank tests are shown. 
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Variant Predictions at Protein-Protein Interfaces 
Many protein functions occur through interactions with other proteins, meaning accurate           
predictions about interactions are particularly useful. There are 1828 observed variants in            
the modeled interfaces, of which 443 are predicted to disturb interface binding in at least one                
interface (Figure 2A). We benchmarked FoldX interface binding ΔΔG in the same way as              
previous scores, showing higher frequency variants are predicted to be less destabilising on             
average (​Figure 2B​). The Spike DMS also measured the strength of binding with ACE2, one               
of the virus' key host targets. This is reported as a Δlog ​10​K​D​, polarised so negative values                
mean weaker binding. Variants predicted to destabilise interface binding have significantly           
lower DMS binding fitnesses than variants predicted to be neutral and variants predicted to              
stabilise the interface have significantly higher (​Figure 2C​). Together, this suggests that the             
predictions reflect real effects in SARS-CoV-2 proteins and inform on variant impact. 
 
We also performed a sensitivity-specificity analysis (​Figure 2D​) to assess the power of             
different metrics to predict whether DMS binding fitness decreased to 10% of the wild-type              
value, which corresponds to the long tail of deleterious results occurring in DMS scores.              
Analysis of interface residues shows FoldX’s interface ΔΔG for the S - ACE2 complex is the                
best predictor of binding changes, suggesting interface specific interactions are most           
important at interface residues and that this is the main metric for positions known to be in                 
an interface. However, positions away from interfaces can also impact binding by changing             
overall structure. The fact that FoldX’s general ΔΔG is a good predictor when considering all               
residues but is weak for known interface residues suggests general structural effects are             
relevant for interface binding but reaffirms that interface interactions are dominant at the             
interface itself. SIFT4G scores perform similarly for interface and non-interface residues,           
suggesting conservation is a useful metric but less powerful than the appropriate structural             
predictions. 

 
Predictions can also be used to analyse proteins overall properties. We visualised each             
interface in the dataset to identify important regions for binding and whether they are              
mutated. The N dimerisation interface was the most interesting of the 20 interfaces (​Figure              
2E​). The two central β-strands are likely to be most important in this complex since they are                 
where mutations cause the most destabilisation. These regions also have more observed            
variants than the rest of the interface, although only one at a frequency above 10 ​-3 and only                 
a small number are predicted to be destabilising themselves. This was the only case where               
the most impactful and most frequent interface variants co-occurred. The identification of            
multiple mutations within the same functional region across different strains suggests that            
there may be a functional advantage to mutations occuring at this interface. 
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Figure 2 ​ - ​A ​: Fraction of potential interface variants observed in samples, including the 
fraction predicted to have significant effect. The exact number of observed and possible 

variants in each interface is displayed to the right. The fraction does not account for variant 
frequency. ​B​: Distribution of FoldX’s predicted interface binding ΔΔG for variants of different 
frequencies. ​C​: Distribution of Spike variant DMS ACE2 binding fitness for variants predicted 

destabilising (ΔΔG > 1), neutral (-1 < ΔΔG < 1) and stabilising (ΔΔG < -1), as well as 
Wilcoxon signed-rank test p-values between the groups. ​D​: Sensitivity-specificity curves 
showing the ability of different predictors to model whether Spike variants DMS ACE2 
binding fell to 10% of the WT value. The test was performed on all positions (top) and 

predicted interface positions (bottom). AUC is displayed for each curve. ​E​: FoldX interface 
ΔΔG predictions for all possible variants in the N-N interface (PDBID: 7C22), mean position 
binding ΔΔG and the frequency of observed mutations at interface positions. The structure is 

also shown, coloured to indicate the marked regions in the heatmap. 
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High Frequency Variants with Predicted Functional Impact  
 
As shown above, high frequency variants tend to have lower predicted functional impacts             
and are typically expected to be neutral. Significant or non-neutral predicted consequences            
can therefore be useful to identify high frequency variants of interest. This is important when               
prioritising variants for follow up experiments or assessing observed variants, particularly           
when new strains emerge. We searched for significant predicted effects in mutations from             
variant strains or with elevated frequencies, highlighting a selection of examples here. In             
total we have identified 281 variants with frequency above 0.1% that have at least one               
predicted functional impact. These are provided in ​Table S1 with annotations to facilitate             
potential follow up studies.  
 
