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Integrated quality control of allele-specific copy numbers,
mutations and tumour purity from cancer whole genome
sequencing assays
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Abstract. Cancer genomes contain thousands of somatic point mutations, chromosome
copy alterations and more complex structural variants, which contribute to tumour
growth and therapy response. Whole genome sequencing is a well established
approach for somatic variant identification, but its broad application comes with
complications, particularly in how proposed calls are quality assessed. To address this
issue, we present CNAqQc, a quantitative framework to quality control somatic mutations
and allele-specific copy numbers, both in clonal and subclonal settings while accounting
for variations in tumour purity, as commonly seen in bulk sampling. We test the model
via extensive simulations, validate it using low-pass single-cell data, and apply it to 2778
single-sample PCAWG whole-genomes, 10 in-house multi-region whole-genomes and
48 TCGA whole-exomes. CNAqc is compatible with common bioinformatic pipelines
and designed to support automated parameterization processes that are crucial in the
era of large-scale whole genome sequencing.

Introduction

Cancer genomes can harbour multiple types of somatic mutations compared to healthy
cells and many of these events contribute to disease onset and therapeutic resistance
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(Greaves and Maley, 2012; McGranahan and Swanton, 2015, 2017). The most popular
experimental design to generate cancer somatic variants matches a tumour to a normal
biopsy sample (Barnell et al., 2019). After bulk DNA sequencing, bioinformatic tools
cross reference the normal and tumour genomes to identify germline and tumour
mutations (Xu, 2018), before isolating driver mutations (Gonzalez-Perez et al., 2013;
Bailey et al., 2018). Commonly, researchers working in the field of cancer evolution also
perform tumour subclonal deconvolution from somatic data (Ding et al., 2012; Nik-Zainal
et al., 2012; Miller et al., 2014; Roth et al., 2014).

Several types of cancer mutations can be retrieved from DNA sequencing (ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes Consortium, 2020), the most common being
single nucleotide variants (SNVs) and copy number alterations (CNAs) (Zack et al.,
2013; Li et al., 2020). All types of mutations can drive tumour progression (Kent and
Green, 2017; Levine, Jenkins and Copeland, 2019), and the steady drop in sequencing
costs has fueled the creation of large public databases of cancer variants. Moreover, the
era of high-resolution whole-genome sequencing (WGS), a technology that can read out
the full tumour genome, has provided significant improvements over whole-exome or
targeted counterparts. Generating some of these data, however, poses challenges.
While SNVs have the most well-established detection tools (Li et al., 2020), CNAs are
particularly difficult to detect since the baseline ploidy of the tumour (i.e., the number of
chromosome copies) has to be inferred (Van Loo et al., 2010; Boeva et al., 2011,
Fischer et al., 2014; Favero et al., 2015; Cun et al., 2018; Poell et al., 2019). CNAs are
important types of cancer mutations since gain and loss of chromosome arms can
confer tumour subclones with large-scale phenotypic changes, and are therefore
important clinical targets (Gerstung et al., 2020; Watkins et al., 2020).

Mutations and CNAs overlap within the tumour genome, with the number of copies of a
mutation amplified or reduced by copy number aberrations. For instance, for a mutation
present in every tumour cell and sitting in a heterozygous diploid segment, the variant
allele frequency (VAF) should peak at 50% because half the tumour reads harbour the
mutation. Alternatively, if the mutation sits on a triploid chromosome, the VAF should
peak at 33% or at 66% depending on whether the variant sits on the non-amplified or
amplified chromosome. These intuitions extend to CNAs which affect only a portion of
the tumour cells, with subclonal VAF peaks depending on the tumour architecture and
the abundance of each subclone (Dentro, Wedge and Van Loo, 2017). In any case,
theoretical VAF peaks are affected by Binomial noise and tumour purity, i.e., the
proportion of normal cells in the bulk assay, another parameter inferred together with
CNAs. These ideas are also leveraged by methods that normalise VAFs by
allele-specific CNAs and purity estimates in order to compute Cancer Cell Fractions
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(CCFs), the fraction of cancer cells with a mutation, a popular measure for cancer
evolutionary inference (Dentro, Wedge and Van Loo, 2017).

