

1 **An Exhaustive Multiple Knockout Approach to Understanding Cell Wall Hydrolase**
2 **Function in *Bacillus subtilis***

3 Sean Wilson^{1,2}, Ethan Garner^{1,2,*}

4 ¹ Department of Molecular and Cellular Biology, Harvard University, Cambridge, United
5 States.

6 ² Center for Systems Biology, Harvard University, Cambridge, United States.

7 Corresponding Author: Ethan C. Garner

8 NW 445.20, Northwest Building, 52 Oxford Street, Cambridge, MA 02138

9 *E-mail: egarner@g.harvard.edu

10 **ABSTRACT**

11 Most bacteria are surrounded by their cell wall, a highly crosslinked protective
12 envelope of peptidoglycan. To grow, bacteria must continuously remodel their wall,
13 inserting new material and breaking old bonds. Bond cleavage is performed by cell wall
14 hydrolases, allowing the wall to expand. Understanding the functions of individual
15 hydrolases has been impeded by their redundancy: single knockouts usually present no
16 phenotype. We used an exhaustive multiple-knockout approach to determine the
17 minimal set of hydrolases required for growth in *Bacillus subtilis*. We identified 42
18 candidate cell wall hydrolases. Strikingly, we were able to remove all but two of these
19 genes in a single strain; this “Δ40” strain shows a normal growth rate, indicating that
20 none of the 40 hydrolases are necessary for cell growth. The Δ40 strain does not shed
21 old cell wall, demonstrating that turnover is not essential for growth.

22 The remaining two hydrolases in the Δ40 strain are LytE and CwlO, previously
23 shown to be synthetically lethal. Either can be knocked out in Δ40, indicating that either

24 hydrolase alone is sufficient for cell growth. Environmental screening and zymography
25 revealed that LytE activity is inhibited by Mg²⁺ and that RlpA-like proteins may stimulate
26 LytE activity. Together, these results demonstrate that the only essential function of cell
27 wall hydrolases in *B. subtilis* is to enable cell growth by expanding the wall and that LytE
28 or CwlO alone is sufficient for this function. These experiments introduce the $\Delta 40$ strain
29 as a tool to study hydrolase activity and regulation in *B. subtilis*.

30 **IMPORTANCE**

31 In order to grow, bacterial cells must both create and break down their cell wall.
32 The enzymes that are responsible for these processes are the target of some of our
33 best antibiotics. Our understanding of the proteins that break down the wall – cell wall
34 hydrolases – has been limited by redundancy among the large number of hydrolases
35 many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in
36 *Bacillus subtilis* and created a strain lacking 40 of them. We show that cells can survive
37 using only a single cell wall hydrolase; this means that to understand the growth of *B.*
38 *subtilis* in standard laboratory conditions, it is only necessary to study a very limited
39 number of proteins, simplifying the problem substantially. We additionally show that the
40 $\Delta 40$ strain is a research tool to characterize hydrolases, using it to identify 3 ‘helper’
41 hydrolases that act in certain stress conditions.

42 **INTRODUCTION**

43 Most bacterial cells are surrounded by a peptidoglycan (PG) cell wall – a load-
44 bearing structure that protects cells from lysing due to their high internal turgor (1).
45 Bonds must be broken in the PG for cells to expand during growth (2). PG is built from
46 disaccharide subunits linked to stem peptides. As new PG is inserted into the wall, the

47 disaccharides are polymerized into long chains, and their stem peptides are crosslinked
48 into the existing wall (3).

49 The enzymes that break PG bonds are termed cell wall hydrolases (hereafter
50 'hydrolases'). Hydrolases fall into several broad categories with different chemical
51 specificities (4). Amidases cleave the stem peptide from the sugar subunit.
52 Endopeptidases cleave bonds between peptides within the stem peptide. Lytic
53 transglycosylases (LTGs), lysozymes/muramidases, and glucosaminidases cleave
54 between sugar subunits. A wide array of different protein domains are capable of
55 hydrolase activity – for example, there are at least 7 distinct domains with LTG activity
56 and well over 100 distinct domains with hydrolase activity discovered thus far (5, 6).

57 Hydrolase activity is essential: without the breakage of PG bonds, the cell wall
58 cannot expand to accommodate the accumulating biomass it contains (2). Hydrolases
59 are also involved in a variety of other processes that require modification of the cell wall:
60 turning over old PG, cell separation, and sporulation, conjugation, and motility (4, 7).
61 Perhaps owing to the multiple cellular functions that require hydrolases, many bacteria
62 have a large number of hydrolases. *Bacillus subtilis* and *Escherichia coli*, for example,
63 each contain at least 20 hydrolases (4, 8). The large number of hydrolases in each
64 bacterium, combined with a high degree of functional and enzymatic redundancy
65 between them, has made it difficult to identify specific cellular functions for many
66 hydrolases. Single knockouts rarely present clear phenotypes due to compensation by
67 other hydrolases (4, 9). However, multiple-knockout approaches in *B. subtilis* have been
68 successful in revealing the importance of LytE and CwlO for cell growth, uncovering the

69 role of LytC and LytD in cell wall turnover, and identifying LytE, LytF, and CwlS as cell
70 separation hydrolases (4, 10, 11).

71 *lytE* and *cwlO* had been previously shown to be synthetically lethal when both
72 are deleted in *B. subtilis* (10, 12). The requirement of LytE or CwlO for cell growth was
73 demonstrated via microscopy: upon depletion of LytE in a *cwlO* null mutant, or vice
74 versa, cell elongation slows and then stops completely before cells lyse (12). To test
75 whether any other hydrolases were essential for *B. subtilis* growth, we employed an
76 exhaustive multiple-knockout approach. We created a minimal hydrolase strain that
77 allows the study of hydrolases in isolation, making it easier to assign functions to
78 uncharacterized hydrolases. Using this multiple hydrolase knockout strain, it is
79 straightforward to assay the biochemical activity and determine the effect of hydrolases
80 alone or in any desired combination on phenotypes like cell width, cell wall turnover, cell
81 growth, or any other process.

82 **RESULTS**

83 **Construction of a multiple hydrolase knockout strain**

84 To identify the minimal set of hydrolases required for growth in *B. subtilis* PY79,
85 we constructed a strain in which we sequentially removed as many hydrolases as
86 possible. First, we used PHMMER to screen the *B. subtilis* proteome for proteins
87 homologous to known hydrolases (4, 5, 8, 13, Table S2). We filtered our results to
88 identify candidates for hydrolases involved in growth with the following criteria:
89 candidates needed to: 1. have a functional hydrolase domain, 2. be secreted (enabling
90 access to the cell wall) and 3. be endo-acting, meaning that they can cleave internal
91 bonds rather than acting only on the ends of the stem peptide or glycan chains (exo-

92 acting) (4, 14), as exo-acting hydrolases, like the D,D-carboxypeptidase DacA or the
93 glucosaminidase NagZ, cannot contribute to cell growth because their activity does not
94 cause PG expansion. Candidates with the potential to be endo-acting were assumed to
95 be endo-acting unless proven otherwise. Candidate hydrolases that fit all above criteria
96 are indicated in Table 1. Cell wall hydrolases not present in PY79, our wild-type (WT)
97 background, are included for completeness.

98 We next generated single knockouts for each of the candidate hydrolases by
99 replacing the gene with an antibiotic resistance cassette flanked by loxP sites. We then
100 sequentially combined all knockouts into a single strain, using Cre-lox mediated loop
101 outs to remove markers when necessary (Figure 1). After each loop out step, we
102 verified deletion of all modified loci by PCR. After all knockouts had been combined into
103 a single strain, whole-genome sequencing was used to confirm all deletions and to
104 identify any genomic rearrangements or mutations that occurred during the construction
105 process. Despite the multiple rounds of transformation and loop outs this strain was
106 subjected to, we found no evidence of genomic rearrangements, and only 8 SNPs
107 leading to 5 point mutations in genes involved in unrelated processes (Table S1).

108 Ultimately, this effort produced a strain lacking 40 hydrolases, which we termed
109 “ Δ 40”. The Δ 40 strain is lacking all the identified hydrolases that met our criteria save
110 two - LytE and CwlO, two synthetically lethal endopeptidases previously shown to be
111 essential for growth (10). We were able to further knock out either *lytE* or *cwlO* in the
112 Δ 40 strain, but not both, due to their synthetic lethality.

113 **Hydrolase activity is greatly reduced in the Δ 40 strain**

114 To assess whether any other unidentified hydrolases remained in the $\Delta 40$ strain,
115 we first used zymography. Zymography is a renaturing SDS-PAGE assay for that
116 detects hydrolase activity (15), where cells wall binding proteins are extracted from cells
117 and separated by size via SDS-PAGE using a gel impregnated with purified cell walls.
118 Following separation by PAGE, proteins in the gel are renatured, and their activity
119 cleaves the purified cell wall in the gel, leading to clear “bands” in the gel which do not
120 stain with methylene blue, corresponding to the molecular weight of the protein with
121 hydrolase activity. It is important to note that zymography can only report on a subset of
122 hydrolases: hydrolases must successfully refold after denaturation and have *in vitro*
123 activity in the absence of any co-factors. Because either *LytE* or *CwlO* must be present
124 for viability, we conducted zymograms on the $\Delta 40$, $\Delta 40 \Delta lytE$, and $\Delta 40 \Delta cwlO$ strains
125 (Figure 2A). The $\Delta 40$ strain showed only a single band of hydrolase activity, and this
126 band disappeared upon deletion of *lytE*. Thus, *LytE* is the only hydrolase detectable via
127 zymography in the $\Delta 40$ strain. We note that, although *CwlO* is also present in $\Delta 40$, we
128 do not expect to detect it by zymography, as previous zymography experiments have
129 suggested that full-length *CwlO* is inactive *in vitro* (16), an effect likely arising from
130 *CwlO*’s auto-inhibitory coiled-coil domain (17).

131 To detect the activity of hydrolases not visible via zymography, we conducted PG
132 profiling of both wild type (WT) cells and the $\Delta 40$ strain (18), allowing us to determine
133 the abundance of hydrolase products in their cell walls (Figure 2B). During sample
134 preparation for PG profiling, we omitted teichoic acid removal to prevent sample
135 degradation: normally, teichoic acids are removed by treatment with a strong acid (18,
136 19), but this treatment also caused some hydrolysis of amide bonds in the PG,

137 complicating our analysis (Figure S1). The omission of the teichoic acid removal step
138 has been previously shown not to affect the results of PG profiling other than the
139 disappearance of phosphate-containing muropeptides, species not included in our
140 analysis (18).

141 Our PG profiling assay has limitations: as PG profiling relies on muramidase
142 digestion to yield soluble muropeptides for HPLC analysis, we could not use this assay
143 to detect hydrolases with muramidase activity. Likewise, D,D-endopeptidases cannot be
144 detected by PG profiling, as they produce products that are indistinguishable from
145 unmodified PG.

146 We compared the relative abundance of different PG hydrolase products in the
147 $\Delta 40$ and WT strains (Figure 2B). The $\Delta 40$ strain showed an absence of amidase activity
148 and a strong reduction of glucosaminidase activity, indicating that these classes of
149 hydrolases had been successfully reduced in the $\Delta 40$ strain. The residual
150 glucosaminidase activity could represent A) a yet unknown minor glucosaminidase with
151 a novel fold or B) sample degradation during PG purification. We observed an increase
152 in D,L-endopeptidase activity in the $\Delta 40$ strain, an expected result given $\Delta 40$ retains the
153 D,L-endopeptidases LytE and CwlO. In agreement with previous work (18), L,D-
154 endopeptidase activity was not detected in any strain.

155 Unexpectedly, the $\Delta 40$ strain also showed an increase in LTG activity (Figure
156 2B). We found that this remaining LTG activity required SweC, a recently characterized
157 membrane-bound CwlO co-factor homologous to the *E. coli* LTG MltG (20) (Table 1).
158 Removing *sweC* from the $\Delta 40$ strain eliminated all detectable LTG activity (Figure 2B).
159 However, as SweC's catalytic PG hydrolase domain is cytoplasmic (21), SweC cannot

160 target the cell wall directly and thus is unlikely to be the direct cause of the residual LTG
161 activity. *B. subtilis* also contains a second membrane protein homologous to MltG,
162 called YrrL. YrrL's catalytic domain is predicted to be extracellular, although YrrL is
163 likely too small to reach far enough into the cell wall space to directly participate in cell
164 wall expansion. Rather, YrrL may instead be involved in the insertion of new cell wall
165 material, as previously proposed for MltG in *E. coli* (20). If YrrL is indeed the source of
166 the residual LTG activity, its activity must require SweC; perhaps YrrL is activated by
167 interactions with SweC or SweD, similar to what has been seen for CwlO (21).

