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Abstract

Individual characterization of subjects based on their functional connectome (FC), termed “FC
fingerprinting”, has become a highly sought-after goal in contemporary neuroscience research.
Recent functional magnetic resonance imaging (fMRI) studies have demonstrated unique
characterization and accurate identification of individuals as an accomplished task. However,
FC fingerprinting in magnetoencephalography (MEG) data is still widely unexplored. Here, we
study resting-state MEG data from the Human Connectome Project to assess the MEG FC
fingerprinting and its relationship with several factors including amplitude- and phase-coupling
functional connectivity measures, spatial leakage correction, frequency bands, and behavioral
significance. To this end, we first employ two identification scoring methods, differential
identifiability and success rate, to provide quantitative fingerprint scores for each FC
measurement. Secondly, we explore the edgewise and nodal MEG fingerprinting patterns

across the different frequency bands (delta, theta, alpha, beta, and gamma). Finally, we
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investigate the cross-modality fingerprinting patterns obtained from MEG and fMRI recordings
from the same subjects. We assess the behavioral significance of FC across connectivity
measures and imaging modalities using partial least square correlation analyses. Our results
suggest that fingerprinting performance is heavily dependent on the functional connectivity
measure, frequency band, identification scoring method, and spatial leakage correction. We
report higher MEG fingerprints in phase-coupling methods, central frequency bands (alpha and
beta), and in the visual, frontoparietal, dorsal-attention, and default-mode networks.
Furthermore, cross-modality comparisons reveal a certain degree of spatial concordance in
fingerprinting patterns between the MEG and fMRI data, especially in the visual system. Finally,
the multivariate correlation analyses show that MEG connectomes have strong behavioral
significance, which however depends on the considered connectivity measure and temporal
scale. This comprehensive, albeit preliminary investigation of MEG connectome test-retest
identification offers a first characterization of MEG fingerprinting in relation to different
methodological and electrophysiological factors and contributes to the understanding of
fingerprinting cross-modal relationships. We hope that this first investigation will contribute to

setting the grounds for MEG connectome identification.

1. Introduction

The increasing availability of public neuroimaging data in recent decades (D. C. Van Essen et
al., 2012) has given rise to an increasing number of studies aiming at mapping the structure and
function of the human brain across multiple temporal and spatial scales (Cabral, Kringelbach, &
Deco, 2017; Griffa et al., 2017; Wirsich, Amico, Giraud, Gofi, & Sadaghiani, 2020). To this end,
a new line of research was born, which models the brain as a network of interconnected
functional or structural elements, also known as Brain Connectomics (Bassett & Sporns, 2017;
Bullmore & Sporns, 2009; Fornito & Bullmore, 2015; Fornito, Zalesky, & Bullmore, 2016). In
brain connectomics, the brain is often modeled as a network composed of nodes or brain
regions (defined according to a predefined brain atlas (de Reus & van den Heuvel, 2013))
interconnected by two types of links or edges. The first ones, the structural connections,
represent the physical wiring between different brain regions and are assessed using white
matter fiber tractography, leading to the structural connectome (Hagmann, 2005; Sporns,
Tononi, & Kétter, 2005). The second one, the functional connections, represent statistical
interdependencies between brain regions’ signals while subjects are either at rest or performing

a task, referred to as functional connectomes (Friston, 1994). Brain connectomics has been
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proven useful in mapping brain structure and function in large human populations, but also in
investigating the association between individual connectome features and behavioral, clinical
and genetic profiles (Fornito, Arnatkeviciaté, & Fulcher, 2019; Fornito, Zalesky, & Breakspear,
2015).

Recent work on functional magnetic resonance imaging (fMRI) (Amico & Gofii, 2018; Finn et al.,
2015) shows that functional connectomes can serve as ‘fingerprints’ of individual subjects (Finn
et al.,, 2015; Miranda-Dominguez et al., 2014). This capacity can be maximized across
conditions (Abbas et al., 2020) and different scanning protocols (Bari, Amico, Vike, Talavage, &
Goni, 2019). The fact that functional connectomes, in essence, a second-order statistical
summary of brain activity, contains subject-specific information that can be used for prediction
and modeling of individual behavioral and clinical scores, has approached brain connectomics
to precision medicine and personalized treatments (Castellanos, Di Martino, Craddock, Mehta,
& Milham, 2013; Fernandes et al., 2017; Smith et al., 2015). Furthermore, several research
studies are also exploring the use of brain activity as a physiological characteristic for next-
generation biometric systems (Fraschini, Hillebrand, Demuru, Didaci, & Marcialis, 2015; Rocca
et al., 2014).

Recently, few studies have started to explore connectome fingerprinting in different functional
neuroimaging modalities, such as functional Near-Infrared Spectroscopy (fNIRS) (Rodrigues,
Ribeiro, Sato, Mesquita, & Junior, 2019), electroencephalography (EEG) (Matteo Demuru &
Fraschini, 2020), and magnetoencephalography (MEG) (M. Demuru et al., 2017). MEG is a
complementary modality to fMRI which allows for exploring fast-scale brain communication
processes (F. de Pasquale, Della Penna, Sporns, Romani, & Corbetta, 2016; C. J. Stam & van
Straaten, 2012) and offers insights into functional connectivity differences between healthy and
pathological populations (Engels et al.,, 2017; Cornelis J. Stam, 2014). A recent study has
attempted to investigate the neurophysiological foundations of individual differentiation from the
complex dynamics of MEG data (Castanheira, Orozco, Misic, & Baillet, 2021). However, it is still
unclear whether functional connectomes assessed at these faster temporal scales have
fingerprinting properties comparable to those observed at slower temporal scales with fMRI
(Amico & Goni, 2018; Finn et al., 2015). In fact, to date, we still do not know all the factors
contributing to brain fingerprinting. The temporal richness of EEG and MEG might give us new
insights into the relationship between brain fingerprinting across different time scales or

frequency bands. Furthermore, the possibility of disentangling phase and amplitude
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contributions to MEG/EEG functional connectivity allows for studying how individual

connectome features relate to different underlying coupling mechanisms.

In this work, we address these open questions by a comprehensive investigation of the
fingerprinting properties of MEG functional connectomes. We start by studying the influence of
MEG functional connectivity measures on fingerprinting, and the role of temporal scales and
frequency bands on connectome identification. Furthermore, we report the main brain regions
and connections that have the highest fingerprinting values in MEG data; i.e., they are the most
important for the identification of a single subject in a group. We conclude by comparing and
analyzing the fingerprinting features extracted from MEG data to the ones obtained from fMRI

recordings in the same subjects.

