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Abstract

Successful extinction of traumatic memories depends on neuronal plasticity in the fear
extinction network. However, the mechanisms involved in the extinction process remain
poorly understood. Here, we investigated the fear extinction network by using a new
optogenetic technique that allows temporal and spatial control of neuronal plasticity in
vivo. We optimized an optically inducible TrkB (CKII-optoTrkB), the receptor of the
brain-derived neurotrophic factor, which can be activated upon blue light exposure to
increase plasticity specifically in pyramidal neurons. The activation of CKII-optoTrkB
facilitated the induction of LTP in Schaffer collateral-CA1 synapses after brief theta-
burst stimulation and increased the expression of FosB in the pyramidal neurons of the
ventral hippocampus, indicating enhanced plasticity in that brain area. We showed that
optical stimulation of the CA1 region of the ventral hippocampus during fear extinction
training led to an attenuated conditioned fear memory. This was a specific effect only
observed when combining extinction training with CKII-optoTrkB activation, and not
when using either intervention alone. Thus, TrkB activation in ventral CA1 pyramidal
neurons promotes a state of neuronal plasticity that allows extinction training to guide
neuronal network remodeling to overcome fear memories. Our methodology is a
powerful tool to induce neuronal network remodeling in the adult brain, and can

attenuate neuropsychiatric symptoms caused by malfunctioning networks.
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Introduction

Under pathological conditions, such as post-traumatic stress disorder (PTSD), phobias,
and depression/anxiety disorders, traumatic memories are repeatedly and improperly
retrieved (1,2). Exposure therapy, where the subject is repeatedly exposed to fear-
inducing stimuli under safe conditions, is a widely used method to extinguish or
suppress fear responses (3). Fear extinction has been successfully modeled in both
humans and animals using the Pavlovian fear conditioning/extinction paradigm, where a
neutral conditioned stimulus (CS, tone or context) starts to elicit a fear response after
being associated with an aversive unconditioned stimulus (US). This fear response is
reduced after a repeated exposure to the CS without the US (4-6). Although extinction
training gradually reduces the fear responses in human patients and adult rodents, these
fear responses tend to reappear with time or upon later re-exposure to the CS, a
phenomena known as “spontaneous recovery”, and “fear renewal” when induced by a
neutral cue or the same context, respectively (7,8). We have previously shown that the
combination of extinction training and chronic treatment with fluoxetine, a commonly
used antidepressant, but neither treatment alone, induces an enduring loss of
conditioned fear memory in adult mice (9), which is similar to the permanent fear
extinction found in early postnatal mice (10,11). A chronic treatment with fluoxetine
reactivates a state of plasticity similar to that observed during the critical periods of
plasticity or induced juvenile-like plasticity, a state we refer as iPlasticity, which have
been shown in different brain regions, such as the amygdala, medial prefrontal cortex
(mPFC), and hippocampus (9,12,13). These observations suggest that fear extinction is
a process dependent on the reshaping of neural networks through experience-dependent
plasticity. However, the mechanisms through which neural networks are reconfigured
are still unknown.

Brain-derived neurotrophic factor (BDNF), through activation of its neurotrophic
receptor tyrosine kinase B (TrkB), is thought to be a key factor in neuronal plasticity
and required for the iPlasticity by fluoxetine treatment (9,14). The binding of BDNF to
TrkB causes dimerization and autophosphorylation of TrkB, leading to activation of
intracellular signaling pathways involved in neuronal differentiation, survival, and
growth as well as synaptic plasticity in neurons (15,16). These pathways also regulate
gene transcription and long-term potentiation (LTP) (17,18). Interestingly, Chang et al
created a photoactivatable TrkB (optoTrkB), where full-length TrkB is conjugated with
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a photolyase homology region (PHR) that dimerizes in response to blue light (470 nm)
(19). They have shown that light stimulation can activate the canonical Trk signaling
pathways through optoTrkB in a reversible manner, and a prolonged patterned
stimulation induces differentiation of cultured neurons (19).

Here, we studied whether activation of TrkB through optoTrkB in vivo is sufficient to
induce plasticity in the fear circuit and to facilitate fear extinction. For an efficient
expression of optoTrkB in pyramidal neurons, we constructed a lentivirus that expresses
optoTrkB (19) modified in the following points: (i) optimization of codons of the PHR
domain for higher expression in rodents, (ii) attachment of a flexible tag (20) between
TrkB and PHR, which allows a better interaction between optoTrkB C-terminus and its
partners (21), and (iii) expression of a fusion protein by a short-type (0.4 kb) promoter
of calcium/calmodulin-dependent protein kinase type Il alpha subunit (CKII) for
specific expression in pyramidal neurons (22). After confirming that CKII-optoTrkB
lentivirus is expressed and activated in cultured cortical neurons, we activated CKII-
optoTrkB in the projection neurons of the ventral hippocampus (vHP), which are known
to be involved in fear extinction (23,24) through the modification of mood and spatial

memory (25), and conducted the Pavlovian fear conditioning paradigm.
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Material and Method
All animal experiments followed the Council of Europe guidelines and were approved
by the State Provincial Office of Southern and Eastern Finland. Detailed procedures are

described in the Supplementary Information.