In December 2020 three variant strains were observed (Mahase, 2021) and have since been              
rapidly increasing in frequency; B.1.1.7 in the UK, B.1.351 in South Africa and P.1 in Brazil.                
The majority of variants in these strains are in the Spike protein (​Figure 3A​), with B.1.351                
and P.1 each carrying 5 variants predicted to be structurally destabilising and B.1.1.7             
carrying 3. Two variants in the Spike RBD are also observed in variant strains (all carry                
N501Y and E484K is in B.1.351 and P.1), both of which FoldX predicts to impact ACE2                
binding. E484K, which is predicted to stabilise ACE2 binding, has also recently been             
observed in some B.1.1.7 samples (Public Health England, 2021). N501Y is computationally            
predicted to destabilise the interface but was measured to increase binding in the DMS              
experiment. This suggests it changes the binding conformation in a way FoldX doesn’t             
accurately model and emphasises that computational predictions are good at identifying           
variants that impact interfaces but do not always fully model the consequences. B.1.1.7 and              
B.1.351 also carry variants in orf8 (​Figure 3B​), which potentially interacts with the host              
immune system (Li et al., 2020) and vesicle trafficking (Gordon et al., 2020). The two               
variants in B.1.1.7 (A51I & Y73C) and the variant in B.1.351 (E92K) are all predicted to                
destabilise the structure. A fourth stabilising orf8 variant, S24L, occurs at a generally             
increased frequency (3.18%). 
 
Several other Spike variants also have elevated frequency. D614G (94%), the primary            
variant in the dominant B lineage, is not predicted to be significantly destabilising to either               
the protein or the interface, but is predicted to stop the position making contact with the other                
bound S subunit. A222V is known to have risen in frequency in Europe (Hodcroft et al.,                
2020) to 30% overall sample frequency, and is predicted to destabilise protein structure. A              
slightly less frequent variant, T29I (0.2%), is at a phosphosite and leads to large putative               
structural destabilisation. 
 
We also highlight four variants in the orf3a ion channel dimer (​Figure 3C​), which is linked to                 
apoptosis induction (Ren et al., 2020). Q57H (15.2%) is predicted to destabilise the protein              
and protrudes into the core of the transmembrane helices that form the dimerisation             
interface. It is not predicted to destabilise the interface but could potentially interfere with ion               
transport by changing from the polar neutral side chain of glutamine to the bulky basic               
aromatic group of histidine. L46F (0.13%) also appears to protrude into the transmembrane             
helix channel, with a potentially impactful change to a larger aromatic group. It is predicted to                
destabilise both structure and interface. T223I (2.14%) is predicted to destabilise the            
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dimerisation interface in the cytosolic domain and K75N (1.5%) is predicted to strongly             
destabilise the structure.  

 
The replication complex, responsible for replicating viral RNA, also has several variants with             
elevated frequencies (​Figure 3D​). The RdRp protein contains P323L (93.9%), which is linked             
to Spike D614G (Korber et al., 2020) but does not have any significant predicted effects. The                
nsp7 variant S25L (0.6%) is predicted to stabilise the interface to nsp8 in both complex               
models. RdRp variant E254D (1.9%) significantly destabilises the structure. Finally, nsp8           
variant I107V (0.2%) is in both the nsp7 and RdRp interface and has a ΔΔG only just shy of                   
being destabilising (0.96). 

 
We also examined the predictions made against variants that emerged in a case study with               
a patient treated with convalescent antibodies (Kemp et al., 2021). The initial infection was              
from a strain in lineage B, carrying D614G. 26 of the 47 substitutions that rise to at least 10%                   
frequency during the infection have at least one significant prediction associated with them             
(​Figure S1​). It is notable that only one sub-strain that increased in frequency did not carry at                 
least one variant predicted to destabilise the spike protein, assuming a ΔH69/ΔV70 double             
deletion is destabilising. 
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Figure 3 ​ - A selection of interesting observed variants and prediction details. Variants are 
highlighted on the structures of the Spike protein (​A​, PDBID: 6XR8), Orf8 (​B ​, PDBID: 7JTL), 
the Orf3a homodimer complex (​C​, PDBID: 6XDC) and the nsp7 - nsp8 - RdRp portion of the 

replication complex (​D​, PDBID: 7BTF). Variants are coloured by variant strain where 
applicable. 
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Predicted Impact of Antibody Evasion Variants 
 