168 **Cell growth and morphology are similar in the $\Delta 40$ strain relative to wild type.**

169 We next characterized the growth rate of the $\Delta 40$ strain. The $\Delta 40$ strain grew at
170 the same rate as WT cells in both rich (CH) and synthetic media (S7₅₀ with glucose and
171 amino acids, see Methods for details) (Figure 3A and B). This indicates that the activity
172 of LytE and CwlO together are sufficient for normal cell growth. To investigate the
173 individual effects of each of these enzymes, we made knockouts of *lytE* and *cwlO* in
174 both WT and $\Delta 40$ backgrounds. $\Delta 40 \Delta lytE$ and $\Delta 40 \Delta cwlO$ both exhibited a ~10%
175 reduction in growth rate compared to $\Delta 40$. We observed cell lysis in both $\Delta 40 \Delta lytE$ and
176 $\Delta 40 \Delta cwlO$ strains in phase-contrast images, which could contribute to their slower
177 growth rates as measured in bulk by OD₆₀₀ (Figure 3D). On the other hand, $\Delta lytE$ or
178 $\Delta cwlO$ in a WT background had the same growth rate as WT. This suggests either that
179 in WT cells, other hydrolases participate in but are not required for growth, or that LytE
180 and CwlO are not being expressed highly enough to maintain normal growth on their
181 own in the $\Delta 40$ background.

182 Next, we quantified cell dimensions in these strains using FM 5-95 membrane
183 stain. $\Delta 40$ cells had a WT cell length and were 3% wider ($p < 0.0001$, unpaired t-test with
184 Welch's correction). $\Delta cw/O$ cells were 13% wider and 18% shorter than WT cells, a
185 phenotype that persisted in the $\Delta 40 \Delta cw/O$ strain ($p < 0.0001$ for all comparisons:
186 unpaired t-test with Welch's correction for width comparisons, Mann-Whitney test for
187 length comparisons). $\Delta 40 \Delta cw/O$ cells were less able to control their width as compared
188 to $\Delta 40$ cells, having a 1.5x wider cell width distribution (7.5% vs. 11.33% coefficient of
189 variation, F test $p < 0.001$). In contrast, $\Delta lytE$ cells were only slightly wider than WT cells
190 (1%, $p < 0.0001$, unpaired t-test with Welch's correction), and $\Delta 40 \Delta lytE$ cells were
191 slightly narrower (1%, $p < 0.0001$, unpaired t-test with Welch's correction) than $\Delta 40$ strain
192 alone, with a slight decrease in length (Figure 3C, $p < 0.0001$, Mann-Whitney test). Thus,
193 Cw/O appears to be involved in cell width maintenance, as removing cw/O causes
194 changes in cell width both in $\Delta 40$ and WT backgrounds, consistent with previous reports
195 (12). Furthermore, given that removing cw/O increases the cell width coefficient of
196 variation in the $\Delta 40$ background but does not increase the width variation when deleted
197 from WT cells, other hydrolases must also have a role in width homeostasis.

198 **$\Delta 40$ cells do not turn over their cell wall**

199 Hydrolases are involved in cell wall turnover, where old PG material is shed from
200 the cell wall (22). We measured the rate of cell wall turnover of both WT and $\Delta 40$ cells
201 using pulse-chase labeling with the radioactive cell wall precursor $^3\text{H}-\text{N}$ -
202 acetylglucosamine ($^3\text{H}-\text{GlcNAc}$). This revealed that, while WT cells turn over PG at a
203 rate of about 50% per generation in agreement with previous work (22), turnover in $\Delta 40$
204 strain was absent, with a rate not significantly different from zero ($p = 0.4837$) (Figure

205 3A). These results demonstrate that LytE and CwlO, the only identifiable remaining
206 hydrolases in the $\Delta 40$ strain, do not contribute to cell wall turnover. Furthermore, this
207 data reveals that cell wall turnover is not an essential process: cell growth only requires
208 the cleavage of bonds so the cell can expand.

209 As hydrolases have been shown to be involved in the regulation of cell wall
210 thickness (23), we measured the cell wall thickness of the $\Delta 40$ strain by transmission
211 electron microscopy (TEM), finding it was not significantly different from WT ($p=0.1382$)
212 (Figure 3B). This suggests that cell wall turnover has no impact on cell wall thickness
213 and that none of the 40 hydrolases removed in the $\Delta 40$ strain are responsible for cell
214 wall thickness regulation. Given previous studies have demonstrated hydrolases
215 regulate cell wall thickness, the unchanged cell wall thickness thicknesses observed in
216 our $\Delta 40$ demonstrate that LytE and CwlO are the hydrolases controlling cell wall
217 thickness, as these hydrolases are the only non-integral membrane hydrolases
218 remaining.

219 **$\Delta 40$ $\Delta cwlO$ cells are sensitive to various stresses, including ionic stress**

220 Although the $\Delta 40$ strain grows normally under our standard lab conditions, we
221 wondered whether the absence of so many hydrolases would sensitize cells to stress
222 conditions. We used a spot dilution assay to measure the viability of our strains under a
223 variety of stress conditions: temperature, ionic stress, pH, and osmotic pressure (Figure
224 5). In all conditions, including our control (37°C), $\Delta 40$ cells had fewer CFUs than WT.
225 This is expected because $\Delta 40$ cells grow in long chains, and thus cells are cannot
226 readily separate into individual CFUs; we do not believe that this reflects an overall
227 change in viability because $\Delta 40$ grows at the same rate as WT (Figure 3). In all stress

228 conditions $\Delta 40$ cells were similarly viable to WT cells, as were $\Delta lytE$, $\Delta cwlO$, and $\Delta 40$
229 $\Delta lytE$ cells. However, $\Delta 40$ $\Delta cwlO$ cells were susceptible to multiple stresses, including
230 low pH, low temperature, and ionic stress.

231 We were particularly intrigued by the susceptibility of $\Delta 40$ $\Delta cwlO$ to Mg^{2+} . Mg^{2+} is
232 coordinated between PG and teichoic acids (24), and this Mg^{2+} binding is thought to
233 give structural stability to the cell wall (25, 26). High levels of Mg^{2+} are often protective
234 against cell wall perturbations, including knockouts of hydrolases, PBPs, or components
235 of the rod complex (10, 27); thus, the Mg^{2+} sensitivity of the $\Delta 40$ $\Delta cwlO$ strain seemed
236 counterintuitive. Our experiments indicated $\Delta 40$ $\Delta cwlO$ cells were sensitive to both Ca^{2+}
237 and Mg^{2+} ; growth was inhibited by the addition of 10 mM $MgCl_2$, 10 mM $MgSO_4$, and 10
238 mM $CaCl_2$, but not by the addition of 20 mM NaCl, suggesting that the growth inhibition
239 was not due to changes in ionic strength or chloride ions. We did observe growth
240 inhibition due to ionic stress at far higher salt concentrations (500 mM NaCl). Notably,
241 cells were not sensitive to an equivalent osmotic stress (1M sorbitol), indicating the
242 sensitivity is to ionic stress, not osmotic.

243 As $\Delta cwlO$ mutants in the WT background were Mg^{2+} insensitive, we sought to
244 identify which hydrolases caused cells to be sensitive to Mg^{2+} when they were removed.
245 To find these hydrolases, we returned to intermediate strains used to construct the $\Delta 40$
246 strain, which are missing subsets of hydrolases. We transformed a $cwlO$ knockout into
247 these intermediate strains, then screened these crosses for the same small colony
248 phenotype and the Mg^{2+} sensitivity seen in the $\Delta 40$ $\Delta cwlO$ strain. This identified two
249 genes: *yabE* and *ydjM*. Notably, during construction of the $\Delta 40$ strain, we had noticed
250 that *yocH* seemed significant – at several intermediate verification steps, a WT copy of

251 *yocH* had reintegrated itself. Furthermore, a $\Delta ydjM \Delta yocH \Delta cwlO$ mutant was previously
252 demonstrated to be sick, with short and sometimes anucleate cells (10). Because *yabE*,
253 *ydjM*, and *yocH* have similar hydrolase domains, and because *yocH* and *ydjM* had been
254 identified previously to be involved in a synthetic sick interaction with *cwlO*, we
255 additionally tested whether the removal of *yocH* contributed to the $\Delta 40 \Delta cwlO \text{Mg}^{2+}$
256 sensitivity phenotype, and found that it did.

257 In total, we identified three genes, *yabE*, *ydjM*, and *yocH*, whose absence in a
258 $\Delta cwlO$ background caused the Mg^{2+} sensitivity: A $\Delta yabE \Delta ydjM \Delta yocH \Delta cwlO$ strain
259 showed a similar stress profile to $\Delta 40 \Delta cwlO$, including sensitivity to MgCl_2 and CaCl_2
260 (Figure 6A). *yabE*, *ydjM*, and *yocH* are 3 uncharacterized RlpA-like superfamily domain-
261 containing proteins expressed during exponential growth. Like *lytE* and *cwlO*, *yocH* and
262 *ydjM* are in the *waR* regulon, while *yabE* is regulated by *sigA* (Table 1). All are likely
263 lytic transglycosylases: *yocH* has been shown to have lytic activity and has homology to
264 the *E. coli* lytic transglycosylase *mltA* (28), and all three share a similar catalytic domain.
265 Because *yabE*, *ydjM*, and *yocH* all contain a RlpA-like protein domain, we refer to these
266 genes collectively as RLPAs, and to the triple deletion of all three genes as Δ RLPAs.

267 **LytE is inhibited by Mg^{2+} *in vitro* and *in vivo*, and RLPAs suppress Mg^{2+} lethality *in*
268 *vivo***

269 Finally, we sought to identify the source of Mg^{2+} growth inhibition in the Δ RLPAs
270 $\Delta cwlO$ background. Because LytE is essential in the absence of CwlO, we hypothesized
271 that the sensitivity of the $\Delta 40 \Delta cwlO$ strain to Mg^{2+} (and, by extension, the sensitivity of
272 the Δ RLPAs $\Delta cwlO$ strain to Mg^{2+}) could be explained by Mg^{2+} inhibition of LytE. To
273 investigate this, we first characterized the response of $\Delta cwlO$ cells to the removal of

274 LytE. We constructed an otherwise wildtype strain with *cwlO* knocked out and *lytE*
275 under inducible control and monitored its growth by time-lapse phase-contrast
276 microscopy. When *lytE* was induced, cell growth was normal (Movie S1). When *lytE*
277 induction was removed, cell growth initially slowed, followed by a period of 'stuttery'
278 growth, where elongating cells intermittently shrank while showing accompanying
279 fluctuations in their phase contrast signal (Movie S2). Ultimately, cells lysed about 1-2
280 doubling times after the removal of *lytE* induction as previously observed (10, 12). Next,
281 we performed the same imaging in the Δ RLPAs Δ *cwlO* strain after the addition of 10
282 mM MgCl₂ and observed the same 'stuttery' phenotype, suggesting that LytE function
283 might be inhibited by Mg²⁺ (Movie S4). Without the addition of Mg²⁺, cell growth of the
284 Δ RLPAs Δ *cwlO* strain was normal (Movie S3). In WT cells or Δ *cwlO* cells, the presence
285 of Mg²⁺ has no effect on cell viability or growth – growth is only inhibited in the absence
286 of the RLPAs. Thus, the RLPAs appear to allow LytE to maintain its activity in the
287 presence of Mg²⁺.

288 To test whether LytE activity is directly inhibited by Mg²⁺, we performed
289 zymography with the addition of Mg²⁺ to the renaturation buffer on the Δ 40 Δ *cwlO* strain,
290 where LytE activity is easy to detect as it is the only remaining band (Figure 2A).
291 Indeed, LytE activity was strongly reduced in the presence of 25 mM MgCl₂ (Figure 6B).
292 Additionally, we reasoned that if the Mg²⁺-sensitivity phenotype was due to direct
293 inhibition of LytE by Mg²⁺, increasing the levels of LytE should protect cells from death
294 by increasing the total amount of LytE activity. Indeed, overexpression of LytE allowed
295 cells to survive in the presence of higher levels of Mg²⁺, although 100 mM MgCl₂ still
296 inhibited growth (Figure 6C).

297 Thus, we conclude that LytE activity is inhibited by Mg²⁺ both *in vivo* and *in vitro*.
298 Furthermore, our data indicates that the RLPAs allow LytE to maintain normal function
299 in the presence of Mg²⁺, though the specific mechanism is unclear. Whether the RLPAs
300 act directly or indirectly on LytE remains to be determined, but we anticipate that the
301 RLPAs interact with and activate LytE similar to what has been observed for the
302 *Mycobacterium smegatis* hydrolases RipA and RpfB: RipA's C-terminus (containing a
303 NLPC/P60 domain like LytE) interacts with RpfB's RlpA-like LTG domain (29), and RipA
304 and RpfB have synergistic activity *in vitro* (30). By analogy, LytE's catalytic NLPC/P60
305 domain may interact with the RlpA-like domains in YabE, YdjM, and YocH, leading to
306 increased LytE activity, allowing LytE to continue to function in the presence of Mg²⁺.
307 The Δ RLPAs Δ cw/O strain also has increased sensitivity to ionic stress and low
308 temperatures, suggesting RLPAs might stimulate LytE activity under those conditions as
309 well.