Despite a clear connection between copy numbers and VAFs, CNA and mutation calling
are decoupled analyses that can return inconsistent results. Since CNAs (and tumour
purity) are inferred from sequencing measurements that are subject to noise, miscalled
purity and ploidy estimates are the most likely cause of error. While sometimes errors
can be fixed by manual curation or consensus calling, in the era of high-resolution WGS
a quality control (QC) framework for somatic mutations, clonal and subclonal CNAs and
tumour purity estimates is highly desired. For this reason we have developed CNAqc,
the first quantitative framework to QC allele-specific CNAs, tumour purity and somatic
mutations from bulk sequencing. In particular, using fast peak-detection algorithms, i)
CNAgc can QC simple clonal segments and estimate a purity error to either fine-tune
copy number calling or select among multiple copy number profiles (e.g., tetraploid
versus diploid tumour). Moreover, CNAgc can also QC ii) complex clonal CNAs and iii)
subclonal copy numbers by determining their linear or branching evolutionary
relationship. Finally, CNAqc can also determine CCFs from VAFs and implement a QC
procedure that flags mutations for which CCFs cannot be estimated with confidence, as
well as determine patterns of fragmentation in the data and other utilities. CNAqc can
process both WGS and whole-exome sequencing (WES) in a matter of seconds,
making it extremely useful for large-scale genomics consortia or retrospective analyses
(Figure 1a). The tool was validated using single-cell copy number data and calibrated
through extensive synthetic simulations. In this paper we show its application to 2788
WGS samples from the Pan Cancer Analysis of Whole Genomes (PCAWG) cohort
(ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020), 10 WGS
samples from 2 multi-region colorectal cancers, and 48 WES samples from The Cancer
Genome Atlas (TCGA) cohort (Cancer Genome Atlas Research Network, 2014).


https://paperpile.com/c/qFDbt8/DXxh
https://paperpile.com/c/qFDbt8/hgDA6
https://paperpile.com/c/qFDbt8/9YjPO
https://doi.org/10.1101/2021.02.13.429885
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.13.429885; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

b PCAWG CNAs (n=2778)

:l Downstream Sequenced base;o/ Segments
Analyses r o .

- Subclonal deconvolution
0, 0,
S > :I - Drivers detection 26% a8

CNAs P - Clonal/ Subclonal dnds
- Evolutionary inference

Mutations —
Allele-specific —

Sample purity

Reparametrize caller
or reject solution [ ] Simple (1:0, 1:1, 2:0, 2:1, 2:2)
|| Complex (all others)

m=1 m=1 m=2
Diploid (het.) peak Trisomy
(50%) %
11 2:1
@ major allele ! @ major allele
inor allel T ) ? . ; inor allel ! T ! !
L 0.00{0.25 0.50 0.75 1.00 Biltkecale 0.00{0.25 0.50 0.75 1.00
subclonal VAF subclonal VAF
mutations mutations
@  Expected VAF peaks
Simple Complex (examples) Subclonal (2:1/2:2 example)
segments (pooled) PASS
& @2 |
3 o (1,2
| =4
S (1)
2 ° 01 | ] 4
o =
5, [ 2
- o
- I 8 e2 BRI
o o (1,2
£ a
3 g £ oo m— : g
L i = (0,1 g
@?,, B4 ‘“ s (0, 1) | |
=3 =1 1
=3 £ il
2:1 c (22 ]
2 g @ 0
2:0 I. 1 L ‘g ::g); ._ 0.00 0.25 0.50 0.75 1.00
‘ 2 (o) NN VAF
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Sample purity Sample purity Proportion clone 1 (100% purity) - - = — expected peak
: @ data peak
E EJ L - = a tolerance (band)
0.00 0.25 0.50 0.75 1.00 00 02 04 06 00 02 04 06