The ability to disturb antibody binding could have a big impact on the severity of future                
variant strains, especially with growing numbers being vaccinated. We tested our predictors            
against DMS results testing a library of Spike variants for antibody evasion potential             
(Greaney et al., 2021). Firstly, we tested interface predictions based on four complex             
structures between Spike and various antibodies (​Figure 4A​). Variants predicted to           
destabilise these complexes were found to be significantly more likely to experimentally            
evade antibody binding in 2 of 4 antibodies. This suggests the predictions reflect real effects               
but also illustrates the variability of antibody binding, with different antibodies responding            
very differently to mutations. Consequently it’s possible mutations can lead to evasion of             
some antibodies even if they were not measured to evade binding in the deep mutational               
scan. 
 
We also tested our general predictors (​Figure 4B​), since these four antibody structures do              
not cover all possible binding modes. Variants predicted to be destabilising by FoldX, neutral              
by SIFT4G or to destabilise the ACE2 - S complex binding are all significantly more likely to                 
lead to antibody evasion. This can be understood as successful antibody evasion requiring             
structural changes that do not lead to loss of protein function, which makes biological sense.               
These results can help inform on the prevalence and emergence of Spike RBD variants with               
potential for antibody evasion. For instance, 41.3% of samples carry at least one Spike              
variant that is predicted destabilising by FoldX and neutral by SIFT4G, although of course it               
is likely that many of them do not interact with antibody binding. This high rate is also likely                  
partly driven by increased sequencing of the three emergent strains, which carry such             
variants. 
 
The computational predictions can also be combined with experimental antibody evasion           
measurements to predict which evasion variants are not predicted to be deleterious for the              
virus (​Figure 4C​). Variants that are predicted to be neutral based on sequence conservation,              
structure and ACE2 interface binding but lead to experimental antibody evasion (​Table S2)             
are particularly concerning ​because they are less likely to be selected against. Positions             
leading to maximum evasion >10% or mean evasion >5% are clustered in two regions of the                
Spike RBD; the base of the domain connecting to the rest of the protein and the upper head,                  
where most observed antibody interfaces occur (​Figure 4D​). Mutations in the lower cluster             
are all predicted to be deleterious to the protein, generally destabilising the structure and              
therefore more likely to impact normal protein function and be selected against. Conversely             
many mutations in the upper cluster are predicted to be neutral and so would be particularly                
concerning if observed. Of these, the two positions measured to have the greatest evasion              
potential are 456 and 484. No variants at 456 are predicted to be neutral but only mutation to                  
isoleucine, proline or tryptophan are predicted to be deleterious at 484, suggesting it is one               
of the most important positions to monitor. E484K, which is in the emerging B.1.351 and P.1                
strains and has recently been sporadically observed in B.1.1.7 (Public Health England,            
2021), has a slightly lower measured evasion effect but is predicted to destabilise S - H014                
antibody binding and is predicted to be neutral by SIFT4G and FoldX, reinforcing other              
analyses suggesting it is a particularly concerning variant (Wise, 2021). N501T, V503T,            
I472G and G485P are the most evasive variants at other positions, with the first two being                
predicted neutral and therefore of particular concern.  
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Figure 4 ​ - ​A ​: Distribution of maximum antibody evasion for variants in S - antibody complex 
structure interfaces, grouped by FoldX interface prediction (COVA2-04 PDBID: 7JMO, H014 
PDBID: 7CAI & 7CAK, REGN10933 & REGN10987 PDBID: 6XDG). P-values from Wilcoxon 
signed rank tests. ​B​: Distribution of maximum DMS antibody evasion scores with p-values 