Mice
C57BL/6JHss were originally purchased from Harlan (Netherlands); 10- to 12-week-old
mice were used for this study. Mice were kept under standard laboratory conditions

(21°C, 12-h light-dark cycle, light at 6AM) with free access to food and water.

Infection of lentivirus and optic stimulation of optoTrkB in cultured cortical neurons
Rat primary cortical cultured neurons from E17 rat embryos were prepared using a
method reported previously (26). The cells were infected with CKII-optoTrkB lentivirus
(initial stock titer 8.37x107 pg/ml [p24]) at day in vitro 3 (DIV3) for immunoblotting,
while the other cells on coverslips were infected at DIV9 for morphological analyses.
The plates were kept in darkness at all time after the infections. The cells were exposed
to blue light (LED devices, Mightex) at DIV10 and DIV17 for immunoblotting and
immunocytology, respectively. The cells were photo-stimulated 12 times for 5 seconds
with a 1-minute inter-trial interval, aiming to mimic the behavioral experiments. The
cells were collected immediately for immunoblotting and 24 hours later for
immunocytology. For immunoblotting, cells were lysed following a protocol described
previously (27) and stored in darkness at -80°C. The samples for immunocytology were
fixed with 4% of paraformaldehyde (PFA) and stored in PBS containing 0.02% NaNj3 at
4 °C.

Immunoblotting of lysate from cultured cells

Immunoblotting was conducted according to a method reported previously (27). Details
on primary and secondary antibodies are provided in supplemental table 1.
Chemiluminescent signals were developed by ECL plus (ThermoFisher Scientific) with
a 5-minute incubation according to instructions provided by the manufacturer and

detected by a LAS-3000 dark box (Fujifilm).
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Imaging analyses on dendrites after immunocytology

We compared the number of spines in the secondary dendritic branches as described
previously (28). All antibodies used for immunocytology are listed in supplemental
table 1. The stained cells were imaged with a Leica TCS SP8 X with a magnification of
40x for analysis of primary neurites and spines. The primary branches sprouting from
the soma were counted blindly and manually. Spines on the second branches were

randomly and blindly selected. The number and type of spines were analyzed manually.

Lentivirus infection and implantation of optic cannulas

Mice were anesthetized with Isoflurane and fixed on a stereotactic frame. A total of 1 pl
of virus solution was injected into the vHP, at 3.1 mm caudally and +/- 2.0 mm laterally
from the Bregma with a depth of 3.9 mm and an angle of 18°. Three weeks after
infection, optic fibers with cannula were inserted into the vHP, 3.1 mm caudally and +/-
3.0 mm laterally from the Bregma, with a depth of 3.0 mm and an angle of 4° and fixed
and sealed with dental cement (Tetric Evo Flow). The mice were kept in single cages

and underwent the fear conditioning/extinction test 1 week after the implantation.

Electrophysiology

Field excitatory postsynaptic potentials (fEPSP) were recorded in acute hippocampal
slices. Briefly, the brains were isolated 4 weeks after infection with CKII-optoTrkB and
immediately immersed in ice-cold dissection solution (29), after which 350-um brain
slices were cut and incubated for recovery for 45 minutes at 31 to 32°C in artificial
cerebrospinal fluid (ACSF) (30). The slices were stimulated by light (LED 480 nm)
three times for 5 seconds every minute. fEPSPs were then recorded in an interface
chamber using ACSF-filled glass microelectrodes (2-4 MQ) positioned within the CA1
stratum radiatum in response to Schaffer collateral stimulation (0.05 Hz). Stimulation
intensity was adjusted such that the baseline fEPSP slope was 20-40% of the maximal
intensity that resulted in the appearance of a population spike. LTP was subsequently
induced by tetanus stimulation (100 pulses at 50 Hz) or brief theta-burst stimulation (1

episode of TBS consisting of 2 stimulus trains at 5 Hz with 4 pulses at 100 Hz).