2. Materials and Methods

2.1 HCP data

The dataset used for this study consisted of structural and functional (resting-state MEG and
fMRI) data from 89 subjects (46% females, mean age 29.0 £ 3.6 years) of the 1200 Subjects
release of the Human Connectome Project (HCP) (Larson-Prior et al., 2013; D. C. Van Essen et
al., 2012; David C. Van Essen et al., 2013). All included subjects had complete anatomical,
resting-state MEG and fMRI data and gave written consent according to the HCP consortium
rules. The MEG resting-state recordings were collected at St. Louis University on a whole-head
MAGNES 3600 (4D Neuroimaging, San Diego, CA) system including 248 magnetometers and
23 reference channels. Data were recorded at 2034 Hz sampling rate in three separate runs of
approximately 6 minutes each within a single-day recording session, with subjects lying in the
scanner in a supine position with eyes open. Only the first two runs of each subject were
considered in this study. Electrooculography and electrocardiography were acquired for ocular
and cardiac artefacts’ rejection. Moreover, the outline of each subject’s scalp (about 2400
points), anatomical landmarks, and localizer coils’ positions were digitized at the beginning of
the recording session. The fMRI resting-state recordings were acquired at Washington
University on a dedicated Siemens 3T ‘Connectome Skyra’ scanner with a 32-channel head coll
on four runs of approximatively 15 minutes (TR 720 ms, 2 mm isotropic voxel size), two runs in
a session, and two runs in a separate day session. The two runs of each session were acquired
with left-right (LR) and right-left (RL) phase-encoding directions, respectively. A structural T1w

volume with 0.7 mm isotropic voxel size was acquired as well.
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Functional data acquired for individual subjects on two separate runs (MEG) or on two separate
sessions (fMRI) were tagged as ‘test’ and ‘retest’. Further details on the HCP data can be found
elsewhere (Glasser et al., 2013; Larson-Prior et al., 2013; D. C. Van Essen et al., 2012; David
C. Van Essen et al., 2013).

2.2 Cortical parcellation

We used the Destrieux cortical parcellation provided by the HCP, which includes 148 regions of
interest (Desikan et al., 2006; DESTRIEUX, FISCHL, DALE, & HALGREN, 2010). Moreover,
each cortical region was assigned to one of the seven resting-state networks (RSNs) defined by
(Yeo et al., 2011) through a majority voting procedure, i.e. each brain region from the Glasser
Atlas was assigned to the most highly present (Yeo-defined) functional network (as analogously
done in (Amico et al., 2018)).

2.3 MEG processing

We downloaded the preprocessed sensor-level MEG data from the HCP database. The MEG
preprocessing pipeline includes three major steps, (1) Bad channel/segment removal: removing
non-working channels, flat data segments, segments with abnormally high signal variance,
segments corrupted by artefacts, (2) Filtering: band-pass filtering (1.3-150Hz) and notch filtering
(59-61 Hz/119-121 Hz) to remove power line artefacts, and (3) Artefact removal: decomposition
of MEG data into brain and non-brain (artefactual) components. Bad channels are identified by
searching for outliers in the neighbor correlation distribution; for each channel, bad segments
are identified by an abnormally high z-score relative to the statistical characteristics of the entire
data time series of a channel. Artefact removal is achieved using Independent Component
Analysis (ICA) followed by automatic classification of the obtained Independent Components
(ICs) into brain and non-brain (artefactual) components. The ICs are evaluated for temporal-
spectral properties and contribution of the eye or heart magnetic signals to classify them as
brain components, environmental/instrumental artefacts, and EOG/ECG components. The
identified artefacts are removed from the data and only the brain components are used for
further analysis. In order to obtain source-localized neural activity signals, we then projected the
sensor-level time-series to 148 locations (sources) in the cortex corresponding to the centroids
of the Destrieux regions using FieldTrip r10442 (Oostenveld, Fries, Maris, & Schoffelen, 2010).
First, a forward lead field model was generated for each subject using the single-shell volume
conduction (head) model provided by the HCP (Larson-Prior et al., 2013; Nolte, 2003) and the
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centroids of the 148 cortical regions of interest. Second, the lead field model was inverted using
the Linearly Constrained Minimum-Variance beamforming method to recover the source-level
times-series (Veen, Drongelen, Yuchtman, & Suzuki, 1997; Woolrich, Hunt, Groves, & Barnes,
2011) (Fig. 1A). The reconstructed time-series were subdivided into 33 epochs of 8s duration
(4072 samples) and bandpass filtered into the five canonical frequency bands: delta (0.5-4 Hz),
theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-48 Hz) using two-way FIR
filters of order 25. The epoch length of 8s was chosen based on the findings of recent studies

that investigated the effect of epoch length on functional connectivity (Fraschini et al., 2016).

2.4 fMRI processing

For the fMRI comparisons, we took the minimally preprocessed HCP resting-state data (Glasser
et al., 2013) and added the following preprocessing steps. First, we applied a standard general
linear model (GLM) regression which included: detrending; removal of motion regressors and
their first derivatives; removal of white matter (WM), cerebrospinal fluid (CSF) signals and their
first derivatives; global signal regression (and its derivative). Secondly, we bandpass filtered the
time series in the range [0.01 0.15] Hz and averaged them across the voxels belonging to each

one of the 148 Destrieux cortical regions. Finally, region-wise time series were z-scored.

2.5 Functional connectivity measures

There is a wide range of connectivity estimation methods for MEG (Colclough et al., 2016), but
their impact on MEG fingerprinting properties is currently unknown. In this study, we, therefore,
evaluated six different functional connectivity measures based on amplitude- or phase-coupling
between MEG time-series, and susceptible or non-susceptible to spatial leakage artefacts
(Table 1). Source-reconstructed MEG time-series are spatially correlated due to the limited
ability of beamforming approaches to disentangle shared neuronal components perceived by
the same sensors. This effect, also known as spatial leakage, can artificially inflate short-range
functional connectivity values as well as their cross-subject consistency (Colclough et al., 2016;
Palva & Palva, 2012). Corrections for spatial leakage can be embedded in the definition of the
functional connectivity measure itself (as is the case of some phase-coupling measures, see
below) or can directly act on the source time-series before functional connectivity estimation

(e.g., by pairwise orthogonalization of the time-series).
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Table 1
List of functional connectivity measures used. We separate out functional connectivity measures based
on the type of coupling (amplitude or phase) and the effect of spatial leakage artifact (corrected or

uncorrected) in our investigation. A¢: instantaneous phase difference; J{X}: imaginary component of the

Spatial Leakage

Abbreviation Connectivity Metric Type Formulation

Correction
AEC Amplitude Envelope Correlation Amplitude coupling No Pearson > correlatlo-n betw‘een the
instantaneous amplitude time courses
Pearson’s correlation between the
AECc Amplitude Envelope Correlation Amplitude coupling Yes instantaneous amplitude time courses
corrected (pairwise orthogonalized)
PLV Phase Locking Value Phase coupling No PLV(#) 2 [E[2*®]
PLI Phase Lag Index Phase coupling Yes W = |E{sgn(I{X})}|
wPLI Weighted Phase Lag Index Phase coupling Yes o= E{S{X}}| = |E{I3{X}Isgn(3{X})}|
E{|3{X}} E{|3{X}}
] f—BB | foT eiAgb(r)e—iantdllldf
PLM Phase Linearity Measurement Phase coupling Yes PLM =

T JroT el A (M)e—i2nf1ds(2d f

cross-spectrum X; W and ® represents PLI and wPLI values respectively.

