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Abstract

Background: The coronavirus disease 2019 (COVID-19) is an infectious disease that mainly
affects the host respiratory system with ~80% asymptomatic or mild cases and ~5% severe cases.
Recent genome-wide association studies (GWAS) have identified several genetic loci associated
with the severe COVID-19 symptoms. Delineating the genetic variants and genes is important
for better understanding its biological mechanisms.

Methods: We implemented integrative approaches, including transcriptome-wide association
studies (TWAS), colocalization analysis and functional element prediction analysis, to interpret
the genetic risks using two independent GWAS datasets in lung and immune cells. To
understand the context-specific molecular alteration, we further performed deep learning-based
single cell transcriptomic analyses on a bronchoalveolar lavage fluid (BALF) dataset from
moderate and severe COVID-19 patients.

Results: We discovered and replicated the genetically regulated expression of CXCR6 and CCR9Y
genes. These two genes have a protective effect on the lung and a risk effect on whole blood,
respectively. The colocalization analysis of GWAS and cis-expression quantitative trait loci
highlighted the regulatory effect on CXCR6 expression in lung and immune cells. In the lung
resident memory CD8* T (Trm) cells, we found a 3.32-fold decrease of cell proportion and lower
expression of CXCR6 in the severe than moderate patients using the BALF transcriptomic
dataset. Pro-inflammatory transcriptional programs were highlighted in Trwm cells trajectory from
moderate to severe patients.

Conclusions: CXCR6 from the 3p21.31 locus is associated with severe COVID-19. CXCR6
tends to have a lower expression in lung Trwm cells of severe patients, which aligns with the

protective effect of CXCR6 from TWAS analysis. We illustrate one potential mechanism of host
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genetic factor impacting the severity of COVID-19 through regulating the expression of CXCR6
and Trwm cell proportion and stability. Our results shed light on potential therapeutic targets for
severe COVID-19.

Keywords: Host genetics, COVID-19, TWAS, colocalization, single cell RNA sequencing,

CXCRG6, lung resident memory CD8* T (Trm) cell

Background

The coronavirus disease 2019 (COVID-19) pandemic has already infected over 100
million people and caused numerous morbidities and over 2 million death worldwide as of
January 2021. The virus is evolving fast with new variants being emerged in the world [1, 2]. A
huge disparity in the severity of symptoms in different patients has been observed. In some of the
patients, only mild symptoms or even no symptoms are shown and little treatment or
interventions are required while a subset of patients experience rapid disease progression to
respiratory failure and need urgent and intensive care [3]. Although age and sex are major risk
factors of COVID-19 disease severity [4], it remains largely unclear about the factors leading to
the variability on COVID-19 severity and which group of individuals confer intrinsic
susceptibility to COVID-19.

Several genome-wide association studies (GWAS) have been carried out and one
genomic risk locus, 3p21.31, has been replicated to be associated with the critical illness. One
recent study by the Severe COVID-19 GWAS Group identified 3p21.31 risk locus for the
susceptibility to severe COVID-19 with respiratory failure [S]. This GWAS signal was then
replicated in a separate meta-analysis comprising in total 2,972 cases from 9 cohorts by COVID-

19 Host Genetics Initiative (HGI) round 4 alpha. However, there is a cluster of 6 genes
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(SLC6A20, LZTFLI, CCRY, FYCOI1, CXCR6, and XCR]I) nearby the lead SNP rs35081325
within a complex linkage disequilibrium (LD) structure, which makes the “causal” gene and
functional implication of this locus remain elusive [5, 6].

The majority of GWAS variants are located in non-coding loci, many of which are in the
enhancer or promoter regions, playing roles as cis- or trans- regulatory elements to alter gene
expression [7]. Although the function of non-coding variants could not be directly interrupted by
their locations, their mediation effect on gene expression could be inferred by the expression
quantitative trait loci (€QTL) analysis. In recent years, large consortia like GTEx (Genotype-
Tissue Expression), eQTLGen Consortium, and DICE (database of immune cell expression)
have generated rich eQTLs resources in diverse tissues and immune-related cell types [7-9]. A
variety of statistical approaches such as transcriptome-wide association study (TWAS) analysis
and colocalization analysis have successfully interpreted the target genes of non-coding variants
by integrating the context-specific eQTLs [10-13].

Recent advances in single cell transcriptome sequencing provide unprecedented
opportunities to understand the biological mechanism underlying disease pathogenesis at the
single cell and cell type levels [14-16]. The recent generation of single cell RNA-sequencing
(scRNA-seq) data from the bronchoalveolar lavage fluid (BALF) of moderate and severe
COVID-19 patients has revealed the landscape of the gene expression changes in major immune
cells. However, the transcriptome alteration in specific subpopulations remains mostly
unexplored [17].