Fear extinction test with optic stimulation
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171  The fear conditioning paradigm was conducted following a protocol described

172  previously (9). Briefly, the mice were put into Context A and received an electric foot
173  shock (0.6 mA) after a 30-second sound cue (“beep” sounds 80 dB), which was

174  repeated four times with a 30- to 60-second interval. Two days later the mice were put
175 in Context B and received only the sound cue (30s “beep” sound 80 dB) immediately
176  followed by optical stimulation for 5 seconds. The light was applied manually by a

177  single-color LED (470nm wave length) device (Mightex) connected to a BioLED light
178  source Control Module (Mightex), which in turn was connected to optic wires splitting
179  into two parallel optic fibers (Kyocera Inc.) ending on both sides on the ferrules

180 implanted in the head of the mouse. Mice were made able to move freely through a
181  rotary joint (Mightex). The extinction training with light stimulation was repeated 12
182  times with different intervals (25-60 seconds) for 2 days. One week after, the mice were
183  tested in Context B (spontaneous recovery) followed by exposure to Context A (fear
184  renewal) with the same sound cue (presented 4 times/test) provided during conditioning
185  and extinction. Spontaneous recovery and fear renewal were tested again 3 weeks later
186  as an estimate of remote memory. The durations of freezing were measured as an index
187  of conditioned fear.

188

189  Immunohistochemistry and image analysis on FosB intensity

190  Mice were infected with CKII-optoTrkB and we implanted optic cannulas into the vHP
191  as described above. The vHP were exposed to light 12 times for 5 seconds after a 30-
192  second sound with different intervals (25-60 seconds) in the same way as in the

193  extinction training through optic cannulas for 2 days. Twenty-four hours after the last
194  stimulation, the animals were perfused transcardially with PBS followed by 4% PFA in
195  PBS. Isolated brains were post-fixed overnight and stored in PBS with 0.02% NaNj;
196  until cut on a vibratome (VT 1000E, Leica). Free-floating sections (40 um) were

197  processed for fluorescence immunohistochemistry following a protocol described

198  previously (31) using the antibodies listed in supplemental table 1. Images were

199  obtained with a Zeiss LSM 710 confocal microscope with a magnification of 20x. The
200 intensity of delta FosB was analyzed by Fiji software (32).

201

202  Statistics


https://doi.org/10.1101/2021.02.14.431126
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431126; this version posted February 16, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

203  Biochemical data were analyzed by unpaired t-test following F-test. If standard

204  deviation of the two groups were not equal, Welch's correction was applied. For

205  comparisons of more than two groups, we used one-way ANOVA followed by Holm-
206  Sidak’s multiple comparisons test. Behavioral data was analyzed by two-way ANOVA,
207  taking sessions and light exposure/non-exposure as independent factors, followed by
208  Fisher’s LSD test. All statistical analyses were performed using Prism 6 or 8 (GraphPad
209  Software), and shown in supplemental table 3. A p-value <0.05 was considered

210  statistically significant.

211

212
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213  Results

214

215  Construction of CKIl-optoTrkB

216  We optimized the codons of the PHR domain and the resulting Codon Adaptation Index
217  (CAI) (33) was increased to 0.86 in the optimized codon, compared to 0.79 as in

218  Chang’s original PHR (Supplemental fig. 1). The homology of DNA sequences

219  between our construct and the original optoTrkB was 78% (Supplemental fig. 2). The
220  optimized PHR region, flexible tag (20), and full-length TrkB were sub-cloned into a
221  lentivirus backbone vector with a short-type (0.4 kb) CaMKIlIa promoter

222  (pFCK(0.4)GW) (22). The CKII-optoTrkB construct was used for lentivirus production

223  (see supplemental note).

CaMKlla Flexible tag

short promoter
Full-length TrkB optimized PHR 32| WPRE |

b

Domain

Extracellular

Transmembrane 1
. . Blue ° °
Tyrosine kinase LED w@ | O
0 | O
PHR
Tag

| Monomer Dimerization and

224 autophosphorylation

225 Figure 1 Development of optoTrkB for the in vivo study. (a) Gene structure of optoTrkB. CKII-optoTrkB
226 consists of a short version (0.4 kb) of CaMKIla promoter, full length TrkB, flexible tag, EGFP, and

227 Woodchuck Hepatitis Virus (WHP) Posttranscriptional Regulatory Element (WPRE). (b) Protein

228 structure of optoTrkB. TrkB consists of extracellular, transmembrane, and tyrosine kinase domains and
229 was conjugates with PHR and GFP. The PHR domain dimerizes in response to blue light (470 nm)

230  therefore inducing dimerization and autophosphorylation of TrkB to activate the canonical TrkB signaling
231 pathways.

