

1 **A Comprehensive Phylogenomic Platform for Exploring the Angiosperm Tree of Life**

2

3 William J. Baker^{1,*}, Paul Bailey¹, Vanessa Barber¹, Abigail Barker¹, Sidonie Bellot¹, David
4 Bishop¹, Laura R. Botigué^{1,2}, Grace Brewer¹, Tom Carruthers¹, James J. Clarkson¹, Jeffrey
5 Cook¹, Robyn S. Cowan¹, Steven Dodsworth^{1,3}, Niroshini Epitawalage¹, Elaine Françoso¹,
6 Berta Gallego¹, Matthew G. Johnson⁴, Jan T. Kim^{1,5}, Kevin Leempoel¹, Olivier Maurin¹,
7 Catherine McGinnie¹, Lisa Pokorny^{1,6}, Shyamali Roy¹, Malcolm Stone¹, Eduardo Toledo¹,
8 Norman J. Wickett⁷, Alexandre R. Zuntini¹, Wolf L. Eiserhardt^{1,8,†}, Paul J. Kersey^{1,†}, Ilia J.
9 Leitch^{1,†}, Félix Forest^{1,†}

10

11 ¹Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, United Kingdom

12 ²Current address: Centre for Research in Agricultural Genomics, Campus UAB, Edifici
13 CRAG, Bellaterra Cerdanyola del Vallès, 08193 Barcelona, Spain

14 ³School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU,
15 United Kingdom

16 ⁴Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA

17 ⁵Current address: Department of Computer Science, School of Physics, Engineering and
18 Computer Science, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, United
19 Kingdom

20 ⁶Current address: Centre for Plant Biotechnology and Genomics (CBGP) UPM-INIA, 28223
21 Pozuelo de Alarcón (Madrid), Spain

22 ⁷Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe,
23 IL 60022, USA

24 ⁸Department of Biology, Aarhus University, 8000 Aarhus C, Denmark

Baker et al.

25 [†]Joint senior authors

26 *Corresponding author: Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, United
27 Kingdom, w.baker@kew.org

28

29 *Abstract.*—The tree of life is the fundamental biological roadmap for navigating the evolution
30 and properties of life on Earth, and yet remains largely unknown. Even angiosperms
31 (flowering plants) are fraught with data gaps, despite their critical role in sustaining terrestrial
32 life. Today, high-throughput sequencing promises to significantly deepen our understanding
33 of evolutionary relationships. Here, we describe a comprehensive phylogenomic platform for
34 exploring the angiosperm tree of life, comprising a set of open tools and data based on the
35 353 nuclear genes targeted by the universal Angiosperm353 sequence capture probes. This
36 paper (i) documents our methods, (ii) describes our first data release and (iii) presents a novel
37 open data portal, the Kew Tree of Life Explorer (<https://treeoflife.kew.org>). We aim to
38 generate novel target sequence capture data for all genera of flowering plants, exploiting
39 natural history collections such as herbarium specimens, and augment it with mined public
40 data. Our first data release, described here, is the most extensive nuclear phylogenomic
41 dataset for angiosperms to date, comprising 3,099 samples validated by DNA barcode and
42 phylogenetic tests, representing all 64 orders, 404 families (96%) and 2,333 genera (17%).
43 Using the multi-species coalescent, we inferred a “first pass” angiosperm tree of life from the
44 data, which totalled 824,878 sequences, 489,086,049 base pairs, and 532,260 alignment
45 columns. The tree is strongly supported and highly congruent with existing taxonomy, while
46 challenging numerous hypothesized relationships among orders and placing many genera for
47 the first time. The validated dataset, species tree and all intermediates are openly accessible
48 via the Kew Tree of Life Explorer. This major milestone towards a complete tree of life for
49 all flowering plant species opens doors to a highly integrated future for angiosperm

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

50 phylogenomics through the systematic sequencing of standardised nuclear markers. Our
51 approach has the potential to serve as a much-needed bridge between the growing movement
52 to sequence the genomes of all life on Earth and the vast phylogenomic potential of the
53 world's natural history collections.

54 **Keywords:** angiosperms, Angiosperms353, genomics, herbariomics, museomics, nuclear
55 phylogenomics, open access, target sequence capture, tree of life.

56 INTRODUCTION

57

58 Discovering the tree of life is among the most fundamental of the grand challenges in
59 science today (Hinchliff et al. 2015). The tree of life is the biological roadmap that allows us
60 to discover, identify and classify life on Earth, to explore its properties, to understand its
61 origins and evolution, and to predict how it will respond to future environmental change. Of
62 all eukaryotic lineages, the angiosperms (flowering plants) are among the most pressing
63 priorities for tree of life research. Angiosperms sustain the terrestrial living world, including
64 humanity, as primary producers, ecosystem engineers and earth system regulators. They hold
65 potential solutions to global challenges, such as climate change, biodiversity loss, human
66 health, food security and renewable energy (Antonelli et al. 2020). In light of this, a
67 phylogenetic framework with which to navigate and interpret the species, trait and functional
68 diversity of angiosperms has never been more necessary. However, despite substantial
69 progress, the evolutionary connections among Earth's ca. 330,000 flowering plant species
70 (WCVP 2020) remain incompletely known.

71 The angiosperm research community were early and organised adopters of the
72 molecular phylogenetic approach, resulting in numerous benchmark tree of life publications
73 (e.g. Chase et al. 1993; Soltis et al. 2008; Soltis et al. 2011), and a community approach to

Baker et al.

74 phylogenetic classification (APG 1998; APG II 2003; APG III 2009; APG IV 2016). Through
75 this distributed effort, a wealth of DNA sequence data is now available in public repositories,
76 covering ca. 107,000 (31%) of the ca. 350,000 species of vascular plants (RBG Kew 2016;
77 WCPV 2020), most of which are angiosperms (see also Cornwell et al. 2019). However, the
78 lack of sequence data for the remaining 69% obstructs their accurate placement in the tree of
79 life. In addition, lack of complementarity in gene sampling across public DNA sequence data
80 impedes phylogenetic synthesis (Hinchliff and Smith 2014). For example, data from either
81 one or both of *rbcL* and *matK*, the two most popular plastid genes for phylogenetics, are
82 available for only 54% of the ca. 107,000 sequenced vascular plant species (RBG Kew 2016).
83 Comprehensive phylogenetic trees of flowering plants are in high demand (Hinchliff et al.
84 2015; Eiserhardt et al. 2018), but currently can only be made “complete” using proxies, such
85 as taxonomic classification, to interpolate the unsequenced species (Smith and Brown 2018),
86 which may not accurately reflect relationships. Greater community-wide coordination of both
87 taxon and gene sampling would benefit phylogenetic data integration immensely, creating
88 numerous downstream scientific opportunities.

89 High-throughput sequencing (HTS) now promises to significantly deepen our
90 understanding of evolutionary relationships among Earth’s species, including angiosperms
91 (Li et al. 2019; Yang et al. 2020). For example, the One Thousand Plant Transcriptomes
92 (1KP) initiative has brought an unprecedented scale of data to bear on the plant tree of life
93 (Wickett et al. 2014; Gitzendanner et al. 2018; Leebens-Mack et al. 2019). Nevertheless, with
94 greatly increased data depth come trade-offs in taxon sampling; the pre-eminent HTS studies
95 cited here account for less than 0.01% of angiosperm species. Undeterred by this sampling
96 gap, the Earth Biogenome Project (EBP) has launched a “moonshot for biology” by
97 proposing to sequence and characterise the genomes of all of Earth’s eukaryotic species over
98 a 10 year period (Lewin et al. 2018). Projects such as the 10,000 Plant Genomes Project

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

99 (Cheng et al. 2018) and the Darwin Tree of Life Project (<https://www.darwintreeoflife.org/>)
100 aim to contribute to this goal by producing numerous chromosome-level genome assemblies
101 across major lineages and regional biotas. However, taxon sampling remains a significant
102 issue, due to the challenges of obtaining the high molecular weight DNA required by these
103 projects (for long-read HTS) from samples that are both authentically identified and
104 compliant with the spirit and letter of the Nagoya Protocol (Secretariat of the Convention on
105 Biological Diversity 2011). Despite its immense potential, the “whole genome” approach to
106 discovering the tree of life remains a future goal that will not be achieved on a large
107 taxonomic scale in the short term. Methodological compromises are required to accelerate
108 progress.

109 The world’s natural history collections are a goldmine for genomic research (Buerki
110 and Baker 2016), containing tissues of almost all species of life on Earth known to science.
111 However, the condition of these tissues and the DNA therein varies widely, depending on age
112 and preservation techniques, among other factors. In the case of plants, herbarium specimens
113 generally yield degraded DNA, which, though not useful for long-read HTS, is now being
114 intensively exploited for short-read HTS (Bakker et al. 2016; Brewer et al. 2019; Forrest et al.
115 2019; Alsos et al. 2020). In this context, target sequence capture is growing in popularity as
116 the HTS method most widely applied to herbarium DNA (Dodsworth et al. 2019). This
117 approach (also known as target enrichment, target capture, sequence capture, anchored hybrid
118 enrichment) and its variations (e.g. Hyb-Seq, which combines target sequence capture with
119 genome skimming) use RNA or DNA probes to enrich sequencing libraries for specifically
120 targeted loci (Faircloth et al. 2012; Lemmon et al. 2012; Weitemier et al. 2014). It is proving
121 to be an increasingly cost-effective means of isolating hundreds of loci for phylogenetic
122 analysis from even centuries-old specimens (Brewer et al. 2019), bringing comprehensive

Baker et al.

123 taxon sampling from herbarium collections within the reach of any phylogenomic researcher
124 (Hale et al. 2020).

125 Numerous target sequence probe sets have been developed for specific angiosperm
126 groups (e.g. Annonaceae [Couvreur et al. 2019], Asteraceae [Mandel et al. 2014], *Dioscorea*
127 [Soto Gomez et al. 2019], *Euphorbia* [Villaverde et al. 2018]). The design of these probe sets
128 is informed by available genomic resources, as well as criteria specific to the group of interest
129 and research questions. As a result, locus overlap between probe sets tends to be minimal.

130 Unlike the Sanger sequencing era, in which researchers converged on tractable genes such as
131 *rbcL* and *matK*, the lack of complementarity between probe sets curtails prospects for data
132 integration across broad taxonomic scales. In addition, development of custom probe sets is
133 expensive, requiring considerable genomic resources and bioinformatic expertise. A publicly
134 available, universal probe set for angiosperms targeting a standard set of loci would resolve
135 these issues (Buddenhagen et al. 2016; Chau et al. 2018). In response to this, we designed the
136 Angiosperms353 probe set (Johnson et al. 2019), drawing on 1KP transcriptome data from
137 ca. 650 angiosperm species (Leebens-Mack et al. 2019). The probe set targets 353 genes from
138 410 low-copy, protein-coding nuclear orthologs previously selected for phylogenetic analysis
139 across green plants (Leebens-Mack et al. 2019), enriching up to ca. 260 kbp from any
140 flowering plant. Angiosperms353 probes are an open data resource that can be used without
141 the expense of design or access to prior genomic data and have already been successfully
142 applied across different taxonomic scales (e.g. Larridon et al. 2019; Murphy et al. 2020;
143 Pérez-Escobar et al. 2020; Shee et al. 2020), including at the population level (Van Andel et
144 al. 2019; Slimp et al. 2020; Beck et al. 2021).

145 Here, we describe a large-scale effort to establish a new phylogenomic platform for
146 exploring the angiosperm tree of life, comprising a set of open tools (Angiosperms353
147 probes, laboratory protocols, analysis pipeline, data portal) and data (sequence data,

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

148 assembled genes, alignments, gene trees, species tree). This platform, which directly
149 addresses the challenges outlined above, is an outcome of the Plant and Fungal Trees of Life
150 project (PAFTOL; www.paftol.org) at the Royal Botanic Gardens, Kew (RBG Kew 2015).
151 As a step towards the ultimate goal of a complete species-level tree, we aim to gather DNA
152 sequence data for the Angiosperms353 genes from one species of all 13,862 angiosperm
153 genera (WCVP 2020). This unprecedented dataset of standard loci draws extensively on
154 herbarium collections for comprehensive sampling, especially of genera that have not been
155 sequenced before (Brewer et al. 2019). Extensive new data have been generated, analysed
156 and released into the public domain, along with corresponding phylogenetic inferences. By
157 providing our data in open and accessible ways, including an interactive tree of life, we aim
158 to foster a transparent and collaborative environment for future data re-use and synthesis.
159 This paper serves as the baseline reference for our platform, (i) documenting our methods, (ii)
160 describing our first data release, comprising 17% of angiosperm genera, including initial
161 insights on phylogenetic performance, and (iii) presenting a novel data portal, the Kew Tree
162 of Life Explorer, through which our data and corresponding tree of life can be interrogated
163 and downloaded. We conclude with reflections on the prospects for our approach, future
164 development requirements and the role of open data for enhancing cross-community
165 collaboration towards a complete tree of life.

166 MATERIALS AND METHODS

167

168 This section describes the workflow (Fig. 1) used by the PAFTOL project to generate
169 our first full data release (i.e. Data Release 1.0), which is publicly accessible through our
170 open data portal, the Kew Tree of Life Explorer (<https://treeoflife.kew.org>), described below.
171 The workflow consists of three main stages: (i) sample processing, encompassing sample

Baker et al.

172 selection and laboratory protocols for target sequence capture data generation (Fig. 2), (ii)
173 data analysis, including target gene assembly, data mining, data validation and phylogenetic
174 inference (Figs. 3, 4), and (iii) data publication via the data portal (Fig. 5). The data
175 accessible via the portal comprise raw data (unprocessed sequence reads) and results from
176 “first pass” analyses (gene assemblies, alignments, gene trees, species tree). Though not
177 exhaustive, these first explorations of the data apply methods that are both rigorous and
178 tractable at our scale of operation.

179 Details of the first data release are also given in the data release notes in the portal via
180 our secure FTP (<http://sftp.kew.org/pub/treeoflife/>) and are also archived at the Royal Botanic
181 Gardens, Kew (RBGK) Research Repository (<https://doi.org/10.34885/paftol>). A new release
182 note will be published in the same locations with each future data release and will detail any
183 changes in methods used relative to the first release described here.

184 Sampling

185 We aimed to generate novel data from across the angiosperms, using a stratified
186 sampling approach of one species per genus. Our sampling was standardised to the complete
187 list of angiosperms within the World Checklist of Vascular Plants (WCVP 2020), which
188 currently recognises 13,862 accepted genera in 418 families, aligned to the 64 orders of the
189 APG IV classification (APG IV 2016). We prioritised genera that were not represented by
190 published transcriptomic or genomic data in public sequence repositories (e.g. GenBank), and
191 avoided genera that had already been sampled in large genomic initiatives such as the 1KP
192 project (Leebens-Mack et al. 2019). The selection of species within genera was made
193 pragmatically, although we prioritised the species of the generic type where possible.

194 Plant material was obtained from a variety of sources (Fig. 2), primarily from the
195 collections of RBGK (herbarium, DNA bank, silica gel-dried tissue collection, living
196 collection and the Millennium Seed Bank, <https://www.kew.org/science/collections-and->

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

197 [resources/collections](#)). Additional material (tissue samples, extracted DNA) was generously
198 provided by our collaborative networks (see Acknowledgements). To be selected, the
199 material must have been (i) legally sourced and made available for use in phylogenomic
200 studies, (ii) identified to species level, preferably by an expert of the group, and (iii) ideally
201 collected in the wild. As far as was practically achievable, we ensured that the identity of
202 each sample was substantiated by a voucher specimen deposited in a publicly accessible
203 herbarium.

204 All metadata were captured using a relational database that allowed us to track
205 processing of samples from the selection of material, through the library preparation pipeline
206 to the completion of sequencing. Data were recorded in four main tables (Specimen, Sample,
207 Library, Sequencing). The database architecture allowed us to record multiple sequence
208 datasets (fastq files) from one or several libraries, and one or several DNA extracts from a
209 single specimen. Relevant voucher specimen information was also captured in the database
210 (e.g. collector(s), collector number, herbarium acronym (following Index Herbariorum
211 <http://sweetgum.nybg.org/science/ih/>), country of origin, date of collection, specimen
212 barcodes). Voucher data are available via our data portal (see below). Images of specimens
213 sampled from the RBGK Herbarium are in the process of being captured in RBGK's online
214 herbarium catalogue (<http://apps.kew.org/herbcat/>) and, where available, are linked to the
215 appropriate records in the Kew Tree of Life Explorer.