In this study, we aimed to connect the genetic factors with the context-specific molecular
phenotype in COVID-19 patients. As illustrated in Fig. 1, we designed a multi-level workflow to

dissect the genetically regulated expression (GReX) that contributed to severe COVID-19. We
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95 performed TWAS and colocalization analyses with a broad collection of eQTL datasets at the
96 tissue and cellular levels. We further integrated the BALF single cell transcriptome dataset to
97  explore the cellular transcriptome alterations in severe and moderate COVID-19 patients. Lastly,
98  we proposed a hypothetical mechanism, connecting our multi-layer evidence in host genetic
99 factors, gene (CXCR6), and single cell transcriptome features with the severity of COVID-19.
100
101  Methods

102 GWAS dataset

103 We obtained GWAS summary statistics for the phenotype “severe COVID-19 patients vs
104  population” (severe COVID-19) from two separate meta-analyses carried out by the COVID-19

105  Host Genetics Initiative (HGI, https://www.covid19hg.org/) and the Severe COVID-19 GWAS

106  Group (SCGG) [5]. The GWASHG! A2 round 4 (alpha) cohort consists of 12,816,037 SNPs from
107  the association study of 2,972 very severe respiratory confirmed COVID-19 cases and 284,472
108  controls with unknown SARS-CoV-2 infection status from nine independent studies in a

109  majority of the European Ancestry population. The GWASscce dataset 1s from the first GWAS
110  of severe COVID-19 [5], including 8,431,427 SNPs from the association study conducted from
111 1,980 COVID-19 confirmed patients with severe disease status and 2,205 control participants
112 from two separate cohorts in Europe.

113

114  Transcriptome-wide association analysis

115 We performed TWAS analyses of severe COVID-19 using S-PrediXcan [18] to prioritize
116  GWAS findings and identify eQTL-linked genes. S-PrediXcan is a systematic approach that

117  integrates GWAS summary statistics with publicly available eQTL data to translate the evidence
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118  of association with a phenotype from the SNP level to the gene level. Briefly, prediction models
119  were built by a flexible and generic approach multivariate adaptive shrinkage in R package

120 (MASHR) using variants with a high probability of being causal for QTL and tissue expression
121  profiles from the GTEx version 8 [7, 19]. We chose three tissues that were relevant to SARS-
122 CoV-2 infection, including lung, whole blood, and spleen. Then, we ran S-PrediXcan scripts

123 (downloaded from https://github.com/hakyimlab/MetaXcan, accessed on 10/10/2020) with each

124 of the three tissue-specific models in two severe COVID-19 GWAS datasets respectively. The
125  threshold used in TWAS significance was adjusted by Bonferroni multiple test correction with
126  the ~10,000 genes. We defined the strict significance as p < 5 x 10 (|z| > 4.56) and suggestive
127  significance as p < 5 x 107 (Jz| > 4.06).

128

129  Colocalization analysis

130 Colocalization was performed to validate significant TWAS associations using two recent
131  and cutting-edge statistical analysis approaches: eCAVIAR [20] and fastENLOC [21], which aim
132 to identify a single genetic variant that has shared causality between expression and GWAS ftrait.
133 Both eCAVIAR and fastENLOC could assess the colocalization posterior probability (CLPP) for
134  two traits at a locus, while eCAVIAR allows for multiple causal variants and fastENLOC

135  features accountability for allelic heterogeneity in expression traits and high sensitivity of the
136  methodology. We ran eCAVIAR between significant TWAS genes and GWAS trait with a

137  maximum of five causal variants per locus and defined a locus as 50 SNPs up- and down- stream
138  of the tested causal variant, following the recommendation in the original paper. The eCAVIAR

139  was downloaded from https://github.com/fhormoz/caviar/ (accessed on 10/25/2020). The
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140  biallelic variants from the 1,000 Genomes Project phase III in European ancestry were used as an
141 LD reference [22]. We defined CLPP > 0.5 as having strong colocalization evidence.

142 To run fastENLOC, we first prepared probabilistic eQTL annotations to generate the cis-
143  eQTL’s posterior inclusion probability (PIP). Specifically, we applied the tissue-specific data
144  from GTEx and T follicular cell-specific data from the DICE database [9] using the integrative
145  genetic association analysis with the deterministic approximation of posteriors (DAP-G) package
146  [23]. Then, GWAS summary statistics were split into approximately LD-independent regions
147  defined by reference panel from European ancestry and z-scores were converted to PIP. We

148  downloaded the fastENLOC from https://github.com/xgwen/fastenloc (accessed on 10/25/2020)

149  and followed the guideline to yield regional colocalization probability (RCP) for each

150 independent GWAS locus using each tissue- or cell type-specific eQTL annotation. We defined
151  RCP > 0.5 as having strong colocalization evidence.