232
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Optical stimulation of optoTrkB activates TrkB signals and neural plasticity in vitro

We determined the optimal virus concentration by testing different concentrations of
CKII-optoTrkB in cultured cortical neurons and performed immunoblotting for
phosphorylated TrkB (at tyrosine 706 residue, pY706), TrkB itself, and phosphorylated
and non-phosphorylated Extracellular signal-regulated kinase (ERK), a downstream
signal of the BDNF/TrkB pathway (Supplemental fig. 3). Immunoblotting with optimal
concentration of the lentivirus showed an effect of light exposure on phosphorylation of
optoTrkB at pY515, pY706, and pY816 (Fig. 2a, b, ¢, and d). As expected,
phosphorylation of endogenous TrkB was not influenced by light (Supplemental fig. 4),
but increased only after BDNF treatment (Supplemental fig. 5). Then we verified the
phosphorylation of downstream signals of the BDNF/TrkB pathway and observed
increased phosphorylation of cAMP response element-binding protein (CREB) and
pERK after light stimulation when compared to the control group transfected with
optoTrkB but not exposed to light (Fig. 2e, f).

To verify if the activation of optoTrkB causes morphological changes of dendrites and
spines in vitro, we stained cortical primary neurons with MAP-2 antibody (Fig. 2g). The
number of spines on second- and third-order dendritic branches was increased at 24
hours after light stimulation but not after BDNF treatment (5ng/ml) (Fig. 2h).
Furthermore, we found an increased number of primary dendrites extending from the
cell body in light-stimulated CKII-optoTrkB infected cells compared to non-stimulated
cells or BDNF-treated cells. These results indicate that activation of optoTrkB promotes

initial neurite and spine formation more rapidly than the BDNF treatment (28).

10
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Figure 2 (a) Immunoblotting with antibodies against phosphorylated TrkB and downstream signals of TrkB.
Quantitative analysis of phosphorylation of optoTrkB at pY515 (b), pY706 (c), and pY816 (d) phosphorylation site
after light stimulation (12 times for 5 seconds with 1-minute interval) (N = 4, each group). The intensity of optoTrkB
(220 kDa) was normalized with the non-phosphorylated version of the same protein. There were significant effects of
light exposure on phosphorylation of optoTrkB at pY515 (unpaired t-test, p = 0.0178), pY706 (p = 0.004), and pY816
(p =0.0477). Quantitative analysis of phosphorylation of ERK (e) and CREB (f) after light stimulation. Intensity of
the bands of phosphorylated ERK (pERK) and CREB (pCREB) was normalized by non-phosphorylated ERK(42
kDa) and CREB(43 kDa) , respectively. The ratios significantly increased after light stimulation (unpaired t-test,
pCREB/CREB, p = 0.0133; pERK/ERK, p = 0.025). (g-i) Effects of activation of CKII-optoTrkB on primary
dendrites and spines in cultured cortical neurons (DIV17). The uninfected neurons were treated with 5 ng/ml of
BDNF as control. The number of spines on 2nd or 3rd branch and primary dendrites extending from the cell body
was counted manually. (g) Representative images of MAP2 immunostaining of cortical neurons. (h) The number of
spines was not increased after a 5ng/ml BDNF treatment (Holm-Sidak’s multiple comparisons test, Control vs
Control + BDNF, p = 0.6898). However, the number of spines after activation of CKIl-optoTrkB was significantly
higher than non-activated infected cells (one-way ANOVA, p < 0.0001; Holm-Sidak’s multiple comparisons,
optoTrkB vs optoTrkB light, p <0.0001 (N=11-13 in each group). (i) The number of primary dendrites was not
increased after BDNF treatment (Holm-Sidak’s multiple comparisons test, Control vs Control + BDNF, p = 0.6898).
However, the number of spines after activation of CKlI-optoTrkB was significantly higher than non-activated
infected cells (one-way ANOVA, p = 0.0053; Holm-Sidak’s multiple comparisons, optoTrkB vs optoTrkB light, p =
0.0023 (N=11-13 in each group).. (N = 48-63 in each group). CREB, cAMP response element-binding protein; ERK
(Extracellular signal-regulated kinase). Scale bar, 50 um. Bars represent means + SEM. * p < 0.05, ** p < 0.01, *** p

<0.001.

Increased FosB expression after activation of optoTrkB in the ventral hippocampus

To confirm the activation of optoTrkB after light stimulation, optoTrkB lentivirus-
infected mice were perfused 24 hours after 2 days of optic stimulation (12 sessions of
5-second exposure). Immunohistochemistry showed an increase of delta FosB
expression in the regions close to the infection sites in the CA1 of the vHP (Fig. 3a and
b), indicating that optoTrkB promotes BDNF/TrkB signals, as shown previously in case
of overexpression of BDNF (34).