216

217 **DNA extraction**

218 DNA was extracted from 40 mg of herbarium material, 20 mg of silica gel-dried
219 material (Chase and Hills 1991), or 100 mg of fresh material using a modified CTAB
220 extraction method (Doyle and Doyle 1987; Fig. 2). Plant tissue was pulverized using a Mixer
221 Mill MM400 (Retsch GmbH, Germany). DNA extractions were purified by a magnetic bead

Baker et al.

222 clean-up using Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA),
223 according to the manufacturer's protocols. Samples obtained from the RBGK DNA bank
224 (<http://dnabank.science.kew.org/homepage.html>) had been extracted using a modified CTAB
225 method (Doyle and Doyle 1987) followed by caesium chloride/ethidium bromide density
226 gradient cleaning and dialysis. DNA samples provided by external collaborators had been
227 extracted using a wide variety of extraction methods from living, silica gel-dried and
228 herbarium material.

229 All DNA samples were quality checked for concentration and degree of
230 fragmentation. DNA concentration was measured using a Quantus (Promega, Madison, WI,
231 USA) or Qubit (Thermo Fisher Scientific, Inchinnan, UK) fluorometer. DNA fragment size
232 range was routinely assessed on a 1% agarose gel using ethidium bromide and visualized
233 with a UVP Gel Studio (AnalytikJena, Jena, Germany). For samples with a low DNA
234 concentration (i.e. not visible on a gel), fragment sizes were assessed on a 4200 TapeStation
235 using Genomic DNA ScreenTape (Agilent Technologies, Cheadle, UK).

236 **Library preparation**

237 Genomic DNA samples were diluted to 4 ng/μl with 10 mM Tris (pH 8.0). Those with
238 an average fragment size greater than 350 bp were sonicated to an average fragment size ca.
239 400 bp, using a Covaris M220 Focused-ultrasonicator (Covaris, Woburn, MA, USA) by
240 adding 50 μl of diluted genomic DNA to a 130 μl Covaris microAFA tube. The sonication
241 time was adjusted for each sample based on its average DNA fragment size (15 to 100 secs,
242 following the manufacturer's protocols). Additional parameters used were peak incident
243 power to 50W, duty factor to 10% and 200 cycles per burst.

244 Libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit (New
245 England Biolabs, Ipswich, MA, USA; Fig. 2). Size selection was not employed for samples
246 with highly degraded DNA. In the early stages of the project, libraries were prepared

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

247 following the manufacturer's protocols exactly, but the majority were prepared using half of
248 the recommended volumes throughout to increase cost efficiency. All DNA fragments were
249 indexed using NEBNext Multiplex Oligos for Illumina (Dual Index Primer sets 1 and 2, New
250 England Biolabs, Ipswich, MA, USA).

251 The distribution of fragment sizes in each library was assessed with a 4200
252 TapeStation using standard D1000 tapes. Library concentration was measured using a
253 Quantus fluorometer. If the library concentration was less than 10 nM, up to eight additional
254 PCR cycles were performed, following the NEBNext Ultra II Library Prep Kit protocol with
255 IS5_reamp.P5 and IS6_reamp.P7 primers (Meyer and Kircher 2010). Library quality
256 assessment was then repeated.

257 **Pooling and hybridisation**

258 Prior to hybridisation (Fig. 2), all libraries were normalised to 10 nM, using 10 mM
259 Tris (pH 8.0) and then combined into pools of 20 to 24 libraries, each containing 10 μ l (0.1
260 pmol) of each normalized library (i.e. a total of ca. 600-700 ng DNA in each pool, assuming
261 an average fragment size of ca. 450 bp). To ensure even sequencing across all samples in a
262 pool, species for pooling were selected to minimize the range of DNA fragment sizes and
263 ensure a narrow taxonomic breadth. The latter criterion was needed because samples that are
264 more closely related to the taxa used to construct the probe set tend to preferentially
265 hybridise. This can lead to an over-representation of their sequences in the DNA data if
266 appropriate care is not taken when selecting species for the sequencing pool. In rare cases,
267 such as smaller pools (ca. 10 libraries) of short fragment (i.e. <300 bp) libraries, it was
268 necessary to recalculate the standard volume of normalized libraries to be added to ensure
269 that the final pool contained ca. 500 ng of DNA.

270 The pooled libraries were dried in a SpinVac (Eppendorf, Dusseldorf, Germany),
271 resuspended in 8 μ l of 10 mM Tris (pH 8.0) and enriched by hybridising with the

Baker et al.

272 Angiosperms353 probe kit (Johnson et al. 2019; Arbor Biosciences myBaits Target Sequence
273 Capture Kit, ‘Angiosperms 353 v1’, Catalogue #308196) following the manufacturer’s
274 protocol, version 4.0. Hybridisation was typically performed at 65°C for 24 h, with reactions
275 topped with 30 µl of red Chill-out Liquid Wax (Bio-Rad, Hercules, CA, USA) to prevent
276 evaporation. However, for short libraries (i.e. <350 bp) the temperature was reduced to 60°C,
277 following the recommendations of Arbor Biosciences.

278 The target-enriched pools were amplified using the KAPA HiFi 2X HotStart
279 ReadyMix PCR Kit (Roche, Basel, Switzerland) or NEBNext Q5 HotStart HiFi PCR Master
280 Mix (New England BioLabs, Ipswich, MA, USA) for eight to 14 cycles. Amplified pools
281 were then purified using Agencourt AMPure XP Beads (at 0.9X the sample volume) and
282 eluted in 15 µl of 10 mM Tris (pH 8.0).

283 Products were quantified with a Quantus fluorometer and re-amplified if the
284 concentration was below 6 nM, with three to six PCR cycles (see above). Final products were
285 assessed using the TapeStation to determine the distribution of fragment sizes. The target-
286 enriched pools were normalized to 6 nM (using 10 nM Tris, pH 8.0) and multiplexed for
287 sequencing, with the number of target-enriched pools combined in each sequencing pool
288 varying from two to 20 (comprising a total of 48-384 samples) depending on the sequencing
289 platform and service provider requirements.

290

291 **DNA sequencing**

292 Initially, DNA sequencing was performed on an Illumina MiSeq at RBGK with
293 version 3 chemistry (Illumina, San Diego, CA, USA) and ran for 600 cycles to generate 2 ×
294 300 bp paired-end reads. Subsequently, DNA sequencing was outsourced (Macrogen, Seoul,
295 South Korea, or Genewiz, Takeley, UK) and performed on an Illumina HiSeq producing 2 ×
296 150 bp paired-end reads. Raw reads were deposited in the European Nucleotide Archive

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

297 under an umbrella project (accession number PRJEB35285) and can be accessed from the
298 individual sample records in the Kew Tree of Life Explorer.

299

300 Sequence assembly

301 Coding sequences were recovered from target-enriched sequence data using our
302 pipeline recoverSeqs (accessible from our GitHub repository
303 <https://github.com/RBGKew/KewTreeOfLife>, pypaftol ‘paftools’ submodule) to retrieve
304 sequences orthologous to the Angiosperms353 target gene set (Johnson et al. 2019;
305 <https://github.com/mossmatters/Angiosperms353>). This target set contained multiple
306 reference sequences per gene, thereby covering a large phylogenetic breadth to facilitate read
307 recovery across angiosperms.

308 The process comprised four main stages (Fig. 3), applied to each sample: (i) sequence
309 reads were trimmed using Trimmomatic (Bolger et al. 2014) with the following parameters:
310 ILLUMINACLIP: <AdapterFastaFile>: 2:30:10:2:true, LEADING: 10, TRAILING: 10,
311 SLIDINGWINDOW: 4:20, MINLEN: 40, with the adaptor fasta file formatted for
312 palindrome trimming, (ii) trimmed read pairs were mapped to the Angiosperms353 target
313 genes with TBLASTN. A representative reference sequence for each gene was then selected
314 by identifying the sequence with the largest number of mapped reads. (iii) This representative
315 gene was used as the reference for assembling the gene-specific reads using an overlap-based
316 assembly algorithm (--assembler overlapSerial option) as follows. First, the reads were
317 aligned to and ordered along the reference sequence based on a minimum alignment size of
318 50 bases (--windowSizeReference option) with a minimum sequence identity of 70% (--
319 relIdentityThresholdReference option). Consecutive reads ordered along the reference
320 sequence were aligned in a pair-wise manner to find read overlaps. If an overlap of at least 30
321 bases (--windowSizeReadOverlap option) and 90% sequence identity (--

Baker et al.

322 relIdentityThresholdReadOverlap option) was found, the aligned reads were used to construct
323 a consensus contig with ambiguous bases represented by 'N'. This last parameter resulted in
324 one or more sets of aligned reads with $\geq 90\%$ sequence identity, each set being merged into a
325 single contig. In the final stage, the exonerate protein2genome program was used to identify
326 the exon-intron structure within each contig. One or more contigs were chosen that best
327 represented the structure of the exon(s) in the reference gene chosen in step (ii). If the exons
328 existed in multiple contigs, those contigs were joined together to form the recovered gene
329 coding sequence.

330 Target gene recovery success was assessed for each sample by calculating the number
331 of genes recovered and the sum of the recovered gene lengths. Samples were removed from
332 downstream analyses if the sum of the recovered gene lengths fell below 20% of the median
333 value across all samples.

334

335 **Public data mining**

336 In addition to newly generated target sequence capture data, the Angiosperms353
337 genes were mined from publicly available genomic data (Fig. 3). For the first release, we
338 mined data from the 1KP Initiative (Carpenter et al. 2019; Leebens-Mack et al. 2019) and
339 published genomes with gene annotations (<https://plants.ensembl.org/>). The genes were
340 retrieved from assembled transcript sequences (1KP) or coding sequences (CDS; genomes)
341 using paftools retrievetargets from our pipeline, which relies on BLASTN to identify and
342 extract the genomic or transcriptomic sequences corresponding to the 353 genes. Because
343 initial recovery of genes from 1KP transcripts was unsatisfactory, we expanded the
344 Angiosperms353 target set (dataset available from our GitHub) to improve matching and
345 retrieval of genes. As with the novel target sequence capture assemblies, data were removed

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

346 from downstream analyses if the sum of the gene lengths fell below 20% of the median value
347 across all samples.

348

349 **Family identification validation**

350 To verify the family identification of our processed samples, we implemented two
351 validation steps, which were run in parallel (Fig. 4). The two steps consisted of (i) DNA
352 barcode validation, which utilised nuclear ribosomal and plastid barcodes for DNA-based
353 identification, and (ii) phylogenetic validation, which checked the placement of each sample
354 in a preliminary tree relative to its expected position based on its initial family assignment.
355 Identification checks below the family level were not conducted due to the incompleteness of
356 adequate reference resources for DNA barcode validation and sparseness of sampling for
357 phylogenetic validation at the genus or species level.

358 For barcode validation of target sequence capture data (Fig. 4), plastomes and
359 ribosomal DNA were recovered from raw reads using GetOrganelle (Jin et al. 2020) and
360 subsequently queried against databases of reference plant barcodes using BLASTN
361 (Camacho et al. 2009). For 1KP samples, transcriptome assemblies were directly used as
362 queries in BLASTN. Note that we considered the family identity of annotated genomes to be
363 correct and hence a barcode validation was unnecessary. Six individual barcode reference
364 databases were built from the NCBI nucleotide and BOLD databases
365 (<https://www.ncbi.nlm.nih.gov/nuccore>; <https://www.boldsystems.org/>, accessed on
366 29/10/2020), one for the whole plastome, and the remaining five for specific loci (nuclear
367 ribosomal 18S, as well as plastid *rbcL*, *matK*, *trnL*, and *trnH-psbA*). As for samples, the
368 taxonomy of reference sequences was standardized to WCVP (WCVP 2020). BLAST results
369 were further filtered with a minimum identity >95% and a minimum coverage of reference

Baker et al.

370 locus $\geq 90\%$ (except for whole plastomes, for which only a filtering based on minimum length
371 was applied).

372 Tests could only be completed if a sample's given family was present in the barcode
373 databases and if at least one BLAST match remained after filtering. Thus, zero to six barcode
374 tests were conducted per sample. A sample passed an individual test if the first ranked
375 BLAST match (ranked by percentage of identity) confirmed its original family identification
376 and failed otherwise. The final result of the barcode validation following the six individual
377 barcode tests were determined as follows: (i) Confirmed, if one or more barcode tests
378 matched the family identification of a sample; (ii) Rejected, if more than half of the barcode
379 tests gave the same incorrect family identification (requires at least two barcode tests); (iii)
380 Inconclusive (otherwise). Further details of the barcode validation methods can be found in
381 Supplementary Material available on Dryad. The scripts and lists of NCBI and BOLD
382 accessions used in barcode databases are available on our GitHub repository.

383 To conduct phylogenetic validation (Fig. 4), a preliminary phylogenetic tree was built
384 using the complete, unvalidated dataset, following the phylogenetic methods described
385 below. We then assessed which nodes best represented each order and family in the tree. For
386 every node in the tree, two metrics were calculated for all families and orders: (i) the
387 proportion of samples belonging to a given order/family that are descendants of the node, and
388 (ii) the proportion of samples descending from the node that belong to the order/family. The
389 two metrics were then multiplied to produce an overall taxon concordance score. For each
390 family and order, the highest scoring node was subsequently considered to best represent the
391 taxon in the tree (allowing the identification of outlying samples). A node with a score of 1
392 for a given order/family is the crown node (most recent common ancestral node) of that
393 taxon, which is monophyletic in the tree. See Supplementary Figure S1 for an illustration.

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

394 The family identification of each sample was determined as (i) Confirmed: if identified as
395 belonging to a family whose best scoring node had a taxon concordance score >0.5 and found
396 as a descendant of this node in the tree, (ii) Rejected: if identified as belonging to a family
397 whose best scoring node had a taxon concordance score >0.5 but not found as a descendant of
398 this node, or (iii) Inconclusive: if identified as belonging to a family whose best scoring node
399 had a taxon concordance score ≤ 0.5 . Note that for families represented in the tree by a single
400 sample, the validation was performed with respect to their orders. If the order was
401 represented by a single sample, the validation result was coded as inconclusive.

402 The outputs of the phylogenetic and DNA barcode validation were combined to
403 identify samples for automatic inclusion and exclusion from the final dataset, and samples for
404 which a decision on inclusion/exclusion was subject to expert review (Fig. 4). Exclusions
405 after expert review were made based on implausible tree placement (e.g. wrong higher clade)
406 or sample misidentification (e.g. match to another family in the barcode validation).

407 All assembled Angiosperms353 gene data from all samples validated for inclusion
408 form the basis of Data Release 1.0. These were made publicly available via the Kew Tree of
409 Life Explorer.

410

411 **Phylogeny estimation**

412 We inferred a phylogenetic tree from all validated data (Data Release 1.0) for
413 presentation in an interactive format in the Kew Tree of Life Explorer. This species tree was
414 estimated from gene trees using the multi-species coalescent summary method implemented
415 in ASTRAL-III (Zhang et al. 2018). In addition to the angiosperm samples, ten samples
416 representing seven gymnosperm families from the 1KP initiative were mined for
417 Angiosperms353 orthologs and included in all analyses as outgroup taxa. Our phylogenomic
418 pipeline, available from our GitHub repository, is summarised below.

Baker et al.