For the MEG data in our investigation, we considered two amplitude-based functional
connectivity measures: i) Amplitude Envelope Correlation (AEC) and ii) corrected Amplitude
Envelope Correlation (AECc) computed after pairwise symmetric orthogonalization of the MEG
data in the time domain (M. J. Brookes, Woolrich, & Barnes, 2012; Hipp, Hawellek, Corbetta,
Siegel, & Engel, 2012). Additionally, we considered four phase-based measures: i) the Phase
Locking Value (PLV) which evaluates the time-varying phase difference, as a measure of
phase-locking, between two brain signals (Lachaux, Rodriguez, Martinerie, & Varela, 1999); ii)
the Phase-Lag Index (PLI) which estimates the asymmetry around zero of the distribution of the
phase differences between two signals (Cornelis J. Stam, Nolte, & Daffertshofer, 2007); iii) the
weighted Phase Lag Index (wPLI) which weights the PLI by the magnitude of the imaginary
component of the cross-spectrum (Vinck, Oostenveld, van Wingerden, Battaglia, & Pennartz,
2011); and iv) the Phase Linearity Measurement (PLM) which measures the synchronization
between brain regions by monitoring their phase differences in time while accounting for narrow

differences in the main frequency components of the two signals (Baselice, Sorriso, Rucco, &
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Sorrentino, 2019; Sorrentino, Ambrosanio, Rucco, & Baselice, 2019). While the PLI and the
wPLI are intrinsically insensitive to spatial leakage since they discard zero phase-lag
interactions between brain regions, the PLV is susceptible to spatial leakage artifacts. The PLM
formulation includes a correction for spatial leakage by excluding phase-difference components
< ¢ (with ¢ set to 0.1 Hz according to (Baselice et al., 2019). For the fMRI data, functional
connectivity is conventionally estimated using bivariate methods or recently, using multivariate
methods (Aggarwal, Gupta, & Garg, 2017). In this work, we employed a widely used Pearson’s

Correlation (PC) measure to compute the functional connectivity in the fMRI data.

For the amplitude-based measures, employed over each epoch of MEG data, raw and pairwise
orthogonalized band-passed time-series were Hilbert-transformed to derive their amplitude
envelopes. The AEC (AECc) was then computed as the Pearson’s correlation coefficient
between the amplitude envelopes and averaged over epochs. For the phase-based measures,
for each epoch, the band-passed time-series were Hilbert-transformed to derive the
instantaneous phase signals which were used to compute the PLV, PLI, wPLI, and PLM values.
Finally, for each subject and each FC measure, the functional connectivity values were
averaged over all the epochs to obtain 10 test/retest averaged functional connectivity matrices

per subject of dimension 148 x 148, two for each of the 5 frequency bands (Figure 1B).

2.6 MEG Connectome Fingerprinting
We explored the effect of the functional connectivity measures and frequency bands on the
MEG connectome fingerprinting. Moreover, we assessed the contribution in terms of

connectome edges and resting-state networks to the overall MEG fingerprinting levels.

2.6.1 MEG Connectome Fingerprinting: Whole-network level

Inspired by recent work on the maximization of connectivity fingerprints in human functional
connectomes (Amico & Goni, 2018), we study MEG connectome inter-subject identifiability by
defining the “identifiability” matrix (see also Fig. 1C), a square and non-symmetric similarity
matrix of size S?, where S is the number of subjects in the dataset. This matrix encodes the
information about the self-similarity of each subject with him/herself across the test/retest
sessions (lser, main diagonal elements), and the similarity of each subject with the others (/omers,

off-diagonal elements). The similarity between two functional connectomes was quantified as
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Fig. 1. MEG fingerprinting analysis pipeline. (A) Resting-state MEG HCP data from two distinct runs
for each subject were pre-processed and source-reconstructed to obtain a clean time series from 148
locations in the cortex. (B) Individual functional connectomes were estimated from these time series using
different functional connectivity measures (Table 1). (C) An identifiability matrix was computed for each
functional connectivity measure from test (columns) - retest (rows) functional connectomes. Values on the
diagonal represent the correlations between the scan-rescan connectomes of individual subjects; values
outside the diagonal represent the inter-subject connectomes’ correlations. The derived lu+ and Success
Rate scores were used to assess the fingerprinting capacity of each functional connectivity measure. (D)
Edgewise contributions to the overall fingerprinting of each functional connectivity measure were
assessed with the intra-class correlation coefficient (ICC) and nodal contributions were assessed with the

nodal fingerprinting strength, defined as the column sum of the ICC matrix.

the Pearson’s correlation coefficient between the test/retest connectivity matrices. The
difference between lsr and lomers (denominated “Differential Identifiability” - 14#) provides a robust
score of the fingerprinting level of a specific dataset (Amico & Goni, 2018). Furthermore, we
also employed a binary identification scoring method called success rate defined as the
percentage of subjects whose identity was correctly predicted out of the total number of subjects
(Finn et al., 2015). Given the non-symmetric nature of fingerprinting, we report the average

success rate between session 1 - session 2 and session 2 - session1. With success rate,
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coupled with differential identifiability, we aim to develop a comprehensive understanding of
identification scores and their key role in connectome fingerprinting. We further investigated the
effects (main and interaction) of the factors studied in this work, i.e. subjects, functional
connectivity metrics, and frequency bands, on individual discriminability (i.e. subject wise la)
and reliability (i.e. subject-wise lsr) using a N-way ANOVA test. For this analysis, the subject-
wise lgr is computed as the difference between each subject's l.r and the average loters

associated with that subject; whereas the subject-wise ls.ir is computed as stated above.

In order to assess the statistical significance of the observed differential identifiability and
success rate, we employed a permutation testing framework as follows. At each iteration of the
permutation testing, subjects’ test-retest connectomes were randomly shuffled, then differential
identifiability and success rate were computed on the randomized identifiability matrix. This
procedure was repeated 1000 times to generate a “null” distribution of differential identifiability
and success rate scores. Furthermore, to achieve a finer quantization of the null distribution, we
merged the null distributions from all the six FC measures and five frequency bands. The
observed (true) differential identifiability and success rate scores were then compared against
their corresponding null distribution to determine the p-values. Finally, the obtained p-values

were corrected for multiple comparisons using Bonferroni correction (Nichols & Holmes, 2001).

2.6.2 Contribution of individual functional connections

We quantified the reliability of the connectome individual edges using the intraclass correlation
coefficient, denoted as ICC (Bartko, 1966; McGraw & Wong, 1996), similarly to previous work
(Amico & Goni, 2018). ICC is a widely used measure in statistics that describes how strongly
units in the same group resemble each other. The stronger the agreement, the higher its ICC
value. We used ICC to quantify the extent to which an edge, i.e. a functional connectivity value
between two brain regions, is identifiable across test/retest acquisitions across the subject
cohort. In other words, the higher the ICC, the higher the “fingerprinting value” of the edge
connectivity (Amico & Gofi, 2018). We generated a square and symmetric ICC matrix of size
N2, where N is the number of brain regions (see Fig. 3 A/C). In addition, we investigated the
resting state networks identifiability (or fingerprint) by group-averaging the edgewise ICC values
across intra- and inter-network connections, thus deriving 7x7 ICC fingerprint matrices
corresponding to the Yeo’s seven-network parcellation (Yeo et al., 2011). For this investigation,
similarly to the fingerprint of edge connectivity, the higher the ICC, the higher the “fingerprinting

value” of that resting-state network. The ICC scores were interpreted following the latest
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guidelines stated in (Koo & Li, 2016); below 0.50: poor, between 0.50 and 0.75: moderate,
between 0.75 and 0.90: good, and above 0.90: excellent.

2.6.3 Nodal fingerprinting strength

Previous work on fMRI has reported higher fingerprinting value in higher-order regions such as
the frontal lobe (Amico & Goni, 2018; Finn et al., 2015). For this reason, we were interested in
investigating possible fingerprinting spatial patterns in MEG data as well. We explored the
identifiability (or fingerprinting) strength of each brain region (denominated as nodal
fingerprinting strength) by summing ICC edgewise matrix column-wise. We generated a
distribution of the nodal fingerprinting strength for all the functional connectivity measures and
frequency bands of interest. We further visualized this by generating brain renders of nodal
fingerprinting strength per region, where we applied a 5"-95" percentile threshold on the
generated nodal fingerprinting strength distribution of each method under each frequency band

of interest.