12
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LTP is potentiated after activation of optoTrkB

To investigate synaptic plasticity in the hippocampal circuitry, fEPSPs were recorded in
acute hippocampal slices obtained from CMKII-optoTrkB lentivirus-infected mice after
ex vivo light stimulation. A traditional tetanus stimulation resulted in a comparable
induction of LTP in control and light-stimulated slices (Supplemental Fig. 6),
suggesting that a strong tetanization induces LTP independently from optoTrkB
activation. However, a brief theta-burst stimulation led to a robust increase in synaptic
strength only in light-stimulated slices (Fig. 3¢), while it produced a slight potentiation
of fEPSPs in slices infected with optoTrkB without light exposure (control). This
indicates that the activation of CKII-optoTrkB facilitates LTP induced by a brief theta-

burst stimulation in the hippocampus.
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Figure 3 Enhanced neural plasticity after optoTrkB activation ex vivo. BDNF/TrkB signals were activated in the
pyramidal neurons in the CA1 of the vHP after optic stimulation of CKIl-optoTrkB. (a) Representative figures of the
delta FosB and EGFP stainings close to the infection sites in the CAlof vHP. (b) Comparison of the intensity of delta
FosB staining between non-light and light stimulation (N = 10, each group). Delta FosB immunoreactivity was higher
in the group with light stimulation compared to the group without light stimulation (unpaired t-test, p = 0.0006). (c)
The slices from CKIl-optoTrkB infected mice were activated by light for 30 seconds. After 30 minutes, long-term
potentiation (LTP) was induced by brief theta burst. fEPSPs during the last 10 minutes of recording were
significantly larger in the group with light exposure compared to the group without light (two-way ANOVA, p <
0.0001). Pictures in the right panel show representative traces of fEPSC during baseline and after LTP induction.

(optoTrkB, N = 5; optoTrkB light, N = 7). Error bars indicate mean + SEM.

Activation of optoTrkB during fear extinction training reduces fear memory

Since the vHP is thought to be a key brain region for the processing of the extinction of
contextual fear memory (23), we hypothesized that the activation of optoTrkB in the
vHP during fear extinction may promote fear erasure. To test this hypothesis, we
performed the fear conditioning paradigm (Fig. 4a). CKII-optoTrkB lentivirus was
infected bilaterally into the CA1 region of the vHP, and optic cannulas were implanted
into the same region (see Material and method) (Fig. 4b). During fear-
conditioning/acquisition, all infected and implanted mice were conditioned by exposing
them to a mild foot shock paired with a sound cue in context A, and all mice showed
increased freezing (supplemental fig. 6). The mice were then equally divided into the
following two groups: control (without stimulation) and light exposure (supplemental
fig. 6). Two days later, the vHP was bilaterally exposed to light through optical fibers
for 5 seconds immediately after the CS (“beep” sounds) in context B during 2 days of
extinction training. During the extinction training of the first day (Ext1) (Fig. 4c) and
the second day (Ext2) (Fig. 4d), both groups showed decreased freezing, but the effect
was significantly more pronounced after LED stimulation. One week later there was no
difference of freezing in context B (spontaneous recovery) and a weak decrease of the
fear renewal in the LED group in context A (fear renewal) (supplemental fig. 7).
However, three weeks later, the previously light-stimulated mice showed a decrease of
freezing in the spontaneous recovery test (Fig. 4e) and a strong decrease in the fear
renewal test (Fig. 4f). These results indicate that the light-stimulated mice initially

retain a high freezing representation, but they then reduce the long-term or remote
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334  contextual fear memory. CKII-optoTrkB-infected mice stimulated by light without

335 extinction training did not show differences compared to the control group during

336  remote spontaneous recovery (Fig. 4g) or remote fear renewal (Fig. 4h). On the

337  contrary, it was significantly different to the group exposed to both LED and extinction
338  training (Supplemental figure 7), indicating that conditioned fear is reduced only when
339  combining CKII-optoTrkB activation and extinction training but not with either

340  intervention alone.