152

153  Functional genomics annotations

154 To better understand the potential function of the variants identified by GWAS analyses
155  and how they mediate the regulatory effect, we annotated significant SNPs using publicly

156  available data. We obtained the tissue and cellular level eQTL data from the following resources:
157 1) the eQTLGen consortium [24] eQTLs generated from 30,912 whole blood samples; 2)

158  Biobank-based Integrative Omics Studies (BIOS) eQTLs generated from 2,116 healthy adults
159  [25]; 3) The GTEx v8 [7] eQTLs of the lung, whole blood, and spleen tissues; 4) DICE database
160  [9] with cellular eQTLs of 9 available T cell subpopulations. To identify the genomic annotation
161  of the significant SNPs, we downloaded the multivariate hidden Markov model (ChromHMM)

162  [26] processed chromatin-state data of 17 lung and T cell lines from the Roadmap Epigenomics
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project [27]. To explore the potential chromatin looping of GWAS locus, we used publicly
available chromatin interaction (Hi-C) data [28] at a resolution of 40Kb on IMR90, a normal
lung fibroblast cell line. The Hi-C data has been used to identify specific baits and targets from
distant chromatin regions that frequently interact with each other. Variants within the regulatory
regions can be connected to the potential gene targets and thus mediate the gene expression.
Statistical tests of bait-target pairs were conducted to define significant bait interaction regions
and their targets. The eQTL associations and chromatin-state information and Hi-C interactions

were processed and plotted using the R Bioconductor package gviz in R version 4.0.3 [29].

Differentially expressed gene analysis in resident memory CD8* T cells

We use the recently published scRNA-seq dataset of bronchoalveolar lavage fluids
(BALF) samples from nine patients (three moderate and six severe) with COVID-19 [17, 30].
We adapted the original annotation [17] and followed their method to calculate the resident
memory CD8* T (Trm) cells signature score by using 31 markers (14 positive markers and 17
negative markers) for all annotated CD8" T cells [31, 32]. We excluded cells with CD4*
expression and defined the top 50% scored cells as the Trwm cells. Lastly, we conducted a non-
parametric Wilcoxon rank sum test by the function of “FindAlIMarkers” from R package Seurat
[33](version 3.1.5 in R version 3.5.2) to perform the differentially expressed genes (DEG)

analysis between moderate and severe patients.

Cell trajectory and transcriptional program analysis in Trm cells
We used the R package Slingshot [34] to infer cell transition and pseudotime from the scCRNA-

seq data. Specifically, we first used the expression data to generate the minimum spanning tree
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186  of cells in a reduced-dimensionality space [t-Distributed Stochastic Neighbor Embedding (tSNE)
187  project from top 30 principle components of top 3,000 variable genes] assuming there are two
188  major clusters (moderate and severe Trwm cells). We then applied the principal curve algorithm
189  [35] to infer an one-dimensional variable (pseudotime) representing the each cell’s trajectory
190 along the transcriptional progression. We used our in-house machine learning tool, DrivAER
191  (Driving transcriptional programs based on AutoEncoder derived relevance scores) [36], to

192  identify potential transcriptional programs (e.g., gene sets of pathways or transcription factors
193  (TF)s) that potentially regulate the inferred cell trajectory between the moderate and severe

194  patients. To avoid the potential noise from the low expression genes, we excluded those genes
195 expressed in < 10% cells. DrivAER took gene-expression and pseudotime inferred from previous
196  cell trajectory results (Slingshot) and calculated each gene's relevance score by performing

197  cellular manifold by using Deep Count Autoencoder [37] and a random forest model with out-of-
198  bag score calculation as the relevance score. The transcriptional program annotations were from
199  the hallmark pathway gene sets from MSigDB [38] and transcription factor (TF) target gene sets
200 from TRRUST [39]. To calculate the relevance score, we used the “calc_relevance” function
201  with the following parameters: min_targets = 10, ae_type = “nb-conddisp”, epoch=100,

202  early_stop=3, and hidden_size = “(8,2,8)”. The relevance score (R? coefficient of determination)
203 indicates the proportion of variance in the pseudotime explained by target genes of transcription
204  factor or genes in the hallmark pathways.

205

206  DNA motif recognition analysis of genome-wide significant SNPs

207 We used the function “variation-scan” of the online tool RSAT (http://rsat.sb-

208  roscoff.fr/index.php, accessed on 01/15/2020) [40] to predict the binding effect of all the
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209  significant SNPs at the 3p21.31 locus. We defined the TF with Bonferroni corrected p < 0.05 as
210  the significant TF. Later, we compared them with the TF with high relevance score from the
211  DrivAER analysis above. The position weight matrices (PWMs) for all the TFs were

212  downloaded from cis-BP Database (http://cisbp.ccbr.utoronto.ca/) version 2019-06_v2.00) [41]

213  and sequence logos representing motif binding sites were generated using R package seql.ogo
214 version 1.54.3 in R version 3.5.2.

