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Abstract

The COVID19 pandemic is a global crisis severely impacting many people across the world.
An important part of the response is monitoring viral variants and determining the impact
they have on viral properties, such as infectivity, disease severity and interactions with drugs
and vaccines. In this work we generate and make available computational variant effect
predictions for all possible single amino-acid substitutions to SARS-CoV-2 in order to
complement and facilitate experiments and expert analysis. The resulting dataset contains
predictions from evolutionary conservation and protein and complex structural models,
combined with viral phosphosites, experimental results and variant frequencies. We
demonstrate predictions’ effectiveness by comparing them with expectations from variant
frequency and prior experiments. We then identify higher frequency variants with significant
predicted effects as well as finding variants measured to impact antibody binding that are
least likely to impact other viral functions. A web portal is available at sars.mutfunc.com,
where the dataset can be searched and downloaded.
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Introduction

A novel coronavirus, SARS-CoV-2, emerged in late 2019 and spread across the world to
cause the COVID19 pandemic, which remains a global health emergency. The pandemic
has led to many deaths, an even greater number of other medical consequences and a deep
and far reaching economic impact. This has made responding to it one of the largest
challenges in modern times. This response takes many forms, including drug and vaccine
research, public health policy and economic stimulus. A key aspect to the global response is
monitoring viral mutations, which allows us to track the virus geographically and follow the
emergence of mutations that might lead to impactful changes in the virus. This makes the
ability to quickly analyse the potential consequences of new variants invaluable.

Many viral mutations have occurred, including a small number that have reached high
frequencies regionally or worldwide, and recently three major viral substrains, B.1.1.7,
B.1.351 and P.1, have caused significant concern because of their rapid spread and
potential for antibody evasion (Mahase, 2021). The most common form of mutation is
substitutions, where one RNA nucleotide changes to another. This impacts both viral RNA
structure, known to influence function (Ziv et al., 2020), and protein sequence, which we
focus on here. Amino acid substitutions alter protein’s chemistry and can change structure,
stability and activity, in turn impacting biological function. While most substitutions have little
or no effect others have significant impact. For example the N439K variant in the Spike
protein has been found to reduce binding by some antibodies and increase affinity with
human ACEZ2, which is bound during entry to host cells (Thomson et al., 2021). Similarly the
E484K Spike variant observed in B.1.351 and P.1 has caused concern because it affects
antibody binding (Greaney et al., 2021; Wise, 2021).

Many computational tools have been developed to predict the consequences of mutations
based on protein sequence and structure. Sequence is informative because the prevalence
of a variant at similar positions across species relates to the likelihood of it being tolerated.
This is utilised by tools like SIFT4G (Vaser et al., 2015) and EVCouplings (Hopf et al., 2019).
EVCouplings  predictions for SARS-CoV-2 are publicly available online
(https://marks.hms.harvard.edu/sars-cov-2/). Protein structure is used by tools like FoldX
(Schymkowitz et al., 2005) and Rosetta (Kellogg et al., 2011) to model the effects of
mutations on thermodynamic properties, including on complex binding if complex models are
available. Machine learning is also used to combine feature types (Gnad et al., 2013; Gray et
al., 2018). However, running predictors can be technically challenging and computationally
expensive, which can be prohibitive for many scientists, preventing them taking advantage of
predictions.

The Mutfunc web service (Wagih et al., 2018) was developed in our lab to provide an
interface for pre-computed predictions for all possible H. sapiens, M, musculus and S.
cerevisiae variants. We apply a similar analysis to the proteins of SARS-CoV-2, combining
predictions based on sequence conservation, protein structures, known protein-protein
interfaces, phosphosites and observed frequencies. A web interface is available at
sars.mutfunc.com, which allows users to search and download the dataset and provides
visualisations of structures and alignments. We analyse the resource, validating the use of
predictors and showing its benefits for identifying potential variants of interest or concern
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among higher frequency variants, those in variant strains and those with antibody evasion
potential.

