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ABSTRACT

Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large
quantities of patient data that are typically held separately by multiple healthcare institutions. Centralizing those data for a study
is often infeasible due to privacy and security concerns. Federated analytics is rapidly emerging as a solution for enabling
joint analyses of distributed medical data across a group of institutions, without sharing patient-level data. However, existing
approaches either provide only limited protection of patients’ privacy by requiring the institutions to share intermediate results,
which can in turn leak sensitive patient-level information, or they sacrifice the accuracy of results by adding noise to the data to
mitigate potential leakage. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic
encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without
revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including
Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics. Using our system, we
accurately and efficiently reproduce two published centralized studies in a federated setting, enabling biomedical insights that
are not possible from individual institutions alone. Our work represents a necessary key step towards overcoming the privacy
hurdle in enabling multi-centric scientific collaborations.

Introduction1

A key requirement for fully realizing the potential of precision medicine is to make large amounts of medical data inter-operable2

and widely accessible to researchers. Today, however, medical data are scattered across many institutions, which renders3

centralized access and aggregation of such data extremely challenging, if not impossible. The challenges are not due to the4

technical hurdles of transporting high volumes of heterogeneous data across organizations but to the legal and regulatory5

barriers that make transfer of patient-level data outside a healthcare provider extremely complex and time-consuming. Moreover,6

stringent data-protection and privacy regulations (e.g., GDPR1) strongly restrict the transfer of personal data, including even7

pseudonymized data, across jurisdictions.8

Federated analytics (FA) is emerging as a new paradigm that seeks to address the data governance and privacy issues related9

to medical-data sharing2–4. FA enables different healthcare providers to collaboratively perform statistical analyses and to10

develop machine-learning models, without exchanging the underlying datasets. Only aggregated results or model updates are11

transferred. In this way, each healthcare provider can define its own data governance and maintain control over the access12

to its patient-level data. FA offers unprecedented opportunities for exploiting large and diverse volumes of data distributed13

across multiple institutions. These opportunities can facilitate the development and validation of AI algorithms that yield more14

accurate, unbiased, and generalizable clinical recommendations, as well as accelerate novel discoveries. Such advances are15

particularly important in the context of rare diseases or medical conditions, where the number of affected patients in a single16
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institution is often not sufficient to identify meaningful statistical patterns with enough statistical power.17

The adoption of FA in the medical sector, despite its potential, has been slower than expected. This is in large part due to18

the unresolved privacy issues of FA, related to the sharing of model updates or partial data aggregates in cleartext. Indeed,19

despite patient-level data not being transferred between the institutions engaging in FA, it has been shown that the model20

updates (or partial aggregates) themselves can, under certain circumstances, leak sensitive personal information about the21

underlying individuals, thus leading to re-identification, membership inference, and feature reconstruction5, 6. Our work focuses22

on overcoming this key limitation of existing FA approaches. We note that limited data inter-operability across different23

healthcare providers is another potential challenge in deploying FA; this, in practice, can be surmounted by harmonizing the24

data across institutions before performing the analysis.25

Several open-source software platforms have recently been developed to provide users streamlined access to FA algo-26

rithms3, 7, 8. For example, DataSHIELD7 is a distributed data analysis and a machine-learning (ML) platform based on the27

open-source software R. However, none of these platforms address the aforementioned problem of indirect privacy leakages28

that stem from their use of ‘vanilla’ federated learning. Hence, it remains unclear whether these existing solutions are able to29

substantially simplify regulatory compliance, compared to more conventional workflows that centralize the data9–11, if the30

partial aggregates and model updates could still be considered as personal identifying data5, 12–15.31

More sophisticated solutions for FA, which aim to provide end-to-end privacy protection, including for the shared32

intermediate data, have been proposed16–25. These solutions use techniques such as differential privacy (diffP)26, secure33

multiparty computation (SMC), and homomorphic encryption (HE). However, these techniques often achieve stronger privacy34

protection at the expense of accuracy or computational efficiency, thus limiting their applicability. Existing diffP techniques for35

FA, which prevent privacy leakage from the intermediate data by adding noise to it before sharing, often require prohibitive36

amounts of noise, which leads to inaccurate models. Furthermore, there is a lack of consensus around how to set the privacy37

parameters for diffP in order to provide acceptable mitigation of inference risks in practice27. SMC and HE are cryptographic38

frameworks for securely performing computation over private datasets (pooled from multiple parties in the context of FA, in39

an encrypted form) without any intermediate leakage, but both come with notable drawbacks. SMC incurs a high network-40

communication overhead and has difficulty scaling to a large number of data providers. HE imposes high storage and41

computational overheads and introduces a single point of failure in the standard centralized setup, where a single party receives42

all encrypted datasets to securely perform the joint computation. Distributed solutions based on HE22–24, 28 have also been43

proposed to decentralize both the computational burden and the trust, but existing solutions address only simple calculations44

(e.g., counts and basic sample statistics) and are not suited for complex tasks.45

Here, we present FAMHE, a new approach, based on multiparty homomorphic encryption (MHE)29, to privacy-preserving46

federated analytics, and we demonstrate its ability to enable an efficient federated execution of two fundamental workflows47

in biomedical research: Kaplan-Meier survival analysis and genome-wide association studies (GWAS). MHE is a recently48

proposed multiparty computation framework based on HE; it combines the power of HE to perform computation on encrypted49

data without communication between the parties, with the benefits of interactive protocols, which can greatly simplify certain50

expensive HE operations. Building upon the MHE framework, we introduce a novel approach to FA, where each participating51

institution performs local computation and encrypts the intermediate results by using MHE; the results are then combined52

(e.g., aggregated) and distributed back to each institution for further computation. This process is repeated until the desired53

analysis is completed. Contrary to diffP-based approaches that rely on obfuscation techniques to mitigate the leakage in54

intermediate results, by sharing only encrypted intermediate results, FAMHE provides end-to-end privacy protection, without55

sacrificing accuracy. By sharing only encrypted information, our approach guarantees that, whenever needed, a minimum level56

of obfuscation can be applied only to the final result in order to protect it from inference attacks, instead of being applied to all57

intermediate results. Furthermore, FAMHE improves over both SMC and HE approaches by minimizing communication, by58

scaling to large numbers of data providers, and by circumventing expensive non-interactive operations (e.g., bootstrapping in59