419 For each gene, DNA sequences were aligned with UPP 4.3.12 (Nguyen et al. 2015).
420 At the start of the alignment process a set of 1,000 sequences were selected for an initial
421 backbone tree. Option -M was set to ‘-1’ so that sequences could be selected within 25% of
422 the median full-length sequence. Filtering and trimming of the alignment were performed
423 with AMAS (Borowiec 2016) as follows. Sequences with insufficient coverage (<60%)
424 across well occupied columns of each gene alignment were removed. Well occupied columns
425 were defined as those with more than 70% of positions occupied. Then, alignment columns
426 with <0.3% occupancy were removed to avoid a large number of columns with very rare or
427 unique insertions from being included in the tree reconstruction. Finally, sequences with a
428 total length of less than 80 bases were removed, and genes with <30 overlapping bases (at the
429 70% threshold mentioned above) were excluded.

430 Gene trees were estimated with IQ-TREE 2.0.5 (Minh et al. 2020) inferring branch
431 support using the ultrafast bootstrap method (option -B; Hoang et al. 2017) with the
432 maximum number of iterations set to 1,000 (option -nm) and using a single model of
433 evolution (option -m GTR+F+R). The use of a single model without testing many models of
434 evolution was a pragmatic choice, following Abadi et al. (2019). TreeShrink 1.3.4 (Mai and
435 Mirarab 2018) was used to remove abnormally long branches from gene trees using default
436 settings, except option -b, which was set to 20. The alignment and gene tree estimation steps
437 were then repeated on the samples retained by TreeShrink. Before reconstructing the species
438 tree using ASTRAL-III, nodes in the gene trees with bootstrap support values less than 30%
439 were collapsed using nw_ed from Newick Utilities 1.6.0 (Junier and Zdobnov 2010). This
440 value was deduced from interpreting Figure 1 in Hoang et al. (2017), adjusting the standard
441 bootstrap threshold of 10% (recommended for ASTRAL-III), to 30 % for the ultrafast
442 bootstrap.

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

443 All gene alignments, gene trees and the ASTRAL-III species tree are available for
444 download from secure FTP and the Kew Tree of Life Explorer. In addition, the species tree is
445 available to browse through an interactive tree viewer implemented within the Kew Tree of
446 Life Explorer (see also Supplementary Fig. S2).

447

448 **Data portal implementation**

449 To disseminate results, a data portal (the Kew Tree of Life Explorer;
450 <https://treeoflife.kew.org>) was designed and implemented (Fig. 5) with a layered architecture
451 that comprised: (i) a MariaDB running on a Galera multi-master cluster as a database
452 management system; (ii) an API written in Python using the Flask framework and the
453 SQLAlchemy library; (iii) a front-end written using the Vue.js framework and Nuxt.js for the
454 tabular data (used to provide access to gene and specimen data) and content pages; (iv) a tree
455 visualisation module developed from the open source application PhyD3 (Kreft et al. 2017)
456 using D3.js (Bostock 2012) for data visualisation; and (v) deployment on a Linux (CentOS 7)
457 server using Nginx as web server and load balancer.

458 The data, with appropriate metadata and documentation, are available for public
459 download over secure FTP (<http://sftp.kew.org/pub/treeoflife/>) and the Kew Tree of Life
460 Explorer under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. When
461 superseded by new releases, archived earlier releases will remain accessible via secure FTP.

462 **RESULTS**

463 **Initial dataset**

464 The initial dataset prior to processing and analysis comprised data from 3,272
465 angiosperm samples, representing 413 families of angiosperms (99%) and 2,428 genera
466 (18%; Table 1). We generated novel target sequence capture data for 2,522 of these samples,

Baker et al.

467 which included 104 angiosperm genera that have never been sequenced before. Data for the
468 remainder were mined from public sources (689 1KP transcriptomes, 61 annotated genomes).
469 The majority of target sequence capture data were generated from the RBGK collections as
470 follows: DNA Bank (43%), herbarium (28%), silica gel-dried tissue collection (8%), living
471 collection (2%), and Millennium Seed Bank (0.3%). The remaining 19% of samples included
472 in this study were provided by various collaborators of the PAFTOL project, either as DNA
473 samples or as dried tissue (see Acknowledgements).

474 Sequence recovery from all 2,522 target sequence capture samples (prior to any
475 quality controls) is visualised in Figure 6. Eighty-four target sequence capture samples and
476 eleven 1KP transcriptomes were removed from downstream analyses because the sum of
477 gene lengths did not meet the quality threshold of 20% of the median value across all
478 samples.

479 **Family identification validation**

480 The remaining 3,177 samples (Table 1) were processed through our sample family
481 identification validation pipeline (Fig. 4, Table 2, Supplementary Table S1). Of these, 3,064
482 (97%) were automatically cleared for inclusion and 67 were automatically excluded (Table
483 2). The remaining 46 samples were held for expert review, after which 35 were cleared for
484 inclusion and 11 were excluded due to implausible tree placements. The majority of excluded
485 samples (64 out of 78) were from the novel target sequence capture data, although 14 were
486 1KP transcriptomes, highlighting the risk of sample misidentification in even the most highly
487 curated datasets. Further details regarding the results obtained during the family identification
488 validation by DNA barcoding can be found in Supplementary Material available on Dryad.

489 The final validated dataset for Data Release 1.0 consisted of 3,099 angiosperm
490 samples (Table 1), only 5% fewer than were present in the initial dataset. These samples

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

491 represent all 64 orders, 404 families (96%; 212 represented by >1 sample), 2,333 genera
492 (17%) and 2,956 species (0.01%).

493 **Data Release 1.0: sequence quality and gene recovery**

494 Nine statistics were used to assess the sequence quality across the 3,099 samples of
495 Data Release 1.0 (Table 3). For the 2,374 target sequence capture samples, the mean
496 percentage of on-target reads was 8%, the mean read depth per sample across all recovered
497 genes was 90x with a median value of 38x and the mean percentage length of recovered
498 genes per sample was 62%. The number of genes and the sum length of gene sequence
499 recovered per sample were tightly correlated as expected, varying continuously across the
500 dataset up to the full set of Angiosperms353 genes and a total gene length of 256.9 kbp, close
501 to the maximum expected length of 260 kbp for recovering genes with this target gene set
502 (Fig. 6). However, both the number of genes and sum length of gene sequence recovered
503 were correlated less closely with the number of available reads than they were to each other.
504 The total length of sequence recovered from target sequence capture data was shorter than for
505 samples mined for Angiosperms353 genes from 1KP transcriptomes or annotated genomes
506 data (Table 3). The reason for the shorter length of the recovered genes is that some exons
507 were absent from the original 1KP alignments used by Johnson et al. (2019) to create the
508 Angiosperms353 gene set. These missing exons are however present in 1KP transcriptomes
509 and annotated genomes and were recovered during data mining. The variation in performance
510 of target enrichment across different samples, illustrated by the measures of variability shown
511 in Table 3, likely reflects the variation in structure and metabolite composition of the starting
512 tissue, which is known to impede DNA extraction from various species and its downstream
513 manipulation. This variation is one of the challenges in dealing with samples from a broad
514 taxonomic range such as across the evolutionary diversity of angiosperms. Variation in gene
515 recovery across orders is visualised in Supplementary Figure S3.

Baker et al.

516 **Phylogenetic results**

517 The final phylogenetic tree as inferred from Data Release 1.0 is publicly available in
518 interactive form via the Kew Tree of Life Explorer. In the current release, the tree is
519 annotated with local posterior probabilities (LPP, as given by ASTRAL-III) as indicators of
520 branch support. Other measures of support (e.g. quartet scores) can be found within tree files
521 accessible via the RBGK secure FTP. For completeness, the tree is also available in various
522 formats, including Newick (Supplementary Fig. S2).

523 As a result of filtering and trimming steps during alignment, six genes in Data Release
524 1.0 were excluded from downstream phylogenetic analysis due to insufficient overlap
525 between sequences. All statistics provided below refer to the remaining dataset. Thus, the
526 species tree is based on 347 gene alignments totalling 824,878 sequences, 489,086,049 base
527 pairs and 532,260 alignment columns. Of these, 509,987 columns (96%) are variable and
528 475,181 columns (89%) are parsimony informative. The proportion of missing data across all
529 alignments is 61.6% and the median number of genes per sample is 284 (mean: 265.3,
530 standard deviation (SD): 64.3, min: 22, max: 347; Supplementary Table S2). The median
531 number of samples per gene alignment is 2,421 (mean: 2,377.2, SD: 359) and median
532 alignment length is 1,259 (mean: 1,533.9, SD: 985.7; Table 4). The resulting gene trees are
533 highly resolved, with a median support across all nodes (ultrafast bootstrap) of 98% (mean:
534 87.8%, standard deviation (SD): 18.560) across all nodes in all gene trees (Fig. 7). Only 1.3%
535 of all nodes in all gene trees are very poorly supported (ultrafast bootstrap <30%; Fig. 7) and
536 thus collapsed prior to species tree inference. Further statistics for individual gene alignments
537 and gene trees are reported in Table 4 and Supplementary Table S2.

538 The species tree accommodates 82% of the quartet relationships in the gene trees
539 (ASTRAL normalized quartet score of 0.82). The majority (76.8%) of nodes in the species
540 tree were well-supported (LPP \geq 95%, cf. Sayyari and Mirarab 2016), and only seven nodes

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

541 were informed by too few gene trees (i.e. <20) to evaluate support. Comparing node support
542 in the species tree at different taxonomic levels (Fig. 8), median quartet support is
543 progressively higher towards shallower taxonomic levels (Fig. 8c), while the effective
544 number of gene trees informing nodes shows the opposite trend (Fig. 8e). Local posterior
545 probabilities show a tendency to be lower (1st quartile) at the deepest taxonomic level (Fig.
546 8a). Major groups (i.e. monocots, asterids and rosids) show similar distributions of both local
547 posterior probabilities (Fig. 8b) and quartet support values (Fig. 8d), despite the fact that the
548 effective number of gene trees supporting nodes is more variable in monocots (Fig. 8f),
549 which is the result of the lower recovery rates for some orders in this group such as
550 Alismatales, Commelinaceae and Liliales (Supplementary Fig. S3).

551 Discounting taxa represented by a single sample (193 families, one order), 96% of
552 testable families and 83% of testable orders were resolved as monophyletic in the species
553 tree. Most of the samples of non-monophyletic families and orders could be assigned to a
554 clade that represents the family or order well, despite lacking some samples and/or containing
555 some outlier samples from other taxa (“concordant taxa” where taxon concordance score
556 >0.5, see Materials and Methods for details). Only five families (Francoaceae,
557 Hernandiaceae, Phyllanthaceae, Pontederiaceae and Schlegeliaceae, represented by 11
558 samples) and two orders (Bruniales and Icinales, represented by six samples) were so
559 dispersed that this was not possible (“discordant taxa” where taxon concordance score ≤ 0.5).
560 At the family level, 2,893 samples were resolved in the expected family, two samples were
561 resolved in an unexpected position, and 204 samples were not testable because they belonged
562 to a discordant family or a family represented by a single sample. At the order level, 3,060
563 samples were resolved in the expected order, 32 samples were resolved in an unexpected
564 position, and seven samples were not testable (see Supplementary Tables S3-S5 for lists of
565 specimens from singly represented taxa, poorly resolved taxa, and outliers to well-resolved

Baker et al.

566 taxa, respectively). Placements of all but five genera and seven families were consistent with
567 the WCVP/APG IV taxonomic hierarchy of genera, families and orders. Concordance with
568 existing taxonomy was lower at the genus level, with only 74% of testable genera resolving
569 as monophyletic and 47 genera (represented by 130 samples) being discordant; these numbers
570 partly reflect the deliberate inclusion of multiple samples from genera suspected a priori to be
571 potentially non-monophyletic.

572 In addition to resolving most genera, families and orders as monophyletic, our tree
573 supports more than half (58%) of the relationships among orders presented by the
574 Angiosperm Phylogeny Group (APG IV 2016; Supplementary Fig. S4). Congruence with
575 APG IV varies among major clades, being notably high in magnoliids (100% of APG IV
576 relationships supported) and monocots (80%), while being substantially lower in eudicots
577 (47%), especially in rosids (33%). Nodes in our tree that are congruent with APG IV ordinal
578 relationships are slightly better supported on average (mean LPP 0.98, median 1) than nodes
579 that are incongruent with APG IV (mean LPP 0.75, median 0.94).

580 **Tree of Life Explorer**

581 The Kew Tree of Life Explorer (<https://treeoflife.kew.org>) provides open access to
582 taxon, specimen, sequence, alignment and tree data, with associated metadata for the current
583 data release in accordance with the Toronto guidelines on pre-publication data sharing
584 (Toronto International Data Release Workshop Authors 2009). Users can browse by species,
585 gene or interactive phylogenetic tree. The species interface permits searches by order, family,
586 genus or species, and provides voucher specimen metadata (including links to online
587 specimen images, where available), simple sequence metrics, access to assembled genes and
588 raw data. The gene interface documents all Angiosperms353 genes and associated metrics,
589 links to gene identities in UniProt (<https://www.uniprot.org/>) and provides access to
590 assembled genes across taxa. The tree of life interface enables browsing and taxon searching

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

591 of the species tree inferred from the current release dataset, as well as tree downloads (as
592 PNG or Newick) and zooming into user-defined subtrees. All processed data (assembled
593 genes, alignments, gene trees, species trees) and archived releases are available from
594 RBGK's secure FTP site (<http://sftp.kew.org/pub/treeoflife/>), whereas raw sequence reads are
595 deposited within the European Nucleotide Archive (project number PRJEB35285) for
596 integration within the Sequence Read Archive.

597 DISCUSSION

598

599 The new phylogenomic platform described here is a major milestone towards a
600 comprehensive tree of life for all flowering plant species. Firstly, the sequencing of a
601 standardised nuclear marker set of this scale for so many taxa is unprecedented, opening
602 doors to a highly integrated future for angiosperm phylogenetics in the genomic era. Much
603 like a “next generation” *rbcL*, which underpinned so many Sanger sequencing-based plant
604 phylogenetic studies, the Angiosperms353 genes offer opportunities for continuous synthesis
605 of HTS data across angiosperms. The foundational dataset presented here can be re-used or
606 extended for tree of life research at almost any taxonomic scale (Johnson et al. 2019;
607 Larridon et al. 2019; Van Andel et al. 2019; Murphy et al. 2020; Pérez-Escobar et al. 2020;
608 Shee et al. 2020; Slimp et al. 2020; Beck et al. 2021). Secondly, this is the first phylogenetic
609 project to gather novel HTS data across angiosperms with a stratified taxon sampling at the
610 genus level. Our sampling strategy systematically and comprehensively represents both the
611 diversity of angiosperms and their deep-time diversification. As genus-level sampling
612 becomes increasingly complete—a target that is well within reach—this backbone will
613 substantially increase our ability to study the dynamics of plant diversity over time and revisit
614 long-standing questions in systematics (Magallón et al. 2018; Sauquet and Magallón 2018;

Baker et al.

615 Soltis et al. 2019). Importantly, it will also sharpen the focus on truly intractable phylogenetic
616 problems (Yang et al. 2020; Zhao et al. 2020), encouraging the exploration of the biological
617 drivers of these phenomena.

618 Our approach has already led to a burst of community engagement. More than a
619 dozen studies utilising Angiosperms353 probes are already published (e.g. Larridon et al.
620 2019; Howard et al. 2020; Murphy et al. 2020; Pérez-Escobar et al. 2020; Shee et al. 2020;
621 Slimp et al. 2020; McLay et al. in press), and two journal special issues focused on the probe
622 set are in preparation arising from a recent symposium (Lagomarsino and Jabaily 2020). The
623 probe set has also been adopted by the Genomics for Australian Plants consortium
624 (<https://www.genomicsforaustralianplants.com/>), which aims to sequence all Australian
625 angiosperm genera, coordinating with the PAFTOL project to optimise collective taxonomic
626 coverage. A subset of the Angiosperms353 genes is now accessible for non-angiosperm land
627 plants thanks to a probe set developed in parallel (Breinholt et al. 2021), inviting the prospect
628 of data integration across all land plants. Angiosperms353 genes (as distinct from the
629 Angiosperms353 probes) are also being leveraged as components of custom-designed probe
630 sets (e.g. Jantzen et al. 2020; Ogutcen et al. 2021). This approach gives all the integrative
631 benefits of Angiosperms353, while permitting (i) the tailoring of Angiosperms353 probes to a
632 specific taxonomic group to increase gene recovery, and (ii) the inclusion of additional loci
633 pertinent to the research in question. Angiosperms353 probes have also been directly
634 combined with an existing custom probe set (Nikolov et al. 2019) as a “probe cocktail” in a
635 single hybridisation, capturing both sets of targets simultaneously with remarkable efficiency
636 (Hendriks et al. in press). These possibilities render the invidious choice between specific and
637 universal probe sets increasingly irrelevant (Kadlec et al. 2017).