310 **DISCUSSION**

311 Bacterial cell growth requires the action of PG hydrolases, but previous *in vivo*
312 hydrolase studies have been impeded by their diversity and redundancy. We
313 constructed and validated a *B. subtilis* strain lacking all hydrolases potentially involved
314 in cell growth besides LytE and CwIO. These deletions constitute 40 genes in total,
315 representing 10% of secreted proteins and 1% of all genes. The resulting Δ 40 strain
316 enables the investigation of given hydrolases and the cellular contexts in which they
317 function, and in this work, allowed several new discoveries regarding their sufficiency,
318 regulation, and genetic interplay.

319 First, we found that not only is the $\Delta 40$ strain viable, it grows at the same rate as
320 WT cells under standard lab growth conditions. This demonstrates that LytE and CwIO
321 alone can function to expand the cell wall to allow cell growth. Furthermore, as single
322 knockouts of LytE and CwIO in the $\Delta 40$ strain are viable and allow growth (albeit at a
323 slightly reduced rates with some shape defects), this demonstrates *B. subtilis* requires
324 only one of these two hydrolases to grow.

325 Second, the $\Delta 40$ strain allowed us to discover a yet-to-be-identified LTG which
326 requires SweC for its activity in the $\Delta 40$ strain. Given that the only remaining candidate
327 LTG we identified in the $\Delta 40$ strain is YrrL, it is likely that SweC is required for YrrL
328 activity. As CwIO activity is dependent on SweC, and SweC forms a complex with
329 SweD, FtsE, and FtsX (21), YrrL might be an additional member of this complex, and
330 SweCD/FtsEX might regulate both YrrL and CwIO. These experiments demonstrate
331 how the $\Delta 40$ strain can be used to interrogating the regulation or direct biochemical
332 activity of any other *B. subtilis* hydrolase: as the majority of cell wall hydrolase activity is
333 removed in the $\Delta 40$ strain, PG profiling can be used to identify the specific activities of
334 individual hydrolases reintroduced back into the $\Delta 40$ background.

335 Likewise, our minimal hydrolase strain allowed us to show that RlpA-like lytic
336 transglycosylases enhance LytE activity *in vivo* and that this enhancement can be
337 important for growth under conditions where LytE activity is inhibited, including the
338 presence of divalent cations, ionic stress, and cold. Although the mechanism for LytE
339 enhancement is unclear, we hypothesize that RlpAs stimulate LytE activity via a direct
340 interaction, as has been observed in *M. smegmatis* (30). Synthetic lethal or synthetic
341 sick interactions are straightforward to identify and characterize in the $\Delta 40$ strain, giving

342 a useful tool to interrogate genetic relationships between different hydrolases or
343 between hydrolases and other genes of interest – such as those involved in cell wall
344 synthesis.

345 Surprisingly, the $\Delta 40$ strain grows normally under standard lab conditions. What,
346 then, is the function of these 40 hydrolases, and why does *B. subtilis* encode so many
347 of them? This multitude of hydrolases likely arises from the fact that hydrolases are
348 involved in other processes aside from cell growth such as sporulation (4) and cell
349 motility (31). Additionally, some hydrolases might be only be needed under nutrient
350 conditions not tested here, such as during phosphate limitation where teichoic acids are
351 not produced, where cells may require hydrolases that are not regulated by teichoic
352 acids (32–34). Finally, these other hydrolases may be important during non-exponential
353 growth states such as during stationary phase, where the recycling of cell wall turnover
354 products, lacking in the $\Delta 40$ strain, reduces cell lysis (35). Thus, a broader screen of the
355 sensitivity of the $\Delta 40$ strain in different nutrient and environmental conditions will allow
356 researchers to determine which hydrolases are useful for which conditions.

357 In summary, the $\Delta 40$ minimal hydrolase strain provides a powerful experimental
358 background to investigate the function, regulation, and interplay of hydrolases,
359 improving our understanding of precisely how these enzymes conduct their cellular
360 tasks. In the future, individual hydrolases can be reintroduced into the $\Delta 40$ strain to
361 investigate their specific activities in the absence of confounding contributions from the
362 other 39 genes. Using the $\Delta 40$ strain, PG profiling can determine the biochemical
363 activity of hydrolases. Uncovering synthetic genetic interactions between hydrolases
364 and other genes of interest – now easy to do for all 40 hydrolases at once – will allow us

365 to flesh out our understanding of bacterial cell growth. Understanding the function of cell
366 wall hydrolases is essential for a complete understanding of how bacteria grow, and the
367 $\Delta 40$ strain will allow rapid progress to this end.

368 **ACKNOWLEDGEMENTS**

369 We would like to thank Carl Wivagg, Alex Bisson, Matthew Holmes, Ferran
370 Garcia-Pichel, and Susanne Neuer for helpful advice and discussions, and Georgia
371 Squyres for both helpful advice, discussions, and reading of the manuscript. This work
372 was funded by National Institutes of Health Grants DP2AI117923-01 to ECG, as well as
373 support from the Volkswagen Foundation. This work was supported by the NSF-Simons
374 Center for Mathematical and Statistical Analysis of Biology at Harvard (1764269) and
375 the Harvard Quantitative Biology Initiative. Some work was performed at the Center for
376 Nanoscale Systems at Harvard University, supported by NSF ECS-0335765. HPLC-MS
377 work was performed by the Harvard Center for Mass Spectrometry Core Facility, and
378 sequencing was performed by the Bauer Core Facility at Harvard University.

379

380 **METHODS**

381 **Strains, media, and growth conditions**

382 Glycerol stocks stored at -80°C were struck onto LB agar plates. For strain
383 bSW61 (*lytE::pSpac-lytE*, Δ *cwlO*), these plates were additionally top spread with 1 mM
384 IPTG. After incubation overnight at 37°C, colonies were inoculated into 1 mL media and
385 grown on a roller at 37°C until they reached mid-exponential-phase growth (OD ~0.2).
386 Cells were diluted 1:10 in prewarmed media and again grown until mid-exponential
387 phase; this process was repeated until the start of the experiment. Alternately, a 1:10
388 dilution series of cells were grown overnight in media on a roller at 25°C. The next day,
389 the culture whose OD600 was nearest to 0.2 was diluted 1:10 and grown in media at
390 37°C as above. S7₅₀AA indicates S7₅₀ media with added amino acids as in (36).

391 **Strain construction**

392 The wild type strain for this work was *B. subtilis* PY79. Strains used in this study
393 are listed in Table S3. Constructs were created using Gibson assembly of PCR
394 products. Linear Gibson assembly products were transformed into competent *B. subtilis*.
395 Transformants were selected on LB plates containing the appropriate antibiotic. The
396 resulting strains were verified by PCR. Constructs used in this study, as well as any
397 plasmids used to create each construct, are listed in Table S3. Primers, along with
398 strain construction details, are listed in Table S4. Resistance cassettes and promoters
399 were amplified from purified plasmids (listed in Table S3), all other fragments were
400 amplified from WT gDNA.

401 To combine knockouts, the parent strain was transformed with PCR product
402 containing the locus (homology arms + resistance cassette) or gDNA as indicated. All

403 resistance cassettes used have loxP sites flanking the cassette, allowing Cre-based
404 loop out using plasmid pDR244 (a gift from David Rudner) of the cassette to yield a
405 markerless knockout. Removal of the plasmid was accomplished by shifting streaks to
406 42°C where it cannot be replicated due to a temperature-sensitive origin. Successful
407 loop outs were confirmed via loss of antibiotic resistance.

408 **PHMMER search**

409 We used pfamscan version 1.6 to search the *B. subtilis* 168 and PY79 proteomes
410 for all pfam domains using default parameters: e-value: 0.01, significance E-values [hit]:
411 0.03, significance bit scores [sequence]: 25, significance bit scores [hit]: 22. We then
412 filtered the list for domains of interest, found in Table S3, and removed any cytoplasmic
413 proteins.

414 **PG purification, HPLC conditions, and MS data analysis**

415 PG purification was conducted as in (37), with the addition of a protein digestion
416 step. Cells were grown in a baffled flask to an OD of ~0.5 in 50 mL of CH media. Cells
417 were mixed 50/50 with 50 mL of boiling 10% SDS and boiled for 15 min in a water bath,
418 then pelleted at 5000x g and washed 5x with ddH₂O. Cells were then resuspended in 2
419 mL DNase/RNase buffer (10 mM Tris pH 7.5, 2.5 mM MgCl₂, 0.5 mM CaCl₂) with 20 uL
420 DNase I and 20 uL RNase A, then incubated overnight at 37°C and washed 3x with
421 ddH₂O to remove nucleic acids. Next, cells were resuspended in 2 mL Proteinase K
422 buffer (10 mM Tris pH 7.5, 1 mM CaCl₂) with 20 uL Proteinase K, incubated overnight at
423 45C, and washed 3x with ddH₂O to remove proteins. Purified PG at this point was
424 ready for use in zymography as substrate. For PG profiling, the PG was resuspended in
425 12.5 mM NaHPO₄ pH 5.5 with 5000 units of mutanolysin and digested overnight (16h)

426 at 37°C on a roller to yield soluble muropeptides. Undigested material was pelleted by
427 spinning at 16000x g for 5 mins and the supernatant was transferred to a new tube.
428 Soluble muropeptides were reduced with sodium borohydride (1 mg/mL) for 30 mins
429 and the reaction was stopped by adding 10 uL 30% phosphoric acid. The pH was
430 adjusted to 4-6 using NaOH, and the reduced soluble muropeptides were characterized
431 by high-resolution LC-MS operating in both positive and negative mode. Soluble
432 reduced muropeptides were separated on a Waters column with the following method:
433 column temperature 52°C, flow rate 0.5 mL/min, linear gradient of solvent A (0.1%
434 formate) to 10% solvent B (acetonitrile + 0.1% formate) over 80 min.

435 Mass spectrometry data was analyzed using a custom MATLAB program,
436 available at https://bitbucket.org/garnerlab/wilson_40_2020/. For each compound, at
437 each time point, theoretical m/z values were compared with observed m/z with a cutoff
438 of 0.05 Da. Charge was determined from the isotopic distribution. To be considered a
439 match, each compound needed to have the appropriate charge, isotopic distribution,
440 and m/z value, and we required that a compound be present on both the positive and
441 negative scans. We filtered out any compounds that were less than 1% the abundance
442 of the most abundant species at each time point. Finally, if multiple compounds were
443 found at the same time point, the less abundant ones were filtered out.

444 **Zymography**

445 Zymography was performed as in (38), but using PG prepared as detailed under
446 PG purification. Purified PG was sonicated at max power on a sonicator for 2 min. A
447 15% polyacryamide bis-Tris gel was prepared with the purified PG. 50 mL of cells were
448 grown in a baffled flask with shaking to an OD of ~0.5. Cells were concentrated by

449 centrifugation at 5000x g for 5 min, resuspended in 1 mL of supernatant, then further
450 concentrated by centrifugation at 16,000x g for 2.5 min. All media was aspirated, the
451 centrifuge tube turned around, and centrifuged again at 16,000x g for 2.5 min. Cell wall
452 binding proteins were extracted by resuspending the pellet in an equal volume of 8%
453 SDS. This mixture was heated at 95°C for 2 min then centrifuged at 16,000x g for 2.5
454 min. The supernatant was transferred to a new tube, 6x SDS-PAGE Laemmli buffer was
455 added, and the extracted proteins were loaded on the gel. Gels were run in SDS-MOPS
456 buffer at constant amps (20 mA) for 4-6 hours, then washed with ddH₂O, and placed in
457 renaturation solution (1% Triton-X 100, 25 mM Tris pH 7.5). The gel was incubated for
458 16h at 37C with gentle shaking, then stained 4h with a methylene blue staining solution
459 (1% methylene blue, 0.1% KOH), washed several times with ddH₂O, and destained
460 overnight in 500 mL ddH₂O with gentle shaking. Gels were photographed using a
461 Canon SC1011 scanner in a standard plastic page protector.

462 **Growth rates**

463 Cells were grown to an OD of ~0.3-0.5 on a roller drum at 37°C and diluted to an
464 OD of ~0.05 in baffled flasks in a water bath shaker at 37°C. Samples were withdrawn
465 at 5 min intervals and OD was measured in a plastic cuvette using a Biowave Cell
466 Density Meter CO8000. T vs. OD curves were fit to a single exponential ($OD = Ae^{BT}$) to
467 extract a growth rate (B).