HE). Our work also introduces a range of optimization techniques for FAMHE, including optimization of the local vs. collective60

computation balance, ciphertext packing strategies, and polynomial approximation of complex operations; these techniques are61

instrumental in our efficient design of FAMHE solutions for survival analysis and GWAS.62

We demonstrate the performance of FAMHE by replicating two published multi-centric studies that originally relied on data63

centralization. These include a study of metastatic cancer patients and their tumor mutational burden30, and a host genetic study64

of HIV-1 infected patients31. By distributing each dataset across multiple data providers and by performing federated analyses65

using our approach, we successfully recapitulated the results of both original studies. Our solutions are efficient in terms of both66

execution time and communication, e.g., completing a GWAS over 20K patients and four million variants in less than five hours.67

In contrast to most prior work on biomedical FA, which relied on artificial datasets16, 18, 24, 32, our results closely reflect the68

potential of our approach in real application settings. Furthermore, our approach has the potential to simplify the requirements69

for contractual agreements and the obligations of data controllers that often hinder multi-centric medical studies, because data70

processed by using MHE can be considered anonymous data under the General Data-Protection Regulation (GDPR)12. Our71
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work shows that FAMHE is a practical framework for privacy-preserving FA for biomedical workflows and it has the power to72

enable a range of analyses beyond those demonstrated in this work.73

Results74

Overview of FAMHE75

In FAMHE, we rely on MHE to perform privacy-preserving FA by pooling the advantages of both interactive protocols and76

HE and by minimizing their disadvantages. In particular, by relying on MHE and on the distributed protocols for federated77

analytics proposed by Froelicher et al.25, our approach enables several sites to compute on their local patient-level data and78

then encrypt (Local Computation & Encryption in Figure 1) and homomorphically combine their local results under MHE79

(Collective Aggregation in Figure 1). These local and global steps can be repeated (Iterate in Figure 1), depending on the80

analytic task. At each new iteration, participating sites use the encrypted combination of the results of the previous iteration to81

compute on their local data without the need for decryption, e.g., gradient descent steps in the training of a regression model.82

The collectively encrypted and aggregated final result is eventually switched (Collective Key Switching in Figure 1) from an83

encryption under the collective public key to an encryption under the querier’s public key (the blue lock in Figure 1) such that84

only the querier can decrypt. The use of MHE ensures that the secret key of the underlying HE scheme never exists in full.85

Instead, the control over the decryption process is distributed across all participating sites, each one holding a fragment of the86

decryption key. This means that all participating sites have to agree to enable the decryption of any piece of data, and that no87

single entity alone can decrypt the data. As described in System and Threat Model in Online Methods, FAMHE is secure in a88

passive adversarial model in which all-but-one data providers can be dishonest and collude among themselves.89

FAMHE builds upon novel optimization techniques for enabling the efficient execution of complex iterative workflows: (1)90

by relying on edge-computing and optimizing the use of computations on the data providers’ cleartext data; (2) by relying on the91

packing ability of the MHE scheme to encrypt a vector of values in a single ciphertext such that any computation on a ciphertext92

is performed simultaneously on all the vector values, i.e., Single Instruction, Multiple Data (SIMD); (3) by further building on93

this packing property to optimize the sequence of operations by formatting a computation output correctly for the next operation;94

(4) by approximating complex computations such as matrix inversion (i.e., division) by polynomial functions (additions and95

multiplications) to efficiently compute them under HE; and (5) by replacing expensive cryptographic operations by lightweight96

interactive protocols. Note that FAMHE avoids the use of centralized complex cryptographic operations that would require a97

much more conservative parameterization and would result in higher computational and communication overheads (e.g., due to98

the use of larger ciphertexts). Therefore, FAMHE efficiently minimizes the computation and communication costs for a high99

security level. We provide more details of our techniques in Online Methods.100

We implemented FAMHE based on Lattigo33, an open-source Go library for multiparty lattice-based homomorphic encryption101

(MHE) cryptography. We chose the security parameters to always ensure a high 128-bit-level security. We refer to Online102

Methods for a detailed configuration of FAMHE used in our experiments.103

To demonstrate the performance of FAMHE, we developed efficient federated-analytics solutions based on FAMHE and our104

optimization techniques for two essential biomedical tasks: Kaplan-Meier survival analysis and GWAS (Online Methods).105

We present the results of these solutions on real datasets from two peer-reviewed studies that were originally conducted by106

centralizing the data from multiple institutions.107

Multi-centric Kaplan-Meier Survival Analysis Using FAMHE108

Kaplan-Meier survival analysis is a widely used method to assess patients’ response (i.e., survival) over time to a specific109

treatment. For example, in a recent study, Samstein et al.30 demonstrated that the tumor mutational burden (TMB) is a predictor110

of clinical responses to immune checkpoint inhibitor (ICI) treatments in patients with metastatic cancers. To obtain this111

conclusion, they computed Kaplan-Meier overall survival (OS) curves of 1,662 advanced-cancer patients treated with ICI and112

that are stratified by TMB values. OS was measured from the date of first ICI treatment to time of death or the last follow-up.113

In Figure 2a, we show the survival curves obtained from the original centralized study (Centralized, Non-secure) and those114

obtained through our privacy-preserving federated workflow of FAMHE executed among three data providers (DPs). Note that115

for FAMHE, to illustrate the workflow of federated collaboration, we distributed the dataset across the DPs, each hosted on116

a different machine. FAMHE’s analysis is then performed with each DP having access only to the locally held patient-level117

data, thus closely reflecting a real collaboration setting that involves independent healthcare centers. As a result, our federated118

solutions circumvent the privacy risks associated with data centralization in the original study. We observed that FAMHE119

produces survival curves identical to those of the original non-secure approach. By using either approach, we are able to derive120

the key conclusion that the benefits of ICI increase with TMB.121

In Figure 2b, we show that FAMHE produces exact results while maintaining computational efficiency, as the computation of122

the survival curves shown in Figure 2a is executed in less than 12 seconds, even when the data are scattered among 96 DPs. We123

also observe that the execution time is almost independent of the DPs’ dataset size, as the same experiment performed on a 10x124
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larger dataset (replicated 10x) takes almost exactly the same amount of time. We show that FAMHE’s execution time remains125

below 12 seconds for up to 8192 time points. We note that, in this particular study, the number of time points (instants at which126

an event can occur) is smaller than 200, due to the rounding off of survival times to months. In summary, the FAMHE-based127