215

216  Results

217  TWAS analysis identified and replicated two chemokine receptor genes

218 We utilized the latest S-PrediXcan MASHR models trained with GTEx v8 data for

219 TWAS analyses in lung and whole blood on two GWAS datasets of susceptibility to severe

220 COVID-19 [19]. In the HGI cohort, we found that a decreased expression of CXCR6, which

221  encodes C-X-C chemokine receptor type 6, in the lung was associated with an increased risk for
222 the development of severe COVID-19 symptoms (p = 1.57 x 107, z = -8.53), and this result was
223 then replicated in the SCGG cohort (p = 2.84 x 107, z = -4.19, suggestive significant) (Fig. 2 and
224  Table 1). Likewise, an increased expression of CCR9Y, which encodes C-C chemokine receptor
225  type 9, in whole blood was associated with an increased risk for the development of severe

226  COVID-19 complications in GWASkgi cohort (p = 7.90 x 101!, z = 6.50) and this result was

227  replicated in the other GWASscag cohort, (p = 3.78 x 107'°, z = 6.26) (Fig. 2 and Table 1).

228  Whole blood and lung transcriptome models also identified two additional significant TWAS
229  genes that are specific to one of the two cohorts. Increased expression of ABO gene in the lung
230  was associated with risk for the development of severe COVID-19 symptoms in GWASsccc data

231  set(p=5.98 x107, z = 4.99). Similarly, increased expression of GAS7 gene (Growth Arrest-

10
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232 Specific 7) in whole blood was associated with an increased risk for development of COVID-19
233 symptom in the GWASHgi data set (p = 8.46 x 107, z = 4.92). Overall, these two chemokine
234 receptor genes were found and replicated to be associated with COVID-19 and we used them for
235  further downstream analyses.

236

237  Colocalization analysis validated the mediation effect of CXCR6 between GWAS locus and
238 severe COVID-19

239 The TWAS findings might be driven by pleiotropy or linkage effect by the LD structure
240 in the GWAS loci instead of the true mediation effect [42] (Fig. 3a). To rule out the linkage

241  effect and find further evidence of true colocalization of causal signals in the variants that were
242  significant in both GWAS and eQTL analyses, we performed colocalization analysis by

243 eCAVIAR and fastENLOC using several tissue-specific eQTL datasets. The eCAVIAR with the
244  eQTL data in lung tissue revealed that the severe COVID-19 association could be mediated by
245  the variants that were associated with the expression of CXCR6 (CLPP =(.79) (Table 1). And
246  the colocalized SNP rs34068335 (GWASHa1 p = 5.02 x 107%2) is also related to the increased
247  monocyte percentage of white cells in a blood-trait GWAS study using Phenoscanner [43-45].
248  The fastENLOC analysis showed a high RCP between the expression of CXCR6 in T follicular
249  helper cells and GWAS signal in both the GWASuar cohort (RCP=0.99) and the GWASscee
250  cohort (RCP =0.99) (Table 1). However, colocalization analysis of CCR9 did not suggest strong
251  colocalization evidence (CLPP < 0.1 and RCP < 0.1).

252

253  Multi-level functional annotations linked 3p21.31 locus with CXCR6 and CCR9 functions

11
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254 To explore the potential functions linked with the GWAS risk variants, we examined the
255  functional genomic annotations in this locus. Specifically, we found a consistent decreasing

256  effect of CXCR6 expression in T cells and whole blood from the two large-scaled eQTL datasets
257  (Fig. 3b). Furthermore, multiple SNPs at the 3p217.31 locus reside in the annotated regulatory
258  elements across blood, T cell, and lung cell lines (Fig. 3¢, Methods). The Hi-C cell line data

259  from lung fibroblast [28] also showed a significant interaction between the 3p21.31 locus had
260 interactions with both CXCR6 and CCR9 promoter regions (Fig. 3d). Overall, these results from
261  the multiple lines of evidence all supported the potential regulatory effects of the 3p21.31 locus
262 on CXCR6 expression.

263

264  CXCReé differentially expressed in Trwm cells of severe and moderate patients

265 According to our tissue cell-type-specific expression database (CSEA-DB), CXCR6 is
266  mainly expressed in immune cells in human lung tissue (e.g., T cell and NK cell) [16]. In Liao et
267  al.’s work, the authors reported that CXCR6 had lower expression in severe patients than

268 moderate patients, indicating a potential protective effect in T cells of human respiratory systems
269 [17]. However, T cells have various resident and circulating subtypes with diverse functions

270  [46]. To understand which subpopulation(s) of T cells might be associated with the severity of
271  COVID-19, we used the BLAF scRNA-seq data of six severe patients and three moderate

272  patients. The data included 6,491 T-cells (4,356 from six severe patients and 2,135 from three
273  moderate patients). We further used a set of 31 Trm cell marker genes to distinguish the Trm
274 cells and conventional CD8* T cells (Methods). As shown in Fig. 4a and 4b, the Trw cells and
275  conventional T cells could be distinguished in both moderate and severe patients with the classic

276  Trwm cells markers (CXCR6 [31], CD69 [47], ITGAE (the gene encoding CD103) [47, 48],

12
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277  ZNF683 [48], and XCL]I [46]) and three negative-control markers (SELL (the gene encoding