2.6.4 Cross-modality fingerprinting patterns

We were also interested in exploring the cross-modality similarity between the fingerprinting
patterns of MEG and fMRI data. Initially, we conducted a visual comparison between the brain
renders of nodal fingerprinting patterns generated using the two modalities. Furthermore, in
order to obtain a numerical value for the similarity between the nodal fingerprinting patterns of
MEG and fMRI data, we introduced a correlation coefficient metric called Cross-Modality Nodal
Correlation Coefficient (denoted as CMNCC). We assessed CMNCC for three metrics: (i) Nodal
fingerprinting strength (NFS) - where we computed the CMNCC between the nodal
fingerprinting strength vectors (computed as described in 2.6.3), of the MEG and fMRI data, (ii)
Whole-brain level- where we computed the CMNCC as the average node-to-node correlation
between edgewise ICC scores of MEG and fMRI data, and (iii) Network-level - where the
nodewise CMNCC scores estimated as in (ii) were instead averaged within the 7 Yeo functional
networks, to estimate the functional subsystem with the highest nodal fingerprinting similarity
across the two modalities. The CMNCC metric was computed using the Pearson correlation
coefficient between the edgewise ICC scores of two modalities and calculated for all FC
measures and frequency bands. The statistical significance of the CMNCC scores for the NFS
metric is obtained against the null hypothesis that the correlation scores between MEG and

fMRI data occurred by chance. The significance results are further corrected for multiple
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comparisons (i.e. 30 tests for each of the 6 FC measures and 5 frequency bands) using

Bonferroni correction.

2.7 Multivariate correlations between functional connectomes and cognition

To investigate whether MEG functional connectomes explain inter-individual variations of
cognitive performances, we carried out Partial Least Square Correlation (PLSC) analyses
between functional connectivity values (10’878 connections) and 10 cognitive scores across
subjects. For the cognitive scores, the 10 cognitive subdomains tested in the HCP were
considered, namely, episodic memory, executive functions, fluid intelligence, language,
processing speed, self-regulation/impulsivity, spatial orientation, sustained visual attention,
verbal episodic memory, and working memory (Barch et al., 2013). For subdomains for which
more than one unadjusted raw score was available, a single score was obtained by data
projection onto the first component from principal component analysis. The PLSC analysis was
repeated for each MEG functional connectivity measure and each frequency band, as well as
for the fMRI-based connectomes. By definition, PLSC identifies linear combinations of functional
connectivity values that maximally covary with linear combinations of cognitive scores through
singular value decomposition of the data covariance matrix (Krishnan, Williams, Mclntosh, &
Abdi, 2011). The weights of such linear combinations are traditionally referred to as brain
function and cognitive saliences and correspond to the left and right singular vectors of the data
covariance matrix. The statistical significance of the PLSC components was assessed with
permutation testing (1000 permutations; correlation patterns with p<.05 were deemed
significant) (Krishnan et al., 2011). Reliability of nonzero salience values was assessed with
bootstrapping procedure (1000 random data resampling with replacement) and computing
standard scores with respect to the bootstrap distributions (salience values were considered
reliable for absolute standard score > 3) (Krishnan et al., 2011; Zdller et al., 2019). The amount
of cognitive traits’ variance explained by functional connectivity values was quantified as the
sum of the squared singular values corresponding to the significant PLSC components,
normalized by the sum of all the squared singular values obtained for each PLSC analysis
(Krishnan et al., 2011). The effect of the functional connectivity measure and frequency band on
the amount of explained connectome-cognition covariance was assessed with an ANOVA

analysis.

3. Results
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In this study, we analyzed data from 84 subjects in the S1200 release of the HCP dataset. MEG
data consisting of resting-state eyes-opened recordings were pre-processed and then source-
reconstructed to 148 cortical regions of interest, based on the Destrieux cortical parcellation
(see Materials and Methods). The pre-processed MEG data was used to estimate the
Functional Connectivity (FC) between all pairs of regions with six functional connectivity
measures of interest i.e. AEC, AECc, PLV, PLM, PLI, and wPLlI in the five frequency bands. We
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evaluated the impact of different functional connectivity measures and frequency bands on the
MEG connectome fingerprinting at the whole-network level. We then deepened our investigation
by exploring the contribution of single brain regions and edges to the overall MEG fingerprinting.
Finally, we investigated the behavioral significance of MEG functional connectomes in relation
to their fingerprinting value by performing a set of PLSC analyses for different functional
connectivity measures and frequency bands.

Fig. 2. MEG connectome fingerprints across bands and measures. Figure shows the performance in
connectome identification of four popular phase-based MEG connectome measures (wPLI, PLI, PLV,
PLM) and two amplitude-based measures (AEC, AECc), across five different frequency bands (delta,
theta, alpha, beta, gamma). (A) Identifiability matrix for the six connectivity measures employed, shown
for the alpha and beta bands. (B) Bar plots showing the summary of identification scores employed, i.e.,

ls and success rate (SR), across the different measures and frequency bands. The asterisks denote a
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significant identification score after permutation testing (p<0.05, Bonferroni corrected, see Methods for

details).

3.1 MEG connectome fingerprinting across FC measures

We started our MEG connectome fingerprinting exploration by evaluating the impact of different
connectivity measures on connectome identification, across different frequency bands.
Simultaneously, we also investigated two scoring methods to quantify functional connectome
identification. To this aim, we evaluated connectome fingerprinting (or identifiability) on four
commonly used phase-coupling measures (PLM, wPLI, PLI, PLV) and two commonly used
amplitude-coupling measures (AEC, AECc) (Table 1). As identification scores, we used
differential identifiability (ls#) and success rate (SR) (see Methods). Fig. 2 depicts the
identification performance of the different connectivity measures and scoring methods reported
for the alpha and beta frequency bands; the results for the other three bands, i.e. delta, theta,
and gamma bands, are provided in Supplementary Fig. S1. We observed large variability of
identifiability measures across the FC measures and bands with |4 and SR ranging from 11.6%
to 31.7% and 52.9% to 98.2%, respectively. Across the frequency bands, we observed relatively
higher identifiability in the alpha band (la# 22.8% + 6.67%, SR scores: 82% * 15.9%) and in the
beta band (lus# 19.2% £ 5.93%, SR scores: 77.3% = 19.6%). In the alpha band specifically, we
observed higher lqs (25.82% + 5.94%) and SR scores (84% * 12.83%) in phase-based
measures as compared to amplitude-based measures with relatively lower lqi# (16.75% * 2.85%)
and SR scores (77.95% + 20.25%). We also observed that wPLI, PLI, and AECc are the
measures where the identifiability levels are most variable across the frequency bands with lq
ranging from 13.74% % 10.05% in wPLI, 10.56% * 8.25% in PLI, and 15.3% % 4.92% in AECc
and SR ranging from 37.14% + 27.34% in wPLI, 32.71% + 22.83% in PLI, and 34.38 % %
18.9% in AECc. Besides, the highest identifiability scores, among the most variable measures
(i.e. wPLI, PLI, and AECc), were observed in the central frequency bands (alpha and beta).
Specifically, PLM seems to be the preferred connectivity measure for connectome identification
given the relatively higher and consistent identification scores (lsw 28.04% * 2.57%, SR:
94.63% + 1.95%) observed for this measure across frequency bands (Fig. 2B). We also observe
that measures susceptible to spatial leakage (i.e. AEC and PLV) have lower lq (AEC: 14.6% *
0.49% PLV: 16.76% £ 0.89%) and but nearly perfect SR (AEC: 97.96% + 0.29% PLV: 98.08%
0.23) scores across all frequency bands. In addition, we observed a characteristic change in the

identifiability levels of the measures susceptible to spatial leakage (i.e. AEC and PLV) between
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the two identification scores under investigation; relatively higher identifiability score for SR and

lower scores for |y

Furthermore, the delay between each run (or session) is an important aspect that might impact
the fingerprinting performance. Hence, in addition to the identification performance of the
temporally close sessions, i.e. sessions 1-2 of the MEG HCP data (as stated previously), we
also investigated the fingerprinting performance between sessions 1-3 (temporally distant
sessions) and compared it with performance of sessions 1-2. The results, as depicted in
supplementary Fig. S6, demonstrate the stability of our fingerprinting analysis across temporally

close and distant runs (sessions).