Figure 1. a. CNAqc provides quality control (QC) algorithms to integrate somatic mutations, allele-specific CNAs and
tumour purity 1. The tool can determine a sample-level PASS or FAIL status based on € > 0, a purity error tolerance
parameter, returning a score A € R. Calls for a sample passing QC can be used for downstream analysis (e.g.,
subclonal deconvolution). Otherwise, A can be used to correct ™ and re-parametrise the copy number caller, or to
select among multiple segmentations/purity estimates returned by a caller (e.g., a diploid versus a tetraploid solution).
b. CNAqc splits clonal CNAs into simple - 1:0 (LOH), 1:1 (heterozygous diploid), 2:0 (copy neutral LOH), 2:1 (triploid)
and 2:2 (tetraploid) - versus complex ones. Simple CNAs comprise ~80% of ~600,000 segments and span ~93% of
the bases sequenced in 2778 PCAWG samples c. Theoretical VAF histogram for diploid 1:1 mutations: clonal
mutations peak at 50% VAF and are observed with Binomial sequencing noise, and peak at 100% CCF. d. The
analogous case of a 2:1 segment, where we expect two VAF peaks from mutations present in one or two copies at
33% and 66% VAF respectively; both represent clonal mutations with 100% CCF. Note that the multiplicity of a
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mutation phases whether it happened before or after amplification. e. Expected VAF peaks by theory, for simple
CNAs (left), example complex CNAs (centre) and subclonal CNAs (right). Each peak originates from the
combinatorial relationship between sample purity, mutation multiplicity and allele-specific CNA segments; the
distance between data peaks and expected peaks laids the foundations for the QC approach in CNAqc. Left: all
simple CNAs segments; peaks computed spanning tumour purity. Centre: example cases with 3:1 and 4:3 segments
(mutation multiplicities range from 1 to the copies of each allele). Right: example 2:1-2:2 subclone assuming 100%
purity; peaks computed for variable sizes of the first subclone (clone 1). Distinct evolutionary models are possible
(linear or branching); multiplicities are relative to each of the clones involved. f. Example QC for mutations in 2:1
segments for a bulk assay with ~90% purity. The horizontal dashed lines are the expected VAF peaks vland v,

determined from the table in panel (e), and with matching bandwidth (shaded area) given by a purity error tolerance
e > 0, adjusted for the segment, multiplicity and purity. Black dots are the peaks estimated from data; since they fall
within the bandwidths around vland v, the CNAgc QC result is PASS (green status bar).

Results
The CNAqgc framework

CNAgc is implemented as an open source R package (Software Availability) to be used
after variant calling from bulk sequencing, offering different ways to integrate
allele-specific CNAs, tumour purity estimates and somatic mutations (Figure 1a). CNAs
are classified as simple or complex, the former including heterozygous normal states
(1:1 chromosome complement, AB in genotype notation), configurations of loss of
heterozygosity (LOH) in monosomy (1:0, or A) and copy-neutral form (2:0, or AA),
trisomy (2:1 or AAB genotype) or tetrasomy (2:2 or AABB genotype) gains. Complex
CNAs are all the other combinations of alleles (e.g, 4:2 or 5:0). Simple CNAs can be
generated with few (< 2) copy number events from a starting normal state (1:1) and are
also very common in n = 2778 PCAWG samples, being ~80% of ~600,000 total
segments and covering ~93% of sequenced bases (Figure 1b; Supplementary Figure
S1). CNAqc supports subclonal segments with 2 subclones and simple CNAs involved,
which represent ~70% of the Battenberg calls in PCAWG (Nik-Zainal et al., 2012).

CNAqc uses the fact that the allelic configuration of a copy number segment and tumour
purity determine expected peaks in VAFs. All QC procedures use peak-detection
algorithms to check whether data peaks are consistent with expectations. For clonal
CNAs all the mutations mapping onto a certain segment are also pooled together to
increase signal strength (e.g., all 2:1). QC analyses can also be run on individual
chromosomes to facilitate the identification of miscalled segments in isolated portions of
the tumour genome (Supplementary Figure S2). Specifically for simple CNAs, the tool
also builds a quantitative score to finally determine a pass or fail status per sample. This
score suggests tumour purity corrections to adjust Bayesian priors or point parameters


https://paperpile.com/c/qFDbt8/KP3i
https://doi.org/10.1101/2021.02.13.429885
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.13.429885; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of a copy number caller. The same metric can also be used to select among alternative
genome segmentations and purity estimates of a caller (e.g., a 100% pure diploid
tumour versus a 50% pure tetraploid). Lastly, through similar ideas CNAqc also
determines Cancer Cell Fractions (CCFs) for input somatic mutations, and uses a QC
procedure to determine a pass or fail status based on the number of mutations with
uncertain CCF estiamtes.