278 CD62L) [47], KLF2, and S1PR1 [49]) from previous study [31]. Among the 1,090 lung Trm

279  cells, we found that 675 cells were from moderate patients and only 415 cells were from severe
280  patients. This represented a 3.32-fold decrease for the expected number of Trwm cells in severe
281  patients. We used the non-parametric Wilcoxon rank sum test to identify the DEGs in the Trm
282  cells between severe and moderate patients and found CXCR6 had significantly lower expression
283  in the severe patients than the moderate patients (p < 2.5 x 107!, fold change = 1.57, Fig. 4c).
284

285 Inferring the transcriptional programs that drive the cell status transition

286 To understand the transition between moderate and severe Trwm cells, we constructed the
287  cell trajectory/pseudotime along with Trm cells by using Slingshot (Fig. 4d) [34]. Next, we

288  applied our DrivAER approach (Driving transcriptional programs based on AutoEncoder derived
289  Relevance scores) [36] to identify the potential transcriptional programs that were most likely
290 involved in the cell trajectory/pseudotime. Fig. 4e shows a scaled heatmap to demonstrate the
291  relative expression of naive and effector markers of T cells in the order of pseudotime generated
292 by Slingshot [34, 39]. We identified that the severe Trm cells were mainly gathered in the later
293  stage of the pseudotime. The naive markers (IL7R, BCL2) were higher expressed in moderate
294  patients than in severe patients (except SELL). On the contrary, some effector markers (GZMB,
295  HAVCR2, LAG3, IFNG) were lower expressed in moderate patients than in severe patients. Other
296  effector markers (IRF4, PRF1) had higher expression in the middle of the transition than their
297  expression at the start and end sides. These results indicated that the Trwm cells in severe patients
298  still in pro-inflammatory status although the Trwm cells status were more heterogeneous in severe

299  patients than in moderate patients (Fig. 4a, 4b, and 4e). As shown in Fig. 4f and 4g, the top five
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300 molecular signatures (relevance score > 0.25) identified by DrivAER included T-cell pro-

301 inflammatory actions (interferon gamma response, allograft rejection [50], interferon alpha

302 response, and complement system) as well as proliferative mTORC1 signaling pathway [51].
303  Among the top TFs (relevance score > 0.25) that drove this cell trajectory, the DNA binding
304 RELA-NFKBI1 complex is involved in several biological processes, such as inflammation,

305 immunity, and cell growth initiated by external stimuli. The signal transducer and activator of
306 transcription (STAT) and its regulator histone deacetylase (HDACI) could be activated by

307  various ligands including interferon-alpha and interferon-gamma. In summary, the TF results are
308  well consistent with our previous hallmark pathway findings (Additional file: Table S1 and
309 Table S2).

310

311  Several genome-wide significant SNPs might change the TF binding site affinity

312 To understand the potential TF binding affinity changes of genome-wide significant
313  SNPs, we conducted the DNA motif recognition analysis of the seven TFs related to the

314  transcriptional program between moderate and severe Trwm cells (relevance score > (.25,

315 Additional file 1: Table S2). We identified SNP rs10490770 [T/C, minor allele frequency

316  (MAF) =0.097, GWASHai = 9.53 x 10°°] and SNP 1s67959919 (G/A, MAF = 0.097, GWASkar
317  =8.83 x 10"¥) that were predicted to alter the binding affinity of TFs RELA and SP1,

318 respectively (Additional file 1: Fig. S1a and S1b). Moreover, these two SNPs were in the high
319 LD region (r* > 0.8) with several significant lead eQTLs (SNP rs35896106 and rs17713054) of
320 CXCR6 in whole blood (p = 5.03 x 107) and T follicular helper cell (p = 1.30 x 10”) (Fig. 3b).

321  In summary, the genome-wide significant SNPs were predicted to change the binding affinity of
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322  those TFs highly related to TrMm cells status transition, (Additional file 2: Table S3), suggesting
323  their potential regulation of CXCR6 expression.

324

325 Discussion

326 In this work, we developed a multi-level, integrative genetic and functional analysis

327  framework to explore the host genetic factors on the expression change of GWAS-implicated
328  genes for COVID-19 severity. Specifically, we conducted TWAS analysis for two independent
329 COVID-19 GWAS datasets. We identified and replicated two chemokine receptor genes, CXCR6
330 and CCR9Y, with a protective effect in the lung and a risk effect in whole blood, respectively.