We also investigated if there existed an association between the factors explored in this work
(i.e. subject, frequency bands and FC metrics) and the discriminability and reliability of the MEG
connectomes, i.e. their subject-wise lsr and lser SCoOres. In order to test this, we conducted a N-
way ANOVA analysis (please see Fig. S4) that indicated a significant effect for subject
(F(83,1660)=13.61, p< 0.001), frequency bands (F(4,1660)=225.54, p<0.001), and FC metrics
factor (F(5,1660)=364.6, p< 0.001) on individual Idiff and lss. Furthermore, we also found a
significant interaction effect, specifically between frequency bands and FC metrics in both
subject-wise discriminability (F(20,1660)=55.55, p<0.001) and reliability (F(20,1660)=164.79,
p<0.001).

3.2 MEG connectome fingerprinting: Edgewise identifiability

After exploring fingerprinting at the whole-network level, we then deepened our investigation by
exploring edgewise fingerprinting properties. Figure 3 depicts the edgewise ICC matrices (Fig.
3A, 3C), intra- and inter-network identifiability patterns (Fig. 3B, 3D), and the nodal fingerprinting
strength distribution across functional connectivity measures of frequency bands (Fig. 3E). For
this investigation, we report the results only for a subset of FC measures, namely AEC, AECc,
PLM, and wPLI. The results of PLV and PLI were similar to the ones obtained from AEC and

wPLlI, respectively, and are provided in Supplementary Fig. S2.

Fig. 3 shows that the nodal fingerprinting patterns, both at the edge level and the grouped sub-
network level, are widespread and specific to the functional connectivity measure employed.
Furthermore, the edgewise fingerprinting patterns associated with AECc and PLM connectomes

depicted a certain degree of spatial specificity, with higher intra-network group-average ICC
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scores (denoted as average ICC scores). The alpha band of the AECc measure depicted ‘good’

ICC in the visual subnetwork (average ICC score = 0.76) and ‘moderate’ ICC in the ventral-
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attention subnetwork (average ICC score = 0.72); the beta band also depicted ‘good’ ICC in the
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visual subnetwork (average ICC score = 0.77) and the frontoparietal subnetwork (average ICC
score = 0.80). The alpha band of the PLM measure depicted ‘moderate’ ICC in the visual
subnetwork (average ICC score = 0.72) and ‘good’ ICC in the somatomotor (average ICC score
= 0.75) and dorsal-attention (average ICC score = 0.75) subnetworks. The edgewise
fingerprinting patterns in the wPLI measure were not spatially specific in the beta band (poor
ICC, average ICC score < 0.42); the alpha band however depicted ‘good’ ICC in the visual
subnetwork (average ICC score = 0.70). Furthermore, the nodal fingerprinting patterns in the
AEC measure were relatively lesser marked than AECc and PLM measures with overall
moderate ICC (average ICC scores = 0.64) in both bands. However, the visual and
somatomotor subnetworks depicted close to good ICC (average ICC score = 0.72).

Fig. 3. Edgewise fingerprinting across connectivity measures and bands. (A) & (C) Edgewise MEG

connectivity fingerprints as measured by intra-class correlation (ICC), reported for AEC, AECc, PLM, and

wPLlI functional connectivity measures, and for the alpha and beta bands, respectively. (B) & (D) The ICC
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average within and across the seven Yeo’s resting-state network edges, for the alpha and beta bands,
respectively. (E) The nodal fingerprinting strength distribution across the five frequency bands. VIS =
visual; SM = sensorimotor; DA = dorsal attention; VA = ventral attention; L = limbic; FP = frontoparietal;

DMN = default-mode network.

The nodal fingerprinting strength distribution across frequency bands is depicted in Fig. 3E. The
distribution of the nodal fingerprinting pattern appears to be specific to frequency bands as well.
The nodal fingerprint strength is relatively higher in the alpha (AEC: 95.39 + 6.33; AECc: 96.95
1+ 7; PLM: 98.22 + 9.4) and the beta (AEC: 95.8 + 4.76; AECc: 96.57 + 7.3; PLM: 95.37 £ 5.6)
frequency bands as compared to other frequency bands in most of the measures under
investigation. In the PLM measures, the nodal fingerprinting strength is relatively higher in the
delta (112.24 + 5.3), theta (111.33 = 5.2), and gamma (73.87 £ 8.1) band in addition to the
alpha and beta band as compared to other measures. On the other hand, relatively lower and
spatially unspecific edgewise identifiability patterns in the wPLI measure result in a relatively
lower nodal fingerprinting strength in most of the frequency bands (delta: 28.13 + 4.7; theta:
32.33 + 4.9; beta: 43.9 + 5.0; gamma: 13.48 £ 6.6). In the alpha band, however, nodal
fingerprinting strength values are comparable to those observed in the other frequency bands
(64.53 £ 13.68).

3.3 MEG connectome fingerprinting: Nodal fingerprinting scores

The brain render of the nodal fingerprinting strength for fMRI data and select three MEG
measures (AEC, AECc, and PLM) for theta, alpha, and the beta band are depicted in Fig. 4. The
figure characteristically highlights the cortical regions with a relatively higher contribution to the
connectome identifiability. We observe spatially localized patterns specifically in the AECc and
PLM measures. These patterns are prominently observed in the theta and the alpha band and
localized to the posterior regions of the brain (temporal, occipital, and parietal regions) in all the
measures. In the AECc measure, the nodal fingerprinting strength is larger in the temporo-
parietal regions including parts of the default-mode, frontoparietal, and dorsal-attention
networks. In the PLM measure, parieto-occipital regions with larger nodal fingerprinting strength
involve the visual, default-mode, and dorsal-attention networks. Interestingly, the beta band for
the AECc measure adds the frontal region contributions to the consistent parieto-medial nodal
fingerprinting pattern, specifically involving the frontoparietal and default-mode networks. In the
PLM measure, the pattern becomes more localized to the somatomotor region with some extent

of localization to the parieto-occipital regions as we move to the higher frequency beta band
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(Fig. 4A). We also observe a high fingerprinting specificity to the precuneus region of the brain
across all the frequency bands of the PLM measure. In the AEC measure we observe relatively
lower spatial specificity in the theta band as compared to the nodal fingerprinting patterns in the
theta band of the AECc and PLM measure. However, the alpha and beta bands of the AEC
measure depict notable spatial specificity of the fingerprinting patterns to the temporo-parietal
regions of the brain involving frontoparietal, default-mode, and dorsal-attention networks.
Supplementary Fig. S3 comprehensively depicts the brain render of the nodal fingerprinting
strength for all the six MEG measures (AEC, AECc, PLM, PLV, PLI, and wPLI) and for all the