Kaplan-Meier estimator produces precise results and scales efficiently with the number of time points, each DPs’ dataset size,128

and with the number of DPs. We remark that the hazard ratio, which is often computed in survival curve studies, can be directly129

estimated by the querier, based on the final result34. It is also possible to compute the hazard ratios directly by following the130

general workflow of FAMHE described in Figure 1. This requires the training of proportional hazard regression models that are131

closely related to generalized linear models35 that our GWAS solution also utilizes.132

Multi-centric Genome-Wide Association Studies Using FAMHE133

Genome-wide association studies (GWAS) are a fundamental analysis tool in medical genetics that identifies genetic variants134

that are statistically associated with given traits, such as disease status. GWAS have led to numerous discoveries about human135

health and biology, and efforts to collect larger and more diverse cohorts to improve the power of GWAS. Their relevance to136

diverse human populations continue to grow. As we progress toward precision medicine and genetic sequencing becomes137

more broadly incorporated into routine patient care, large-scale GWAS that span multiple medical institutions will become138

increasingly more valuable. Here we demonstrate the potential of FAMHE to enable multi-centric GWAS that fully protect the139

privacy of patients’ data throughout the analysis.140

We evaluated our approach on a GWAS dataset from McLaren et al.31; they studied the host genetic determinants of HIV-1141

viral load in an infected population of European individuals. It is known that the viral load observed in an asymptomatic patient142

after primary infection positively correlates with the rate of disease progression; this is the basis for the study of how host143

genetics modulates this phenotype. We obtained the available data for a subset of the cohort including 1,857 individuals from144

the Swiss HIV Cohort Study, with 4,057,178 genotyped variants. The dataset also included 12 covariates that represent ancestry145

components, which we also used in our experiments to correct for confounding effects. To test our federated analysis approach,146

we distributed, in a manner analogous to the survival analysis experiments, the GWAS dataset across varying numbers of data147

providers.148

Following the approach of McLaren et al.31, we performed GWAS using linear regression of the HIV-1 viral load on each149

of the more than four million variants, always including the covariates. To enable this large-scale analysis in a secure and150

federated manner, we developed two complementary approaches based on our system: FAMHE-GWAS and FAMHE-FastGWAS.151

FAMHE-GWAS performs exact linear regression and incurs no loss of accuracy, whereas FAMHE-FastGWAS achieves faster152

runtime through iterative optimization at a small expense of accuracy. We believe that both modes are practical and that the153

choice between them would depend on the study setting. Importantly, both solutions do not reveal intermediate results at any154

point during the computation, and any data exchanged between the data providers (DPs) to facilitate the computation are always155

kept hidden by collective encryption. We also emphasize that the DPs in both solutions utilize their local cleartext data and156

securely aggregate encrypted intermediate results, following the workflow presented in Figure 1.157

Both our solutions use a range of optimized computational routines that we developed in this work to carry out the158

sophisticated operations required in GWAS by using multiparty homomorphic encryption (MHE). In FAMHE-GWAS, we exploit159

the fact that the same set of covariates are included in all regression models by computing once the inverse covariance matrix of160

the covariates, then for each variant computing an efficient update to the inverse matrix to reflect the contribution of each given161

variant. Our solution employs efficient MHE routines for each of these steps, including matrix inversion. In FAMHE-FastGWAS,162

we first subtract the covariate contributions from the phenotype by training once a linear model including only the covariates.163

We then train in parallel uni-variate models for all four million variants. We perform this step efficiently by using the stochastic164

gradient descent algorithm implemented with MHE. Taken together, these techniques illustrate the computational flexibility of165

FAMHE and its potential to enable a wide range of analyses. Further details of our solutions are provided in Online Methods.166

We compare FAMHE-GWAS and FAMHE-FastGWAS against (i) Original, the centralized non-secure approach adopted by167

the original study, albeit on the Swiss HIV Cohort Study dataset, (ii) Meta-analysis36, a solution in which each DP locally168

and independently performs GWAS to obtain summary statistics that are then shared and combined (through weighted-Z test)169

across DPs to produce a single statistic for each variant that represents its overall association with the target phenotype, and (iii)170

Independent, a solution in which a data provider uses only its part of the dataset to perform GWAS. For all baseline approaches,171

we used the PLINK36 software to perform the analysis (see Online Methods for the detailed procedure). Note that Meta-analysis172

can also be securely executed by first encrypting each DP’s local summary statistics then following the federated-analytics173

workflow presented in Figure 1.174

The Manhattan plots visualizing the GWAS results obtained by each method are shown in Figure 3a. Both our FAMHE-based175

methods produced highly accurate outputs that are nearly indistinguishable from the Original results. Consequently, our176

methods successfully implicated the same genomic regions with genome-wide significance found by Original, represented by177

the strongest associated SNPs rs7637813 on chromosome 3 (nominal p = 7.2⇥10�8) and rs112243036 on chromosome 6178
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(p = 7.0⇥10�21). Notably, both these SNPs are in close vicinity to the two strongest signals reported by the original study31:179

rs1015164 at a distance of 9 Kbp and rs59440261 at a distance of 42 Kbp, respectively. The former is found in the major180

histocompatibility complex (MHC) region, and the latter is near the CCR5 gene; both have established connections to HIV-1181

disease progression31. Although the two previous SNPs were not available in our data subset to be analyzed, we reasonably182

posit that our findings capture the same association signals as in the original study, related through linkage disequilibrium.183