468 **Turnover rates**

469 Cells were grown in S7₅₀AA to an OD of ~0.3-0.5 on a roller drum at 37°C and
470 diluted to an OD of ~0.05 in 3 mL of prewarmed media containing 1 uCi of ³H-N-
471 acetylglucosamine (specific activity: 20 Ci/mmol, American Radiolabeled Chemicals,

472 Inc., St. Louis, MI, USA) in 25mm wide test tubes in a water bath shaker at 37°C. Cells
473 were labeled for 3 generations (OD ~0.4), then filtered, washed twice with prewarmed
474 media, and resuspended in 25 mL of prewarmed media. Samples were withdrawn at 5
475 min intervals and OD was measured in a plastic cuvette using a Biowave Cell Density
476 Meter CO8000. Samples were mixed 50:50 with ice cold 10% TCA + 20 mM unlabeled
477 GlcNAc, incubated on ice for 10 mins, then filtered and washed. Filters were dried,
478 resuspended in Ultima Gold LSC cocktail (PerkinElmer, Waltham, MA, USA) and
479 radioactivity was measured using a scintillation counter (Tri-Carb 2100 TR,
480 PerkinElmer). Counts/min vs. OD plots were fit to a single exponential ($CPM = Ae^{BT}$) to
481 extract a turnover rate (B).

482 **Cell dimensions**

483 Cells were grown to an OD of ~0.3-0.5 in a water bath shaker at 37°C. 1 mL of
484 culture was stained with FM 5-95 and concentrated to 100 uL by centrifugation at 2000x
485 g and resuspension. 5 uL of concentrated cells were spotted under 2% agarose pads in
486 CH containing 0.5 ug/mL FM 5-95. Images were collected on a Nikon Ti-E microscope
487 using a Nikon CFI Plan Apo DM Lambda 100X Oil objective, 1.45 NA, phase ring Ph3
488 using an ORCA-Flash4.0 V2 sCMOS camera. Analysis was performed using
489 Morphometrics v1.1 (39). Zero length or width cells were discarded, as well as any cells
490 with width greater than length. Outliers were removed using Graphpad Prism ROUT
491 with default parameters (1%).

492 **Electron microscopy and cell wall thickness**

493 Electron microscopy was performed as in (40). Briefly, exponentially growing
494 cells were fixed in 100 mM MOPS buffer pH 7 containing 2% paraformaldehyde, 2.5%

495 gluteraldehyde, and 1% dimethyl sulfoxide overnight at 4°C, washed, stained with 2%
496 osmium tetroxide in 100 mM MOPS for 1 hr, washed, and stained overnight with 2%
497 uranyl acetate. The cells were then dehydrated and embedded in Embed 812 resin.

498 Serial ultrathin sections (80 nm) were cut with a Diatome diamond knife (EMS,
499 PA) on a Leica Ultracut UCT (Leica Microsystems, Germany) and collected on 200-
500 mesh thin-bar formvar carbon grids. Sections were imaged on a Hitatchi HT7800
501 transmission electron microscope.

502 Images collected were segmented (inner cell wall, outer cell wall) using DeepCell
503 (41), and cell wall thickness was measured using a custom Matlab program available at
504 https://bitbucket.org/garnerlab/wilson_40_2020/. Briefly, the distance between the inner
505 and outer cell wall was measured every 10 nm along a user-defined line, and the mean
506 of that measurement was taken to be the cell's cell wall thickness.

507 **Spot dilution assay**

508 Cells were grown to an OD of 0.5 and diluted 1:10 into 100 uL of LB media in a
509 96 well plate. A 1:10 serial dilution series was made, and 3 uL of each dilution was
510 spotted onto the plate using a multichannel pipettor. The plates were allowed to dry and
511 incubated in at 37°C or 42°C as indicated for 18h. Plates incubated at 25°C or 18°C
512 were left for additional time (24h and 48h, respectively). Plates were photographed
513 using a Canon SC1011 scanner with the lid open.

514 For the colony morphology assay in Figure 1, this protocol was followed except
515 that a colony of cells of each strain were simply resuspended in 100 uL of media using a
516 toothpick (omitting the broth culture step).

517 **Data availability**

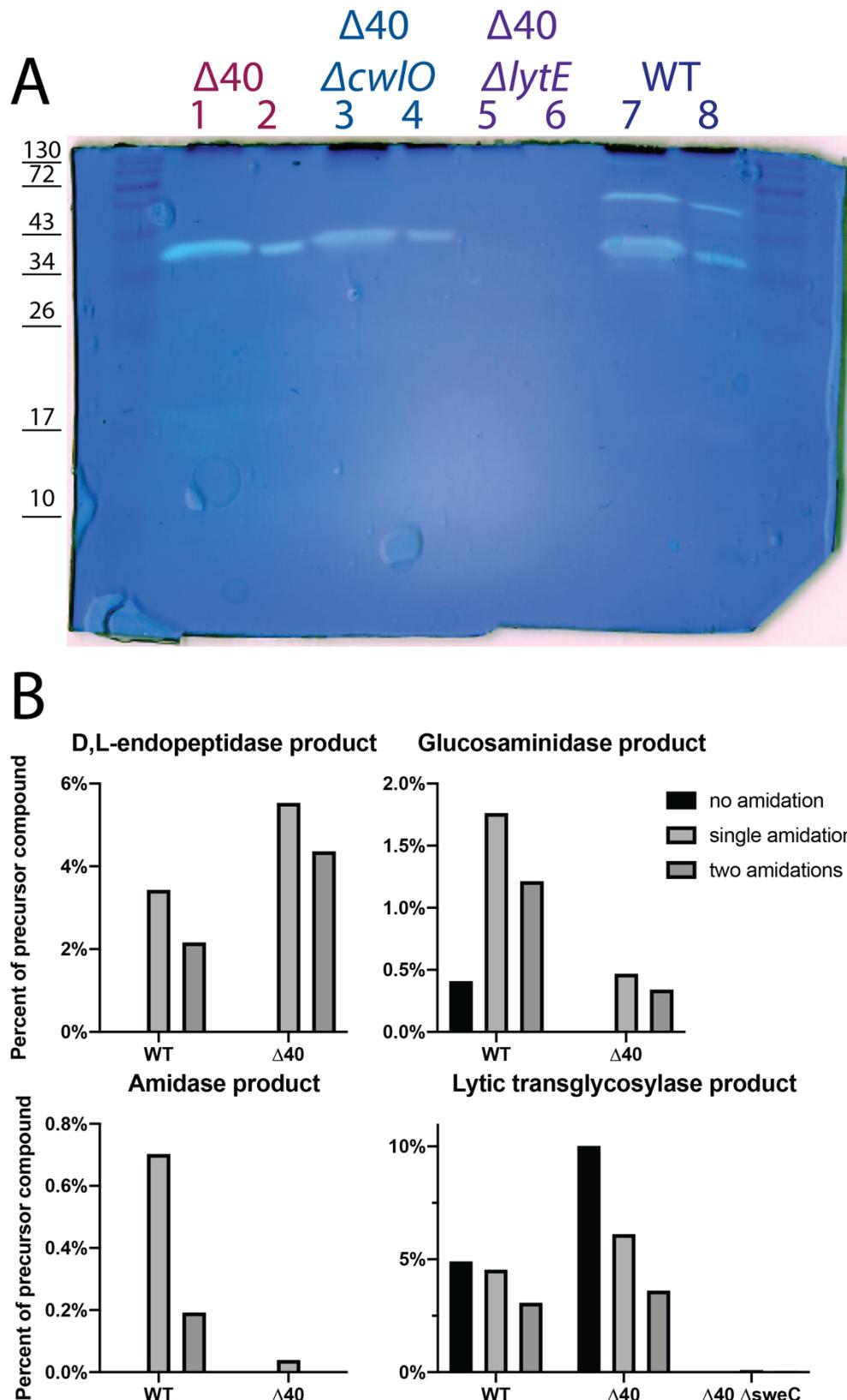
518 All custom software used in this work is available at
519 https://bitbucket.org/garnerlab/wilson_40_2020/. Raw HPLC-MS data for PG profiling
520 experiments available from <ftp://massive.ucsd.edu/MSV000086886>
521 (doi:10.25345/C5R21D). Raw and error corrected sequencing reads for whole genome
522 sequencing available at <https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA702153>
523 (BioProject PRJNA702153).
524
525

Name (alias)	PY79	UniProt	Locus tag	Regulons	e-value	References	Activity
AMIDASE							
Amidase_2 (PF01510)							
cwlA	Y/KO	P24808	BSU25900		5.60E-19	(42–44)	
cwlH (yqeE)	Y/KO	P54450	BSU25710	gerE^*, sigK^*	7.50E-25	(45)	
xlyA	Y/KO	P39800	BSU12810	xpf*	1.00E-23	(46)	
xlyB (yjpB)	Y/KO	O34391	BSU12460		2.20E-18	similarity; xlyA	
blyA (yomC)	N	O31982	BSU21410		2.30E-18	(47)	
Amidase_3 (PF01520)							
cwlC	Y/KO	Q06320	BSU17410	sigK^*	3.4E-44	(48, 49)	
cwlD	Y/KO	P50864	BSU01530	lexA^*, sigE^*, sigG^*	1.10E-48	(19, 50, 51)	
lytC (cwlB)	Y/KO	Q02114	BSU35620	sigA^*, sigD^*, sinR^*, slrR^*, yvrHB^*	6.4E-54	(7, 49, 52–54)	
yqil	Y/KO	P54525	BSU24190	sigA^*	5.50E-56	(55)	
yrvJ	Y/KO	O32041	BSU27580	sigH^	2.30E-44	similarity; lytC	
Amidase_6 (PF12671)							
yhbB (ygaQ)	Y/KO	O31589	BSU08920	sigE^*	1.50E-39	uncharacterized	
yjcM	Y/KO	O31635	BSU11910	abrB^*, sigD^*	1.30E-23	uncharacterized	
SpolIP (PF07454)							
spolIP	Y/KO	P37968	BSU25530	sigE^*, sigF^*, sigG^*, spoVT^*	9.70E-79	(56, 57)	amidase, DDEP
Beta-lactamase (PF00144)							
pbpE	Y/KO	P32959	BSU34440	sigW^*	3.40E-61	(58)	not shown
pbpX	Y/KO	O31773	BSU16950	sigM^*, sigV^*, sigW^, sigX^*	7.90E-54	similarity; pbpE	
amiE (ybbE)	Y	O05213	BSU01670	murR^*	7.40E-76	does not hydrolyse PG (14)	
N-ACETYLGLUCOSAMIDASE/LYTIC TRANSGLYCOSYLASE							
Glyco_hydro_3 (PF01915)							
nagZ (yzbA, ybbD)	Y	P40406	BSU01660	murR^*	6.50E-131	does not hydrolyse PG (14)	
Glyco_hydro_18 (PF00704)							
yaaH (sleL)	Y/KO	P37531	BSU00160	sigB^*, sigE^*, spoIID^*	1.20E-26	cleaves small fragments (59–61)	
ydhD	Y/KO	O05495	BSU05710	sigE^*	9.60E-30	similarity; yaaH	
ykvQ	Y/KO	O31682	BSU13790	sigK^*	2.50E-23	similarity; yaaH	
yvbX	Y/KO	O32258	BSU34020		1.10E-33	similarity; yaaH	