Wilcoxon signed rank tests. ​C​: Spike variant computational predictions against their 
maximum measured antibody evasion. FoldX ΔΔG, SIFT4G category and FoldX ACE2 

interface binding indicate which variants are most likely to be selectively neutral. ​D​: Variant 
positions with maximum evasion >10% or mean evasion >5% projected onto a Spike - 

antibody complex. Variants with SIFT4G Score < 0.05,  |ΔΔG| > 1 or |ACE2 interface ΔΔG| > 
1 are considered deleterious. All mutations to positions 445 and 484 apart from a small 

selection are neutral, so here the variants that are non-neutral are listed and the position 
marked with an exclamation mark (!). The structure is a combination of 7CAI, showing Spike 
(blue) in complex with H014 (pink, left), and 6XDG, which includes REGN10933 (pink, top) & 
REGN10987 (pink, bottom) bound to the Receptor Binding Domain. They are aligned on the 

RBD in order to show a variety of antibody binding configurations. 
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Discussion 
The coronavirus pandemic is a rapidly developing global health emergency, in which new             
mutations frequently emerge and sometimes rise to prominence. This makes the ability to             
rapidly assess the potential consequences of new mutations very useful. Computational           
predictions, alongside expert knowledge and experimentation, support this goal and help           
build a coherent picture of variants consequences. This is the rationale behind the Mutfunc:              
SARS-CoV-2 dataset, providing conservation, structure and interface based predictions         
alongside frequencies and phosphosite positions for all possible viral substitutions. The           
results are benchmarked against experimental results and frequency, showing they can aid            
rapid interpretation of variant impact. Our dataset complements existing SARS-CoV-2          
resources, such as EVCouplings results (​https://marks.hms.harvard.edu/sars-cov-2/​) and the        
COVID3D resource (Portelli et al., 2020). 
 
The data collated in Mutfunc: SARS-CoV-2 is a mix of computational predictions and             
experimental results. Frequency and phosphosite data are the results of experimental work            
whereas the results from FoldX and SIFT4G are computational predictions. Care must be             
taken when interpreting all results but particularly computational predictions. Firstly, the           
predictions are the result of mathematical models and have inherent uncertainty; for example             
FoldX ΔΔG values should not be treated like physical measurements but an indicator that a               
mutation is more likely to impact structure in some way, which could be beneficial or               
deleterious to the virus. The predictors are also not specifically predicting increases or             
decreases in function but predicting deleteriousness from conservation and modelling          
energetics. These features relate to changes in protein function and can relate to changes in               
important viral features such as infectivity or immune response, but are not guaranteed to.              
For this reason it is important to always consider specifically what a score tells you and what                 
that means for the variant. 

 
In addition to taking care when interpreting results it is also important to consider features               
that are not incorporated into the dataset. For instance, many additional interactions are             
experimentally observed but lack structural models (Gordon et al., 2020). This suggests            
there are interfaces missing, especially between virus and host proteins. The number of             
observed interface variants would almost certainly increase when these interactions are           
considered, even accounting for shared interfaces. Similarly some phosphosites were          
possibly not detected and other types of post-translational modifications were not           
considered. Other mutational consequences, for example RNA level effects, are not           
considered at all, despite potential functional consequences.  

 
Despite these cautions, the dataset of predicted variant effects allowed us to search             
observed variants and identify those that appear most likely to impact protein function, based              
on frequency, computational predictions and our knowledge of the proteins. This analysis            
identified various variants that have already been discussed in the literature, as well as other               
potentially interesting uninvestigated variants. A similar analysis combining predictions with          
experimental antibody evasion measurements allowed us to identify variants most likely to            
cause antibody evasion and not negatively impact viral fitness. Such results enhance            
monitoring by highlighting potentially important variants for deeper analysis and identifying           
variants to monitor. 
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The dataset is available to download and search at ​sars.mutfunc.com​. We hope that this              
resource will aid researchers assessing the impacts of viral variants, complementing and            
informing experiments and expert analyses.  
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Methods 
The code managing the pipeline and analyses are available at          
https://github.com/allydunham/mutfunc_sars_cov_2 ​. The web service source code is       
available at ​https://github.com/allydunham/mutfunc_sars_cov_2_frontend ​. The pipeline is      
managed through Snakemake (Köster and Rahmann, 2012). 