Results

Mutfunc: SARS-CoV-2 Dataset

We collected sequences and structures of the 28 SARS-CoV-2 proteins from a range of
sources (Figure 1A). Sequences came from Uniprot (The UniProt Consortium, 2019) and
were fed to SIFT4G to make conservation based predictions for all possible variants.
SWISS-MODELs SARS-CoV-2 repository (Bienert et al., 2017; Waterhouse et al., 2018) was
used to source the highest quality experimental or homology structural models for each
protein, using multiple models to cover more positions where possible (see methods).
Structural coverage was high for the 19 proteins with structures (Figure 1B); only nsp4 has
coverage below 50%. These models were used to generate FoldX AAG predictions for all
possible variants at positions covered by models. Complex models from SWISS-MODEL
and PDBe were analysed with FoldX to identify interface residues and predict the effect on
binding energy of all possible interface mutations. Sixteen complex structures were identified
at the time of publication (Figure 1C), 10 between viral proteins, 2 with human proteins and 4
with antibodies. Viral phosphosites were integrated from Bouhaddou et al. (2020). Variant
frequencies across all samples up to February 2021 were calculated from a sequence
alignment of over 235,900 public SARS-CoV-2 sequences (Lanfear and Mansfield, 2020;
Turakhia et al., 2020). Sequences are dominated by samples from the UK (75.0%) and USA
(14.4%), meaning frequencies mostly reflect these regions. Experimental antibody evasion
data (Greaney et al., 2021) and some individual variant annotations (Public Health England,
2020; Tegally et al., 2020; Faria et al., 2021; Mahase, 2021; Kemp et al., 2021) complete the
Mutfunc: SARS-CoV-2 dataset.

High frequency variants are not typically expected to impact protein function or viral fithess
strongly. We used this to validate SIFT4G scores and FoldX AAG predictions by comparing
them to variant frequencies. In addition, we compared the predictions with the results of a
deep mutational scan (DMS) experiment on Spike protein variants (Starr et al., 2020). As
expected, SIFT4G scores are lower for rarer variants on average (Figure 1D), although there
are significant deleterious predictions (< 0.05) in all frequency ranges. Variants SIFT4G
predicts to be deleterious also have significantly lower fithess measurements based on the
DMS experiments (Figure 1E). These observations support SIFT4G scores being informative
for viral variants. Similar results are found for FoldX AAG predictions, with higher frequency
variants tending to have lower magnitude AAG values (Figure 1F). Variants FoldX predicts
are destabilising (AAG > 1) have significantly lower DMS expression fitness scores (Figure
1G). Variants predicted stabilising (AAG < -1) are not as different to neutral variants in terms
of expression fithess, which is expected because stabilising proteins does not generally
affect expression.
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Figure 1 - A: Data generation pipeline schematic. B: Percentage of residues covered by
structural models for each protein. C: Protein complex structures currently included in the
dataset. D: Distribution of SIFT4G scores for variants across frequencies. NA indicates
variants that were not observed at all. The threshold for prediction being significant (0.05) is
marked as is the number of variants in each category E: Distribution of Spike DMS variant
expression fithess scores for variants predicted deleterious (< 0.05) or neutral (> 0.05) by
SIFT4G. The p-value from a Wilcoxon signed-rank test is shown. F: Distribution of FoldX
AAG predictions for variants of varying frequencies. The thresholds for a variant being
considered destabilising (1) and stabilising (-1) are marked. G: Distribution of Spike deep
mutational scan variant expression fitness for variants predicted destabilising, neutral or
stabilising by FoldX. P-values from Wilcoxon signed-rank tests are shown.
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Variant Predictions at Protein-Protein Interfaces