331 CXCR6 is expressed in T lymphocytes and essential genes in CD8" Trwm cells, mediating the

332 homing of Trwm cells to the lung along with its ligand CXCL16 [52, 53]. CCR9 was reported to
333  regulate chemotaxis in response to thymus-expressed chemokine in T cells [54]. The

334  colocalization analysis identified that both GWAS and eQTLs of CXCR6 had high colocalization
335  probabilities in the lung, whole blood, and T follicular helper cells, which confirms the genetic
336 regulation roles at this locus. At the single cell level, our DEG analysis identified CXCR6 gene
337  had lower expression in the COVID-19 severe patients than the moderate patients in both T cells
338 and Tru cells, supporting its protective effect identified in TWAS analysis in lung and whole
339  blood. The expected proportion of Trm cells also decreased by 3.32-fold (Table 2). Interestingly,
340 these findings were replicated in circulating CXCR6" CD8" T cells of severe and control/mild
341  patients by flow cytometry experiment [53]. We identified the major transition force from

342  moderate Trwm cells to severe Trm cells are pro-inflammatory pathways and TFs.

343 From the TWAS and colocalization analysis in lung and immune cells, we successfully

344  replicated that CXCR6 was centered in the GWAS signal at locus 3p21.31. Previous studies have
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345  reported that CXCR6™ significantly decreases airway lung Trym cells due to altered trafficking of
346 CXCR6™ cells within the lung of the mice [52], which could explain a much less proportion of
347  Tru cells in severe patients than moderate patients. The lung Trwm cells provide the first line of
348 defense against infection and coordinate the subsequent adaptive response [55]. The previous
349  study has reported that Trwm cells constitutively expressed surface receptors (PD-1 and CTLA-4)
350 that are associated with inhibition of T cell function, which might prevent excessive activation or
351 inflammation in the tissue niche [56].

352 We further used nine classic naive markers (e.g., BCL2, SELL, TCF7, and IL7R) and ten
353  classic effector markers (e.g., GZMB, PRF 1, IFNG, LAG3, and PDCD]) to quantify the naive
354  and effector status of the Trwm cells (Additional file 1: Fig. S2). Trum cells in severe patients had
355  a much higher median of effector marker score (0.44 in severe and 0.18 in moderate Trm cells)
356  than TrwMcells in moderate patients did, suggesting that the severe Trwm cells had much higher
357 activities in inflammation as we discovered in Fig. 4f despite their proportion decrease. For the
358 naive score (Additional file 1: Fig. S2), both moderate and severe Trwm cells had limited

359  expressions (median score: 0.028 in severe and 0.038 in moderate Trm cells). Interestingly, if we
360 removed the lymph node homing receptor SELL [31] from the naive markers list, we would find
361 the median score in severe naive markers would drop to O (Additional file 1: Fig. S2). This

362 indicated that SELL expression contributed greatly to the naive status of Trm severe patients.
363  Consistently in Fig. 4e, we could also observe that a large proportion of Trm cells had higher
364  SELL expression in severe patients than in moderate patients, suggesting the Trm cells in severe
365  patients might not be in a stable cell status due to the lymph node homing signal (SELL). To this
366 end, we hypothesized that genetically lower expressed CXCR6 would decrease the proportion of

367  Trum cells residing in the lung through the CXCR6/CXCL16 axis [52, 53], impairing the first-line
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368 defense. Moreover, the lower expression of CXCR6 would also lead to the “unstable” residency
369 of Trmcellsin lung (Fig. 4b). The TrM cells play essential roles for orchestrating the immune
370  system, lack of which would lead to severe COVID-19 symptoms, such as acute respiratory

371  distress syndrome, cytokine storm and major multi-organ damage [57] (Fig. 5).

372 In this study, we mainly focused on the multi-evidence validated gene CXCR6 and its
373  mechanism related to severe COVID-19. Although we are unable to directly test the genotype of
374  those severe patients, the association of the single cell level phenotype (lower expression of

375 CXCR6 and decreased proportion of CD8" CXCR6™ T cells) and the severe COVID-19 has been
376  observed in another work with flow cytometry experiments [53]. We are aware of the genetic
377  factors on CXCR6 might only explain a proportion of the severe COVID-19 variance. Other

378  genetic mechanisms discovered in GWAS and TWAS analyses need further exploration [6]. The
379  GWASHar dataset used in this study was HGI round 4 (alpha), which was the largest GWAS by
380 the access date of October 20, 2020. However, it was not the currently largest GWAS meta-

381  analysis for severe COVID-19 when we prepared the manuscript. This research field is evolving
382  very fast, due to the urgent demand of public health. Currently, the largest GWAS HGI round 4
383  (freeze) contained more samples (4,336 cases/ 353,891 controls), and it included two

384  independent datasets we used in this study. Considering that the GW ASuar dataset included

385  ~10% control samples from the Asian population, we checked the LocusZoom plot of the chr3:
386  45.80-46.40 million base pairs (Mb) region on GRCh37 reference genome. We found a

387  consistent tendency in GWAS round 4 alpha and freeze version (Additional filel: Fig. S3).

388  Another limitation is that the scRNA-seq data only had nine COVID-19 patient samples (six
389  severe and three moderate samples), which might not provide enough statistical power at the

390 sample level as it is commonly considered each scRNA-seq data acts like a population. Finally,
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391 the TF binding site affinity alterations were assessed based on computational prediction,

392  therefore, the in vivo effects require experimental validation. We anticipate more and larger

393  datasets will be released in the near future. We will apply our integrative analysis approach to
394  such new data.