Regardless, we emphasize that our federated analysis results closely replicated the centralized analysis of the same dataset we184

used in our analysis.185

In contrast, the Meta-analysis approach, though successfully applied in many studies, severely underperformed in our186

experiments by reporting numerous associations that are likely spurious. We believe this observation highlights the limitation187

of meta-analyses when the sample sizes of individual datasets are limited. Similarly, the Independent approach obtained noisy188

results, which was further compounded by the issue of limited statistical power (for results obtained by every data provider, see189

Supplementary Figure S4). We complement these comparisons with Table 1 that quantifies the error in the reported negative190

logarithm of p-value (-log10(P-val)), as well as the regression weights (w), for all of the considered approaches compared to191

Original. We observed that FAMHE-FastGWAS yields an average absolute error always smaller than 10�2, which ensures192

accurate identification of association signals. FAMHE-GWAS further reduces the error by roughly a factor of three to obtain193

even more accurate results. Whereas, Meta-analysis and Independent approaches result in considerably larger errors.194

FAMHE scales efficiently in all dimensions: number of data providers, samples and variants (Figure 4). As displayed by195

Figure 4a, FAMHE’s runtime decreases when the workload is distributed among more data providers, and it is below one hour196

for a GWAS jointly performed by 12 data providers on more than 4 million variants with FAMHE-FastGWAS. It also shows197

that in a wide-area network (WAN) where the bandwidth is halved (from 1Gbps to 500Mbps) and the delay doubled (from198

20ms to 40ms), FAMHE execution time increases by a maximum of 26% over all experiments. FAMHE’s execution time grows199

linearly with the number of patients (or samples) and variants (Figures 4c and 4b). In all experiments, the communication200

accounts for between 4 and 55 percent of FAMHE total execution time. As described in Online Methods, FAMHE computes the201

p-values of multiple (between 512 and 8192) variants in parallel, due to the Single Instruction, Multiple Data (SIMD) property202

of the cryptoscheme and is further parallelized among the DPs and by multi-threading at each DP. FAMHE is therefore highly203

parallelizable, i.e., doubling the number of available threads would almost halve the execution time. Finally, FAMHE-GWAS,204

which performs exact linear regression, further reduces the error (by a factor of 3x compared to FAMHE-FastGWAS), but its205

execution times are generally higher than FAMHE-FastGWAS.206

These results demonstrate the ability of FAMHE to enable the execution of FA workflows on data held by large numbers of207

data providers who keep their data locally, while allowing full privacy with no loss of accuracy. To our knowledge, no other208

existing approaches achieve all of these properties: The FA approaches that share intermediate analysis results in cleartext209

among the data providers offer limited privacy-protection or, when used together with diffP techniques to mitigate leakage,210

they sacrifice accuracy. Meta-analysis approaches yield imprecise results compared to joint analysis, especially in settings211

where each DP has access to small cohorts, as we have shown. According to our estimates, centralized HE-based solutions have212

execution times that are 1-3 orders of magnitude greater than FAMHE due to the overhead of centralized computation, as well as213

compute-intensive cryptographic operations required by centralized HE (e.g., bootstrapping). Finally, SMC approaches, though214

an alternative for a small network of 2-4 data providers, have difficulty supporting a large number of DPs, due to their high215

communication overhead. Note that communication of SMC scales with the combined size of all datasets, whereas FAMHE216

shares only aggregate-level data, thus vastly reducing the communication burden. We provide a more detailed discussion of217

existing solutions and estimates of their computational costs in Supplementary Note 4.218

Discussion219

Here, we have demonstrated that efficient privacy-preserving federated-analysis workflows for complex biomedical tasks220

are attainable. Our efficient solutions for survival analysis and GWAS, based on our new paradigm FAMHE, accurately221

reproduced published peer-reviewed studies while keeping the dataset distributed across multiple sites and ensuring that the222

shared intermediate-data do not leak any private information. Alternative approaches based on meta-analysis or independent223

analysis of each data set led to noisy results in our experiments, illustrating the benefits of our federated solutions. The fact224

that FAMHE led to practical federated algorithms for both the statistical calculations required by Kaplan-Meier curves and the225

large-scale regression tasks of GWAS reflects the ability of FAMHE to enable a wide range of other analyses in biomedical226

research, such as cohort exploration and the training and evaluation of disease risk prediction models.227

Conceptually, FAMHE represents a novel approach to federated analytics; it has not been previously explored for complex228

biomedical tasks. FAMHE combines the strengths of both conventional federated-learning approaches and cryptographic229

frameworks for secure computation. Like federated learning, FAMHE scales to large numbers of data providers and enables230

non-interactive local computation over each institution’s dataset (available locally in cleartext), which approach minimizes the231

computational and communication burdens that cryptographic solutions18, 19, 22–24, 37 typically suffer from. However, FAMHE232
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draws from the cryptographic framework of MHE to enable secure aggregation and local computation of intermediate results233

in an encrypted form. This approach departs from the existing federated learning solutions2, 3, 7, 16, 17, 21 that largely rely on234

data obfuscation to mitigate leakage in the intermediate data shared among the institutions. Our approach thus provides more235

rigorous privacy protection. In other words, in FAMHE, accuracy is traded off only with performance, similarly to non-secure236

federated approaches, but differently from obfuscation-based solutions, FAMHE’s security is absolute. We summarize our237

comparison of FAMHE with existing works in Supplementary Table S1, Supplementary Note 4, and we refer to Online Methods238

for more details.239

The fact that FAMHE shares only encrypted data among the data providers has important implications for its suitability to240

regulatory compliance and its potential to catalyze future efforts for multi-centric biomedical studies. In recent work, it has241

been established by privacy law experts that data processed using MHE can be considered ‘anonymous’ data under the General242

Data Protection Regulation (GDPR)12. Anonymous data, which refers to data that require unreasonable efforts to re-identify the243

source individuals, lies outside the jurisdiction of GDPR. Therefore, our approach has the potential to significantly simplify the244

requirements for contractual agreements and the obligations of data controllers with respect to regulations, such as GDPR, that245

often hinder multi-centric medical studies. In contrast, existing federated-analytics solutions, where the intermediate results are246

openly shared, present more complicated paths toward compliance, as intermediate results could still be considered personal247

data13–15.248

In cases where the potential leakage of privacy in the final output of federated analysis is a concern, differential privacy249

techniques can be easily incorporated into FAMHE by adding a small perturbation to the final results before they are revealed. In250

contrast to the conventional federated learning approach, which requires each data provider to perturb its local results before251

aggregating them with other parties, FAMHE enables the data providers to keep the local results encrypted and reveals only the252

final aggregated results. Therefore, FAMHE can use a smaller amount of added noise and achieve the same level of privacy38.253