Many protein functions occur through interactions with other proteins, meaning accurate
predictions about interactions are particularly useful. There are 1828 observed variants in
the modeled interfaces, of which 443 are predicted to disturb interface binding in at least one
interface (Figure 2A). We benchmarked FoldX interface binding AAG in the same way as
previous scores, showing higher frequency variants are predicted to be less destabilising on
average (Figure 2B). The Spike DMS also measured the strength of binding with ACE2, one
of the virus' key host targets. This is reported as a Alog, K, polarised so negative values
mean weaker binding. Variants predicted to destabilise interface binding have significantly
lower DMS binding fitnesses than variants predicted to be neutral and variants predicted to
stabilise the interface have significantly higher (Figure 2C). Together, this suggests that the
predictions reflect real effects in SARS-CoV-2 proteins and inform on variant impact.

We also performed a sensitivity-specificity analysis (Figure 2D) to assess the power of
different metrics to predict whether DMS binding fithess decreased to 10% of the wild-type
value, which corresponds to the long tail of deleterious results occurring in DMS scores.
Analysis of interface residues shows FoldX'’s interface AAG for the S - ACE2 complex is the
best predictor of binding changes, suggesting interface specific interactions are most
important at interface residues and that this is the main metric for positions known to be in
an interface. However, positions away from interfaces can also impact binding by changing
overall structure. The fact that FoldX’s general AAG is a good predictor when considering all
residues but is weak for known interface residues suggests general structural effects are
relevant for interface binding but reaffirms that interface interactions are dominant at the
interface itself. SIFT4G scores perform similarly for interface and non-interface residues,
suggesting conservation is a useful metric but less powerful than the appropriate structural
predictions.

Predictions can also be used to analyse proteins overall properties. We visualised each
interface in the dataset to identify important regions for binding and whether they are
mutated. The N dimerisation interface was the most interesting of the 20 interfaces (Figure
2E). The two central B-strands are likely to be most important in this complex since they are
where mutations cause the most destabilisation. These regions also have more observed
variants than the rest of the interface, although only one at a frequency above 10 and only
a small number are predicted to be destabilising themselves. This was the only case where
the most impactful and most frequent interface variants co-occurred. The identification of
multiple mutations within the same functional region across different strains suggests that
there may be a functional advantage to mutations occuring at this interface.
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Figure 2 - A: Fraction of potential interface variants observed in samples, including the
fraction predicted to have significant effect. The exact number of observed and possible
variants in each interface is displayed to the right. The fraction does not account for variant
frequency. B: Distribution of FoldX’s predicted interface binding AAG for variants of different
frequencies. C: Distribution of Spike variant DMS ACE2 binding fitness for variants predicted
destabilising (AAG > 1), neutral (-1 < AAG < 1) and stabilising (AAG < -1), as well as
Wilcoxon signed-rank test p-values between the groups. D: Sensitivity-specificity curves
showing the ability of different predictors to model whether Spike variants DMS ACE2
binding fell to 10% of the WT value. The test was performed on all positions (top) and
predicted interface positions (bottom). AUC is displayed for each curve. E: FoldX interface
AAG predictions for all possible variants in the N-N interface (PDBID: 7C22), mean position
binding AAG and the frequency of observed mutations at interface positions. The structure is
also shown, coloured to indicate the marked regions in the heatmap.


https://doi.org/10.1101/2021.02.24.432721
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432721; this version posted February 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

High Frequency Variants with Predicted Functional Impact

As shown above, high frequency variants tend to have lower predicted functional impacts
and are typically expected to be neutral. Significant or non-neutral predicted consequences
can therefore be useful to identify high frequency variants of interest. This is important when
prioritising variants for follow up experiments or assessing observed variants, particularly
when new strains emerge. We searched for significant predicted effects in mutations from
variant strains or with elevated frequencies, highlighting a selection of examples here. In
total we have identified 281 variants with frequency above 0.1% that have at least one
predicted functional impact. These are provided in Table S1 with annotations to facilitate
potential follow up studies.