341
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Figure 4 Activation of CKIl-optoTrkB combined with extinction training promotes extinction of conditioned fear. (a)
Scheme of fear extinction paradigm. Mice were subjected to fear extinction training in context B two days after fear
conditioning with tones in context A. After 1 week, mice were then subjected to spontaneous recovery (SR) in
context B and fear renewal (FR) in context A. Further 3 weeks later, the mice were subjected again to SR and FR for
testing remote memory (RM). (b) CKllI-optoTrkB lentivirus was infected into CA1 of the vHP (3.1 mm caudal, £2
mm latera from Bregma, 3.9 mm depth from dura mater) (left). A representative infected site in the vHP (right). (c)
(d) Significant effects of sessions were detected in freezing response during day 2 of extinction training (two-way
ANOVA, p =0.0052) and an effect of light stimulation during both days (Day1, p < 0.0001; Day2, p = 0.0006). In
addition, there were significant differences between the first extinction session and the session with the lowest
freezing duration post hoc (Fisher's LSD): control, 1st in 1st day vs 12th in 2nd, p = 0.0060; light, 1st in 1st day vs
9th in 2nd, p = 0.0159). Light-stimulated mice showed a decrease of freezing in remote spontaneous recovery
(RM_SR) (two-way ANOVA: p = 0.00345) (e) and a strong decrease in remote fear renewal (RM_FR) (p = 0.0009)
(). Post-hoc analysis showed significant differences between two groups after second sessions (Fisher's LSD: light2-
4, p =0.0002; post-hoc: 2nd, p = 0.0047; 3rd, p= 0.0362; 4th, p = 0.0465). The group with light stimulation but no
extinction training (LED w/o Ext) did not show decreased freezing during (g) remote spontaneous recovery (two-way
ANOVA, p = 0.6681) or (h) remote fear renewal (two-way ANOVA, p = 0.8368) compared to control. Control
(optoTrkB infected without light), N = 8, optoTrkB light, 8; optoTrkB light w/o extinction, 5). Error bars indicate

mean = SEM. *p < 0.05, ** p < 0.01.
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Discussion

We developed a CKII-optoTrkB lentivirus by modifying the original optoTrkB (19) and
demonstrated that it can be used to promote plasticity for in vivo studies. The optical
activation of optoTrkB in the pyramidal neurons in the CA1 of the vHP promotes
plasticity in the fear circuitry and enables fear extinction training to greatly reduce the
conditioned fear memory, specifically the contextual memory. This study directly
demonstrates that the activation of TrkB can promote plasticity-related behaviors in the
fear circuitry. Moreover, our optoTrkB approach represents a new system to control

plasticity temporarily and spatially.

Strong and rapid effects of optoTrkB activation compared to BDNF treatment

In cultured cortical neurons, light stimulation of CKII-optoTrkB promoted
phosphorylation of CREB and ERK to the same extent as BDNF stimulation,
suggesting that activation of CKII-optoTrkB has biochemically comparable effects to
BDNF treatment at concentrations of 5 ng/ml. Moreover, in contrast to BDNF
treatment, activation of optoTrkB promoted initial neurite and spine formation. It has
been reported that a higher BDNF concentration is needed to observe such a drastic
increase in the number of primary dendrites and spines (28,35,36). Thus, the activation
of CKII-optoTrkB acts as rapidly and efficiently as longer treatment with high

concentration of BDNF.

Neural plasticity is increased after activation of CKII-optoTrkB ex vivo

Previous studies with deleted and mutated TrkB showed impaired LTP at CA1
hippocampal synapses and impaired learning behaviors (15,18), indicating that TrkB
activation is critical for LTP induction in the hippocampus. We now demonstrate that
after direct activation of TrkB through CKII-optoTrkB a brief TBS produced a robust
LTP that was significantly larger compared to controls. We used a modified and “brief”
TBS, since a stronger TBS protocol robustly induces LTP in the hippocampus (37).
Interestingly, induction of LTP in response to a strong tetanic stimulation was not
affected by activation of CKII-optoTrkB, suggesting that TrkB activation lowered the
threshold for LTP induction. Alternatively, LTP induced by tetanic stimulation could be
reaching a “saturated point”, occluding any facilitation by optoTrkB activation. TBS has

been shown to reflect physiological conditions (38). Our results strongly suggest that
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activation of optoTrkB can sensitize pyramidal neurons in the hippocampal network to
be more plastic and to respond to a brief stimulation and adapt to external stimuli, such

as an extinction training.

Activation of optoTrkB combined with extinction training reduces fear memory but does
not delete it entirely.

In the current study, light-stimulated mice did not completely erase the fear response in
the first session, but rather in the second session of the remote fear renewal tests.
Similar effects, where fear response is decreased after the second session in fear
renewal, were found after PNN removal in the basolateral amygdala (BA) before
extinction training (11). In contrast, the combination of extinction training and chronic
treatment with fluoxetine decreases the fear response almost completely even in the first
session (9). These results suggest that optoTrkB activation in combination with
extinction training does not completely replace or erase the conditioned fear memory
but it reduces it by promoting neural plasticity in the pyramidal neuron network of vHP
during the extinction training. These observations might support the idea that the
original fear memory is preserved and the extinction training simply adds a new

inhibitory association rather than erasing the original memory (39—41).