638 We took several open data measures to encourage community uptake, in both the
639 design of our tools and the sharing of our data. The Angiosperms353 probe set itself was

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

640 designed to be a transparent, “off-the-shelf” toolkit that is open, inexpensive and accessible to
641 all, especially researchers discouraged by the complexity and cost of custom probe design
642 (Johnson et al. 2019). Our sequence data for Angiosperms353 genes are openly available via
643 the Kew Tree of Life Explorer and the Sequence Read Archive, as a public foundation dataset
644 shared according to pre-publication best practice (Toronto International Data Release
645 Workshop Authors 2009). The Explorer offers enhanced transparency and accessibility by
646 allowing users to navigate the data via a phylogenetic snapshot of the current release, along
647 with metadata (e.g. specimen data) and intermediate data (e.g. gene assemblies, alignments,
648 gene trees). Thanks to these resources, cross-community collaboration via Angiosperms353 is
649 gaining momentum.

650 Our tree, which is based on the most extensive nuclear phylogenomic dataset in
651 flowering plants to date, is strongly supported, credible and highly congruent with existing
652 taxonomy and many hypothesized relationships among orders (APG IV 2016; Supplementary
653 Fig. S4). The data confirm both the effectiveness of Angiosperms353 probes across all major
654 angiosperm clades and the ability of the genes to resolve relationships across taxonomic
655 scales (Fig. 8). Variable sequence recovery notwithstanding (Table 3, Supplementary Fig.
656 S3), most nodes in our tree are underpinned by large numbers of gene trees (Fig. 8e),
657 allowing the species tree to be inferred with confidence (Fig. 8a) despite gene tree conflict
658 (Fig. 8c). However, even the most strongly supported phylogenetic hypotheses must be
659 viewed with caution as they may be biased by model misspecification and wrong
660 assumptions. Moreover, our “first pass” analyses based on a set of standard methods may not
661 suit this dataset perfectly (see below). Nevertheless, our findings are rendered credible by
662 their high concordance with taxonomy, an independent point of reference that has been
663 extensively ground-truthed by pre-phylogenomic DNA data, especially plastid loci.
664 Agreement with existing family circumscriptions is particularly striking. In contrast,

Baker et al.

665 congruence with previously hypothesized relationships among orders (APG IV 2016) is much
666 lower (Supplementary Fig. S4). Some of these earlier hypothesized ordinal relationships
667 derive from relatively weak evidence (bootstrap/jackknife >50%; APG IV 2016), which may
668 partly explain this disagreement. However, it may also be due to phylogenetic conflict
669 between nuclear and plastid genomes, as the established ordinal relationships rest primarily
670 on evidence from plastid loci, substantiated more recently by plastid genomes (Li et al.
671 2019). It is hardly surprising, then, that a large-scale nuclear analysis presents strongly
672 supported, alternative relationships (Supplementary Fig. S4). The conundrum remains that
673 these incongruences are visible at the ordinal backbone, but not the family level. A more
674 comprehensive exploration of these relationships, the underlying phylogenetic signal and
675 their systematic implications is currently underway.

676 The analyses presented here are primarily intended as a window onto the information
677 content of our current data release and are not a complete exploration of the data. Thus,
678 downstream application of the current species tree comes with caveats. We used current,
679 widely accepted methods in a pipeline that can be re-run in a semi-automated fashion
680 whenever we release new data. As a consequence, not all possible analysis options and
681 effects have been explored. We anticipate that users of our data will probe it more rigorously
682 and will tailor both sampling and phylogenomic analyses to their specific questions.

683 Important limitations in our analysis relate to (i) sampling, (ii) gene recovery, (iii)
684 models of sequence evolution and (iv) paralogy. Sampling for intermediate data releases is
685 biased by the current state of progress towards our systematic sampling strategy. This will be
686 addressed in future data releases and can be adjusted by users of our data. Gene recovery
687 relied upon the standard Angiosperms353 target file (Johnson et al. 2019), but it has recently
688 become apparent that tailoring target sequences to taxonomic groups can improve recovery
689 (McLay et al. in press); this will be tested in future releases. Moreover, we are yet to exploit

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

690 intronic data captured in the “splash zone” adjacent to our target exons. By necessity, our
691 “first pass” phylogenetic analysis does not explore the fast-evolving spectrum of
692 methodological options available for phylogenomic analysis. For example, we rely on a
693 simple standard model of sequence evolution, but more sophisticated models accounting for
694 codon positions or amino acids may improve phylogenetic inference. Potential paralogy is
695 not addressed by our current pipeline. The genes underpinning our analysis were carefully
696 chosen to represent single-copy genes across flowering plants (Johnson et al. 2019; Leebens-
697 Mack et al. 2019). However, some paralogy may have gone unnoticed due to the
698 pervasiveness of gene and genome duplication in plants (Li and Barker 2020). Overall, we
699 expect that the occasional presence of paralogs in our current analysis would more likely lead
700 to inflated estimates of gene tree incongruence, and thus result in reduced support values,
701 than significant topological biases (Yan et al. 2020). Thus, we consider our tree relatively
702 conservative while acknowledging that we are not yet exploiting the full potential of our data.
703 Although a rigorous analysis of paralogy in Angiosperms353 genes was not tractable for this
704 data release, we look forward to deeper insights emerging as community-wide engagement
705 with Angiosperms353 grows.

706 PROSPECTS

707

708 In the immediate future, we will deliver a further data release through which we
709 expect to reach the milestone of sampling 50% of all angiosperm genera. This target will be
710 achieved through substantial novel data production by PAFTOL and collaborators,
711 augmented by data mined from public sources. In-depth phylogenetic analyses of our data
712 and their evolutionary implications are also underway.

Baker et al.

713 Beyond this point, we see three priority areas in which future platform developments
714 might be concentrated, resources permitting. Firstly, taxon sampling to the genus level must
715 be completed. Our original target of sampling all angiosperm genera remains, but the mode of
716 reaching this is likely to evolve. We anticipate an acceleration in production of
717 Angiosperms353 data by the broader community. The completion of generic-level sampling
718 will require both the integration of community data in the broader angiosperm tree of life as
719 well as strategic investment in filling inevitable data gaps for orphan groups. Secondly,
720 numerous opportunities for refinement exist across our methods. For example, insights from
721 our data might permit the optimisation of the Angiosperms353 probes to improve gene
722 capture. Efficiency of gene assembly from sequence data can also be improved
723 bioinformatically (McLay et al. in press). As costs of sequencing decline, target sequence
724 capture *in vitro* may no longer be necessary, the target genes being retrieved simply from
725 sufficiently deeply sequenced genomes. Thirdly, for the full integrative potential of
726 Angiosperms353 genes to be achieved, infrastructure for aggregating and sharing this
727 coherent body of data must be improved. While the Kew Tree of Life Explorer provides a
728 proof-of-concept, it is the public data repositories (e.g. NCBI, ENA) that offer the greatest
729 prospects of a mechanism to achieve this. To fully parallel the earlier success of public
730 repositories for facilitating single-gene phylogenetic trees (e.g. *rbcL*, *matK*), new tools are
731 needed to assist with efficient upload and annotation of target capture loci and associated
732 metadata.

733 Even with a completed genus-level angiosperm tree of life well within reach, the
734 monumental task of sampling all species remains. The scale of this challenge is 24-fold
735 greater than the genus-level tree towards which we are currently working. However, with
736 sufficient investment, increased efficiencies and community engagement, such an ambition
737 could potentially be realised. Collections-based institutions are poised to play a critical role in

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

738 this endeavour through increasingly routine molecular characterisation of their specimens,
739 perhaps as part of digitisation programmes, and are already facilitating the growing trend
740 towards species-complete sampling in phylogenomic studies (e.g. Loiseau et al. 2019;
741 Murphy et al. 2020; Kuhnhäuser et al. 2021). Our platform demonstrates how large-scale
742 phylogenomic projects can capitalise on natural history collections to achieve a much more
743 complete sampling than hitherto possible.

744 The growing movement to sequence the genomes of all life on Earth, inspired by the
745 Earth Biogenome Project (Lewin et al. 2018), significantly boosts the prospects for
746 completing the tree of life for all species, but is hampered by the focus on “gold standard”
747 whole genomes requiring the highest quality input DNA. Our platform offers the opportunity
748 to bridge the gap between the ambition of these projects and the vast phylogenomic potential
749 of natural history collections. However, as life on Earth becomes increasingly imperilled, we
750 cannot afford to wait. To meet the urgent demand for best estimates of the tree of life, we
751 must dynamically integrate phylogenetic information as it is generated, providing synthetic
752 trees of life to the broadest community of potential users (Eiserhardt et al. 2018). Our
753 platform facilitates this crucial synthesis by providing a cross-cutting dataset and directing
754 the community towards universal markers that seem set to play a central role in completing
755 an integrated angiosperm tree of life.

756

757 **DATA AVAILABILITY AND SUPPLEMENTARY MATERIAL**

758

759 All data generated in this study are publicly released under a Creative Commons
760 Attribution 4.0 International (CC BY 4.0) license and the Toronto guidelines on pre-
761 publication data sharing (Toronto International Data Release Workshop Authors 2009). The
762 data are accessible via the Kew Tree of Life Explorer (<https://treeoflife.kew.org>) and our

Baker et al.

763 secure FTP (<http://sftp.kew.org/pub/treeoflife/>). Raw sequence reads are deposited in the
764 European Nucleotide Archive (<https://www.ebi.ac.uk/ena/browser/home>) under umbrella
765 project PRJEB35285. Scripts and other files relating to our phylogenomic pipeline are
766 available at our GitHub (<https://github.com/RBGKew/KewTreeOfLife>). Supplementary
767 materials cited in this paper are available from the Dryad Digital Repository
768 ([http://dx.doi.org/10.5061/dryad.\[NNNN\]](http://dx.doi.org/10.5061/dryad.[NNNN])).

769 **FUNDING**

770

771 This work was supported by grants from the Calleva Foundation and the Sackler Trust
772 to the Plant and Fungal Trees of Life project at the Royal Botanic Gardens, Kew. Additional
773 support was received from the Garfield Weston Foundation, as part of the Global Tree Seed
774 Bank Programme.

775 **ACKNOWLEDGEMENTS**

776 We would like to thank Guilherme Antar, Alex Antonelli, Marc Appelhans, Julien
777 Bachelier, Donovan Bailey, Aurélien Bour, Peter Boyce, Gemma Bramley, Sven Buerki,
778 Stuart Cable, Martin Callmander, Monica Carlsen, Vinicius Castro Sousa, Mark Chase,
779 Martin Cheek, Maarten Christenhusz, Thomas Couvreur, Darren Crayn, Iain Darbyshire,
780 Alison Devault, Manuel de la Estrella, Elton John de Lirio, Jurriaan de Vos, Zacky Ezedin,
781 Federico Fabriani, Mike Fay, Geneviève Ferry, Helen Fortune-Hopkins, Jocelyn Hall, Ameka
782 Gabriel Komla, Jim Leebens-Mack, Elliot Gardner, Ester Gaya, Mark Gibernau, Olwen
783 Grace, Sean Graham, Jan Hackel, Anna Haigh, Kasper Hendriks, Oriane Hidalgo, Elizabeth
784 Joyce, Bente Klitgaard, Sophie Lane, Isabel Larridon, Drew Larson, Frederic Lens, Christine
785 Leon, Gwil Lewis, Jing-Xia Liu, Meng Lu, Jaquelini Luber, Eve Lucas, Penny Malakasi,

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

786 Vidal Mansano, Laura Martinez-Suz, Angela McDonell, Alexander Monro, Michael Moore,
787 Klaus Mummenhof, Tuula Niskanen, Andres Orejuela, Luis Palazzesi, Joe Parker, Frederic
788 Pautz, Jaume Pellicer, Oscar Perez Escobar, Yohan Pillon, Jose Pirani, Robyn Powell, Natalia
789 Przelomska, Carmen Puglisi, Eric Roalson, Hervé Sauquet, Hanno Schaefer, Ruud Scharn,
790 Rowan Schley, David Scherberich, Toral Shah, Mark P. Simmons, Ana Rita Simões, Lalita
791 Simpson, Stephen Smith, Doug Soltis, Pam Soltis, Cynthia Sothers, Marybel Soto Gomez,
792 Jemma Taylor, Liam Trethowan, Anna Trias-Blasi, Tim Utteridge, Juan Viruel, Maria
793 Vorontsova, Gane Ka-Shu Wong, Sin Yeng Wong and Sue Zmarzty for helping PAFTOL
794 reach its goals through collaboration, sharing expertise and providing samples; Noelia
795 Alvarez de Roman, Richard Barley, Nicola Biggs, Elissa Biondi, Elinor Breman, Hannah
796 Button, Christopher Cockel, David Cooke, Nina Davies, Solene Dequiet, John Dickie,
797 Florence Ducan-Antoine, Sara Edwards, Thomas Freeth, Sue Frisby, Tim Fulcher, Aurélie
798 Grall, Anthony Hall, Alex Hankey, Kate Hardwick, Keegan Hickey, David Hickmott,
799 Rebecca Hilgenhof, Imalka Kahandawala, Lara Jewitt, Laura Jennings, Nick Johnson,
800 Udayangani Liu, Carlos Magdalena, Max Moog, Richard Moore, Ana Oliveira, Tim Pearce,
801 Tom Pickering, Sara Redstone, Greg Redwood, Luxy Reed, Paul Rees, Matthew Rees, Silke
802 Roch, Daniel Rosenberg, Marcello Sellaro, Scott Taylor, Janet Terry, Michael Way, Ian
803 Willey, Patricia Woods, Rosie Woods and Martin Xanthos for support with acquisition
804 samples from RBGK collections, both living and preserved; Alexander Bowles, Dion Devey,
805 Laszlo Csiba, Isabel Fairlie, Lorna Frankel, Karime Gutierrez, Alina Höwener, Izai A. B.
806 Sabino Kikuchi, Beata Klejevska, Jake Newitt, Michelle Siros and Jessica Tengvall, Haydn
807 Thompson, for assistance with laboratory work and data collection; Laura Green, Alan Paton,
808 Sarah Phillips and Marie-Helene Weech for support with specimen digitisation; Nicholas
809 Black, Michael Bradford, Carol Sinker, Robert Turner and Noor Al Wattar for assistance

Baker et al.

810 with computational infrastructure. Finally, special thanks to Kathy Willis, former Director of
811 Science at RBGK, for inspiring the establishment of the PAFTOL project.