In December 2020 three variant strains were observed (Mahase, 2021) and have since been
rapidly increasing in frequency; B.1.1.7 in the UK, B.1.351 in South Africa and P.1 in Brazil.
The majority of variants in these strains are in the Spike protein (Figure 3A), with B.1.351
and P.1 each carrying 5 variants predicted to be structurally destabilising and B.1.1.7
carrying 3. Two variants in the Spike RBD are also observed in variant strains (all carry
N501Y and E484K is in B.1.351 and P.1), both of which FoldX predicts to impact ACE2
binding. E484K, which is predicted to stabilise ACE2 binding, has also recently been
observed in some B.1.1.7 samples (Public Health England, 2021). N501Y is computationally
predicted to destabilise the interface but was measured to increase binding in the DMS
experiment. This suggests it changes the binding conformation in a way FoldX doesn’t
accurately model and emphasises that computational predictions are good at identifying
variants that impact interfaces but do not always fully model the consequences. B.1.1.7 and
B.1.351 also carry variants in orf8 (Figure 3B), which potentially interacts with the host
immune system (Li et al.,, 2020) and vesicle trafficking (Gordon et al., 2020). The two
variants in B.1.1.7 (A511 & Y73C) and the variant in B.1.351 (E92K) are all predicted to
destabilise the structure. A fourth stabilising orf8 variant, S24L, occurs at a generally
increased frequency (3.18%).

Several other Spike variants also have elevated frequency. D614G (94%), the primary
variant in the dominant B lineage, is not predicted to be significantly destabilising to either
the protein or the interface, but is predicted to stop the position making contact with the other
bound S subunit. A222V is known to have risen in frequency in Europe (Hodcroft et al.,
2020) to 30% overall sample frequency, and is predicted to destabilise protein structure. A
slightly less frequent variant, T29I (0.2%), is at a phosphosite and leads to large putative
structural destabilisation.

We also highlight four variants in the orf3a ion channel dimer (Figure 3C), which is linked to
apoptosis induction (Ren et al., 2020). Q57H (15.2%) is predicted to destabilise the protein
and protrudes into the core of the transmembrane helices that form the dimerisation
interface. It is not predicted to destabilise the interface but could potentially interfere with ion
transport by changing from the polar neutral side chain of glutamine to the bulky basic
aromatic group of histidine. L46F (0.13%) also appears to protrude into the transmembrane
helix channel, with a potentially impactful change to a larger aromatic group. It is predicted to
destabilise both structure and interface. T2231 (2.14%) is predicted to destabilise the
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dimerisation interface in the cytosolic domain and K75N (1.5%) is predicted to strongly
destabilise the structure.

The replication complex, responsible for replicating viral RNA, also has several variants with
elevated frequencies (Figure 3D). The RdRp protein contains P323L (93.9%), which is linked
to Spike D614G (Korber et al., 2020) but does not have any significant predicted effects. The
nsp7 variant S25L (0.6%) is predicted to stabilise the interface to nsp8 in both complex
models. RdRp variant E254D (1.9%) significantly destabilises the structure. Finally, nsp8
variant 1107V (0.2%) is in both the nsp7 and RdRp interface and has a AAG only just shy of
being destabilising (0.96).

We also examined the predictions made against variants that emerged in a case study with
a patient treated with convalescent antibodies (Kemp et al., 2021). The initial infection was
from a strain in lineage B, carrying D614G. 26 of the 47 substitutions that rise to at least 10%
frequency during the infection have at least one significant prediction associated with them
(Figure S1). It is notable that only one sub-strain that increased in frequency did not carry at
least one variant predicted to destabilise the spike protein, assuming a AH69/AV70 double
deletion is destabilising.
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Figure 3 - A selection of interesting observed variants and prediction details. Variants are
highlighted on the structures of the Spike protein (A, PDBID: 6XR8), Orf8 (B, PDBID: 7JTL),
the Orf3a homodimer complex (C, PDBID: 6XDC) and the nsp7 - nsp8 - RdRp portion of the

replication complex (D, PDBID: 7BTF). Variants are coloured by variant strain where
applicable.
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Predicted Impact of Antibody Evasion Variants