Fear extinction circuitry

Our results suggest that plasticity in pyramidal neurons in the vHP is a key element for
processing the extinction of contextual fear memory. Fear extinction is thought to be
controlled by a distributed network, including the amygdala, mPFC, and hippocampus
(23). Prior evidence suggests that fear memories are disrupted with an increased activity
of the vHC; optical activation of these neurons was reported to induce fear extinction
and modification of behavior related to mood and spatial memory (25). The vHP may
modulate emotional regulation, whereas dorsal HP is thought to contribute to cognitive
functions such as learning and memory (42—46). The CA1 region of the vHP in
particular sends strong projections to other regions, such as the BA, hypothalamus,
nucleus accumbens, and the mPFC (47-50), and there is evidence that these projections
process emotional behavior (51-53). In addition, impaired function in
Hippocampal-prefrontal circuit has been observed in psychiatric patients including

PTSD and schizophrenic subjects (54), and configurational changes in prefrontocortical
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inputs from Amygdala and Hippocampus have been suggested as a possible mechanism
underlying psychiatric disorders (55). Furthermore, it has been reported that BDNF
infusion into the PFC and HP erases fear memory (56), and engram cells of projection
neurons in CA1 of vHC play a necessary and sufficient role in social memory (57).
Recently, Jimenez et al demonstrated that optogenetic activation of the CA1 terminals
in BA impaired contextual fear memory (53). Thus, our results suggest that plastic
changes in the projection neurons in CA1 of the vHP, enabled by optoTrkB activation,

modify anxiogenic contextual information when combined with fear extinction training.

iPlasticity and application of optoTrkB system in vivo

Many kinds of interventions induce iPlasticity, where networks in adult brain are
allowed to better adapt to the changes in the internal and external milieu (16,17,58). In
addition to fear extinction, specific training and other external manipulations, when
combined with fluoxetine, have been shown to increases neural plasticity and alter
symptoms of neuropsychiatric diseases in models such as ocular dominance plasticity
(14) and socialization animal models (59). We hypothesize that these effects are
modulated via the BDNF/TrkB pathway, but it is not yet clear which neural pathways
are modified through iPlasticity in these behaviors. OptoTrkB is a new tool for
controlling neural plasticity in a temporal and cell-type specific manner and the optic
control of neural plasticity adds another dimension to traditional optogenetics using
direct activation and inhibition of neurons by channelrhodopsin and halorhodopsin in

experimental neurosciences.
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Alignment of Chang’s and a newly optimized PHR
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742 Homology is 78% at nucleotide level.
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Supplemental Fig. 3

optimal concentration of CKll-optoTrkB for in vitro studies
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Supplemental Figure 3 Optimal concentration of CKIl-optoTrkB for in vitro studies. Initial virus titer expressed as
concentration of p24 protein: 8.37x107pg/ml. (a) Phosphorylation of Y706 site of optoTrkB and (b) phosphorylation
of Erk after LED light exposure in primary cortical cells infected with different concentrations of lentivirus. To
obtain different concentrations, the virus was diluted in sterile PBS to reach 1:2, 1:5, 1:10 and 1:20 dilutions. The

virus was diluted just before administering it to the cells.
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Supplemental Fig. 4

Phosphorylation of TrkB and downstream signals after optoTrkB activation
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749
750 Supplemental Figure 4 Phosphorylation of endogenous TrkB after light stimulation. (a) Immunoblotting and

751 quantitative analysis of phosphorylation at pY515, pY706, and pY816 sites after light stimulation (12 times for 5
752 seconds with 1-minute interval) (N = 4, each group). The intensity of endogenous TrkB phosphorylation (125 kDa,
753 left panel) was normalized with the non-phosphorylated version of the same protein. (b-d) There was no significant
754 effect of light exposure on phosphorylation of endogenous TrkB (unpaired t-test: pY515 p =0.3289; pY706 p =

755  0.0889; pY816 p = 0.3576).
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Supplemental Fig. 5

Phosphorylation of TrkB and downstream signals after BDNF treatments
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757 Supplemental Figure 5 Phosphorylation of TrkB and downstream signals after BDNF treatments in non-infected

758

cultured cortical neurons. (a) Representative images of blotting for phosphorylated and non-phosphorylated

759 endogenous TrkB. the ratio between phosphorylated/non-phosphorylated endogenous TrkB expression at Y515 (b),

760

Y706 (c), Y816 (d), CREB (e), and ERK (f). Unpaired t-test showed that BDNF induced a significant

761  phosphorylation of the Y706 site of TrkB receptor (pY706 p = 0.0084; pY816 = 0.5558; pY515 p = 0.4345) as well

762
763

means £ SEM.