Notably, the choices of differential-privacy parameters suitable for analyses with a high-dimensional output, such as GWAS,254

can be challenging and needs to be further explored.255

There are several directions in which our work could be extended to facilitate the adoption of FAMHE. Although we256

reproduced published studies by distributing a pooled dataset across a group of data providers, jointly analyzing multiple257

datasets by using FAMHE that could not be combined otherwise would be a challenging yet important milestone for this258

endeavour. Our work demonstrates FAMHE’s applicability on a reliable baseline and constitutes an important and necessary step259

towards building trust in our technology and fostering its adoption, thus enabling its use for the discovery of new scientific260

insights. Furthermore, we will extend the capabilities of FAMHE by developing additional protocols for a broader range of261

standard analysis tools and machine-learning algorithms in biomedical research (e.g., proportional-hazard regression models). A262

key step in this direction is to make our implementation of FAMHE easily configurable by practitioners for their own applications.263

Specifically, connecting FAMHE to existing user-friendly platforms such as MedCo39 to make it widely available would help264

empower the increasing efforts to launch multi-centric medical studies and accelerate scientific discoveries.265

Online Methods266

Here, we describe the crypto-scheme that we rely on to build FAMHE and discuss how FAMHE differs from existing work. We267

describe FAMHE’s system and threat model, before detailing the execution of the privacy-preserving pipelines for survival268

curves and GWAS studies. Finally, we detail our experimental settings and explain how differential privacy can be ensured on269

the final result in FAMHE.270

Cryptographic Background271

In FAMHE, the data exchanged by the data providers are always encrypted such that only the querier can decrypt the final272

result. For this purpose, we rely on a multiparty (or distributed) fully-homomorphic encryption scheme29 in which the secret273

key is distributed among the parties and the corresponding collective public key pk is publicly known. Thus, each party can274

independently compute on ciphertexts encrypted under pk (the yellow lock in Figure 1), but all parties have to collaborate to275

decrypt a ciphertext. Hence, as long as one data provider (DP) is honest and refuses to participate in the decryption, encrypted276

data cannot be decrypted. This multiparty scheme also enables DPs to collectively switch the encryption key of a ciphertext277

from pk to another public key, i.e., the querier’s key (blue lock), without decrypting. We provide a list of recurrent symbols in278

Supplementary Table S3. Mouchet et al.29 propose a multiparty version of the Brakerski Fan-Vercauteren (BFV) lattice-based279

homomorphic cryptosystem40 and introduce interactive protocols for key management and cryptographic operations. We rely280

directly on this multiparty scheme for the computation of Kaplan-Meier survival curves, which involves only exact integer281

arithmetic, and we use an adaptation to the Cheon-Kim-Kim-Song cryptosystem (CKKS)41 (described by Froelicher et al.25)282

that enables approximate arithmetic for the GWAS operations. Froelicher et al.25 showed that this adaptation satisfies similar283

security properties to the original scheme proposed by Mouchet et al.29. The security comes mainly from the fact that the284

underlying (centralized) cryptoschemes, i.e., BFV and CKKS, share the same computational assumptions and are based on the285

6/17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.02.24.432489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432489
http://creativecommons.org/licenses/by-nc-nd/4.0/


same hard problem, i.e., the decisional RLWE problem42. In Novel Optimization Techniques, we discuss the SIMD property of286

these cryptosystems and how FAMHE builds on it to efficiently execute FA workflows with encrypted data.287

Related Work288

Centralized solutions for medical-data sharing9–11 require large amounts of data to be stored in a single repository that becomes289

a single point of failure and that (often) has to be fully trusted.290

To alleviate this trust assumption, federated-learning solutions2, 3, 7 were proposed. In these solutions, the data providers291

keep their data locally and share only aggregates or training-model updates with a central server. However, multiple research292

contributions13–15 have shown that these aggregates can still reveal significant information about the data providers’ data. For293

example, Nasirigerdeh et al. proposed sPLINK3, a federated instantiation of the PLINK36 software to perform a GWAS. With294

sPLINK the data providers’ partial covariance matrices (i.e., intermediate result) are revealed to the server that aggregates these295

matrices in order to perform the models training. Although the original data X is not actually transferred, some information296

about the original data can be inferred from the covariance matrix XT X computed by the aggregating server. In FAMHE, the297

covariance matrix is collectively and obliviously computed by exchanging encrypted data such that the models can be trained298

without revealing any intermediate data.299

Similarly, secure multiparty solutions18, 19 rely on secret-sharing to compute on medical data without revealing intermediate300

or aggregate information. Cho et al.19 designed a three-party secret-sharing-based solution for enabling GWAS execution while301

not revealing information on the input data. Secret-sharing-based solutions require the data providers to communicate their data302

to a limited number of computing nodes, i.e., outside their premises. FAMHE efficiently scales to federated learning settings303

where many DPs locally keep their data.304

Distributed solutions relying on homomorphic encryption22–24, 37 to enable federated analytics in a trust model similar to305

FAMHE were proposed. Some of these works assume a threat model more constraining than FAMHE, as they consider an active306

malicious adversary, but also exclusively focus on simple computations, e.g., counts and simple statistics. To propose a generic307

federated workflow for biomedical federated analytics, we build on the multiparty homomorphic encryption-based protocols308

proposed by Froelicher et al.25. We show how the sophisticated GWAS computation can be efficiently performed through this309

workflow.310

Differential-privacy-based solutions16, 17, 21, in which the intermediate values are obfuscated by a specific amount of noise,311

assume a paradigm different than FAMHE, as privacy is traded off with accuracy. In fact, this obfuscation decreases the data and312

model utility. The training of accurate models requires high-privacy budgets, but the achieved privacy level remains unclear27.313