The ability to disturb antibody binding could have a big impact on the severity of future
variant strains, especially with growing numbers being vaccinated. We tested our predictors
against DMS results testing a library of Spike variants for antibody evasion potential
(Greaney et al., 2021). Firstly, we tested interface predictions based on four complex
structures between Spike and various antibodies (Figure 4A). Variants predicted to
destabilise these complexes were found to be significantly more likely to experimentally
evade antibody binding in 2 of 4 antibodies. This suggests the predictions reflect real effects
but also illustrates the variability of antibody binding, with different antibodies responding
very differently to mutations. Consequently it's possible mutations can lead to evasion of
some antibodies even if they were not measured to evade binding in the deep mutational
scan.

We also tested our general predictors (Figure 4B), since these four antibody structures do
not cover all possible binding modes. Variants predicted to be destabilising by FoldX, neutral
by SIFT4G or to destabilise the ACE2 - S complex binding are all significantly more likely to
lead to antibody evasion. This can be understood as successful antibody evasion requiring
structural changes that do not lead to loss of protein function, which makes biological sense.
These results can help inform on the prevalence and emergence of Spike RBD variants with
potential for antibody evasion. For instance, 41.3% of samples carry at least one Spike
variant that is predicted destabilising by FoldX and neutral by SIFT4G, although of course it
is likely that many of them do not interact with antibody binding. This high rate is also likely
partly driven by increased sequencing of the three emergent strains, which carry such
variants.

The computational predictions can also be combined with experimental antibody evasion
measurements to predict which evasion variants are not predicted to be deleterious for the
virus (Figure 4C). Variants that are predicted to be neutral based on sequence conservation,
structure and ACE?2 interface binding but lead to experimental antibody evasion (Table S2)
are particularly concerning because they are less likely to be selected against. Positions
leading to maximum evasion >10% or mean evasion >5% are clustered in two regions of the
Spike RBD; the base of the domain connecting to the rest of the protein and the upper head,
where most observed antibody interfaces occur (Figure 4D). Mutations in the lower cluster
are all predicted to be deleterious to the protein, generally destabilising the structure and
therefore more likely to impact normal protein function and be selected against. Conversely
many mutations in the upper cluster are predicted to be neutral and so would be particularly
concerning if observed. Of these, the two positions measured to have the greatest evasion
potential are 456 and 484. No variants at 456 are predicted to be neutral but only mutation to
isoleucine, proline or tryptophan are predicted to be deleterious at 484, suggesting it is one
of the most important positions to monitor. E484K, which is in the emerging B.1.351 and P.1
strains and has recently been sporadically observed in B.1.1.7 (Public Health England,
2021), has a slightly lower measured evasion effect but is predicted to destabilise S - HO14
antibody binding and is predicted to be neutral by SIFT4G and FoldX, reinforcing other
analyses suggesting it is a particularly concerning variant (Wise, 2021). N501T, V503T,
1472G and G485P are the most evasive variants at other positions, with the first two being
predicted neutral and therefore of particular concern.
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Figure 4 - A: Distribution of maximum antibody evasion for variants in S - antibody complex
structure interfaces, grouped by FoldX interface prediction (COVA2-04 PDBID: 7JMO, HO14
PDBID: 7CAIl & 7CAK, REGN10933 & REGN10987 PDBID: 6XDG). P-values from Wilcoxon
signed rank tests. B: Distribution of maximum DMS antibody evasion scores with p-values
Wilcoxon signed rank tests. C: Spike variant computational predictions against their
maximum measured antibody evasion. FoldX AAG, SIFT4G category and FoldX ACE2
interface binding indicate which variants are most likely to be selectively neutral. D: Variant
positions with maximum evasion >10% or mean evasion >5% projected onto a Spike -
antibody complex. Variants with SIFT4G Score < 0.05, |JAAG| > 1 or |ACE2 interface AAG| >
1 are considered deleterious. All mutations to positions 445 and 484 apart from a small
selection are neutral, so here the variants that are non-neutral are listed and the position
marked with an exclamation mark (!). The structure is a combination of 7CAl, showing Spike
(blue) in complex with HO14 (pink, left), and 6XDG, which includes REGN10933 (pink, top) &
REGN10987 (pink, bottom) bound to the Receptor Binding Domain. They are aligned on the
RBD in order to show a variety of antibody binding configurations.
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Discussion