764

33

as phosphorylation of CREB and Erk (pCREB p = 0.0120; pErk p = 0.0070) # p < 0.05, ## p < 0.01. Bars represent
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Supplemental Figure 6 Enhanced neural plasticity after optoTrkB activation ex vivo.

The slices from CKIll-optoTrkB infected mice were activated by light for 30 seconds. After 30 minutes, a long-term
potentiation (LTP) was induced by tetanic stimulation (100 pulses at 50 Hz). At 20 to 30 minutes after tetanization,
fEPSPs were larger than baseline in both non-light and light groups and there was no significant difference between
the groups (two-way ANOVA, p = 0.0840). Pictures in the right panel show representative traces of fEPSC during

baseline and after LTP induction. (optoTrkB, N = 6; optoTrkB light, N = 6). Error bars indicate mean +SEM.
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772

773 Supplemental Figure 7. Fear extinction paradigm with mice carrying optoTrkB with extinction training (a) Both
774  control (CKII-optoTrkB infected mice) and light groups (CKII-optoTrkB infected LED-exposed mice) increased
775  freezing during the conditioning/acquisition phase (two-way ANOVA, p < 0.0001) and exhibited the same levels of
776 fear acquisition. Spontaneous recovery (SR) (b) and fear renewal (FR) (c) after activation of CKlI-optoTrkB during
777 fear extinction trainings. Previous light stimulation had no effect on freezing duration in SR (two-way ANOVA, p =
778 0.1929) or in FR (p = 0.1694). There was a significant difference in the 2nd session between control and light-

779 stimulated mice (post hoc: p = 0.0454). N = 8 per group. SR, spontaneous recovery; FR, fear renewal. * p < 0.05, **

780  p<0.01. Error bars indicate mean + SEM.
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782 Supplemental Fig. 8: Comparison between groups exposed to light with and without extinction training. (a) Both the
783 light group (CKIl-optoTrkB-infected mice stimulated by light with extinction training) and the light group without
784 extinction (CKIlI-optoTrkB-infected mice stimulated by light without extinction training) increased freezing during
785 the conditioning/acquisition phase (two-way ANOVA, p < 0.001) and exhibited the same levels of fear acquisition.
786 There was a significant decrease in FR (two-way ANOVA, p = 0.0465) (c), but not SR (p = 0.3894) (b) in the group
787 with extinction training compared to the one without extinction training. The light with extinction group showed a
788 stronger decrease in remote spontaneous recovery (RM_SR) (p < 0.0001) (d) and remote fear renewal (RM_FR) (p =
789  0.033) compared to Light w/o Ext (€). optoTrkB light, N = 8; optoTrkB light w/o extinction, N = 5) * p < 0.05, ** p
790  <o.01
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Supplemental table1 List of antibodies

Name Application Host Dilution Company Product No
Horse Radish Peroxidase conjugated Goat Anti-Rabbit wB Goat 1:10000 BIO-RAD #1705045
Horse Radish Peroxidase conjugated Goat Anti-Mouse WB Goat 1:10000 BIO-RAD #1705047
e wewe  DUSH Mewssmeemo oo
Chicken anti-MAP2 IHC Chicken 1:5000 Abcam ab11267
Mouse anti-CAMKII IHC Mouse 1:500 Abcam ab22609
Rabbit anti-FosB IHC Rabbit 1:500 Santa Cruz 5c-7203
Chicken anti-GFP IHC Chicken 1:1000 Abcam ab13970
Alexa 546 Goat anti-mouse IHC Goat 1:400 LifeTechnologies A21123
Alexa 847 Goat anti-chicken IHC Goat 1:400 LifeTechnologies A21449
Alexa 546 Donkey anti-rabbit IHC Donkey 1:500 Thermo Fisher A10040
Alexa 647 Donkey anti-mouse IHC Donkey 1:500 Thermo Fisher A31571
Alexa 488 Donkey anti-chicken IHC Donkey 1:500 Jackson AB_2340375

WEB: Westernblotting
IHC: Immunohistochmistry

791

Supplemental table 2 Primers for Gibson cloning

Name Sequence
fTrkB_link_R2 ctaccceetecgeeGCCTAGGATATCCAGGTAGAC
link oPHR_F2 tcctaggeggeggagggggtageggeggagggggticegggggaATGAAGATGGACAAGAAAACTATC
oPHR _CK _R2 tcaccatggiggcgaaAGCAGCCCCAATCATAATC
pfTrkB_CK_F2 agcgatccccggotaggatccATGTCGCCCTGGCTGAAG
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