Glucosaminidase (PF01832)							
lytD (cwlG)	Y/KO	P39848	BSU35780	sigD ^{^*} , sigG ^{^*}	3.30E-11	(7, 62, 63)	
lytG	Y/KO	O32083	BSU31120		6.80E-24	(64)	
3D (PF06725)							
yabE	Y/KO	P37546	BSU00400	sigA ^{^*}	1.80E-22	similarity; yuiC, yocH	probably LTG
yocH	Y/KO	O34669	BSU19210	abrB ^{^*} , sigA ^{^*} , spo0A ^{^*} , walR ^{^*}	3.50E-22	(28)	probably LTG
yuiC	Y/KO	O32108	BSU32070	codY ^{^*} , sigF ^{^*}	9.40E-21	(65)	probably LTG
yorM	N	O31901	BSU20330		7.90E-11	similarity; yuiC, yocH	probably LTG
Hydrolase_2 (PF07486)							
cwlJ (ycbQ)	Y/KO	P42249	BSU02600	sigE ^{^*} , sigK ^{^*} , spoIID ^{^*}	1.60E-18	(66)	probably LTG
sleB (ypeA)	Y/KO	P50739	BSU22930	sigG ^{^*}	1.20E-25	(67–69)	probably LTG
ykvT	Y/KO	O31685	BSU13820	walR [*]	5.80E-28	similarity; sleB, cwlJ	probably LTG
SLT (PF01464)							
xkdO	Y/KO	P54334	BSU12680	xpf [*]	6.20E-20	similarity; cwlQ, cwlP	probably LTG
cwlQ (yjbJ)	Y/KO	O31608	BSU11570	sigD ^{^*}	1.70E-34	(70, 71)	LTG + muramidase
yqbO	Y/KO	P45931	BSU26030		5.70E-24	similarity; cwlQ, cwlP	probably LTG
cwlP (yomi)	Y/KO	O31976	BSU21350		1.80E-32	(72)	muramidase, DDEP
Lysozyme_like (PF13702)							
yocA	Y/KO	O34636	BSU19130		4.30E-59	similarity; CwlT	probably muramidase
cwlT (yddH)	N	P96645	BSU04970	immR [*]	2.10E-42	(73)	muramidase, DLEP
DPBB_1 (PF03330)							
ydjM (yzvA)	Y/KO	P40775	BSU06250	phoP [*] , walR [*]	1.00E-09	similarity; PaRlpA (74)	probably LTG
yoaJ (EXLX1)	N	O34918	BSU18630	fur [*]	2.90E-07	does not hydrolyse PG (75)	
SpolIID (PF08486)							
spolIID (spolIC)	Y/KO	P07372	BSU36750	sigE ^{^*} , spolIID ^{^*}	1.30E-23	(56, 76)	LTG
lytB (cwbA)	Y	Q02113	BSU35630	sigA ^{^*} , sigD ^{^*} , sinR ^{^*} , slrR ^{^*} , yvrHB ^{^*}	3.90E-23	does not hydrolyse PG (77, 78)	
YceG (PF02618)							
yrrL (mltG)	Y	O34758	BSU27370	spo0A ^{^*}	3.20E-90	similarity; EcMltG (20)	probably LTG
sweC (yqzC)	Y	O32023	BSU24940	spo0A ^{^*}	1.40E-07	similarity; EcMltG (20)	

PEPTIDASE							
DL-endopeptidase							
NLPC/P60 (PF00877)							
cwlO (yzkA,yvcE)	Y	P40767	BSU34800	sigA*, walR*	4.40E-29	(16)	DLEP
cwlS (yojL)	Y/KO	O31852	BSU19410	abh^*, abrB^*, ccpA^*, sigD^*, sigH^*	4.70E-29	(11)	DLEP
lytE (papQ, cwlF)	Y	P54421	BSU09420	sigA^*, sigH^*, sigI^*, spo0A^*, walR^*	3.30E-28	(79, 80)	DLEP
lytF (cwlE, ydhD)	Y/KO	O07532	BSU09370	sigD^*, sinR^*, slrR^*	1.40E-28	(81, 82)	DLEP
pgdS (ywtD)	Y	P96740	BSU35860	sigD^*	1.00E-22	does not hydrolyze PG (83)	
ykfC	Y/KO	O35010	BSU12990	codY*	1.80E-29	(84)	DLEP
cwlT (yddH)		P96645	BSU04970	immR*	3.50E-34	(73)	
Peptidase_M14 (PF00246)							
yqgT	Y/KO	P54497	BSU24830		2.70E-27	similarity to B. sphaericus EP1, (85)	probably DLEP
Peptidase_C92 (PF05708)							
yycO	Y/KO	Q45607	BSU40280	sigK^*	5.0E-5		
LD-endopeptidase							
Peptidase_M15 (PF01427)							
cwlK (ycdD)	Y/KO	O34360	BSU02810		3.10E-20	(86)	LDEP
Peptidase_M23 (PF01551)							
lytH (yunA, yutA)	Y/KO	O32130	BSU32340	sigK^*	1.80E-21	(87)	LDEP
spolIQ	Y	P71044	BSU36550	sigF^*	1.00E-24	no evidence for PG hydrolysis	
spolVFA	Y	P26936	BSU27980	sigE^*, spolIID^*	3.40E-12	no evidence for PG hydrolysis	
cwlP (yomi)	N	O31976	BSU21350		1.80E-27	(72)	muramidase, DD-EP

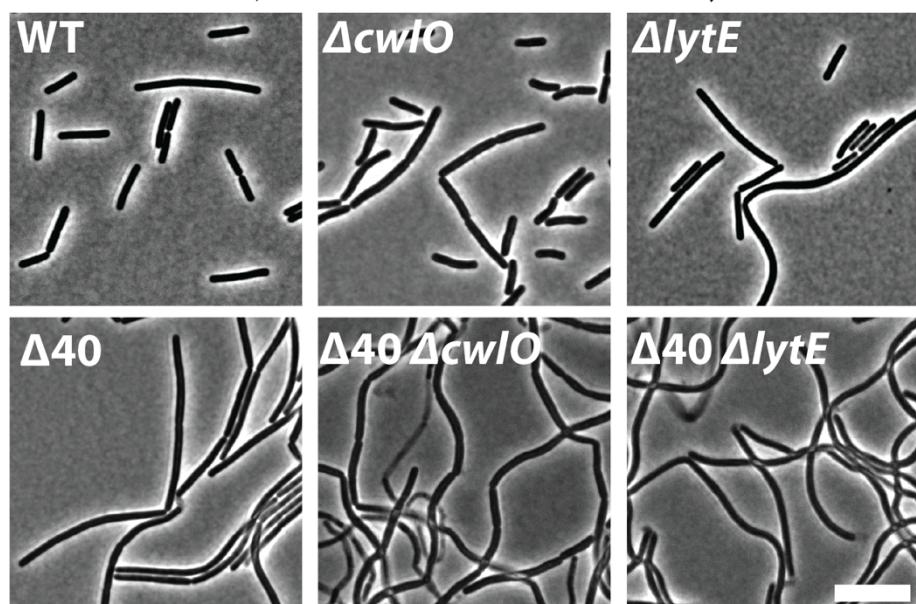
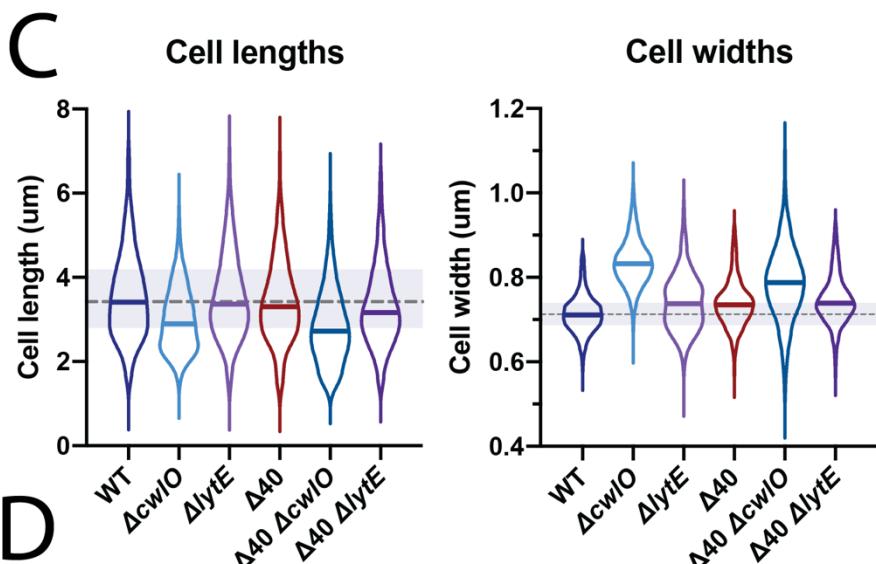
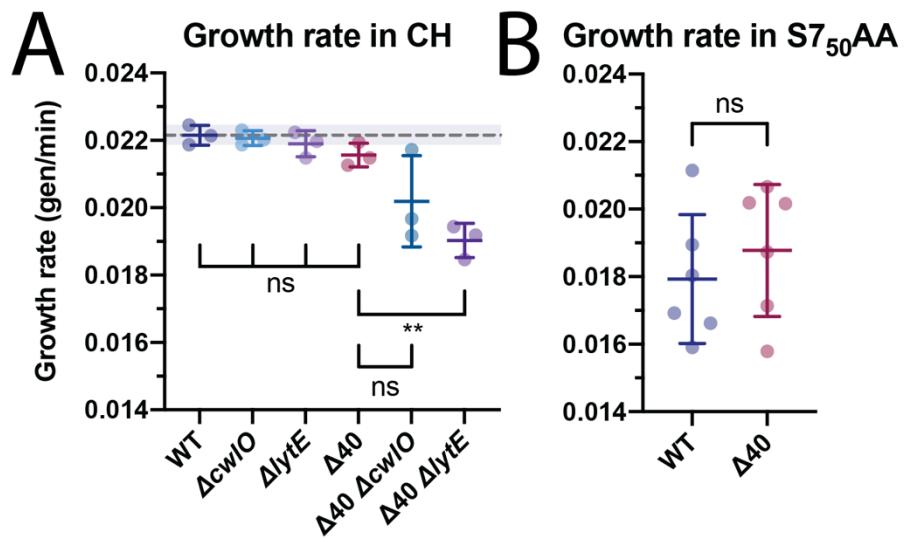
526 **Table 1: List of cell wall hydrolases in *Bacillus subtilis* identified using PHMMER.**


527 Cell wall hydrolases were identified via a PHMMR (13) search with default parameters
528 of the *B. subtilis* subsp. 168 and *B. subtilis* subsp. PY79 proteome for PFAM domains
529 associated with known cell wall hydrolases (Table S2). For each hydrolase, we report its
530 name (and any aliases), whether it is knocked out in the Δ 40 strain (KO) or present in
531 PY79 (Y/N), its UniProt accession number, its locus tag, any reported regulons it is a
532 member of (^ indicates source Faria et al. 2016, * indicates source SubtiWiki), the
533 PHMMR search significance e-value, and any relevant references showing its
534 biochemical activity. Abbreviations: DLEP, D,L-endopeptidase; LDEP, L,D-
535 endopeptidase; LTG, lytic transglycosylase.
536

537

538 **Figure 1: Construction of the $\Delta 40$ strain via sequential knockout and loopout.**

539 Colony morphology of each cloning intermediate for the $\Delta 40$ strain. WT cells were
540 transformed with a series of resistance-cassette-marked knockouts (starting with
541 $\Delta cwlQ$). Periodically, antibiotic resistance cassettes were removed via Cre-loxP
542 mediated loopout (indicated by LO). Arrows indicate sequential integrations (e.g., the
543 strain indicated by $\Delta yocH$ contains $\Delta yocH$ and $\Delta cwlQ$). Dense cell suspensions were
544 spotted and incubated overnight to visualize colony morphology.

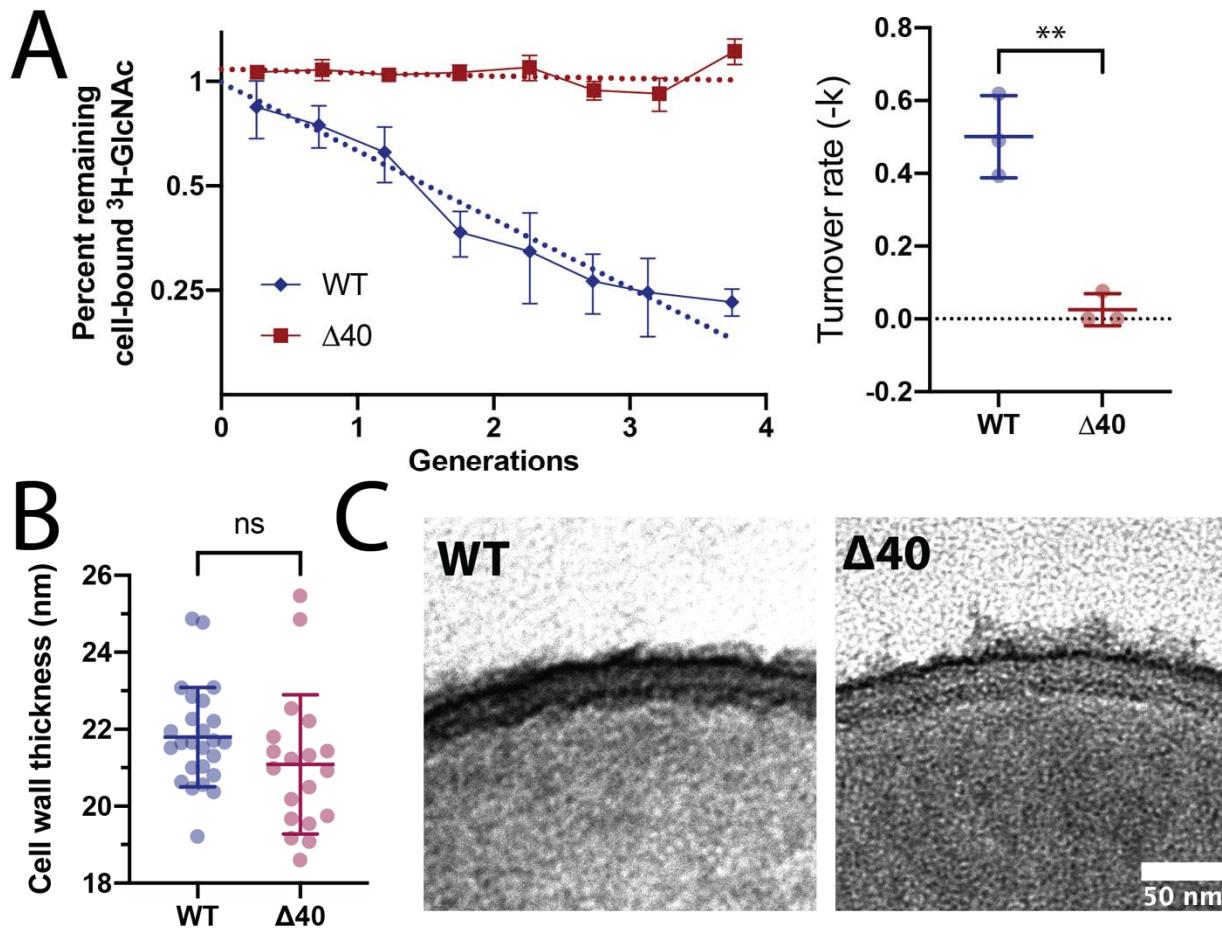
546 **Figure 2: The $\Delta 40$ strain has a substantially reduced cell wall hydrolytic**
547 **complement**