In FAMHE, similarly to standard cleartext non-secure solutions (e.g., PLINK36), the accuracy is traded for only the performance.314

We show in Results that FAMHE achieves an accuracy similar to standard non-secure solutions, and that it is able to scale to a315

high number of data providers and yields an acceptable execution time.316

System & Threat Model317

FAMHE supports a network of mutually distrustful medical institutions that act as data providers (DPs) and hold subjects’318

records. An authorized querier (see Figure 1) can run queries, without threatening the data confidentiality and subjects’ privacy.319

The DPs and the querier are assumed to follow the protocol and to provide correct inputs. All-but-one data providers can be320

dishonest, i.e., they can try to infer information about other data providers by using the protocol’s outputs. We assume that the321

DPs are available during the complete execution of a computation. However, to account for unresponsive DPs, FAMHE can use322

a threshold-encryption scheme, where the DPs secret-share43 their secret keys, thus enabling a subset of the DPs to perform the323

cryptographic interactive protocols.324

FAMHE can be extended to withstand malicious behaviors. A malicious data provider can try to disrupt the federated325

collaboration process, i.e., by performing wrong computations or inputting wrong results. This can be partially mitigated326

by requiring the DPs to publish transcripts of their computations and to produce zero-knowledge proofs of range44, thus327

constraining the DPs’ possible inputs. Also, the querier can try to infer information about a DP’s local data from the final result.328

FAMHE can mitigate this inference attack by limiting the number of requests that a querier can perform and by adding noise to329

the final result (see Discussion) to achieve differential privacy guarantees. Learning how to select the privacy parameters and to330

design a generic solution to apply these techniques for the wide-range of applications enabled by FAMHE is part of future work.331

FAMHE’s Novel Optimization Techniques332

Here, we describe the main optimization techniques introduced in FAMHE. We will explain how these optimizations are used in333

FAMHE to compute survival curves and GWAS.334

In order to parallelize and efficiently perform computationally-intensive tasks, we rely on the Single Instruction, Multiple335

Data (SIMD) property of the underlying cryptoscheme and on edge computing, i.e., the computations are pushed to the data336

providers. In MHE, a ciphertext encrypts a vector of N values and any operation (i.e., addition, multiplication, and rotation)337

performed on the ciphertext is executed on all the values simultaneously, i.e., SIMD. After a certain number of operations, the338
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ciphertext needs to be refreshed, i.e., bootstrapped. A rotation is, in terms of computation complexity, one order of magnitude339

more expensive than an addition/multiplication; and a bootstrapping in a centralized setting is multiple orders of magnitudes340

(2-4) more expensive than any other operation. As the security parameters determine how many operations can be performed341

before a ciphertext needs to be bootstrapped, conservative parameters that incur large ciphertexts but enable more operations342

without bootstrap are usually required in centralized settings. This results in higher communication and computation costs.343

With MHE, a ciphertext can be refreshed by a lightweight interactive protocol that, besides its efficiency, also alleviates344

the constraints on the cryptographic parameters and enables FAMHE to ensure a high level of security and still use smaller345

ciphertexts. For example, we show in Figure 2b how FAMHE’s execution time to compute a survival curve increases when346

doubling the size of a ciphertext (from 4096 to 8192 slots).347

As discussed in Privacy-Preserving Pipeline for GWAS, in the case of GWAS, FAMHE efficiently performs multiple348

subsequent large-dimension matrix operations (Supplementary Figure S2a) by optimizing the data packing (Supplementary349

Figure S3) to perform several multiplications in parallel and to minimize the amount of transformations required on the350

ciphertexts. FAMHE builds on the data providers’ ability to compute on their cleartext local data and combine them with351

encrypted data, thus reducing the overall computation complexity. GWAS also requires non-polynomial functions, e.g., the352

inverse of a matrix, to be evaluated on ciphertexts, which is not directly applicable in HE. In FAMHE, these non-polynomial353

functions are efficiently approximated by relying on Chebyshev polynomials. We chose to rely on Chebyshev polynomials354

instead of on least-square polynomial approximations in order to minimize the maximum approximation error hence avoid that355

the function diverges on specific inputs. This technique has been shown to accurately approximate non-polynomial functions356

in the training of generalized models25 and neural networks45, which further shows the generality and applicability of our357

proposed framework.358

FAMHE combines the aforementioned features to efficiently perform FA with encrypted data. In GWAS, for example, we359

rely on the Gauss-Jordan (GJ) method46 to compute the inverse of the covariance matrix. We chose this algorithm as it can be360

efficiently executed by relying on the aforementioned features: row operations can be efficiently parallelized with SIMD and361

divisions are replaced by polynomial approximations.362

Privacy-Preserving Pipeline for Survival Curves363

Survival curves are generally estimated with the Kaplan-Meier estimator47

Ŝ(t) = ’
j, t jT

✓
1�

d j

n j

◆
, (1)

where t j is a time when at least one event has occured, d j is the number of events at time t j, and n j is the number of individuals364

known to have survived (or at risk) just before the time point t j. We show in Figure 2a the exact replica of the survival curve365

presented by Samstein et al.30 produced by our distributed and privacy-preserving computation. In a survival curve, each step366

down is the occurrence of an event. The ticks indicate the presence of censored patients, i.e., patients who withdrew from the367

study. The number of censored patients at time t j is indicated by c j. As shown in Supplementary Figure S1, to compute this368

curve, each data provider i locally computes, encodes and encrypts a vector of the form n(i)0 ,c(i)0 ,d(i)
0 , ...,n(i)T ,c(i)T ,d(i)

T containing369

the values n(i)j ,c(i)j ,d(i)
j corresponding to each time point t j for t j = 0, ...,T . All the DPs’ vectors are then collectively aggregated.370

The encryption of the final result is then collectively switched from the collective public key pk to the querier’s public key that371

can decrypt the result with its secret key and generate the curve following Eq. (1).372

Privacy-Preserving Pipeline for GWAS373

We briefly describe the genome-wide association-study workflow before explaining how we perform it in a federated and374

privacy-preserving manner. We conclude by detailing how we obtained our baseline GWAS results in Results with the PLINK375

software.376

We consider a dataset of p samples, i.e., patients. Each patient is described by f features or covariates (with indexes 1 to377

f ). We list all recurrent symbols and acronyms in Supplementary Table S3. Hence, we have a covariates matrix X 2 R(p⇥ f ).378