five frequency bands (delta, theta, alpha, beta, and gamma).
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Fig. 4. Nodal fingerprinting patterns in MEG and fMRI. (A) Brain render of ICC subject identifiability as
nodal fingerprinting strength per region reported for three MEG connectivity measures (AEC, AECc, PLM)
and three frequency bands (theta, alpha, beta). (B) The nodal fingerprinting pattern obtained from the
fMRI connectomes of the same subjects. The nodal fingerprinting strength per region computed as the

sum of columns of ICC edgewise matrix and represented at 5"-95™ percentile threshold.
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Comprehensively, it is observed that the posterior brain regions, particularly the parieto-occipital
lobes and to some extent the temporal lobe, have a central fingerprinting role, particularly at the
slower temporal scales (theta and alpha bands). Besides this, a distinctive participation of
frontal (in AECc measure) and somatomotor (in PLM measure) regions develops as we move

from slower (theta, alpha) to faster (beta) temporal scales (see Supplementary Fig. S3).
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Fig. 5. Cross-Modality connectome fingerprinting. The Cross-Modality Nodal Correlation Coefficient
(CMNCC) comparison between nodal fingerprinting maps of MEG (AEC, AECc, PLV, PLM, PLI, and
wPLI) and fMRI data for all the five frequency bands (delta, theta, alpha, beta, and gamma). The CMNCC
comparison was conducted for three metrics: (i) Nodal Fingerprinting Strengths (depicted in Black), (ii)
Whole brain (depicted in Grey), and (iii) Network level (depicted in colors associated with Yeo networks).
The Network Level metric only represents the network with highest similarity (i.e. highest CMNCC score)
between the two modalities. AEC: Amplitude Envelope Correlation; AECc: Amplitude Envelope
Correlation corrected; PLV: Phase Locking Value; PLM: Phase Linearity Measure; PLI: Phase Lag Index;
wPLI: weighted Phase Lag Index. The asterisks denote significant (p-value < 0.05, Bonferroni corrected)

CMNCC score for the Nodal Fingerprinting Strength parameter.

3.4 Cross-modality connectome fingerprinting

We also visualized the nodal fingerprinting pattern from the fMRI data, depicted in Fig. 4B, to
conduct a comparative analysis between the nodal fingerprinting patterns between the two
imaging modalities (i.e. MEG and fMRI) and the role of different functional connectivity
measures. The nodal fingerprinting patterns from the fMRI data depict a notable spatial
specificity to the parietal region of the brain specifically reflecting the higher fingerprinting
contribution of ventral-attention, dorsal-attention, and frontoparietal networks (see Fig. 4B).
Furthermore, the results of the CMNCC investigation (see Methods), as depicted in Fig. 5,
reveals interesting cross-modality similarities between the nodal fingerprinting patterns. The
leakage-corrected measures (i.e. AECc, PLM, PLI, wPLI) depict significant and relatively higher
CMNCC scores, i.e. more similar cross-modality fingerprinting pattern, for NFS metric as
compared to leakage-uncorrected measures (i.e. AEC and PLV), where no significant CMNCC
scores were observed. In addition, among the measures with relatively higher CMNCC scores,
we observed relatively high cross-modality similarity of fingerprinting patterns at lower temporal
scales (delta and theta) as compared to higher temporal scales (alpha, beta, and gamma). We
further found that the visual network, in general, is prominently identified as the network with
highest cross-modality fingerprinting similarity (high CMNCC scores) across all the measures

and frequency bands.

3.5 Behavioral significance of functional connectomes

Multivariate correlations between functional connectivity values and cognitive scores across
subjects were assessed with PLSC analyses. We found significant connectome-cognition
multivariate correlations for all connectivity measures but for different frequency bands, with

AECc and PLV showing significant correlations in all frequency bands and PLI showing
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significant correlations in the beta band only (Fig. 6A). An ANOVA analysis with the amount of
explained connectome-cognition covariance as dependent variable, and the connectivity
measure (AEC, AECc, PLM, wPLI, PLI, PLV) and band (delta, theta, alpha, beta, gamma) as
independent variables, revealed that the amount of covariance explained by the significant
PLSC components depends on the connectivity measure used to build the MEG connectomes
(connectivity measure: F(5,16) = 8.10, p = .002; frequency band: F(4,17) = 1.27, p = .34). In
particular, AECc and PLM connectomes explained the largest amount of connectome-cognition
covariance (average percentage of explained covariance across bands: AECc 58.8%; PLM
51.1%), while PLV connectomes explained the least amount (27.8% on average). The cognitive
saliences associated with the significant PLSC components were highly variable across
connectivity measures and bands, indicating that functional connectomes derived from different
connectivity measures and across different temporal scales tend to explain different cognitive
dimensions (Fig. 6B). In particular, the cognitive dimensions mostly contributing to the
connectome-cognition correlation patterns were impulsivity and spatial orientation for lower
frequency bands (delta, theta), processing speed for middle frequency bands (alpha, beta), and
episodic memory for the beta band (Fig. 6C). The connectome-cognition association in the

gamma band was less specific to particular cognitive dimensions (Fig. 6C). Finally, a similar


https://doi.org/10.1101/2021.02.15.431253
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.15.431253; this version posted May 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PLSC analysis was performed for the fMRI-based connectomes and revealed a significant fMRI-
cognition correlation pattern, mainly involving the episodic memory, working memory and fluid
intelligence dimensions (Fig. 6B,C). The amount of explained connectome-cognition covariance

was lower for the fMRI (18.0%) compared to the MEG connectomes (Fig. 6A).

Fig. 6. Behavioral significance of functional connectomes. (A) Percentage of connectome-cognition
covariance explained by significant multivariate correlation components (p < .05) obtained from PLSC
analyses between 10’878 functional connectivity values and 10 cognitive scores. PLSC components were
independently assessed for each functional connectivity measure and frequency band. Absent bars

indicate that no significant correlation with cognition was found for the specific connectivity measure and
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band. The dashed grey line represents the percentage of connectome-cognition covariance explained by
the fMRI connectivity data. (B) Cognitive saliences representing the cognitive domains contributing the
most to the connectome-cognition multivariate correlation patterns. Small colored dots represent cognitive
domain weights corresponding to the significant PLSC components across connectivity measures and
bands; large colored dots represent the median weight for each cognitive dimension. Grey diamonds
represent the cognitive salience of the significant fMRI PLSC component. (C) Repartition of cognitive
saliences (absolute weights) across 10 cognitive domains, for different temporal scales. The cognitive

domain color coding is as in panel (C), i.e., from red to black in counterclockwise direction: Episodic
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Memory, Executive Functions, Fluid Intelligence, Language, Processing Speed, Impulsivity, Spatial

Orientations, Sustained Attention, Verbal Episodic Memory, Working Memory.

Discussion

With the advancement in neuroscientific research and the availability of large public datasets,
researchers are now exploring exciting new avenues in the field of brain connectomics. This
research area provides a supplementary insight in exploring the interconnected neural systems
by comprehensively mapping the neural elements and interconnections that constitute the brain
(Fornito & Bullmore, 2015). Brain connectome fingerprinting has risen as a novel influential field
in brain connectomics (Amico & Gofi, 2018; Finn et al., 2015; Miranda-Dominguez et al., 2014)
and has opened up a new way of extracting and evaluating individual features contained in
functional and structural connectomes. Researchers are now exploring how connectome-wide
patterns evaluated through brain connectomic measures can be leveraged for potential clinical
translational research as, for instance, precision medicine (Fernandes et al., 2017; Hampel,
Vergallo, Perry, Lista, & Alzheimer Precision Medicine Initiative (APMI), 2019). However, the
accomplishment of such research goals requires a comprehensive understanding of the role of
various factors that contribute to brain connectome fingerprinting such as different brain
connectivity measures, frequency bands, identification scoring methods, and neuroimaging

modalities.