548 **A: Only LytE activity is visible by zymography in the $\Delta 40$ strain.** Zymography
549 (renaturing SDS-PAGE gel using purified *B. subtilis* cell walls as substrate) was
550 performed as described in Methods. The activity of cell wall hydrolases causes clearing
551 of the gel. In each pair of lanes, the first was loaded with 20 μ L of cell wall binding
552 protein extract, and the second with 5 μ L. Several major and minor bands of cell wall
553 hydrolytic activity are visible in the wild type strain (strain PY79, lanes 7 and 8). Only
554 one band of cell wall hydrolytic activity is visible in the $\Delta 40$ mutant (strain bSW431,
555 lanes 1 and 2). This band is still visible when *cwlO* is knocked out in the $\Delta 40$ strain ($\Delta 40$
556 $\Delta cwlO$, strain bSW433, lanes 3 and 4) but disappears in the reciprocal *lytE* knockout
557 ($\Delta 40 \Delta lytE$, strain bSW435, lanes 5 and 6). Thus, this band represents LytE activity.

558 **B: Identification of cell wall hydrolase products in WT and $\Delta 40$ cells by**
559 **peptidoglycan profiling.** Purified cell walls were digested to yield soluble
560 muropeptides which were separated and characterized via HPLC-MS (see Methods for
561 details). The abundance of each cell wall hydrolase product was normalized by the
562 abundance of its precursor compound; each product contains two mDAP residues, and
563 each mDAP can be amidated, so these species were compared separately (for
564 example, the abundance of singly amidated glucosaminidase product was divided by
565 the abundance of singly amidated crosslinked PG, its immediate biochemical
566 precursor). D,L-endopeptidase products are still present as expected, because the
567 strain retains the D,L-endopeptidases LytE and CwlO. Amidase products are largely
568 absent. Glucosaminidase products are substantially reduced in abundance. Lytic

569 transglycosylase products are still present in the $\Delta 40$ strain but disappear if *sweC* is
570 additionally knocked out. Thus, the $\Delta 40$ strain is deficient for several major classes of
571 cell wall hydrolase activity. Strains used: PY79, WT; bSW431, $\Delta 40$; bSW537, $\Delta 40$
572 $\Delta sweC$.

574 **Figure 3: The $\Delta 40$ strain grows at a similar rate as WT cells and has mild shape
575 defects.**


576 **A: The $\Delta 40$ strain has a similar growth rate to WT in rich media.** Cultures were
577 grown in CH media at 37°C to an OD of ~0.3-0.5, diluted to an OD of 0.05, and samples
578 were collected every 6 minutes for 1.5 hrs (~3 doublings). OD₆₀₀ vs time plots were fit to
579 a single exponential to obtain the growth rate. Each point represents the doubling time
580 from a single experiment, and solid lines show mean and standard deviation. The dotted
581 line shows the mean WT growth rate, for comparison. While $\Delta 40$ has a similar growth
582 rate to WT, *lytE* and *cwlO* knockouts grow more slowly in this background than in a WT
583 background. Strains used: PY79, WT; bSW23, $\Delta cwlO$; bSW295, $\Delta lytE$; bSW431, $\Delta 40$;
584 bSW433, $\Delta 40 \Delta cwlO$; bSW435, $\Delta 40 \Delta lytE$.

585 **B: The $\Delta 40$ strain has a similar growth rate to WT in minimal media.** Cultures were
586 grown in S7₅₀AA media at 37°C. Samples were collected and data was analyzed as in
587 (A). Strains used: PY79, WT; bSW431, $\Delta 40$.

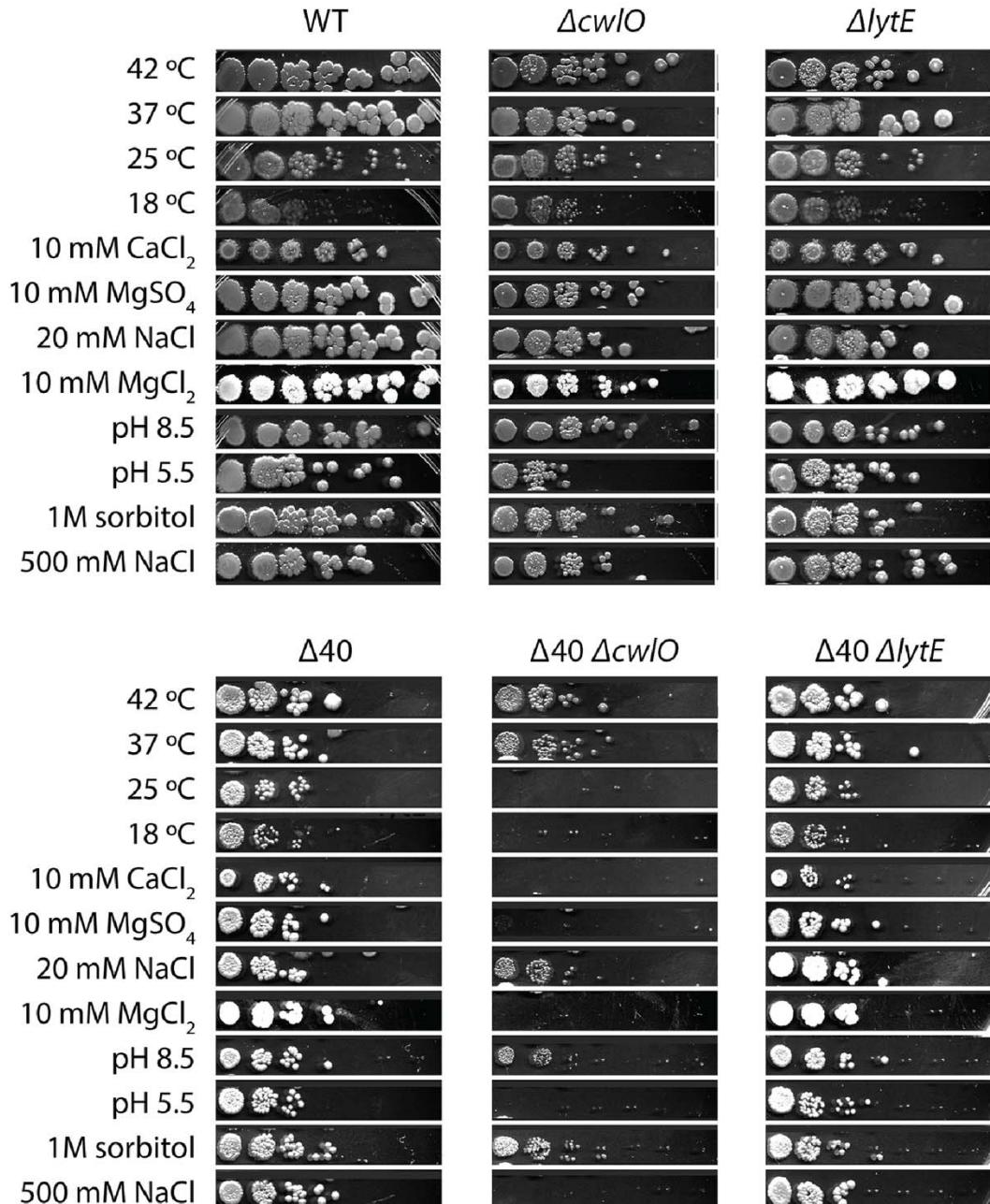
588 **C: Cell lengths (left) and widths (right) in hydrolase mutants.** Cells were labeled
589 with membrane stain and imaged by epifluorescence microscopy. Cell dimensions were
590 measured from these images using Morphometrics. Solid lines in violins show medians.
591 Dashed line outside violins shows WT median for comparison. Shaded region outside
592 violins shows WT quartiles. Strains used: PY79, WT; bSW23, $\Delta cwlO$; bSW295, $\Delta lytE$;
593 bSW431, $\Delta 40$; bSW433, $\Delta 40 \Delta cwlO$; bSW435, $\Delta 40 \Delta lytE$.

594 **D: Representative phase contrast images of hydrolase mutant strains.** $\Delta 40$ cells
595 primarily form long chains, $\Delta 40 \Delta cwlO$ cells have variable widths, and $\Delta 40 \Delta lytE$ cells
596 sometimes have phase-light, lysed cells still attached to their poles (see Figure S2 for

597 TEM images). Both $\Delta 40$ $\Delta cwlO$ and $\Delta 40$ Δyte have a population of phase-light, lysed
598 cells. Scale bar is 10 μm .

599

600 **Figure 4: The $\Delta 40$ strain has no increase in cell wall thickness and does not turn**
601 **over cell wall.**


602 **A: Cell wall turnover rate is negligible in the $\Delta 40$ strain.** *Left:* Pulse-chase radiolabel
603 measurements were used to determine the cell wall turnover rate. Cells were labeled
604 with H^3 -GlcNAc, which incorporates into the cell wall. The ^3H -GlcNAc was then washed
605 out and radioactivity was subsequently measured for 3 generations. A decrease in
606 radioactivity indicates that material is being removed from the cell wall, e.g. that cell wall
607 is turning over. Each experiment was replicated at least 3 times. Dotted lines show

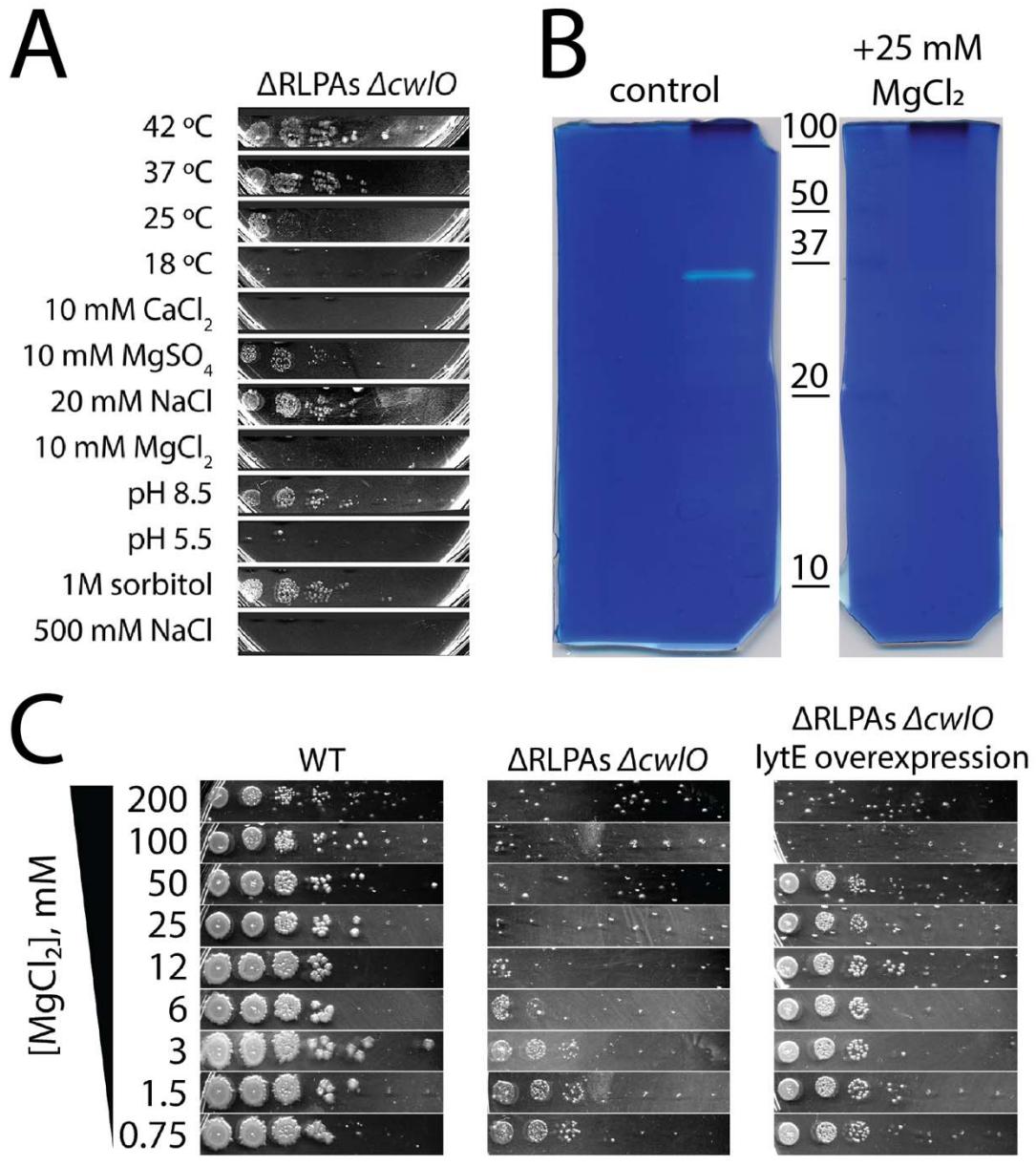
608 single exponential fit to mean data. *Right*: Single exponential fits to each experiment at
609 left. Each point represents the time constant (-k) obtained from a fit to a single
610 experiment. Error bars show SD. The $\Delta 40$ turnover rate is not significantly different from
611 zero (one sample t test, $p=0.4837$). Strains used: PY79, WT; bSW431, $\Delta 40$.