The coronavirus pandemic is a rapidly developing global health emergency, in which new
mutations frequently emerge and sometimes rise to prominence. This makes the ability to
rapidly assess the potential consequences of new mutations very useful. Computational
predictions, alongside expert knowledge and experimentation, support this goal and help
build a coherent picture of variants consequences. This is the rationale behind the Mutfunc:
SARS-CoV-2 dataset, providing conservation, structure and interface based predictions
alongside frequencies and phosphosite positions for all possible viral substitutions. The
results are benchmarked against experimental results and frequency, showing they can aid
rapid interpretation of variant impact. Our dataset complements existing SARS-CoV-2
resources, such as EVCouplings results (https://marks.hms.harvard.edu/sars-cov-2/) and the
COVID3D resource (Portelli et al., 2020).

The data collated in Mutfunc: SARS-CoV-2 is a mix of computational predictions and
experimental results. Frequency and phosphosite data are the results of experimental work
whereas the results from FoldX and SIFT4G are computational predictions. Care must be
taken when interpreting all results but particularly computational predictions. Firstly, the
predictions are the result of mathematical models and have inherent uncertainty; for example
FoldX AAG values should not be treated like physical measurements but an indicator that a
mutation is more likely to impact structure in some way, which could be beneficial or
deleterious to the virus. The predictors are also not specifically predicting increases or
decreases in function but predicting deleteriousness from conservation and modelling
energetics. These features relate to changes in protein function and can relate to changes in
important viral features such as infectivity or immune response, but are not guaranteed to.
For this reason it is important to always consider specifically what a score tells you and what
that means for the variant.

In addition to taking care when interpreting results it is also important to consider features
that are not incorporated into the dataset. For instance, many additional interactions are
experimentally observed but lack structural models (Gordon et al., 2020). This suggests
there are interfaces missing, especially between virus and host proteins. The number of
observed interface variants would almost certainly increase when these interactions are
considered, even accounting for shared interfaces. Similarly some phosphosites were
possibly not detected and other types of post-translational modifications were not
considered. Other mutational consequences, for example RNA level effects, are not
considered at all, despite potential functional consequences.

Despite these cautions, the dataset of predicted variant effects allowed us to search
observed variants and identify those that appear most likely to impact protein function, based
on frequency, computational predictions and our knowledge of the proteins. This analysis
identified various variants that have already been discussed in the literature, as well as other
potentially interesting uninvestigated variants. A similar analysis combining predictions with
experimental antibody evasion measurements allowed us to identify variants most likely to
cause antibody evasion and not negatively impact viral fitness. Such results enhance
monitoring by highlighting potentially important variants for deeper analysis and identifying
variants to monitor.
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The dataset is available to download and search at sars.mutfunc.com. We hope that this
resource will aid researchers assessing the impacts of viral variants, complementing and
informing experiments and expert analyses.
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Methods

The code managing the pipeline and analyses are available at
https://github.com/allydunham/mutfunc_sars_cov_2. The web service source code is
available at https://github.com/allydunham/mutfunc_sars_cov_2_frontend. The pipeline is
managed through Snakemake (Kdster and Rahmann, 2012).