In this work, we comprehensively investigated the fingerprinting properties of functional
connectomes extracted from magnetoencephalography (MEG) data and compared them to
fMRI fingerprinting. We investigated the role of various functional connectivity measures
(amplitude and phase coupling), identification scoring methods (differential identifiability and
success rate), and frequency bands on functional connectome fingerprinting. We, then,
deepened our investigation by evaluating the nodal fingerprinting patterns (edge-level and
grouped sub-network level) to unravel the spatial specificity of brain fingerprints across sub-
networks and cortical regions. We further extended the study by conducting a comparative
analysis of fingerprinting between fMRI and MEG data to develop a cross-modality
understanding of connectome fingerprinting. Finally, we assessed the behavioral significance of
MEG and fMRI connectomes across functional connectivity measures and temporal scales,
allowing a parallelism between fingerprinting value and behavioral significance of the different

functional connectomes.
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In our connectome identification, which was stable across temporally close and distant runs
(sessions), we observed interesting differences between the five frequency bands and the two
categories of functional connectivity measures (phase-coupling and amplitude-coupling
measures). When focusing on the AECc, wPLI and PLI measures, our results indicate a
characteristic importance of alpha and beta frequency bands in fingerprinting identification. This
finding, although specific to some connectivity measures, might indicate a link between the role
of brain oscillations in human cognition (Abhang, Gawali, & Mehrotra, 2016; Engel & Fries,

2010; Klimesch, 2012) and their fingerprinting value.

The PLM, wPLI and PLI phase-based measures depicted higher identification scores (lsr) as
compared to amplitude-based measures, particularly in the alpha and beta bands, while
measures not corrected for spatial leakage (AEC, PLV) showed medium-to-low identifiability
scores, as depicted in Fig. 2. In particular, it is striking to observe the difference between |4+ and
SR for the measures that are not corrected for spatial leakage (AEC, PLV, Fig. 2B) and
demonstrate nearly perfect success rate. Notably, a more in-depth investigation on the
distributions of lser and lomers Values showed that the lser and lomers histograms of the non-leakage
corrected MEG measures (AEC and PLV) are shrinked and shifted towards 1 (please see Fig.
S5), indicating both higher within- and between-connectome similarities. This might be due to
the fact that uncorrected spatial leakage “smoothes” the signal across the cortex, and this effect
might propagate onto the functional connectomes, resulting in higher connectome similarity.
Furthermore, the distance between the lwr and lunes histograms’ means, as well as the
histograms’ standard deviations, are smaller in non-leakage corrected measures compared to
leakage corrected measures (Fig. S5). The interpretation of this finding is two-fold: on one hand,
the narrowing of the distributions explains the high success rates observed for AEC and PLV;
on the other hand, the reduced distance between the lsr and lomers distributions explains the low
lir observed for AEC and PLV. Hence, the effect of spatial leakage on MEG fingerprinting is
multifaceted. While it is true that spatial leakage does reduce intra- as well as inter-subject
connectome variability, which may hinder fingerprinting, a narrow but neat separation between
lser @and lomers distributions appears to be preserved in non-leakage corrected measures, which
allows to achieve good success rates (Fig. S5). Although it is difficult to identify the reasons for
the latter effect, it might be that spatial leakage contains some subject-specific components,
possibly linked to individual cortical morphology, that preserve subject identifiability despites the

increased inter-subject connectome similarity. Indeed, previous work showed high identifiability
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value of brain morphological features (Mansour L, Tian, Yeo, Cropley, & Zalesky, 2021). The lqs
score consistently accounts for general increases of connectome similarity penalizing the |
score by the loners term. These considerations suggest that lqx is more sensitive to identification
changes than the success rate as it accounts for both inter- and intra-individual variability.
Collectively, these findings suggest that fingerprinting estimation is dependent on the nature of
functional connectivity measure (amplitude- or phase-coupling; with or without spatial leakage
correction) and the frequency band of estimation, as also reported in an EEG-fingerprinting
research (Fraschini, Pani, Didaci, & Marcialis, 2019). Our study further highlights that the choice
of the identification scoring method (lsr, SR) also plays an important role in this context,

specifically in quantifying and understanding the true fingerprinting potential.

We extended our fingerprinting investigation from whole-network level to edge-level to examine
the identification potential of a brain node based solely on the characteristic functional
connectivity patterns across the subjects in test-retest condition. Our results based on intraclass
correlation show some spatial specificity and functional networks (FNs) patterns. We observed
that the visual network was markedly identifiable across all the measures in the alpha and beta
bands; in addition with somatomotor and dorsal-attention network in the PLM measure, limbic,
frontoparietal, and ventral-attention networks in the AECc measure, and somatomotor in AEC
measure. These findings advance the idea that the visual network is primarily more involved in
the edgewise identifiability in a test-retest condition and thus holds a strong potential for
accounting inter-subject variability. Furthermore, in terms of frequency bands, the overall
identification pattern becomes relatively less pronounced in the beta band as compared to the
alpha band with a few exceptions. This might further indicate a link between the role of brain

oscillations in human cognition and the fingerprinting patterns associated with them.

Another crucial aspect of our investigation was evaluating the nodal fingerprinting strength to
characterize and visualize the fingerprinting potential of cortical regions. Our investigation
started with assessing the nodal fingerprinting strength distribution across all the five frequency
bands. The findings depicted in Fig. 3E reveals the characteristic dependence of nodal
fingerprinting strength on frequency bands with prominently higher strength distributions in the
alpha and beta bands. This finding is coherent with our previous results which highlights the link
between the role of brain oscillations in human cognition and the fingerprinting measures
associated with them. Furthemore, the findings from the brain render visualization of the nodal

fingerprinting strength as depicted in Fig. 4, revealed that the nodal fingerprinting patterns have
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characteristic cortical specificity. This specificity was primarily observed in the posterior regions
of the brain, specifically the parieto-occipital regions and to some extent the temporal region at
lower frequency scales. From a network perspective, higher fingerprinting contribution of
default-mode, dorsal-attention, and frontoparietal networks was observed. These findings
illustrate a strong agreement between the test-retest conditions at these cortical regions (or
functional networks) and thus accentuates their strong potential in future fingerprinting research
(Amico & Goni, 2018).