612 **B: Cell wall thickness in the $\Delta 40$ strain is similar to WT.** Cell wall thickness was
613 measured via transmission electron microscopy as described in Methods. Briefly,
614 exponentially growing cells were fixed, osmicated, stained with uranyl acetate,
615 embedded in Embed 812, sectioned, and imaged without additional staining. Each point
616 is the mean cell wall thickness measured for a single cell. Error bars show SD. Strains
617 used: PY79, WT; bSW431, $\Delta 40$.

618 **C: Representative images of cell wall thickness.** Representative images of cell wall
619 thickness analyzed in C. Strains used: PY79, WT; bSW431, $\Delta 40$. Scale bar is 50 nm.

620

621


622 **Figure 5: The $\Delta 40$ strain has similar viability to WT in a range of stress conditions,**
623 **but $\Delta 40 \Delta cwlO$ is sensitive to ionic, cold, and low pH stress.** Spot dilution assays of
624 different strains under various stress conditions. Cultures of each strain were plated in a
625 1:10 dilution series onto LB plates containing various stressors and grown overnight at
626 the specified temperature, or at 37 °C if not indicated. Most conditions supported normal

627 growth, but growth of the $\Delta 40 \Delta cwlO$ strain was inhibited at 25°C, pH 5.5, or with the
628 addition of 10 mM MgCl₂, 10 mM MgSO₄, 10 mM CaCl₂, or 300 mM NaCl. Strains used:
629 PY79, WT; bSW23, $\Delta cwlO$; bSW295, $\Delta lytE$; bSW431, $\Delta 40$; bSW433, $\Delta 40 \Delta cwlO$;
630 bSW435, $\Delta 40 \Delta lytE$.

631

632

633

634
635 **Figure 6: Three uncharacterized RlpA-like proteins stimulate LytE activity in the**
636 **presence of divalent cations.**

637 **A: The removal of three RlpA-like proteins makes Δ cwlO cells stress-sensitive.**
638 Spot dilution assays were performed as in Figure 4. Δ yabE Δ yocH Δ ydjM (Δ RLPAs)
639 Δ cwlO showed the same stress sensitivity profile as Δ 40 Δ cwlO, except that 10 mM

640 MgSO₄ and 25°C only partially inhibited growth. Strain used: bSW490, $\Delta cwlO$ $\Delta yabE$
641 $\Delta yocH$ $\Delta ydjM$.

642 **B: Mg²⁺ directly inhibits LytE activity.** Zymography was performed on $\Delta 40$ $\Delta cwlO$
643 cells as in Figure 1A, but with the addition of the indicated concentration of MgCl₂ to the
644 renaturation buffer. 25 mM MgCl₂ almost completely inhibited the activity of LytE. Strain
645 used: bSW433, $\Delta 40$ $\Delta cwlO$.

646 **C: LytE overexpression rescues Mg²⁺ sensitivity in the Δ RLPAs $\Delta cwlO$**
647 **background.** Spot dilutions were performed as in Figure 5A, with the indicated
648 concentration of MgCl₂ and the addition of 1 mM IPTG to drive LytE overexpression.
649 Strains used: PY79, WT; (Δ RLPAs) $\Delta cwlO$, bSW490, $\Delta cwlO$ $\Delta yabE$ $\Delta yocH$ $\Delta ydjM$;
650 (Δ RLPAs) $\Delta cwlO$ *lytE* overexpression, bSW519, $\Delta cwlO$ $\Delta yabE$ $\Delta yocH$ $\Delta ydjM$
651 *amyE::pHyperSpank-lytE*.

652

653

654 **REFERENCES**

655 1. Brill J, Hoffmann T, Bleisteiner M, Bremer E. 2011. Osmotically controlled
656 synthesis of the compatible solute proline is critical for cellular defense of *Bacillus*
657 *subtilis* against high osmolarity. *J Bacteriol* 193:5335–5346.

658 2. Vollmer W. 2012. Bacterial growth does require peptidoglycan hydrolases. *Mol*
659 *Microbiol* 86:1031–1035.

660 3. Typas A, Banzhaf M, Gross CA, Vollmer W. 2012. From the regulation of
661 peptidoglycan synthesis to bacterial growth and morphology. *Nat Rev Microbiol*
662 10:123–136.

663 4. Smith TJ, Blackman SA, Foster SJ. 2000. Autolysins of *Bacillus subtilis*: Multiple
664 enzymes with multiple functions. *Microbiology* 146:249–262.

665 5. Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. 2019. Cell
666 wall hydrolases in bacteria: Insight on the diversity of cell wall amidases,
667 glycosidases and peptidases toward peptidoglycan. *Front Microbiol* 10.

668 6. Dik DA, Marous DR, Fisher JF, Mobashery S. 2017. Lytic transglycosylases:
669 concinnity in concision of the bacterial cell wall. *Crit Rev Biochem Mol Biol*
670 52:503–542.

671 7. Blackman SA, Smith TJ, Foster SJ. 1998. The role of autolysins during vegetative
672 growth of *Bacillus subtilis* 168 73–82.

673 8. Holtje J V. 1995. From growth to autolysis: The murein hydrolases in *Escherichia*
674 *coli*. *Arch Microbiol* 164:243–254.

675 9. Heidrich C, Ursinus A, Berger J, Schwarz H, Höltje JV. 2002. Effects of multiple
676 deletions of murein hydrolases on viability, septum cleavage, and sensitivity to

677 large toxic molecules in *Escherichia coli*. *J Bacteriol* 184:6093–6099.

678 10. Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine
679 KM. 2007. The essential YycFG two-component system controls cell wall
680 metabolism in *Bacillus subtilis*. *Mol Microbiol* 65:180–200.

681 11. Fukushima T, Afkham A, Kurosawa SI, Tanabe T, Yamamoto H, Sekiguchi J.
682 2006. A new D,L-endopeptidase gene product, YojL (renamed CwIS), plays a role
683 in cell separation with LytE and LytF in *Bacillus subtilis*. *J Bacteriol* 188:5541–
684 5550.

685 12. Meisner J, Montero Llopis P, Sham LT, Garner E, Bernhardt TG, Rudner DZ.
686 2013. FtsEX is required for CwIO peptidoglycan hydrolase activity during cell wall
687 elongation in *Bacillus subtilis*. *Mol Microbiol* 89:1069–1083.

688 13. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. 2018. HMMER web
689 server: 2018 update. *Nucleic Acids Res* 46:W200–W204.

690 14. Litzinger S, Duckworth A, Nitzsche K, Risinger C, Wittmann V, Mayer C. 2010.
691 Muropeptide rescue in *Bacillus subtilis* involves sequential hydrolysis by β -N-
692 acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase. *J Bacteriol*
693 192:3132–3143.

694 15. Foster SJ. 1992. Analysis of the Autolysins of *Bacillus subtilis* 168 during
695 Vegetative Growth and Differentiation by Using Renaturing Polyacrylamide Gel
696 Electrophoresis 174:464–470.

697 16. Yamaguchi H, Furuhata K, Fukushima T, Yamamoto H, Sekiguchi J. 2004.
698 Characterization of a new *Bacillus subtilis* peptidoglycan hydrolase gene, yvcE
699 (named cwIO), and the enzymatic properties of its encoded protein. *J Biosci*

700 Bioeng 98:174–181.

701 17. Hashimoto M, Ooiwa S, Sekiguchi J. 2012. Synthetic lethality of the *lytE cwlO*
702 genotype in *Bacillus subtilis* is caused by lack of D,L-endopeptidase activity at the
703 lateral cell wall. *J Bacteriol* 194:796–803.

704 18. Williamson MP, Atrih A, Bacher G, Foster SJ. 1999. Analysis of Peptidoglycan
705 Structure from Vegetative Cells of. *Society* 181:3956–3966.

706 19. Atrih A, Zöllner P, Allmaier G, Foster SJ. 1996. Structural analysis of *Bacillus*
707 *subtilis* 168 endospore peptidoglycan and its role during differentiation. *J Bacteriol*
708 178:6173–6183.

709 20. Yunck R, Cho H, Bernhardt TG. 2016. Identification of *MltG* as a potential
710 terminase for peptidoglycan polymerization in bacteria. *Mol Microbiol* 99:700–718.

711 21. Brunet YR, Wang X, Rudner DZ. 2019. *SweC* and *SweD* are essential co-factors
712 of the *FtsEX-CwlO* cell wall hydrolase complex in *Bacillus subtilis*. *PLoS Genet*
713 15:1–27.

714 22. Pooley HM. 1976. Layered distribution, according to age, within the cell wall of
715 *Bacillus subtilis*. *J Bacteriol* 125:1139–1147.

716 23. Fan DP, Beckman MM. 1971. Mutant of *Bacillus subtilis* demonstrating the
717 requirement of lysis for growth. *J Bacteriol* 105:629–636.

718 24. Kern T, Giffard M, Hediger S, Amoroso A, Giustini C, Bui NK, Joris B, Bougault C,
719 Vollmer W, Simorre JP. 2010. Dynamics characterization of fully hydrated
720 bacterial cell walls by solid-state NMR: Evidence for cooperative binding of metal
721 ions. *J Am Chem Soc* 132:10911–10919.

722 25. Matias VRF, Beveridge TJ. 2005. Cryo-electron microscopy reveals native

723 polymeric cell wall structure in *Bacillus subtilis* 168 and the existence of a
724 periplasmic space. *Mol Microbiol* 56:240–251.

725 26. Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K, Izoré T, Renner LD,
726 Holmes MJ, Sun Y, Bisson-Filho AW, Walker S, Amir A, Löwe J, Garner EC.
727 2018. MreB filaments align along greatest principal membrane curvature to orient
728 cell wall synthesis. *Elife* 7:1–45.

729 27. Formstone A, Errington J. 2005. A magnesium-dependent *mreB* null mutant:
730 Implications for the role of *mreB* in *Bacillus subtilis*. *Mol Microbiol* 55:1646–1657.

731 28. Shah IM, Dworkin J. 2010. Induction and regulation of a secreted peptidoglycan
732 hydrolase by a membrane Ser/Thr kinase that detects muropeptides. *Mol
733 Microbiol* 75:1232–1243.

734 29. Hett EC, Chao MC, Rubin EJ. 2010. Interaction and modulation of two
735 antagonistic cell wall enzymes of mycobacteria. *PLoS Pathog* 6:1–14.

736 30. Hett EC, Chao MC, Deng LL, Rubin EJ. 2008. A mycobacterial enzyme essential
737 for cell division synergizes with resuscitation-promoting factor. *PLoS Pathog* 4.

738 31. Sanchez S, Dunn CM, Kearns DB. 2021. CwlQ is required for swarming motility
739 but not flagellar assembly in *Bacillus subtilis*. *bioRxiv* 2021.01.13.426625.

740 32. Calamita HG, Doyle RJ. 2002. Regulation of autolysins in teichuronic acid-
741 containing *Bacillus subtilis* cells. *Mol Microbiol* 44:601–606.