812 **LITERATURE CITED**

813
814 Abadi S., Azouri D., Pupko T., Mayrose I. 2019. Model selection may not be a mandatory
815 step for phylogeny reconstruction. *Nat. Commun.* 10:934.
816
817 Alsos I.G., Lavergne S., Merkel M.K., Boleda M., Lammers Y., Alberti A., Pouchon C.,
818 Denoeud F., Pitelkova I., Puşcaş M., Roquet C., Hurdu B.-I., Thuiller W., Zimmermann N.E.,
819 Hollingsworth P.M., Coissac E. 2020. The treasure vault can be opened: Large-scale genome
820 skimming works well using herbarium and silica gel dried material. *Plants* 9:432.
821
822 Antonelli A., Fry C., Smith R.J., Simmonds M.S.J., Kersey P.J., Pritchard H.W., Abbo M.S.,
823 Acedo C., Adams J., Ainsworth A.M., Allkin B., Annecke W., Bachman S.P., Bacon K.,
824 Bárrios S., Barstow C., Battison A., Bell E., Bensusan K., Bidartondo M.I., Blackhall-Miles
825 R.J., Borrell J.S., Brearley F.Q., Breman E., Brewer R.F.A., Brodie J., Cámara-Leret R.,
826 Campostrini Forzza R., Cannon P., Carine M., Carretero J., Cavagnaro T.R., Cazar M.E.,
827 Chapman T., Cheek M., Clubbe C., Cockel C., Collemare J., Cooper A., Copeland A.I.,
828 Corcoran M., Couch C., Cowell C., Crous P., da Silva M., Dalle G., Das D., David J.C.,
829 Davies L., Davies N., De Canha M.N., de Lirio E.J., Demissew S., Diazgranados M., Dickie
830 J., Dines T., Douglas B., Dröge G., Dulloo M.E., Fang R., Farlow A., Farrar K., Fay M.F.,
831 Felix J., Forest F., Forrest L.L., Fulcher T., Gafforov Y., Gardiner L.M., Gâteblé G., Gaya E.,
832 Geslin B., Gonçalves S.C., Gore C.J.N., Govaerts R., Gowda B., Grace O.M., Grall A.,
833 Haelewaters D., Halley J.M., Hamilton M.A., Hazra A., Heller T., Hollingsworth P.M.,
834 Holstein N., Howes M.J.R., Hughes M., Hunter D., Hutchinson N., Hyde K., Iganci J., Jones

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

835 M., Kelly L.J., Kirk P., Koch H., Grisai-Greilhuber I., Lall N., Langat M.K., Leaman D.J.,
836 Leão T.C., Lee M.A., Leitch I.J., Leon C., Lettice E., Lewis G.P., Li L., Lindon H., Liu J.S.,
837 Liu U., Llewellyn T., Looney B., Lovett J.C., Luczaj L., Lulekal E., Maggassouba S.,
838 Malécot V., Martin C., Masera O.R., Mattana E., Maxted N., Mba C., McGinn K.J.,
839 Metheringham C., Miles S., Miller J., Milliken W., Moat J., Moore P.G.P., Morim M.P.,
840 Mueller G.M., Muminjanov H., Negrão R., Nic Lughadha E., Nicholson N., Niskanen T.,
841 Nono Womdim R., Noorani A., Obreza M., O'Donnell K., O'Hanlon R., Onana J.M., Ondo I.,
842 Padulosi S., Paton A., Pearce T., Pérez Escobar O.A., Pieroni A., Pironon S., Prescott T.A.K.,
843 Qi Y.D., Qin H., Quave C.L., Rajaovelona L., Razanajatovo H., Reich P.B., Rianawati E.,
844 Rich T.C.G., Richards S.L., Rivers M.C., Ross A., Rumsey F., Ryan M., Ryan P., Sagala S.,
845 Sanchez M.D., Sharrock S., Shrestha K.K., Sim J., Sirakaya A., Sjöman H., Smidt E.C.,
846 Smith D., Smith P., Smith S.R., Sofo A., Spence N., Stanworth A., Stara K., Stevenson P.C.,
847 Stroh P., Suz L.M., Tambam B.B., Tatsis E.C., Taylor I., Thiers B., Thormann I., Vaglica V.,
848 Vásquez-Londoño C., Victor J., Viruel J., Walker B.E., Walker K., Walsh A., Way M.,
849 Wilbraham J., Wilkin P., Wilkinson T., Williams C., Winterton D., Wong K.M., Woodfield-
850 Pascoe N., Woodman J., Wyatt L., Wynberg R., Zhang B.G. 2020. State of the World's Plants
851 and Fungi 2020. Royal Botanic Gardens, Kew.
852
853 APG. 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot.
854 Gard. 85:531-553.
855
856 APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders
857 and families of flowering plants: Apg II. Bot. J. Linn. Soc. 141:399-436.
858

Baker et al.

859 APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders
860 and families of flowering plants: Apg III. Bot. J. Linn. Soc. 161:105-121.

861

862 APG IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders
863 and families of flowering plants: Apg IV. Bot. J. Linn. Soc. 181:1-20.

864

865 Bakker F.T., Lei D., Yu J., Mohammadin S., Wei Z., van de Kerke S., Gravendeel B.,
866 Nieuwenhuis M., Staats M., Alquezar-Planas D.E., Holmer R. 2016. Herbarium genomics:
867 Plastome sequence assembly from a range of herbarium specimens using an iterative
868 organelle genome assembly pipeline. Biol. J. Linn. Soc. 117:33-43.

869

870 Beck J.B., Markley M.L., Zielke M.G., Thomas J.R., Hale H.J., Williams L.D., Johnson M.G.
871 2021. Is Palmer's elm leaf goldenrod real? The Angiosperms353 kit provides within-species
872 signal in *Solidago ulmifolia* s.L. bioRxiv:2021.2001.2007.425781.

873

874 Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina
875 sequence data. Bioinformatics 30:2114-2120.

876

877 Borowiec M.L. 2016. AMAS: A fast tool for alignment manipulation and computing of
878 summary statistics. PeerJ 4:e1660.

879

880 Bostock M. 2012. D3.Js - data-driven documents <http://d3js.org/>.

881

882 Breinholt J.W., Carey S.B., Tiley G.P., Davis E.C., Endara L., McDaniel S.F., Neves L.G.,
883 Sessa E.B., von Konrat M., Chantanaorrapint S., Fawcett S., Ickert-Bond S.M., Labiak P.H.,

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

884 Larraín J., Lehnert M., Lewis L.R., Nagalingum N.S., Patel N., Rensing S.A., Testo W.,

885 Vasco A., Villarreal J.C., Williams E.W., Burleigh J.G. 2021. A target enrichment probe set

886 for resolving the flagellate land plant tree of life. *Appl. Plant. Sci.* n/a:e11406.

887

888 Brewer G.E., Clarkson J.J., Maurin O., Zuntini A.R., Barber V., Bellot S., Biggs N., Cowan

889 R.S., Davies N.M.J., Dodsworth S., Edwards S.L., Eiserhardt W.L., Epitawalage N., Frisby

890 S., Grall A., Kersey P.J., Pokorny L., Leitch I.J., Forest F., Baker W.J. 2019. Factors

891 affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the

892 diversity of angiosperms. *Front. Plant Sci.* 10:1102.

893

894 Buddenhagen C., Lemmon A.R., Lemmon E.M., Bruhl J., Cappa J., Clement W.L.,

895 Donoghue M.J., Edwards E.J., Hipp A.L., Kortyna M. 2016. Anchored phylogenomics of

896 angiosperms I: Assessing the robustness of phylogenetic estimates. *bioRxiv*:086298.

897

898 Buerki S., Baker W.J. 2016. Collections-based research in the genomic era. *Biol. J. Linn.*

899 Soc. 117:5-10.

900

901 Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L.

902 2009. BLAST+: Architecture and applications. *BMC Bioinformatics* 10:421.

903

904 Carpenter E.J., Matasci N., Ayyampalayam S., Wu S., Sun J., Yu J., Jimenez Vieira F.R.,

905 Bowler C., Dorrell R.G., Gitzendanner M.A., Li L., Du W., K. Ullrich K., Wickett N.J.,

906 Barkmann T.J., Barker M.S., Leebens-Mack J.H., Wong G.K.-S. 2019. Access to rna-

907 sequencing data from 1,173 plant species: The 1000 Plant Transcriptomes Initiative (1KP).

908 GigaScience 8:giz126.

Baker et al.

909

910 Chase M.W., Hills H.H. 1991. Silica gel: An ideal material for field preservation of leaf
911 samples for DNA studies. *Taxon* 40:215-220.

912

913 Chase M.W., Soltis D.E., Olmstead R.G., Morgan D., Les D.H., Mishler B.D., Duvall M.R.,
914 Price R.A., Hills H.G., Qiu Y.L., Kron K.A., Rettig J.H., Conti E., Palmer J.D., Manhart J.R.,
915 Sytsma K.J., Michaels H.J., Kress W.J., Karol K.G., Clark W.D., Hedren M., Gaut B.S.,
916 Jansen R.K., Kim K.J., Wimpee C.F., Smith J.F., Furnier G.R., Strauss S.H., Xiang Q.Y.,
917 Plunkett G.M., Soltis P.S., Swensen S.M., Williams S.E., Gadek P.A., Quinn C.J., Eguiarte
918 L.E., Golenberg E., Learn G.H., Graham S.W., Barrett S.C.H., Dayanandan S., Albert V.A.
919 1993. Phylogenetics of seed plants - an analysis of nucleotide sequences from the plastid
920 gene *rbcL*. *Ann. Missouri Bot. Gard.* 80:528-580.

921

922 Chau J.H., Rahfeldt W.A., Olmstead R.G. 2018. Comparison of taxon-specific versus general
923 locus sets for targeted sequence capture in plant phylogenomics. *Appl. Plant. Sci.* 6:e1032.

924

925 Cheng S., Melkonian M., Smith S.A., Brockington S., Archibald J.M., Delaux P.-M., Li F.-
926 W., Melkonian B., Mavrodiev E.V., Sun W., Fu Y., Yang H., Soltis D.E., Graham S.W.,
927 Soltis P.S., Liu X., Xu X., Wong G.K.-S. 2018. 10kp: A phylogenetic genome sequencing
928 plan. *GigaScience* 7:giy013.

929

930 Cornwell W.K., Pearse W.D., Dalrymple R.L., Zanne A.E. 2019. What we (don't) know
931 about global plant diversity. *Ecography* 42:1819-1831.

932

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

933 Couvreur T.L.P., Helmstetter A.J., Koenen E.J.M., Bethune K., Brandão R.D., Little S.A.,

934 Sauquet H., Erkens R.H.J. 2019. Phylogenomics of the major tropical plant family

935 Annonaceae using targeted enrichment of nuclear genes. *Front. Plant Sci.* 9:1941.

936

937 Dodsworth S., Pokorny L., Johnson M.G., Kim J.T., Maurin O., Wickett N.J., Forest F.,

938 Baker W.J. 2019. Hyb-Seq for flowering plant systematics. *Trends Plant Sci.* 24:887-891.

939

940 Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure from small quantities of fresh

941 leaf tissue. *Phytochem. Bull.* 19:11-15.

942

943 Eiserhardt W.L., Antonelli A., Bennett D.J., Botigué L.R., Burleigh J.G., Dodsworth S.,

944 Enquist B.J., Forest F., Kim J.T., Kozlov A.M., Leitch I.J., Maitner B.S., Mirarab S., Piel

945 W.H., Pérez-Escobar O.A., Pokorny L., Rahbek C., Sandel B., Smith S.A., Stamatakis A.,

946 Vos R.A., Warnow T., Baker W.J. 2018. A roadmap for global synthesis of the plant tree of

947 life. *Amer. J. Bot.* 105:614-622.

948

949 Faircloth B.C., McCormack J.E., Crawford N.G., Harvey M.G., Brumfield R.T., Glenn T.C.

950 2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple

951 evolutionary timescales. *Syst. Biol.* 61:717-726.

952

953 Forrest L.L., Hart M.L., Hughes M., Wilson H.P., Chung K.-F., Tseng Y.-H., Kidner C.A.

954 2019. The limits of Hyb-Seq for herbarium specimens: Impact of preservation techniques.

955 *Front. Ecol. Evol.* 7:439.

956

Baker et al.

957 Gitzendanner M.A., Soltis P.S., Wong G.K.-S., Ruhfel B.R., Soltis D.E. 2018. Plastid
958 phylogenomic analysis of green plants: A billion years of evolutionary history. Amer. J. Bot.
959 105:291-301.

960

961 Hale H., Gardner E.M., Viruel J., Pokorny L., Johnson M.G. 2020. Strategies for reducing
962 per-sample costs in target capture sequencing for phylogenomics and population genomics in
963 plants. Appl. Plant. Sci. 8:e11337.

964

965 Hendriks K., Mandáková T., Hay N.M., Ly E., Hooft van Huysduynen A., Tamrakar R.,
966 Thomas S.K., Toro-Núñez O., Pires J.C., Nikolov L.A., Koch M.A., Windham M.D., Lysak
967 M.A., Forest F., Mummenhoff K., Baker W.J., Lens F., Bailey C.D. in press. The best of both
968 worlds: Combining lineage specific and universal bait sets in target enrichment hybridization
969 reactions. Appl. Plant. Sci.

970

971 Hinchliff C.E., Smith S.A. 2014. Some limitations of public sequence data for phylogenetic
972 inference (in plants). PLoS ONE 9:e98986.

973

974 Hinchliff C.E., Smith S.A., Allman J.F., Burleigh J.G., Chaudhary R., Coghill L.M., Crandall
975 K.A., Deng J., Drew B.T., Gazis R., Gude K., Hibbett D.S., Katz L.A., Laughinghouse H.D.,
976 McTavish E.J., Midford P.E., Owen C.L., Ree R.H., Rees J.A., Soltis D.E., Williams T.,
977 Cranston K.A. 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree of life.
978 Proc. Natl. Acad. Sci. U.S.A. 112:12764.

979

980 Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. 2017. UFBoot2:
981 Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35:518-522.

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

982

983 Howard C.C., Crowl A.A., Harvey T.S., Cellinese N. 2020. Peeling back the layers: The
984 complex dynamics shaping the evolution of the Ledebouriinae (Scilloideae, Asparagaceae).
985 bioRxiv:2020.2011.2002.365718.

986

987 Jantzen J.R., Amarasinghe P., Folk R.A., Reginato M., Michelangeli F.A., Soltis D.E.,
988 Cellinese N., Soltis P.S. 2020. A two-tier bioinformatic pipeline to develop probes for target
989 capture of nuclear loci with applications in Melastomataceae. *Appl. Plant. Sci.* 8:e11345.

990

991 Jin J.-J., Yu W.-B., Yang J.-B., Song Y., dePamphilis C.W., Yi T.-S., Li D.-Z. 2020.
992 GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle
993 genomes. *Genome Biol.* 21:241.

994

995 Johnson M.G., Pokorny L., Dodsworth S., Botigue L.R., Cowan R.S., Devault A., Eiserhardt
996 W.L., Epitawalage N., Forest F., Kim J.T., Leebens-Mack J.H., Leitch I.J., Maurin O., Soltis
997 D.E., Soltis P.S., Wong G.K., Baker W.J., Wickett N.J. 2019. A universal probe set for
998 targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids
999 clustering. *Syst. Biol.* 68:594-606.

1000

1001 Junier T., Zdobnov E.M. 2010. The newick utilities: High-throughput phylogenetic tree
1002 processing in the Unix shell. *Bioinformatics* 26:1669-1670.

1003

1004 Kadlec M., Bellstedt D.U., Le Maitre N.C., Pirie M.D. 2017. Targeted NGS for species level
1005 phylogenomics: “Made to measure” or “one size fits all”? *PeerJ* 5:e3569.

1006

Baker et al.

1007 Kreft L., Botzki A., Coppens F., Vandepoele K., Van Bel M. 2017. PhyD3: A phylogenetic
1008 tree viewer with extended phyloXML support for functional genomics data visualization.
1009 *Bioinformatics* 33:2946-2947.

1010

1011 Kuhnhäuser B.G., Bellot S., Couvreur T.L.P., Dransfield J., Henderson A., Schley R.,
1012 Chomicki G., Eiserhardt W.L., Hiscock S.J., Baker W.J. 2021. A robust phylogenomic
1013 framework for the calamoid palms. *Mol. Phylogenet. Evol.*:107067.

1014

1015 Lagomarsino L.P., Jabaily R.S. 2020. Virtual Botany Conference 2020 symposium -
1016 Angiosperms353: A new essential tool for plant systematics.
1017 <http://2020.botanyconference.org/engine/search/index.php?func=detail&aid=941>.

1018

1019 Larridon I., Villaverde T., Zuntini A.R., Pokorny L., Brewer G.E., Epitawalage N., Fairlie I.,
1020 Hahn M., Kim J., Maguilla E., Maurin O., Xanthos M., Hipp A.L., Forest F., Baker W.J.
1021 2019. Tackling rapid radiations with targeted sequencing. *Front Plant Sci* 10:1655.