Each patient also has a phenotype or label, i.e., y 2 R(p⇥1) and v variant values, i.e., one for each variant considered in the379

association test. The v variant values for all p patients form another matrix V 2 R(p⇥v). To perform the GWAS, for each variant380

i, the matrix X 0 = [111,X ,V [:, i]] 2 R(p⇥( f+2)), i.e., the matrix X is augmented by a column of 1s (intercept) and the column of381

one variant i, is constructed. The vector w 2 R( f+2) is then obtained by w = (X
0T

X 0)(�1)X
0T

y. The p-value for variant i is then382

obtained with pval = 2 · pnorm(�| w[ f+2]q
(MSE(y,y0)·(X 0T X 0)(�1)[ f+2; f+2]

|) where pnorm is the cumulative distribution function (CDF)383

of the standard normal distribution, w[ f +2] is the weight corresponding to the variant, MSE(y,y0) is the mean squared error384
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obtained from the prediction y0 computed with w, and (X
0T

X 0)(�1)[ f +2; f +2] corresponds to the standard error of the variant385

weight.386

Although this computation has to be performed for each variant i, we remark that X is common to all variants. In order387

to compute (XT X)(�1) only once before adjusting it for each variant and thus obtain (X
0T

X 0)(�1), we rely on the Shermann-388

Morrison formula48 and the method presented in the report on cryptographic and privacy-preserving primitives (page 52) of the389

WITDOM European project49. We describe this approach, i.e., FAMHE-GWAS, in Supplementary Protocol S2a. Each data390

provider DPi has a subset of pi patients. For efficiency, the DPs are organized in a tree structure and one DP is chosen as the391

root of the tree DPR. We remark that, as any exchanged information is collectively encrypted, this does not have any security392

implications. In a Collective Aggregation (CA), each DP encrypts (E()) its local result with the collective key, aggregates its393

children DPs encrypted results with its encrypted local results, and sends the sum to its parent DP such that DPR obtains the394

encrypted result aggregated among all DPs. We recall here that with the homomorphic-encryption scheme used, vectors of395

values can be encrypted in one ciphertext and that any operation performed on a ciphertext is simultaneously performed on all396

vector elements, i.e., Single Instruction, Multiple Data (SIMD). We rely on this property to parallelize the operations at multiple397

levels: among the DPs, among the threads in each DP and among the values in the ciphertexts.398

We rely on the Gauss-Jordan (GJ) method46 to compute the inverse of the encrypted covariance matrix. We chose this399

algorithm as it requires only row operations, which can be efficiently performed with SIMD. The only operation that is not400

directly applicable in HE is the division that we approximated with a Chebyshev polynomial. Note that we avoid any other401

division in the protocol by pushing them to the last step that is executed by the querier Q after decryption. In Supplementary402

Protocol S2a, we keep 1/c until decryption.403

In Supplementary Protocol S2b, we describe how we further reduce the computation overhead by obtaining the covariates’404

weights w0 with a lightweight federated gradient-descent (FGD), by reporting the obtained covariates’ contributions in the405

phenotype y, which becomes y00. To compute the p-value, we then compute only one element of the covariance inverse matrix406

(X
0T

X 0)(�1)[ f + 2; f + 2], instead of the entire inverse. To perform the federated gradient descent, we follow the method407

described by Froelicher et al.25, without disclosing any intermediate values.408

We describe in Supplementary Figure S3 how the (main) values used in both protocols are packed to optimize the409

communication and the amount of required operations (multiplications, rotations). We perform permutations, duplications, and410

rotations on cleartext data that are held by the DPs (indicated in orange in Supplementary Figure S3); and we avoid, as much as411

possible, the operations on encrypted vectors. Note that rotations on ciphertexts are almost two orders of magnitude slower than412

multiplications or additions and should be avoided when possible. As ciphertexts have to be aggregated among DPs, a tradeoff413

has to be found between computation cost (e.g., rotations) and data packing, as a smaller packing density would require the414

exchange of more ciphertexts.415

In both protocols, all operations for v variants are executed in parallel, due to the ciphertext packing (SIMD). For a416

128-bit security level, the computations are performed simultaneously for 512 variants with FAMHE-GWAS and for 8192 with417

FAMHE-FastGWAS. These operations are further parallelized due to multi-threading and to the distribution of the workload418

among the DPs. We highlight (in bold) the main steps and aggregated values in the protocol and note that DPs’ local data are in419

cleartext, whereas all exchanged data are collectively encrypted (E()).420

Baseline Computations with PLINK. As explained in Results, we relied on the PLINK software to obtain our baseline421

results for the (i) Original approach in which GWAS is computed on the entire centralized dataset, (ii) the Independent approach422

in which each data provider performs the GWAS on its own subset of the data and (iii), for the Meta-analysis in which the data423

providers perform the GWAS on their local data before combining their results. For (i) and (ii), we relied on PLINK 2.0 and its424

linear regression (-glm option) based association test. For (iii), we relied on PLINK 1.9 and used the weighted-Z test approach425

to perform the meta-analysis.426

Experimental Settings427

We implemented our solution by building on top of Lattigo33, an open-source Go library for lattice-based cryptography, and428

on Onet, an open-source Go library for building decentralized systems. The communication between data providers (DPs) is429

done through TCP, with secure channels (by using TLS). We evaluate our prototype on an emulated realistic network, with430

a bandwidth of 1 Gbps and a delay of 20 ms between every two nodes. We deploy our solution on 12 Linux machines with431

Intel Xeon E5-2680 v3 CPUs running at 2.5GHz with 24 threads on 12 cores and 256 Gigabytes of RAM, on which we evenly432

distribute the DPs. We choose security parameters to always achieve a security level of 128 bits.433

Differentially Private Mechanism434

Differential privacy is a privacy-preserving approach, introduced by Dwork26, for reporting results on statistical datasets.435