742 33. Atilano ML, Pereira PM, Yates J, Reed P, Veiga H, Pinho MG, Filipe SR. 2010.
743 Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking
744 in *Staphylococcus aureus*. *ProcNatlAcadSciUSA* 107:18991–18996.

745 34. Yamamoto H, Miyake Y, Hisaoka M, Kurosawa SI, Sekiguchi J. 2008. The major

746 and minor wall teichoic acids prevent the sidewall localization of vegetative DL-

747 endopeptidase LytF in *Bacillus subtilis*. *Mol Microbiol* 70:297–310.

748 35. Reith J, Mayer C. 2011. Peptidoglycan turnover and recycling in Gram-Positive

749 bacteria. *Appl Microbiol Biotechnol* 92:1–11.

750 36. Vitkovic L, Cheung HY, Freese E. 1984. Absence of correlation between rates of

751 cell wall turnover and autolysis shown by *Bacillus subtilis* mutants. *J Bacteriol*

752 157:318–320.

753 37. Welsh MA, Taguchi A, Schaefer K, Van Tyne D, Lebreton F, Gilmore MS, Kahne

754 D, Walker S. 2017. Identification of a Functionally Unique Family of Penicillin-

755 Binding Proteins. *J Am Chem Soc* 139:17727–17730.

756 38. Leclerc D, Asselin A. 1989. Detection of bacterial cell wall hydrolases after

757 denaturing polyacrylamide gel electrophoresis. *Can J Microbiol* 35:749–753.

758 39. Ursell T, Lee TK, Shiomi D, Shi H, Tropini C, Monds RD, Colavin A, Billings G,

759 Bhaya-Grossman I, Broxton M, Huang BE, Niki H, Huang KC. 2017. Rapid,

760 precise quantification of bacterial cellular dimensions across a genomic-scale

761 knockout library. *BMC Biol* 15:1–15.

762 40. Dion MF, Kapoor M, Sun Y, Wilson S, Ryan J, Vigouroux A, van Teeffelen S,

763 Oldenbourg R, Garner EC. 2019. *Bacillus subtilis* cell diameter is determined by

764 the opposing actions of two distinct cell wall synthetic systems. *Nat Microbiol*

765 <https://doi.org/10.1038/s41564-019-0439-0>.

766 41. Van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, Maayan

767 I, Tanouchi Y, Ashley EA, Covert MW. 2016. Deep Learning Automates the

768 Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments. *PLoS*

792 50. Sekiguchi J, Akeo K, Yamamoto H, Khasanov FK, Alonso JC, Kuroda A. 1995.
793 Nucleotide sequence and regulation of a new putative cell wall hydrolase gene,
794 *cwlD*, which affects germination in *Bacillus subtilis*. *J Bacteriol* 177:5582–5589.

795 51. Popham DL, Helin J, Costello CE, Setlow P. 1996. Muramic lactam in
796 peptidoglycan of *Bacillus subtilis* spores is required for spore outgrowth but not for
797 spore dehydration or heat resistance. *Proc Natl Acad Sci U S A* 93:15405–15410.

798 52. Margot P, Karamata D. 1992. Identification of the structural genes for N-
799 acetylmuramoyl-L-alanine amidase and its modifier in *Bacillus subtilis* 168:
800 inactivation of these genes by insertional mutagenesis has no effect on growth or
801 cell separation. *Mol Gen Genet* 232:359–66.

802 53. Lazarevic V, Margot P, Soldo B, Karamata D. 1992. Sequencing and analysis of
803 the *Bacillus subtilis* *lytRABC* divergon: a regulatory unit encompassing the
804 structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. *J*
805 *Gen Microbiol* 138:1949–1961.

806 54. Kuroda A, Sekiguchi J. 1991. Molecular cloning and sequencing of a major
807 *Bacillus subtilis* autolysin gene. *J Bacteriol* 173:7304–7312.

808 55. Fischer KE, Bremer E. 2012. Activity of the osmotically regulated *yqiHIK* promoter
809 from *bacillus subtilis* is controlled at a distance. *J Bacteriol* 194:5197–5208.

810 56. Morlot C, Uehara T, Marquis KA, Bernhardt TG, Rudner DZ. 2010. A highly
811 coordinated cell wall degradation machine governs spore morphogenesis in
812 *Bacillus subtilis*. *Genes Dev* 24:411–422.

813 57. Chastanet A, Losick R. 2007. Engulfment during sporulation in *Bacillus subtilis* is
814 governed by a multi-protein complex containing tandemly acting autolysins. *Mol*

815 Microbiol 64:139–152.

816 58. Palomino MM, Sanchez-Rivas C, Ruzal SM. 2009. High salt stress in *Bacillus*
817 *subtilis*: involvement of PBP4* as a peptidoglycan hydrolase. Res Microbiol
818 160:117–124.

819 59. Lambert EA, Sherry N, Popham DL. 2012. In vitro and in vivo analyses of the
820 *Bacillus anthracis* spore cortex lytic protein SleL. Microbiology 158:1359–1368.

821 60. Lambert EA, Popham DL. 2008. The *Bacillus anthracis* SleL (YaaH) protein is an
822 N-Acetylglucosaminidase involved in spore cortex depolymerization. J Bacteriol
823 190:7601–7607.

824 61. Üstok FI, Chirgadze DY, Christie G. 2015. Structural and functional analysis of
825 SleL, a peptidoglycan lyisin involved in germination of *Bacillus* spores. Proteins
826 Struct Funct Bioinforma 83:1787–1799.

827 62. Margot P, Mauël C, Karamata D. 1994. The gene of the N-acetylglucosaminidase,
828 a *Bacillus subtilis* 168 cell wall hydrolase not involved in vegetative cell autolysis.
829 Mol Microbiol 12:535–545.

830 63. Rashid MH, Mori M, Sekiguchi J. 1995. Glucosaminidase of *Bacillus subtilis*:
831 Cloning, regulation, primary structure and biochemical characterization.
832 Microbiology 141:2391–2404.

833 64. Horsburgh GJ, Atrih A, Williamson MP, Foster SJ. 2003. LytG of *Bacillus subtilis*
834 is a novel peptidoglycan hydrolase: The major active glucosaminidase.
835 Biochemistry 42:257–264.

836 65. Quay DHX, Cole AR, Cryar A, Thalassinos K, Williams MA, Bhakta S, Keep NH.
837 2015. Structure of the stationary phase survival protein YuiC from *B.subtilis*

838 Crystallography. BMC Struct Biol 15:1–14.

839 66. Ishikawa S, Yamane K, Sekiguchi J. 1998. Regulation and characterization of a
840 newly deduced cell wall hydrolase gene (cwlJ) which affects germination of
841 Bacillus subtilis spores. J Bacteriol 180:1375–1380.

842 67. Moriyama R, Fukuoka H, Miyata S, Kudoh S, Hattori A, Kozuka S, Yasuda Y,
843 Tochikubo K, Makino S. 1999. Expression of a germination-specific amidase,
844 sleB, of bacilli in the forespore compartment of sporulating cells and its
845 localization on the exterior side of the cortex in dormant spores. J Bacteriol
846 181:2373–2378.

847 68. Boland FM, Atri A, Chirakkal H, Foster SJ, Moir A. 2000. Complete spore-cortex
848 hydrolysis during germination of *Bacillus subtilis* 168 requires SleB and YpeB.
849 Microbiology 146:57–64.

850 69. Heffron JD, Orsburn B, Popham DL. 2009. Roles of Germination-Specific Lytic
851 Enzymes CwlJ and SleB in *Bacillus anthracis*. J Bacteriol 191:2237–2247.

852 70. Sudiarta IP, Fukushima T, Sekiguchi J. 2010. *Bacillus subtilis* CwlQ (previous
853 YjbJ) is a bifunctional enzyme exhibiting muramidase and soluble-lytic
854 transglycosylase activities. Biochem Biophys Res Commun 398:606–612.

855 71. Beachy EH, Keck W, de Pedro MA, Schwarz U. 1981. Exoenzymatic Activity of
856 Transglycosylase Isolated from *Escherichia coli*. Eur J Biochem 116:355–358.

857 72. Sudiarta IP, Fukushima T, Sekiguchi J. 2010. *Bacillus subtilis* CwlP of the Sp-β
858 prophage has two novel peptidoglycan hydrolase domains, muramidase and
859 cross-linkage digesting DD-endopeptidase. J Biol Chem 285:41232–41243.

860 73. Fukushima T, Kitajima T, Yamaguchi H, Ouyang Q, Furuhata K, Yamamoto H,

861 Shida T, Sekiguchi J. 2008. Identification and characterization of novel cell wall
862 hydrolase CwlT: A two-domain autolysin exhibiting N-acetyl muramidase and DL-
863 endopeptidase activities. *J Biol Chem* 283:11117–11125.

864 74. Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS. 2014. The bacterial
865 septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape
866 and daughter cell separation in *Pseudomonas aeruginosa*. *Mol Microbiol* 93:113–
867 128.

868 75. Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filée P, Charlier P, Joris
869 B, Tabuchi A, Nikolaidis N, Cosgrove DJ. 2008. Crystal structure and activity of
870 *Bacillus subtilis* YoaJ (EXLX1), a bacterial expansin that promotes root
871 colonization. *Proc Natl Acad Sci U S A* 105:16876–16881.

872 76. Abanes-De Mello A, Sun YL, Aung S, Pogliano K. 2002. A cytoskeleton-like role
873 for the bacterial cell wall during engulfment of the *Bacillus subtilis* forespore.
874 *Genes Dev* 16:3253–3264.

875 77. Kuroda A, Rashid MH, Sekiguchi J. 1992. Molecular cloning and sequencing of
876 the upstream region of the major *Bacillus subtilis* autolysin gene: a modifier
877 protein exhibiting sequence homology to the major autolysin and the *spolIIID*
878 product. *J Gen Microbiol* 138:1067–1076.

879 78. Kuroda A, Sekiguchi J. 1992. Characterization of the *Bacillus subtilis* CwbA
880 protein which stimulates cell wall lytic amidases. *FEMS Microbiol Lett* 95:109–
881 113.

882 79. Margot P, Wahlen M, Gholamhuseinian A, Piggot P, Karamata D. 1998. The *lytE*
883 gene of *Bacillus subtilis* 168 encodes a cell wall hydrolase. *J Bacteriol* 180:749–

884 752.

885 80. Ishikawa S, Hara Y, Ohnishi R, Sekiguchi J. 1998. Regulation of a new cell wall
886 hydrolase gene, *cwlF*, which affects cell separation in *Bacillus subtilis*. *J Bacteriol*
887 180:2549–2555.

888 81. Margot P, Pagni M, Karamata D. 1999. *Bacillus subtilis* 168 gene *lytF* encodes a
889 7-D- muropeptidase expressed by the alternative vegetative sigma factor , cD.
890 *Microbiology* 145:57–65.

891 82. Ohnishi R, Ishikawa S, Sekiguchi J. 1999. Peptidoglycan hydrolase LytF plays a
892 role in cell separation with CwlF during vegetative growth of *Bacillus subtilis*. *J*
893 *Bacteriol* 181:3178–3184.

894 83. Suzuki T, Tahara Y. 2003. Characterization of the *Bacillus subtilis* *ywtD* gene,
895 whose product is involved in γ -polyglutamic acid degradation. *J Bacteriol*
896 185:2379–2382.

897 84. Schmidt DMZ, Hubbard BK, Gerlt JA. 2001. Evolution of enzymatic activities in
898 the enolase superfamily: Functional assignment of unknown proteins in *bacillus*
899 *subtilis* and *Escherichia coli* as L-Ala-D/L-Glu epimerases. *Biochemistry*
900 40:15707–15715.

901 85. Hourdou ML, Guinand M, Vacheron MJ, Michel G, Denoroy L, Duez C, Englebert
902 S, Joris B, Weber G, Ghysen JM. 1993. Characterization of the sporulation-
903 related γ -D-glutamyl-(L)mesodiaminopimelic-acid-hydrolysing peptidase I of
904 *Bacillus sphaericus* NCTC 9602 as a member of the metallo(zinc)
905 carboxypeptidase A family: Modular design of the protein. *Biochem J* 292:563–
906 570.

907 86. Fukushima T, Yao Y, Kitajima T, Yamamoto H, Sekiguchi J. 2007.
908 Characterization of new L,D-endopeptidase gene product CwlK (previous YcdD)
909 that hydrolyzes peptidoglycan in *Bacillus subtilis*. *Mol Genet Genomics* 278:371–
910 383.
911 87. Horsburgh GJ, Atri A, Foster SJ. 2003. Characterization of LytH, a
912 differentiation-associated peptidoglycan hydrolase of *Bacillus subtilis* involved in
913 endospore cortex maturation. *J Bacteriol* 185:3813–3820.
914