1022

1023 Leebens-Mack J.H., Barker M.S., Carpenter E.J., Deyholos M.K., Gitzendanner M.A.,
1024 Graham S.W., Grosse I., Li Z., Melkonian M., Mirarab S., Porsch M., Quint M., Rensing
1025 S.A., Soltis D.E., Soltis P.S., Stevenson D.W., Ullrich K.K., Wickett N.J., DeGironimo L.,
1026 Edger P.P., Jordon-Thaden I.E., Joya S., Liu T., Melkonian B., Miles N.W., Pokorny L.,
1027 Quigley C., Thomas P., Villarreal J.C., Augustin M.M., Barrett M.D., Baucom R.S., Beerling
1028 D.J., Benstein R.M., Biffin E., Brockington S.F., Burge D.O., Burris J.N., Burris K.P.,
1029 Burtet-Sarramegna V., Caicedo A.L., Cannon S.B., Çebi Z., Chang Y., Chater C., Cheeseman
1030 J.M., Chen T., Clarke N.D., Clayton H., Covshoff S., Crandall-Stotler B.J., Cross H.,
1031 dePamphilis C.W., Der J.P., Determann R., Dickson R.C., Di Stilio V.S., Ellis S., Fast E.,

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

1032 Feja N., Field K.J., Filatov D.A., Finnegan P.M., Floyd S.K., Fogliani B., García N., Gâteblé
1033 G., Godden G.T., Goh F., Greiner S., Harkess A., Heaney J.M., Helliwell K.E., Heyduk K.,
1034 Hibberd J.M., Hodel R.G.J., Hollingsworth P.M., Johnson M.T.J., Jost R., Joyce B., Kapralov
1035 M.V., Kazamia E., Kellogg E.A., Koch M.A., Von Konrat M., Könyves K., Kutchan T.M.,
1036 Lam V., Larsson A., Leitch A.R., Lentz R., Li F.-W., Lowe A.J., Ludwig M., Manos P.S.,
1037 Mavrodiev E., McCormick M.K., McKain M., McLellan T., McNeal J.R., Miller R.E.,
1038 Nelson M.N., Peng Y., Ralph P., Real D., Riggins C.W., Ruhsam M., Sage R.F., Sakai A.K.,
1039 Scascitella M., Schilling E.E., Schlösser E.-M., Sederoff H., Servick S., Sessa E.B., Shaw
1040 A.J., Shaw S.W., Sigel E.M., Skema C., Smith A.G., Smithson A., Stewart C.N.,
1041 Stinchcombe J.R., Szövényi P., Tate J.A., Tiebel H., Trapnell D., Villegente M., Wang C.-N.,
1042 Weller S.G., Wenzel M., Weststrand S., Westwood J.H., Whigham D.F., Wu S., Wulff A.S.,
1043 Yang Y., Zhu D., Zhuang C., Zuidof J., Chase M.W., Pires J.C., Rothfels C.J., Yu J., Chen
1044 C., Chen L., Cheng S., Li J., Li R., Li X., Lu H., Ou Y., Sun X., Tan X., Tang J., Tian Z.,
1045 Wang F., Wang J., Wei X., Xu X., Yan Z., Yang F., Zhong X., Zhou F., Zhu Y., Zhang Y.,
1046 Ayyampalayam S., Barkman T.J., Nguyen N.-p., Matasci N., Nelson D.R., Sayyari E.,
1047 Wafula E.K., Walls R.L., Warnow T., An H., Arrigo N., Baniaga A.E., Galuska S., Jorgensen
1048 S.A., Kidder T.I., Kong H., Lu-Irving P., Marx H.E., Qi X., Reardon C.R., Sutherland B.L.,
1049 Tiley G.P., Welles S.R., Yu R., Zhan S., Gramzow L., Theißen G., Wong G.K.-S., One
1050 Thousand Plant Transcriptomes I. 2019. One thousand plant transcriptomes and
1051 the phylogenomics of green plants. *Nature* 574:679-685.
1052
1053 Lemmon A.R., Emme S.A., Lemmon E.M. 2012. Anchored hybrid enrichment for massively
1054 high-throughput phylogenomics. *Syst. Biol.* 61:727-744.
1055

Baker et al.

1056 Lewin H.A., Robinson G.E., Kress W.J., Baker W.J., Coddington J., Crandall K.A., Durbin
1057 R., Edwards S.V., Forest F., Gilbert M.T.P., Goldstein M.M., Grigoriev I.V., Hackett K.J.,
1058 Haussler D., Jarvis E.D., Johnson W.E., Patrinos A., Richards S., Castilla-Rubio J.C., van
1059 Sluys M.-A., Soltis P.S., Xu X., Yang H., Zhang G. 2018. Earth Biogenome Project:
1060 Sequencing life for the future of life. Proc. Natl. Acad. Sci. U.S.A. 115:4325-4333.
1061
1062 Li H.-T., Yi T.-S., Gao L.-M., Ma P.-F., Zhang T., Yang J.-B., Gitzendanner M.A., Fritsch
1063 P.W., Cai J., Luo Y., Wang H., van der Bank M., Zhang S.-D., Wang Q.-F., Wang J., Zhang
1064 Z.-R., Fu C.-N., Yang J., Hollingsworth P.M., Chase M.W., Soltis D.E., Soltis P.S., Li D.-Z.
1065 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5:461-470.
1066
1067 Li Z., Barker M.S. 2020. Inferring putative ancient whole-genome duplications in the 1000
1068 Plants (1KP) Initiative: Access to gene family phylogenies and age distributions. GigaScience
1069 9:giaa004.
1070
1071 Loiseau O., Olivares I., Paris M., de La Harpe M., Weigand A., Koubinova D., Rolland J.,
1072 Bacon C.D., Balslev H., Borchsenius F. 2019. Targeted capture of hundreds of nuclear genes
1073 unravels phylogenetic relationships of the diverse neotropical palm tribe Geonomateae. Front.
1074 Plant Sci. 10:864.
1075
1076 Magallón S., Sánchez-Reyes L.L., Gómez-Acevedo S.L. 2018. Thirty clues to the exceptional
1077 diversification of flowering plants. Ann. Bot. 123:491-503.
1078
1079 Mai U., Mirarab S. 2018. TreeShrink: Fast and accurate detection of outlier long branches in
1080 collections of phylogenetic trees. BMC Genomics 19:272.

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

1081

1082 Mandel J.R., Dikow R.B., Funk V.A., Masalia R.R., Staton S.E., Kozik A., Michelmore
1083 R.W., Rieseberg L.H., Burke J.M. 2014. A target enrichment method for gathering
1084 phylogenetic information from hundreds of loci: An example from the Compositae. Appl.
1085 Plant. Sci. 2:1300085.

1086

1087 McLay T.G.B., Gunn B.F., Ning W., Tate J.A., Nauheimer L., Joyce E.M., Simpson L.,
1088 Schmidt-Lebuhn A.N., Baker W.J., Forest F., Jackson C.J. in press. New targets acquired:
1089 Improving locus recovery from the Angiosperms353 probe set. Appl. Plant. Sci.

1090

1091 Meyer M., Kircher M. 2010. Illumina sequencing library preparation for highly multiplexed
1092 target capture and sequencing. Cold Spring Harbor Protocols 2010:pdb.prot5448.

1093

1094 Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., Von Haeseler A.,
1095 Lanfear R. 2020. Iq-tree 2: New models and efficient methods for phylogenetic inference in
1096 the genomic era. Mol. Biol. Evol. 37:1530-1534.

1097

1098 Murphy B., Forest F., Barraclough T., Rosindell J., Bellot S., Cowan R., Golos M., Jebb M.,
1099 Cheek M. 2020. A phylogenomic analysis of *Nepenthes* (Nepenthaceae). Mol. Phylogenet.
1100 Evol. 144:106668.

1101

1102 Nguyen N.-P.D., Mirarab S., Kumar K., Warnow T. 2015. Ultra-large alignments using
1103 phylogeny-aware profiles. Genome Biol. 16:124.

1104

Baker et al.

1105 Nikolov L.A., Shushkov P., Nevado B., Gan X., Al-Shehbaz I.A., Filatov D., Bailey C.D.,
1106 Tsiantis M. 2019. Resolving the backbone of the Brassicaceae phylogeny for investigating
1107 trait diversity. *New Phytol.* 222:1638-1651.

1108

1109 Ogutcen E., Christe C., Nishii K., Salamin N., Möller M., Perret M. 2021. Phylogenomics of
1110 Gesneriaceae using targeted capture of nuclear genes. *Mol. Phylogenet. Evol.*:107068.

1111

1112 Pérez-Escobar O.A., Dodsworth S., Bogarín D., Bellot S., Balbuena J.A., Schley R., Kikuchi
1113 I., Morris S.K., Epitawalage N., Cowan R., Maurin O., Zuntini A., Arias T., Serna A.,
1114 Gravendeel B., Torres M.F., Nargar K., Chomicki G., Chase M.W., Leitch I.J., Forest F.,
1115 Baker W.J. 2020. Hundreds of nuclear and plastid loci yield insights into orchid relationships.
1116 bioRxiv:2020.2011.2017.386508.

1117

1118 RBG Kew. 2015. A global resource for plant and fungal knowledge. *Science strategy 2015-*
1119 2020. Royal Botanic Gardens, Kew.

1120

1121 RBG Kew. 2016. *The State of the World's Plants report – 2016*. Royal Botanic Gardens,
1122 Kew.

1123

1124 Sauquet H., Magallón S. 2018. Key questions and challenges in angiosperm macroevolution.
1125 *New Phytol.* 219:1170-1187.

1126

1127 Sayyari E., Mirarab S. 2016. Fast coalescent-based computation of local branch support from
1128 quartet frequencies. *Mol. Biol. Evol.* 33:1654-1668.

1129

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

1130 Secretariat of the Convention on Biological Diversity. 2011. Nagoya protocol on access to
1131 genetic resources and the fair and equitable sharing of benefits arising from their utilization to
1132 the convention on biological diversity. Montreal: United Nations Environment Programme.

1133

1134 Shee Z.Q., Frodin D.G., Cámera-Leret R., Pokorny L. 2020. Reconstructing the complex
1135 evolutionary history of the Papuasian *Schefflera* radiation through herbariomics. *Front. Plant*
1136 *Sci.* 11:258.

1137

1138 Slimp M., Williams L.D., Hale H., Johnson M.G. 2020. On the potential of Angiosperms353
1139 for population genomics. *bioRxiv*:2020.2010.2011.335174.

1140

1141 Smith S.A., Brown J.W. 2018. Constructing a broadly inclusive seed plant phylogeny. *Amer.*
1142 *J. Bot.* 105:302-314.

1143

1144 Soltis D.E., Smith S.A., Cellinese N., Wurdack K.J., Tank D.C., Brockington S.F., Refulio-
1145 Rodriguez N.F., Walker J.B., Moore M.J., Carlsward B.S., Bell C.D., Latvis M., Crawley S.,
1146 Black C., Diouf D., Xi Z., Rushworth C.A., Gitzendanner M.A., Sytsma K.J., Qiu Y.-L., Hilu
1147 K.W., Davis C.C., Sanderson M.J., Beaman R.S., Olmstead R.G., Judd W.S., Donoghue M.J.,
1148 Soltis P.S. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. *Amer. J. Bot.* 98:704-730.

1149

1150 Soltis D.E., Soltis P.S., Chase M.W., Mort M.E., Albach D.C., Zanis M., Savolainen V.,
1151 Hahn W.J., Hoot S.B., Fay M.F., Axtell M., Swensen S.M., Prince L.M., Kress W.J., Nixon
1152 K.C., Farris J.S. 2008. Angiosperm phylogeny inferred from 18s rDNA, *rbcL*, and *atpB*
1153 sequences. *Bot. J. Linn. Soc.* 133:381-461.

1154

Baker et al.

1155 Soltis P.S., Folk R.A., Soltis D.E. 2019. Darwin review: Angiosperm phylogeny and
1156 evolutionary radiations. Proc. R. Soc. Lond. B Biol. Sci. 286:20190099.

1157

1158 Soto Gomez M., Pokorny L., Kantar M.B., Forest F., Leitch I.J., Gravendeel B., Wilkin P.,
1159 Graham S.W., Viruel J. 2019. A customized nuclear target enrichment approach for
1160 developing a phylogenomic baseline for *Dioscorea* yams (Dioscoreaceae). Appl. Plant. Sci.
1161 7:e11254.

1162

1163 Toronto International Data Release Workshop Authors. 2009. Prepublication data sharing.
1164 Nature 461:168-170.

1165

1166 Van Andel T., Veltman M.A., Bertin A., Maat H., Polime T., Hille Ris Lambers D., Tjoe
1167 Awie J., De Boer H., Manzanilla V. 2019. Hidden rice diversity in the Guianas. Front. Plant
1168 Sci. 10:1161.

1169

1170 Villaverde T., Pokorny L., Olsson S., Rincón-Barrado M., Johnson M.G., Gardner E.M.,
1171 Wickett N.J., Molero J., Riina R., Sanmartín I. 2018. Bridging the micro- and
1172 macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations
1173 to species and above. New Phytol. 220:636-650.

1174

1175 WCVP. 2020. World Checklist of Vascular Plants, version 2.0. Facilitated by the Royal
1176 Botanic Gardens, kew. Published on the internet; <http://wcvp.science.kew.org/>, retrieved 18
1177 November 2020.

1178

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

1179 Weitemier K., Straub S.C.K., Cronn R.C., Fishbein M., Schmickl R., McDonnell A., Liston

1180 A. 2014. Hyb-Seq: Combining target enrichment and genome skimming for plant

1181 phylogenomics. *Appl. Plant. Sci.* 2:1400042.

1182

1183 Wickett N.J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., Ayyampalayam

1184 S., Barker M.S., Burleigh J.G., Gitzendanner M.A., Ruhfel B.R., Wafula E., Der J.P., Graham

1185 S.W., Mathews S., Melkonian M., Soltis D.E., Soltis P.S., Miles N.W., Rothfels C.J.,

1186 Pokorny L., Shaw A.J., DeGironimo L., Stevenson D.W., Surek B., Villarreal J.C., Roure B.,

1187 Philippe H., dePamphilis C.W., Chen T., Deyholos M.K., Baucom R.S., Kutchan T.M.,

1188 Augustin M.M., Wang J., Zhang Y., Tian Z., Yan Z., Wu X., Sun X., Wong G.K.-S.,

1189 Leebens-Mack J. 2014. Phylogenomic analysis of the origin and early diversification of

1190 land plants. *Proc. Natl. Acad. Sci. U.S.A.* 111:E4859.

1191

1192 Yan Z., Du P., Hahn M.W., Nakhleh L. 2020. Species tree inference under the multispecies

1193 coalescent on data with paralogs is accurate. *bioRxiv*:498378.

1194

1195 Yang L., Su D., Chang X., Foster C.S.P., Sun L., Huang C.-H., Zhou X., Zeng L., Ma H.,

1196 Zhong B. 2020. Phylogenomic insights into deep phylogeny of angiosperms based on broad

1197 nuclear gene sampling. *Plant Commun.* 1:100027.

1198

1199 Zhang C., Rabiee M., Sayyari E., Mirarab S. 2018. ASTRAL-III: Polynomial time species

1200 tree reconstruction from partially resolved gene trees. *BMC Bioinformatics* 19:153.

1201

Baker et al.

1202 Zhao T., Xue J., Kao S.-m., Li Z., Zwaenepoel A., Schranz M.E., Van de Peer Y. 2020.

1203 Novel phylogeny of angiosperms inferred from whole-genome microsynteny analysis.

1204 bioRxiv:2020.2001.2015.908376.

1205

1206

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

1207 TABLES

1208

1209 **Table 1.** Total number of angiosperm samples included at three stages of data release
1210 preparation. The first column represents all samples available in the initial dataset. The
1211 second column indicates samples included in our preliminary tree, prior to family
1212 identification validation, but after removal of samples for which the sum of the gene lengths
1213 fell below 20% of the median value across all samples. The third column provides numbers
1214 for the samples made public in the Kew Tree of Life Explorer, Data Release 1.0, and
1215 included in our final phylogenetic tree. Numbers of angiosperm families, genera and species
1216 in each data subset are provided in brackets (as families/genera/species).