Conservation

SARS-CoV-2 protein sequences were downloaded from Uniprot (The UniProt Consortium,
2019) and the orf1ab polyprotein split into sub-sequences based on the Uniprot annotation.
A custom reference database was generated based on the NCBI virus coronavirus genomes
dataset (NCBI Resource Coordinators, 2018), which includes sequences from a large range
of coronaviruses. SARS-CoV-2, SARS and MERS sequences were filtered to only contain
sequences from the Wuhan-Hu-1 strain, the Urbani strain and the HCoV-EMC/2012 strain
respectively. Without this the dataset contains very large numbers of almost identical
sequences from patient samples, which are not informative since SIFT4G looks to compare
across species. The remaining sequences were clustered using MMseqs2 (Steinegger and
Sdding, 2017) with an overlap threshold of 0.8 and a sequence identity threshold of 0.95,
which grouped other duplicate sequences into representative clusters. SIFT4G Scores were
generated for all possible variants to the SARS-CoV-2 sequences based on this database. A
modified copy of SIFT4G was used, which reports scores to 5 decimal places instead of the
usual 2.

Structural Destabilisation

Structures were sourced from the SWISS-Model (Bienert et al., 2017; Waterhouse et al.,
2018) SARS-CoV-2 repository (https://swissmodel.expasy.org/repository/species/2697049),
which contains experimental structures and homology models. Models were required to have
greater than 30% sequence identity and a QMean score (Benkert et al., 2011) greater than
-4, as recommended by SWISS-Model. Suitable models were available for 19 of the 28 viral
proteins. Models were ordered by priority; firstly experimental models over homology models
and then by QMean Score. Models were examined in turn and any position not covered by a
higher priority model was added to the FoldX analysis pipeline. FoldX's RepairPDB
command was used to pre-process selected SWISS-Model PDB files. All mutations at each
position assigned to each model were modeled using the BuildModel command, using the
average AAG prediction from three runs.

Surface Accessibility

Naccess (Hubbard and Thornton, 1993) was run on each structure using the default settings.
Structures were filtered to only include the chain corresponding to the appropriate
SARS-CoV-2 protein. This means some surface accessible positions are usually found in
interfaces rather than facing the solvent. Since structures are not always complete surface
accessibility is an approximation and will not be accurate in all cases.
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Protein Interfaces

Complex models were identified from SWISS-Model, literature search and PDBe (Gordon et
al., 2020; Henderson et al., 2020; PDBe-KB Consortium et al., 2020; Schubert et al., 2020;
Zhou et al., 2020). PDB files were pre-processed using the FoldX RepairPDB command. An
initial AnalyseComplex command was used to identify positions involved in each interface
and estimate the energetics of the wild-type interface. Structural models of all single amino
acid substitutions to the interface were generated using the BuildModel command and the
mutant interfaces re-analysed with AnalyseComplex. The wild-type energetic predictions
were subtracted from the mutants’ to estimate energetic changes and if any amino acids had
been lost or gained from the interface .

Variant Frequency

Frequencies are based on an alignment containing observed mutations from public
SARS-CoV-2 sequences from COG-UK, GENBANK and The China National Center for
Bioinformation, derived from that used for sarscovZphylo. It was filtered to exclude

problematic sites using VCFTools, based on the annotation at
https://github.com/W-L/ProblematicSites_ SARS-CoV2/blob/master/problematic_sites_sarsC
ov2.vcf. Variants marked as seq_end, ambiguous, highly_ambiguous,

interspecific_contamination, nanopore_adapter, narrow_src or single_src were excluded
because of high potential error rates. VCFTools was used to calculate frequencies, including
frequencies based on regional and recent subsets of the samples. The SARS-CoV-2
genome was sourced from Ensembl (Yates et al., 2020) and Tabix indexed. Variants were
annotated to genes using the Ensembl VEP tool using a custom annotation based on
Ensembl’s annotation but with polyproteins split into sub-regions so that VEP assigned
variants correctly. Only coding variants were considered.
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Figure S1 - Computational predictions for variants observed to increase to at least 10%
frequency at some point during the case study observed by Kemp et al. (2021).
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