395

396 Conclusions

397 Our work systematically explored the genetic effect on gene expression at chromosome
398 locus 3p21.31 and pinpointed the gene CXCR6 might be involved in the severity of COVID-19.
399  Several genome-wide significant SNPs were within the LD block of CXCR6 eQTLs in immune-
400 related cells. In a scRNA-seq COVID-19 BALF dataset, we characterized that CXCR6 (Trm cells
401 marker gene) had a lower expression in severe patients than in moderate patients. Moreover, the
402  Trw cells in severe patients had a 3.32-fold proportion decrease and much higher pro-

403 inflammatory activity than Trwm cells in moderate patients. Based on these observations, we

404  proposed a potential mechanism on how the lower expression of CXCR6 regulated by the

405  endogenous factors could progress to severe COVID-19 outcomes.

406
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599  Figure legends

600 Fig. 1 Workflow of a data-driven study: from genetic factor to molecular phenotype.

601  The study has four major levels. Level 1: we collected the current largest COVID-19 genome-
602  wide association study (GWAS) datasets and a non-duplicated replicate of the severe COVID-19
603  GWAS dataset. Level 2: we utilized the cutting-edge statistical approaches (transcriptome-wide
604  association study and colocalization analysis) and public functional genomics annotations to
605  dissect the genetic effects on gene expression (Methods). Then, we cross-validated our findings
606  of these methods to ensure the robustness. Level 3: we adapted single cell RNA sequencing

607  dataset from COVID-19 bronchoalveolar lavage fluid samples. We applied differentially

608  expressed gene analysis and machine learning methods to characterize the molecular changes of
609 candidate gene at single cell level from COVID-19 moderate and severe patients. We conducted
610 extensive literature review to explain our observations. Level 4: we proposed a mechanism for
611  explaining the “causal” association of genetic factors and the severity of COVID-19 patients.
612

613  Fig. 2 Manhattan plots illustrating the z scores of transcriptome-wide association study (TWAS)
614  genes.

615 TWAS z scores for two genome-wide association study (GWAS) datasets of susceptibility to
616  severe COVID-19 using lung and whole blood tissue models. The upper panel shows the results
617  from GWASHa! and the lower panel from GW ASscee (see Methods). The round and triangle
618  points denote lung and whole blood tissues, respectively, in the TWAS analysis. Dashed

619  horizontal lines denote the Bonferroni-corrected significance threshold (|z| = 4.56, p < 5 x 10°).
620  Significant genes were highlighted with their gene symbol.

621
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622  Fig. 3 Functional genomic annotation on 3p21.31 locus with signals from GW ASHat.

623 (a) LocusZoom view of the association signals of SNPs at the 3p21.31 locus of GWASya1. The
624  x-axis is the chromosome position in million base pairs (Mb) on GRCh37 reference genome and
625  y-axis represents the —logio (p-value) from GWAShai dataset. The color indicates the strength of
626 linkage disequilibrium from the lead SNP rs35081325. The genes within the region are annotated
627 in the lower panel. A vertical blue line labels the position of the lead SNP rs35081325 to denote
628  the relationship of GWAS variants to other datasets: expression quantitative trait (eQTL) (Fig.
629  3b), chromatin interaction (Fig. 3c), and imputed Roadmap functional elements (Fig. 3d). (b)
630  The significant eQTLs associated with CXCR6 expression in this region. The cis- eQTL datasets
631 include two whole blood datasets [Biobank-based Integrative Omics Studies (BIOS) QTL and
632  eQTLGen] and one T follicular helper cell dataset (DICE). The y axis represents the —logio (p-
633  value) from the eQTL studies. (c¢) The significant Hi-C interactions in normal lung fibroblast cell
634  line (IMR90). Blue blocks denote the target and bait regions, and red arcs indicate the

635 interactions between functional elements. (d) The region annotated with the chromatin-state

636  segmentation track (ChromHMM) from the Roadmap Epigenomics data for T-cell and lung

637  tissue. The Roadmap Epigenomics cell line IDs are shown on the left side: EO17 (IMR9O0 fetal
638  lung fibroblasts Cell Line), EO33 (Primary T Cells from cord blood), E034 (Primary T Cells

639  from blood), EO38 (Primary T help naive cells from peripheral blood), EO39 (Primary T helper
640 naive cells from peripheral blood), EO40 (Primary T helper memory cells from peripheral blood
641 1), EO41 (Primary T helper cells PMA-Ionomycin stimulated), E042 (Primary T helper 17 cells
642 PMA-Ionomycin stimulated), EO43 (Primary T helper cells from peripheral blood), E044

643  (Primary T regulatory cells from peripheral blood), E0O45 (Primary T cells effector/memory

644  enriched from peripheral blood), E047 (Primary T CD8 naive cells from peripheral blood), E048
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645  (Primary T CD8 memory cells from peripheral blood), EO88 (Fetal lung), E096 (Lung), E114
646  (A549 EtOH 0.02pct Lung Carcinoma Cell Line), and E128 (NHLF Human Lung Fibroblast

647  Primary Cells). The colors denote chromatin states imputed by ChromHMM, with the color key
648  in the gray box (Methods).