1217

Data source	Initial dataset	Preliminary tree pre-validation	Final tree and Data Release 1.0
Target sequence capture data	2,522 (304/1988/2397)	2,438 (297/1947/2340)	2,374 (292/1903/2280)
1KP transcriptomes	689 (254/544/682)	678 (250/530/677)	664 (245/517/663)
Annotated genomes	61 (23/43/59)	61 (23/43/59)	61 (23/43/59)
Total	3,272 (413/2428/3079)	3,177 (410/2388/3028)	3,099 (404/2333/2956)

1218

1219

Baker et al.

1220 **Table 2.** Results of validation of sample family identification. The family identification of
1221 each sample was scored as confirmed, inconclusive or rejected according to both DNA
1222 barcode and phylogenetic validations. Where only a single-family representative was
1223 included, samples were tested at the ordinal level. Based on these results, samples were
1224 automatically included, excluded, or held for review. See Materials and Methods and Fig. 4
1225 for more details.

1226

DNA barcode validation				
	Confirmed	Inconclusive	Rejected	
Phylogenetic validation	Confirmed	2,666	398	4
	Include	Include	Review	
Inconclusive	27 ^a	7	3	
	Review	Review	Exclude	
Rejected	8	42	22	
	Review	Exclude	Exclude	

1227

1228 ^aSamples with confirmed family (barcode), but for which the placement cannot be
1229 confidently assessed were reviewed.

1230

1231

1232 **Table 3.** Target sequence capture and gene recovery statistics by sample or gene for Data Release 1.0, including the results of mining of genes
 1233 from the 1KP and annotated genome datasets. The upper five rows apply to target sequence capture data only.

1234

	Median	Mean	Standard deviation	Minimum	Maximum
Raw reads per sample	1,756,586	2,821,720	3,075,500	16,756	40,535,096
Trimmed reads per sample	1,585,152	2,549,298	2,790,691	13,911	36,051,667
Percentage of reads on-target per sample (across all recovered genes)	5.676	8.020	7.704	0.005	50.953
Read depth per sample (at bases with $\geq 4x$ depth across all recovered genes) ^a	38	90	105	5	2,243
Read depth per gene (at bases with $\geq 4x$ depth across all samples) ^a	38	97	37	27	226

Recovered genes per sample:

Target sequence capture data	338	330	24	148	353
1KP transcriptomes	341	328	44	30	353
Annotated genomes	346	341	13	287	353

Recovered genes lengths across all samples^b (bp):

Target sequence capture data	387	477	347	48	3,564
1KP transcriptomes	717	803	466	50	4,689
Annotated genomes	972	1,136	642	45	8,601

Sum of recovered gene lengths per sample (bp):

Target sequence capture data	161,312	157,560	43,545	34,326	256,944
1KP transcriptomes	275,372	262,715	66,593	6,498	367,419
Annotated genomes	390,123	387,630	18,680	321,666	427,322

Percentage length per recovered gene^c across all samples:

Target sequence capture data	63	62	16	27	96
------------------------------	----	----	----	----	----

	1KP transcriptomes	88	85	10	44	100
<hr/>						
	Percentage length of recovered genes ^c per sample:					
	Target sequence capture data	63	62	14	20	95

1235	^a calculated by Samtools depth program
1236	^b see Supplementary Figure S5
1237	^c percentage length calculated against each representative target gene
1238	

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

1239 **Table 4.** Properties of the 347 gene alignments and gene trees underpinning the species tree
1240 included in the Kew Tree of Life Explorer Data Release 1.0.

	Median	Mean	Standard deviation	Minimum	Maximum
Number of samples	2,421	2,377.2	358.8	491	3,014
% of total samples ^a	77.9	76.5	11.5	15.8	96.9
Alignment length	1,259.0	1,533.9	985.7	250	8,119
% missing data ^b	58.9	57.9	11.3	14.4	85.8
Variable sites	1,224	1,469.7	940.6	240	7,873
% variable sites	96.6	96.0	2.5	81.5	100
Parsimony informative sites	1,137	1,369.4	859.3	233	6,792
% parsimony informative sites	90.7	90.0	4.20	69.1	98.9
% nodes in gene trees above 30% UFBS ^c	98.9	98.5	1.3	90.7	99.9
Mean support ^c of all nodes	88.1	87.8	2.7	78.9	94.3
Median support ^c of all nodes	98.0	97.6	1.8	90.0	100

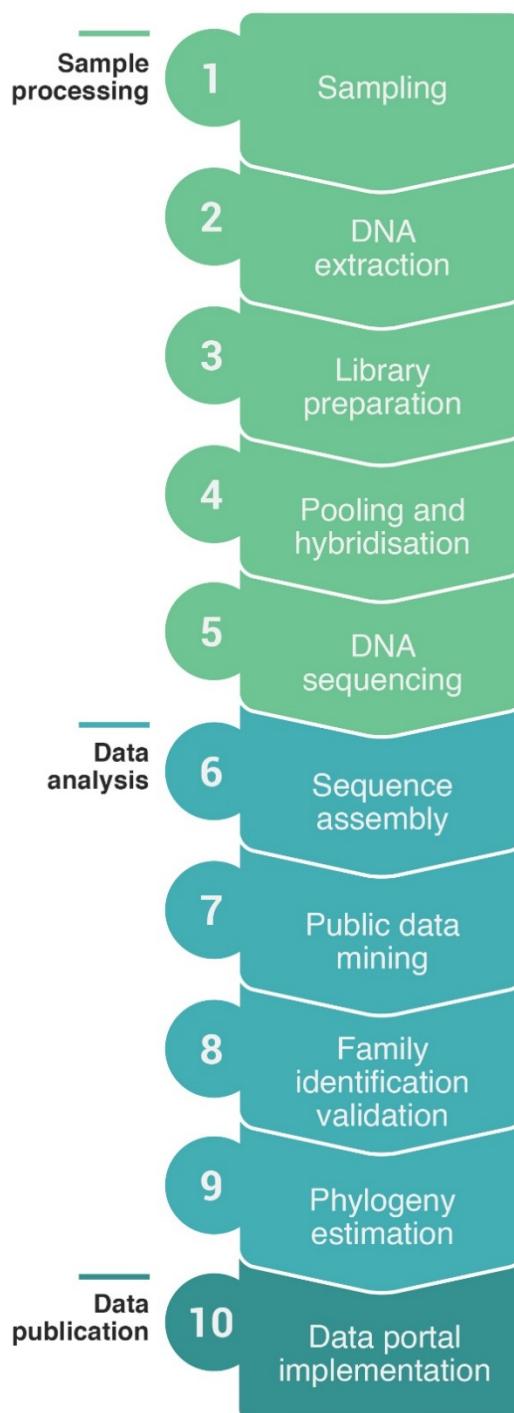
1241 ^apercentage of samples in species tree present in alignment/gene tree

1242 ^bpercentage of empty cells in each alignment

1243 ^cUFBS: ultrafast bootstrap

1244

1245

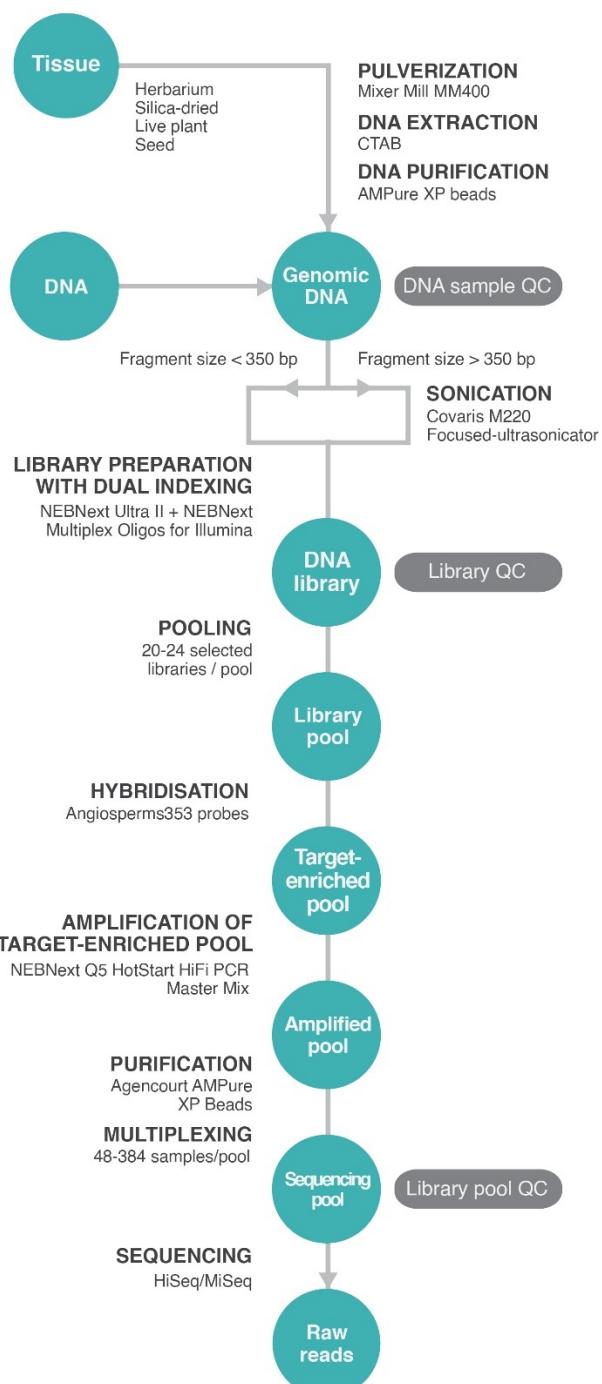

Baker et al.

1246 **FIGURES**

1247

1248 **Figure 1.** Summary workflow. Overview of steps taken by the PAFTOL project to generate

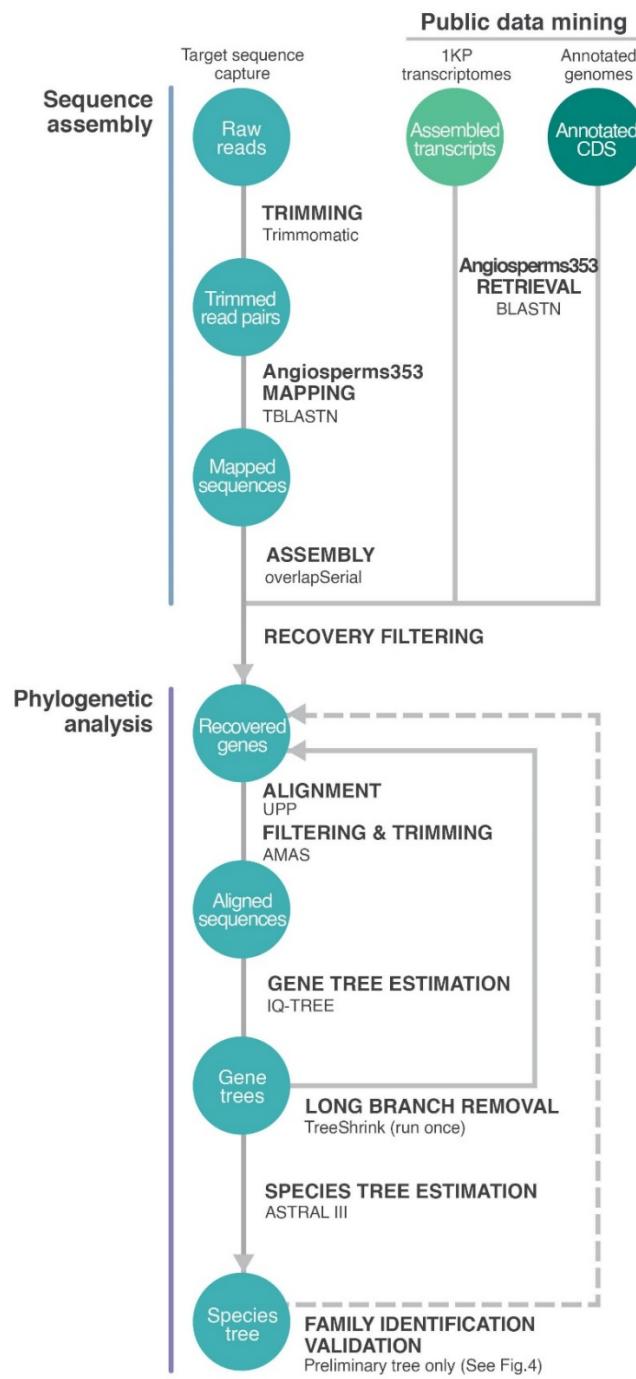
1249 Data Release 1.0 of the Kew Tree of Life Explorer (<https://treeoflife.kew.org>).



1250

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

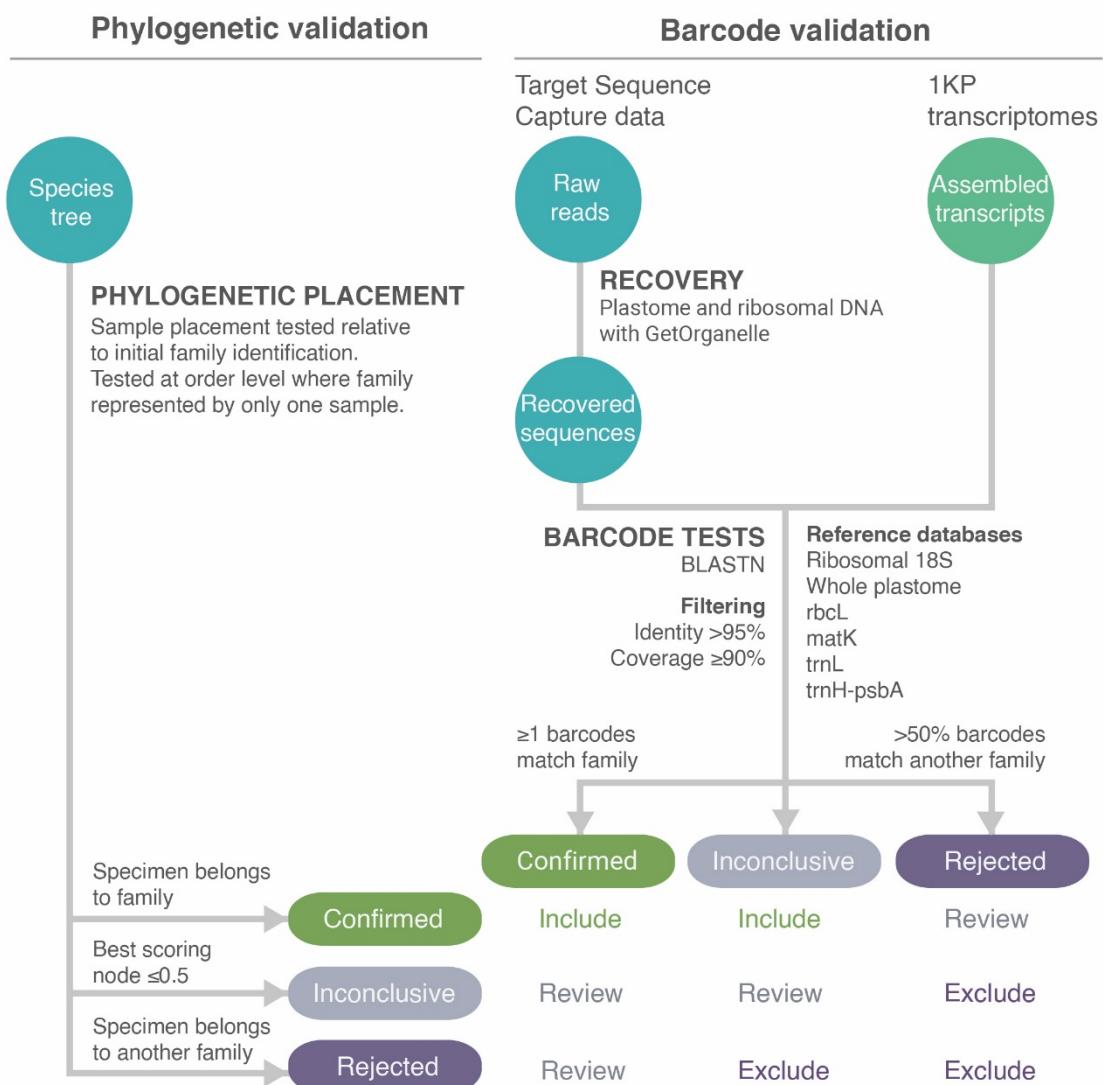
1251 **Figure 2.** Sample processing workflow. Processes are indicated by bold headings with
1252 reagents and machines used given below. Quality control checkpoints are indicated in dark
1253 grey boxes.