This approach guarantees that a given randomized statistic, M (DS) = R, computed on a dataset DS, behaves similarly when436

computed on a neighbor dataset DS0 that differs from DS in exactly one element. More formally, (e , d )-differential privacy50 is437
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defined by Pr [M (DS) = R] exp(e) ·Pr [M (DS0) = R]+d , where e and d are privacy parameters: the closer to 0 they are,438

the higher the privacy level is. (e , d )-differential privacy is often achieved by adding noise to the output of a function f (DS).439

This noise can be drawn from the Laplace distribution with mean 0 and scale D f
e , where D f , the sensitivity of the original real440

valued function f , is defined by D f = maxD,D0 || f (DS)� f (DS0)||1. Other mechanisms, e.g., relying on a Gaussian distribution,441

were also proposed26, 51.442

As explained before, FAMHE can enable the participants to agree on a privacy level by choosing whether to yield exact or443

obfuscated, i.e., differentially private results, to the querier. We also note that our solution would then enable the obfuscation of444

only the final result, i.e., the noise can be added before the final decryption, and all the previous steps can be executed with445

exact values as no intermediate value is decrypted. This is a notable improvement with respect to existing federated-learning446

solutions, based on differential privacy38, in which the noise has to be added by each data provider at each iteration of the447

training. In the solution by Kim et al.38, each data provider perturbs its locally computed gradient such that the aggregated448

perturbation, obtained when the data providers aggregate (combine) their locally updated model, is e-differentially private. This449

is achieved by having each data provider generate and add a partial noise such that, when aggregated, the total noise follows450

the Laplace distribution. The noise magnitude is determined by the sensitivity of the computed function and this sensitivity is451

similar for each DP output and for the aggregated final result. This means that, as the intermediate values remain encrypted in452

FAMHE, a noise with the same magnitude can be added only once on the final result, thus ensuring the same level of privacy453

with a lower distortion of the result.454
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Figure 1. System Model and FAMHE Workflow. All entities are interconnected (dashed lines) and communication links at
each step are shown by thick arrows. All entities (data providers (DPs) and querier) are honest-but-curious and do not trust each
other. In 1. the querier sends the query (in clear) to all the DPs who (2.) locally compute on their cleartext data and encrypt
their results with the collective public key. In 3. the DPs’ encrypted local results are aggregated. For iterative tasks, this process
is repeated (Iterate). In 4. the final result is then collectively switched by the DPs from the collective public key to the public
key of the querier. In 5. the querier decrypts the final result.
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(a)

Centralized, Non-secure FAHME

Time [months]    0              12                  24                  36                 48

(b)

Figure 2. Secure and Distributed Reproduction of a Survival-Curve Study. (a): survival curves generated in a
centralized non-secure manner and with FAMHE on the data used by Samstein et al.30. With FAMHE, the original data are split
among three data providers, and the querier obtains exact results. The table in Figure a displays the number of patients at risk in
a specific time. The exact same numbers are obtained with the centralized, non-secure solution and with FAMHE. (b): FAMHE
execution time for the computation of one (or multiple) survival curve(s) with a maximum of 8192 time points. For both the
aggregation and key switching (from the collective public key to the querier’s key), most of the execution time is spent in
communication (up to 98%), as the operations on the encrypted data are lightweight and parallelized on multiple levels, i.e.,
among the data providers and among the encrypted values.
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(a) Original Approach
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(b) FAMHE-GWAS
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(c) Meta-analysis Approach

1 2 3           4          5          6        7        8       9     10     11    12   13  14     16   18  20  22
Chromosomes

0 
  2

   
4 

   
6 

  8
  1

0 
 1

2 
14

  1
6 

18
  2

0 
 2

2 
-lo
g 1
0(
P
)

(d) FAMHE-FastGWAS
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(e) Independent Approach
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Figure 3. Comparison of the GWAS results obtained with different approaches with 12 DPs (when applicable). (a)
Original is considered as the ground-truth and is obtained on a centralized cleartext dataset by relying on the PLINK36 software.
(c) and (e) are also obtained with PLINK (See Online Methods and Supplementary for complementary Figure S4). (b) and (d)
are the results obtained with FAMHE-GWAS and FAMHE-FastGWAS, respectively. In the original study and in our secure
approach, genome-wide signals of association (log10(P)< 5⇥107, dotted line) were observed on chromosomes 6 and 3.
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Indep. Meta-ana. FAMHE-FastGWAS FAMHE-GWAS

-log10(P-val) w -log10(P-val) w -log10(P-val) w -log10(P-val) w

3 DPs all 0.369 0.04 0.448 0.04 6.7e�3 1.5e�3 2.72e�3 7.3e�4

peaks 4.14 0.055 7.9 0.19 0.71 6.61e�3 0.1392 1.88e�7

6 DPs all 0.409 0.0665 0.45 0.041 8.3e�3 1.61e�3 2.78e�3 7.4e�4

peaks 4.86 0.12 7.95 0.195 0.82 6.63e�3 0.1393 2.3e�7

12 DPs all 0.425 0.104 0.453 0.048 9e�3 1.63e�3 2.79e�3 7.7e�4

peaks 6.619 0.126 7.99 0.197 0.848 6.69e�3 0.1399 3.6e�7

Table 1. Absolute averaged error on the logarithm of the p-values (-log10(P-val)) and on the model weights (w)
between Original and federated approaches. The Table also shows that one data provider performing the GWAS alone, with
only its local data (Indep.), obtains inaccurate results. For each number of data providers, we report the error averaged over all
positions and the errors on the peaks identified with Original (see Figure 3a).

16/17



(a)
(b)

(c)

(d)

Figure 4. FAMHE Scaling. (a) FAMHE’s scaling with the number of data providers, (b) with the size of the dataset and (c)
with the number of variants considered in the GWAS. (d) is the legend box for (a, b, c). In (a), we also observe the effect of a
reduced available bandwidth (from 1Gbps to 500Mbps) and increased communication delay (from 20ms to 40ms) on FAMHE’s
execution time. Unless otherwise stated, the original dataset containing 1857 samples and 4 million variants is evenly split
among the data providers. By default, the number of DPs is fixed to 6.

17/17


	References