Another aspect of our fingerprinting investigation was to discern if the fingerprinting patterns are
shared across neuroimaging modalities. Our analysis demonstrated that irrespectively of the
disparate nature of neuroimaging modalities in consideration, there exists a certain degree of
similarity in the nodal fingerprinting patterns between MEG and fMRI. This similarity was
prominently and significantly observed only in leakage-corrected measures (AECc, PLM, PLI,
wPLlI) for the nodal fingerprinting strength factor.. Additionally, we also report a higher similarity
at lower temporal scales (delta and theta) between the fingerprinting patterns in the MEG and
fMRI data for the NFS metric. This finding partially agrees with previous studies (Matthew J.
Brookes et al., 2011; Garcés et al., 2016; Hipp et al., 2012; Francesco de Pasquale et al., 2010)
where functional connectivity similarities between MEG and fMRI were evident in the theta,
alpha, beta, and gamma bands. On the contrary, the delta band presented smaller similarities.
However, it is important to note that our work does not directly investigate the cross-modality
similarity of functional connectivity, but instead explores the cross-modality similarity of
connectome identifiability patterns. Furthermore, the spatial distribution of fingerprinting patterns
were observed to be specific to the parietal region of the brain in both MEG and fMRI. Results
from the CMNCC metric at the network-level further revealed the characteristic occurrence of
the visual network to be the most identifiable across the modalities for all measures and
frequency bands. This finding is consistent with several other comparative studies on MEG and
fMRI modalities which have demonstrated a high overlap of functional interactions in the
posterior region of the brain (Power, Schlaggar, Lessov-Schlaggar, & Petersen, 2013; Tewarie
et al.,, 2014); specifically in the occipital lobe (Lankinen et al., 2018; Liljestrom, Stevenson,
Kujala, & Salmelin, 2015) between the two modalities. Therefore, our current findings imply a
degree of spatial concordance between the nodal fingerprinting patterns across the two imaging
modalities. The divergences between the cross-modality similarities of functional connectivity
and identifiability patterns illustrate the complexity of the relationship between hemodynamics

and electrophysiology (Hipp & Siegel, 2015).
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A primary motivation for performing fingerprinting analyses is to demonstrate that individual
connectomes are stable within individuals and unique across individuals and thus may be useful
for predicting individual differences in behavior. To unravel this last aspect, we investigated the
behavioral significance of MEG connectomes across different functional connectivity measures
and frequency bands. Our results demonstrate that MEG functional connectomes capture inter-
individual differences in cognitive performances, and that the amount of explained inter-subject
cognitive variability depends on the connectivity measure and frequency band of the individual
connectomes. In particular, the connectivity measures that, on average, allowed better subject
identifiability as quantified with ls# score (namely, AECc and PLM) were the same ones that
carried the largest behavioral significance, as apparent from the visual comparison of Fig. 2B
and Fig. 6A. Moreover, the connectivity measures with lower lgr and SR fingerprinting scores in
all expect alpha and beta bands (namely, wPLI and PLI) were also the ones carrying the least
behavioral information, with no significant connectome-cognition multivariate correlation found
for the wPLI and PLI connectomes in the delta, alpha and gamma bands. These findings
highlight a certain degree of correspondence between fingerprinting and behavioral relevance of
MEG connectomes, particularly with respect to the chosen functional connectivity measure.
However, differences exist. Alpha-band PLM, wPLI and PLI connectomes demonstrate high
fingerprinting value but limited behavioral significance. Similarly, AEC and PLV connectomes
show perfect SR-identifiability but moderate behavioral significance, pointing out a partial
dissociation between connectomes’ test-retest identifiability and behavior prediction already
shown in fMRI connectivity data (Noble et al., 2017; Shirer, Jiang, Price, Ng, & Greicius, 2015).
These considerations highlight the complex and still unclear relationship between FC reliability,
FC inter-subject variability and FC value for behavior prediction, which need to be further

investigated in future work.

Finally, our PLSC analyses across imaging modalities (MEG, fMRI) and frequency bands
showed how the predicted cognitive domains may depend on the temporal scale of the
functional connectomes. In particular, MEG functional connectivity in slower temporal scales
(delta, theta bands) mainly predicts self-regulation/impulsivity and spatial orientation, while
faster temporal scales (alpha, beta bands) predicts processing speed/executive functions,
memory and attention performances. The behavioral significance of gamma-band functional
connectivity seems to be less specific to single cognitive domains. While these results need to

be confirmed and extended within more far-reaching and dedicated studies (Buzsaki &
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Draguhn, 2004), few general considerations can be done. Delta oscillations have been
implicated in evolutionarily old processes such as homeostatic and motivational processes
(Knyazev, 2012) as well as impulsivity (Wu et al., 2018), while theta oscillations are associated
with spatial navigation and memory (Korotkova et al., 2018). On the other side, alpha and beta
bands’ oscillations play an active role in information processing, attention and top-down control
mechanisms (Engel & Fries, 2010; Klimesch, 2012), which is partially reflected in our
connectome-cognition correlation patterns. In our analyses, ultra-slow fMRI connectomes are
mainly related to memory and fluid intelligence, recollecting previous works (Amico & Goii,
2018; Finn et al., 2015). Intriguingly, the amount of connectome-cognition covariance explained
by MEG data was larger than the covariance explained by fMRI data, suggesting that large-
scale electrophysiological connectivity patterns at rest might have stronger behavioral relevance

than hemodynamic measures.

Brain fingerprints are influenced by many factors: extraction of the individual connectivity
information, choice of the functional connectivity measure, specific preprocessing pipelines,
impact of artifacts (i.e. spatial leakage). Owing to the temporal richness of MEG data we were
able to dig deeper into all these contributions to brain fingerprinting, and partially separate them
throughout our analysis. The findings of our study do indicate a strong potential of MEG
connectome fingerprinting by demonstrating a robust and accurate subject identifiability.
Furthermore, our extended investigation on cross-modality (fMRI/MEG) fingerprints provides
preliminary evidence of a certain degree of spatial concordance of fingerprinting patterns across
MEG and fMRI data. These findings might pave the way to developing a cross-modality

connectome fingerprinting paradigm for reliable and robust precision medicine applications.

This study has limitations. In our study we conducted an exhaustive analysis of the role of
functional connectivity measure in estimating fingerprinting by evaluating six prominently used
amplitude- and phase-based coupling methods. However, we did not investigate the role of
effective connectivity on fingerprinting; future studies should explore our framework with a more
diverse set of connectivity measures. We only investigated an epoch length of 8s in our work; It
would be interesting to see the effects of various epoch lengths on the functional connectomes
and derived fingerprints in future studies. The choice of high-pass filter (1.3 Hz) and the delta
band range (0.5-4 Hz) in our work may have impacted the fingerprinting potential in the delta
band specifically. In addition, we only investigated the fingerprinting in a narrow gamma band

range (i.e. 30-48Hz); future studies should explore fingerprinting in full delta and gamma band
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range as well. In the present work we did not consider different source reconstruction strategies
and spatial-leakage correction methods for obtaining source-localized MEG data. The familial
relationships in the MEG dataset and its relationship to fingerprinting should be further
investigated; the impact of different parcellation schemes on MEG fingerprinting should also be
explored. Recent studies have shown that several choices during MEG data pre-processing
steps (i.e.forward/inverse model, beamforming method, and different implementation software)
can affect the results in source space (Gross et al., 2013; van Diessen et al., 2015).
Furthermore, in this work the cross-modality fingerprinting investigation was restricted to MEG
and fMRI data. Building from our cross-modality framework, future studies should explore the
extent of fingerprint concordance between different neuroimaging modalities including EEG,
DTI, PET among others. Another interesting avenue involves the maximization of connectivity
fingerprints in MEG functional connectomes, similarly to (Amico & Gofii, 2018). Finally, it would
be interesting to extend the proposed fingerprinting framework to task-specific data to explore

the relationship between fingerprinting patterns and task-related functional organization.

Conclusion

In conclusion, we have reported an exhaustive investigation of fingerprinting estimation using
MEG data where we explored the relationship between brain fingerprints and various factors
including functional connectivity measures, frequency bands, spatial leakage, identification
scoring methods, neuroimaging modality, and behavioral significance. We explored the
contributions on MEG fingerprints from all these factors, and found that its accurate individual
estimations require careful consideration on these features, especially on the FC measure and
frequency band chosen. We hope that future research in brain connectomics will benefit from
this first comprehensive (albeit preliminary) overview on the brain fingerprinting properties of
MEG data.
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