1254

1255

Baker et al.

1256 **Figure 3.** Data analysis workflow. Pipeline products are shown in blue-green circles
1257 (available to download via the Kew Tree of Life Explorer, <https://treeoflife.kew.org>).
1258 Processes are indicated by bold headings with programs used given below.

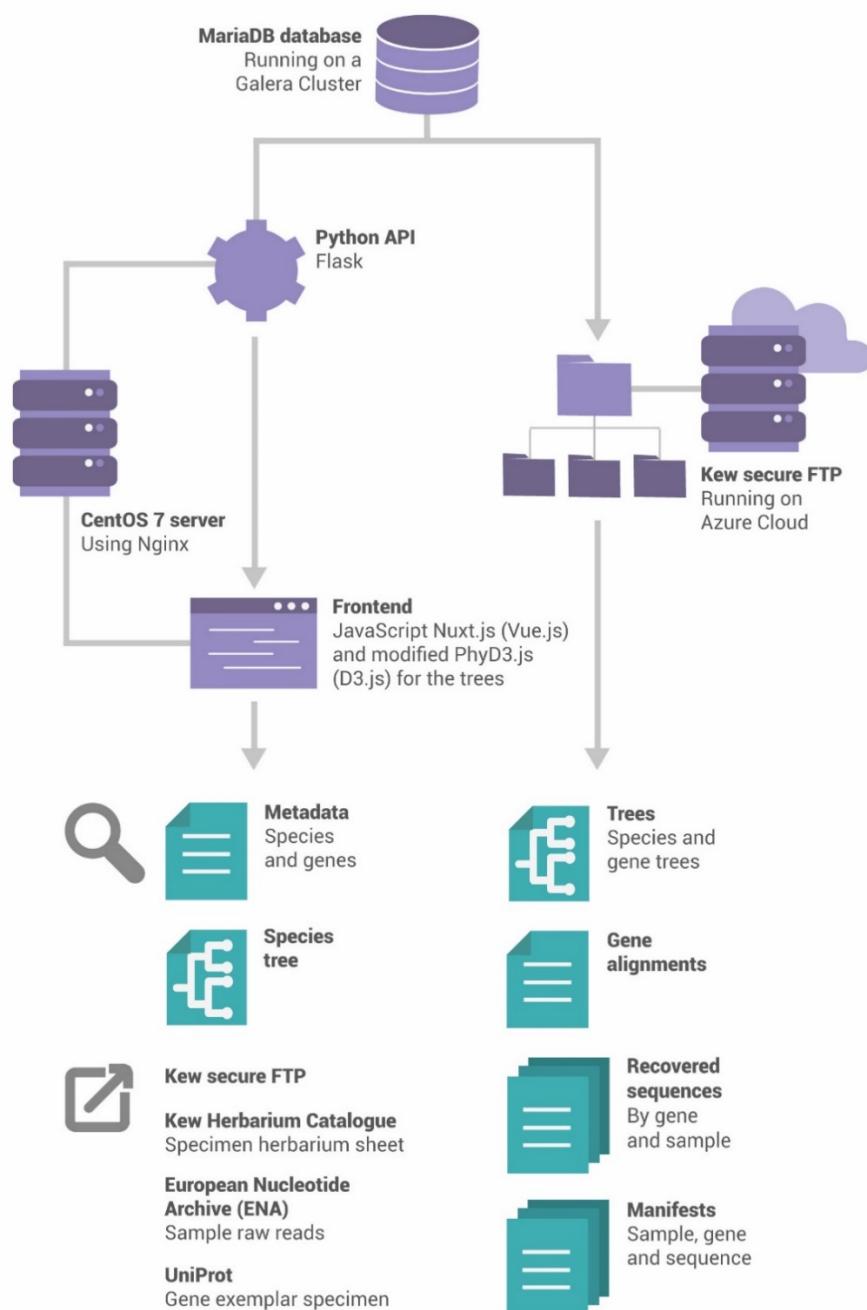

1259

1260

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

1261 **Figure 4.** Family identification validation workflow. Processes are indicated by bold
1262 headings. Embedded table (bottom right) indicates decisions made for each sample based on
1263 the two validation steps.

1264

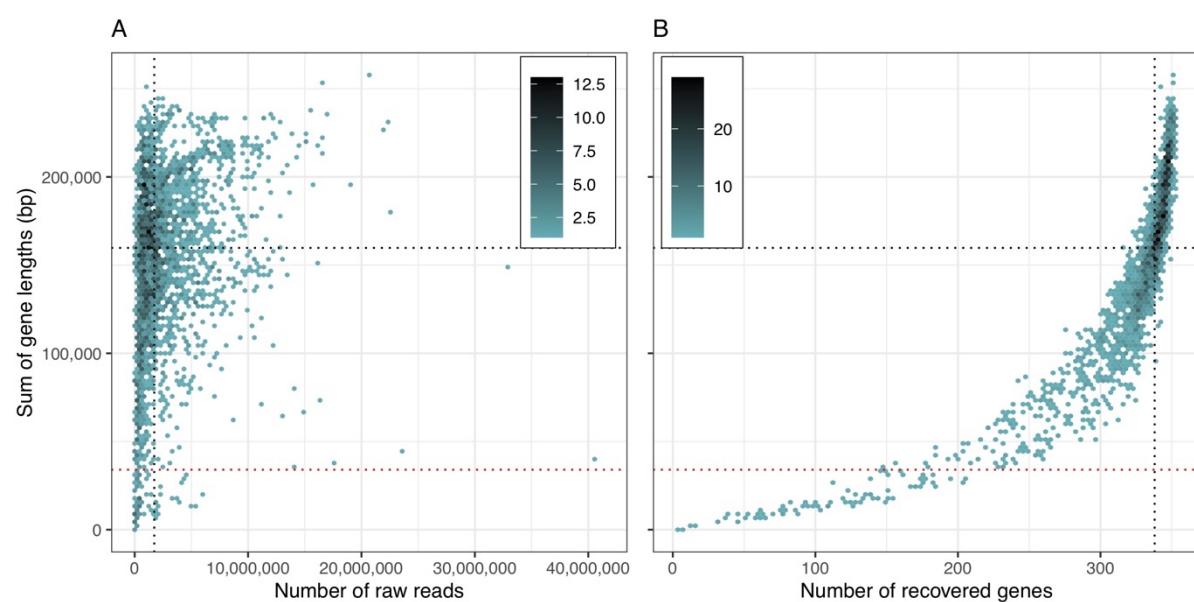

1265

1266

Baker et al.

1267 **Figure 5.** Data publication workflow. Implementation of Kew Tree of Life Explorer data
1268 portal is illustrated. Arrows indicate data flow from internal repository to public interface.
1269 Infrastructural components are shown in purple; publicly available information is shown in
1270 green. External links available from the portal are listed in the lower left.

1271



1272

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

1273 **Figure 6.** Density plots of target sequence recovery from our raw data. Data are presented
1274 prior to any filtering, illustrating relationships of sum of gene lengths (bp) to (a) the number
1275 of raw reads and (b) the number of recovered genes. Colours indicate density of data points.
1276 Black dotted lines indicate medians of variables and red dotted lines indicate the threshold
1277 used to remove samples from downstream analyses, set as 20% of the median value across all
1278 samples.

1279

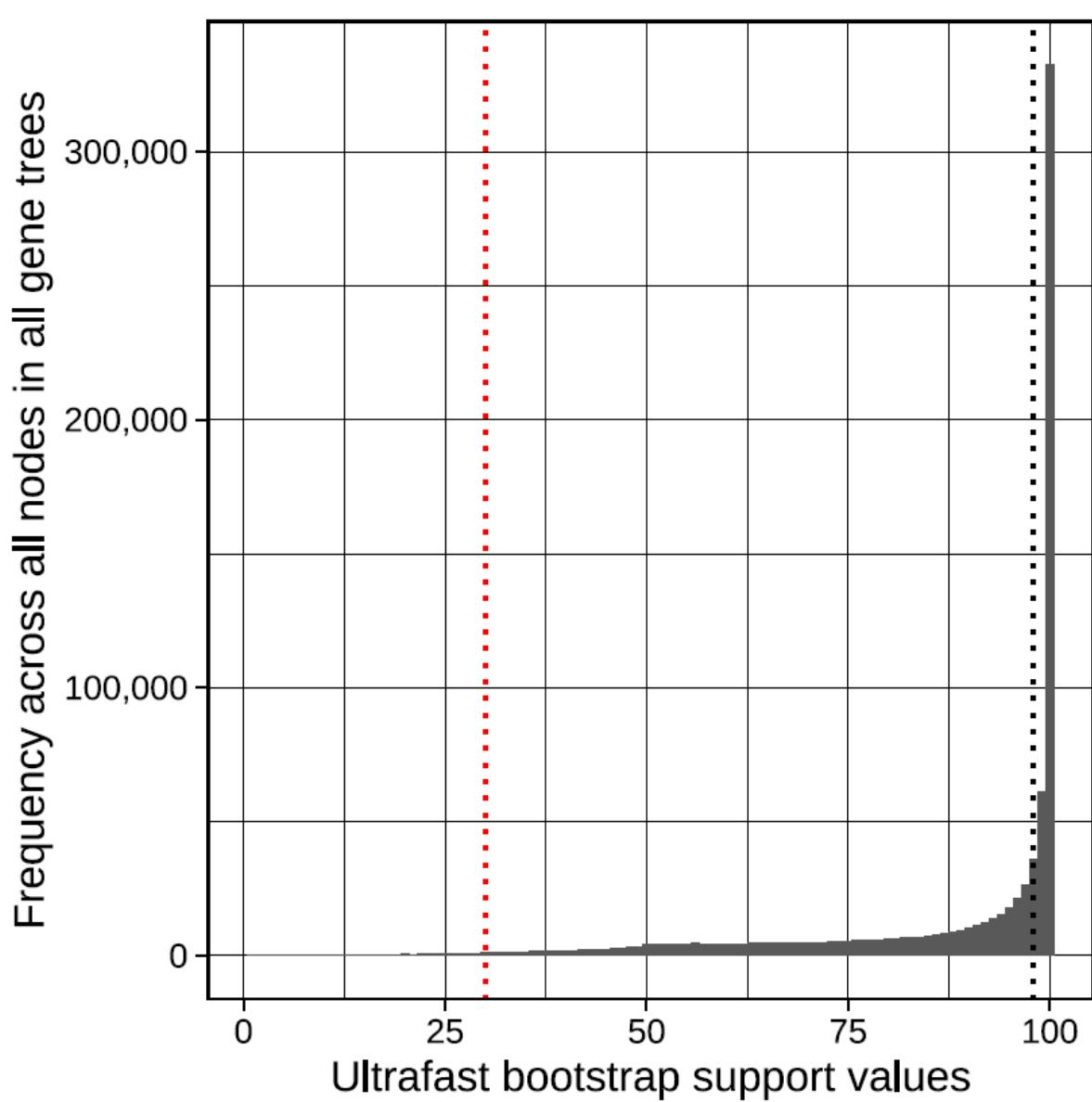
1280

1281

Baker et al.

1282 **Figure 7.** Distribution of ultrafast bootstrap support values across all nodes in all gene trees.

1283 Bootstrap values were estimated with IQ-TREE 2.0.5 (Hoang et al. 2017; Minh et al. 2020).

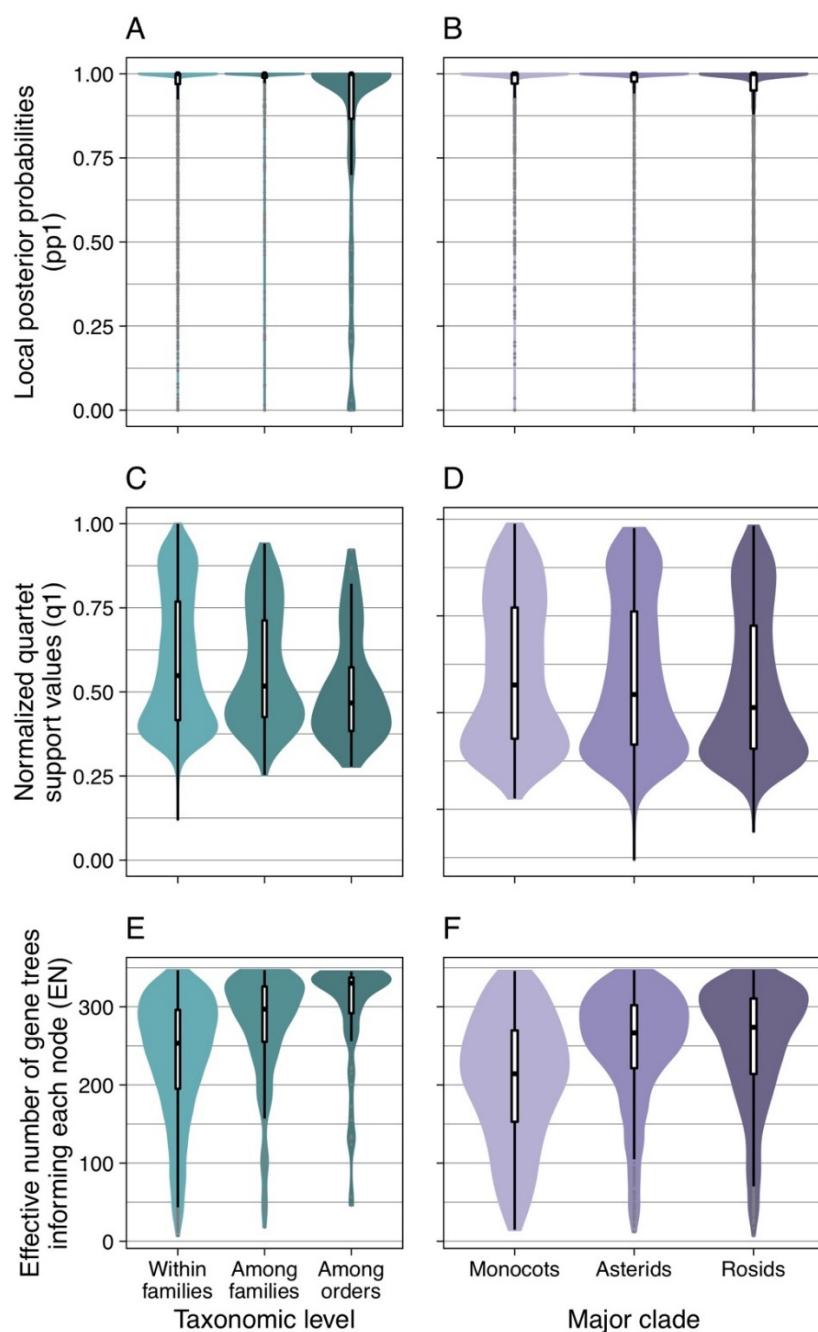

1284 Black dotted line indicates the median (98%) and the red dotted line indicates the threshold

1285 (30%) for collapsing nodes with low support prior to species tree inference with ASTRAL-III

1286 (Zhang et al. 2018). Only 1.3% of all nodes across gene trees are collapsed prior to species

1287 tree inference.

1288



1289

1290

A PHYLOGENOMIC PLATFORM FOR ANGIOSPERMS

1291 **Figure 8.** Summary of node properties in the species tree derived from ASTRAL-III (Zhang
1292 et al. 2018). Data are grouped by (a, c, e) taxonomic level and (b, d, f) major taxonomic
1293 groups. In a, c and e, “within families” refers to relationships within families; “among
1294 families” refers to relationships within orders but among families; “among orders” refers to
1295 relationships among orders. Box plots show medians, 1st and 3rd quartiles (hinges), and the
1296 full distribution excluding outliers (whiskers).

1297