Conservation 
SARS-CoV-2 protein sequences were downloaded from Uniprot (The UniProt Consortium,          
2019) and the orf1ab polyprotein split into sub-sequences based on the Uniprot annotation.             
A custom reference database was generated based on the NCBI virus coronavirus genomes             
dataset (NCBI Resource Coordinators, 2018), which includes sequences from a large range            
of coronaviruses. SARS-CoV-2, SARS and MERS sequences were filtered to only contain            
sequences from the Wuhan-Hu-1 strain, the Urbani strain and the HCoV-EMC/2012 strain            
respectively. Without this the dataset contains very large numbers of almost identical            
sequences from patient samples, which are not informative since SIFT4G looks to compare             
across species. The remaining sequences were clustered using MMseqs2 (Steinegger and           
Söding, 2017) with an overlap threshold of 0.8 and a sequence identity threshold of 0.95,               
which grouped other duplicate sequences into representative clusters. ​SIFT4G Scores were           
generated for all possible variants to the SARS-CoV-2 sequences based on this database. A              
modified copy of SIFT4G was used, which reports scores to 5 decimal places instead of the                
usual 2. 

Structural Destabilisation 
Structures were sourced from the SWISS-Model (Bienert et al., 2017; Waterhouse et al.,             
2018) SARS-CoV-2 repository (​https://swissmodel.expasy.org/repository/species/2697049 ​),    
which contains experimental structures and homology models. Models were required to have            
greater than 30% sequence identity and a QMean score (Benkert et al., 2011) greater than               
-4, as recommended by SWISS-Model. Suitable models were available for 19 of the 28 viral               
proteins. Models were ordered by priority; firstly experimental models over homology models            
and then by QMean Score. Models were examined in turn and any position not covered by a                 
higher priority model was added to the FoldX analysis pipeline. FoldX's RepairPDB            
command was used to pre-process selected SWISS-Model PDB files. All mutations at each             
position assigned to each model were modeled using the BuildModel command, using the             
average  ΔΔG prediction from three runs. 

Surface Accessibility 
Naccess (Hubbard and Thornton, 1993) was run on each structure using the default settings.              
Structures were filtered to only include the chain corresponding to the appropriate            
SARS-CoV-2 protein. This means some surface accessible positions are usually found in            
interfaces rather than facing the solvent. Since structures are not always complete surface             
accessibility is an approximation and will not be accurate in all cases. 
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Protein Interfaces 
Complex models were identified from SWISS-Model, literature search and PDBe (Gordon et            
al., 2020; Henderson et al., 2020; PDBe-KB Consortium et al., 2020; Schubert et al., 2020;               
Zhou et al., 2020). PDB files were pre-processed using the FoldX RepairPDB command. An              
initial AnalyseComplex command was used to identify positions involved in each interface            
and estimate the energetics of the wild-type interface. Structural models of all single amino              
acid substitutions to the interface were generated using the BuildModel command and the             
mutant interfaces re-analysed with AnalyseComplex. The wild-type energetic predictions         
were subtracted from the mutants’ to estimate energetic changes and if any amino acids had               
been lost or gained from the interface . 

Variant Frequency 
Frequencies are based on an alignment containing observed mutations from public           
SARS-CoV-2 sequences from COG-UK, GENBANK and The China National Center for           
Bioinformation, derived from that used for sarscov2phylo. It was filtered to exclude            
problematic sites using VCFTools, based on the annotation at         
https://github.com/W-L/ProblematicSites_SARS-CoV2/blob/master/problematic_sites_sarsC
ov2.vcf​. Variants marked as seq_end, ambiguous, highly_ambiguous,       
interspecific_contamination, nanopore_adapter, narrow_src or single_src were excluded       
because of high potential error rates. VCFTools was used to calculate frequencies, including             
frequencies based on regional and recent subsets of the samples. The SARS-CoV-2            
genome was sourced from Ensembl (Yates et al., 2020) and Tabix indexed. Variants were              
annotated to genes using the Ensembl VEP tool using a custom annotation based on              
Ensembl’s annotation but with polyproteins split into sub-regions so that VEP assigned            
variants correctly. Only coding variants were considered. 
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Supplementary 
 

 
Figure S1 - ​Computational predictions for variants observed to increase to at least 10% 

frequency at some point during the case study observed by Kemp et al. (2021). 
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