649

650 Fig. 4 Single cell transcriptome analysis of the severe and moderate COVID-19 patients.

651 (a) Relative expression of the lung resident memory CD8* T (Trwm) signature genes in Trwm cells
652  and conventional CD8" T cells in moderate patients. (b) Relative expression of the Trwm featured
653  genes in Trm cells and conventional CD8* T cells in severe patients. (¢) CXCR6 expression in the
654  Trwm cells of moderate and severe patients. We split the Trwm cells from the annotation of the

655  original paper with 31 marker genes (Methods). We conducted a two-sided non-parameter

656  Wilcoxon rank sum test to test whether CXCR6 was differentially expressed in moderate (red)
657 and severe (blue) groups of Trm cells. “***” indicates it is genome-wide significant after

658  multiple-test correction of all expressed genes. The small points denote the normalized

659  expression in each cell. Mean normalized expression of CXCR6 in each group is highlighted with
660 the largest circle in black. (d) Pseudotime inference for the moderate and severe Trwm cells. The
661 red and blue points on t-Distributed Stochastic Neighbor Embedding (tSNE) projection denote
662  the Trwm cells from moderate and severe patients, respectively. The x-axis and y-axis are the first
663  and second dimension of the tSNE, respectively. (e) Relative expression of the CXCR6 and naive
664  and effector T cell markers along the pseudotime proportional to the green color. The gene

665  expressions are scaled by cells. Cells from moderate and severe groups are annotated in blue and
666 red. (f) Relevance score for hallmark pathways from the molecular signatures database

667  (MSigDB) along the pseudotime. The relevance score (R? coefficient of determination) indicates
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the proportion of variance in the pseudotime explained by the genes in the hallmark pathways.
(g) Relevance score for transcription factors and their target genes along the pseudotime. The
relevance score denotes the proportion of variance in the pseudotime explained by the target

genes regulated by the transcription factor.

Fig. 5 The proposed CXCR6 regulation mechanism on COVID-19 severity.

We proposed one pathogenesis mechanism using current knowledge to explain how the lower
expression of CXCR6 could be associated with the outcome of severe COVID-19 symptoms,
which was supported by our findings of the genetic factors on decreasing the CXCR6 expression
and aligned with our observations from single cell transcriptome analysis. The star on the DNA

indicates the host genetic effects.
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680  Table 1: Summary of TWAS and colocalization analyses in tissues and cell lines.

G Discovery: GWASHar Validation: GWASscee
ene
Tissue TwAS colocalized TWAS colocalized
symbol
, TWASp PP SNP p , TWASp PP SNP p
_ 1 oo 1534068335 ] )
Lung 8.53 1.57x10"" 0.79 5 001022 4.19 2.84x10 ns
CXCRO6 ;
T f;’el}lce‘ilar ] oo 135081325  oges TS35081325
Ceﬁs ' 3.82x10% ' 2.49x10710
CCR9 \;)vllol(o)lde 6.50 7.90x10"" ns - 6.26 3.78x10'° ns -

681 GWASHuaidenotes the GWAS dataset from the Host Genetics Initiative.

682  GWASscae represents the GWAS dataset from the Severe COVID-19 GWAS Group.

683  PP: posterior probability.

684  z:zscore.

685  p: p-value.

686  *: statistically significant by the colocalization posterior probability (CLPP) from eCAVIAR.
687  **:statistically significant by the regional colocalization probability (RCP) from fastENLOC.
688  ns: no significant colocalization from either e€CAVIAR or fastENLOC.

689  -: no available data.
690

691  Table 2: Counts and ratio of Trwm cells in moderate and severe patients.

Patient group # CD8* T # Trm Trwm cell proportion ratio

(sample size) cells cells (Moderate/Severe)
Moderate (3) 2,135 675

3.32
Severe (6) 4,356 415

692  #: the counted number.

693  Trmcells: the resident memory CD8* T cells as defined in Methods.
694

695
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Additional files

Additional file 1.pdf: Fig S1: Sequence logos representing DNA binding site generated from
position weight matrix (PWM) for transcription factor RELA and SP1. Fig. S2. Violin plots
showing the distribution of key features between moderate and severe patients. Fig. S3.
LocusZoom views for two Host Genetics Initiates GWAS datasets at 3p21.31 locus. Table S1:
Hallmark pathways and their relevance scores. Table S2: Transcription factors and their

relevance scores.

Additional file 2.xls: Table S3: Predicted transcription factors (SP1 and RELA) bind affinity

alterations on genome-wide significant SNPs at locus 3p21.31.
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