We briefly introduce the main ideas of the model; all mathematical details are available
in the Online Methods, and inspired from earlier works (Van Loo et al., 2010; Dentro,
Wedge and Van Loo, 2017). The key equation models the expected VAF of a mutation
that appears in a proportion 0 < ¢ < 1 of tumour cells, if the input clonal CNA segment
and tumour purity were correct (Figure 1c, 1d). Note that the case of a clonal mutation is
defined by ¢ = 1. We consider a tumour sample with purity 0 < m < 1, and all clonal
CNA segments of the form nin which have copy numbers n, and n, for the major and

minor alleles. If we consider mutations with multiplicity m and mapped onto n;in,

segments, we expect a VAF peak (Figure 1e) at

(1) vm(c) = mnc/[2(1 — m) + Tr(nA + nB)] .

Notation vm(c) explicits the dependency on mutation multiplicity, and we remark that

VAFs are observed with Binomial noise. Clonal mutations mapped to clonal copy
numbers are a proxy for tumour purity, which we obtain in the special case of c = 1. For

2:0 (nA =2, n,= 0), 2:1 and 2:2 segments, m phases mutations acquired before or

after the copy number event (Figure 1d). Note that one advantage of simple CNAs is
that m € {1, 2}, being acquired directly from diploid heterozygous normal states (1:1).
This equation can be generalised for subclonal segments by considering the ordering
with which subclones emerged, i.e., their evolutionary relationship (Figure 1e). Routines
to QC subclonal calls require a degree of interpretation of the tumour evolutionary
trajectory, and CNAqc implements linear and branching models of subclonal growth in
order to capture multiple types of allelic imbalance (Supplementary Figure S3).

For each QC task, VAF peaks are detected either via fast non-parametric kernel density
or slower parametric Binomial mixtures (Supplementary Figure S4); the approaches are
joined only for simple CNAs, when the tool computes purity adjustments for caller
recalibration. This is to optimise speed and dedicate more resources to QC clonal
simple CNAs; being most prevalent, clonal simple CNAs determine the final tumour
genome segmentation and sample purity, while more complex segments or subclonal
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segments usually follow directly from clonal ones. The CNAqc sample score A € R
(e.g., + 3%, — 7%) is based on a linear combination of the distances between the
expected peaks and the data peaks. Therefore the score represents an error reflecting
corrections to the input purity m. The threshold to determine PASS or FAIL is the error
e > 0 in the purity estimate the user decides to tolerate: e.g., for heterozygous diploid
mutations with e = 0. 025 (2.5% maximum error) and real purity 60%, CNAqc will PASS
a tumour purity estimate in [55; 65%], corresponding to VAF range [27.50; 32.5%]. To
normalise this error against aneuploidy, € is adjusted for CNA segments, mutation
multiplicity and tumour purity (Figure 1f).

CNAgc can also determine CCFs for mutations sitting on clonal simple CNAs; the tool
normalises the VAF v of a mutation that sits on segment nin by solving formula (1) for

¢, leading to

(2) c= [v[(nA tn, - 2)T + 2]/mm.

Notice that here we denote by v a generic VAF, omitting its dependency from m and c.
This equation applies to clonal and subclonal mutations, and its main challenge is
phasing m from VAFs, i.e., determining if a mutation is in single (m = 1) or double (

m = 2) copy. Phasing is certainly easier with simple CNAs because m € {1, 2}. CNAqc

uses a two-component Binomial mixture to phase multiplicities and determine phasing
uncertainty; to the best of our knowledge, no other CCF-based tool introduced this or
similar notions of uncertainty. In particular, our method identifies a VAF range at the
crossing of the mixture components, where m cannot be clearly phased and CCFs are
unassigned; here uncertainty is estimated from the entropy H(z) of the mixture latent
variables z. For every CNA, a CCFs’s PASS or FAIL status is determined from the
maximum proportion of unassigned mutations that one wants to tolerate. An alternative
method is available to force m a value through a hard split on the VAF, regardless of
entropy (Online Methods).

CNAgc provides several functions to visualise segments (Figure 2a), read counts
(Figure 2b,c), CCFs (Figure 2d) and, after QC, peak-based visualisations for both VAFs
(Figure 2e) and CCFs (Figure 2f). The tool can also visualise subclonal CNAs (Figure
3a) or process hypermutant tumour with hundreds of thousands somatic mutations
(Figure 3b). In Figure 3c we show an example QC of complex CNAs from 3:0, 3:1, 3:2,
3:3, 4.0 and 4:2 segments. For this example sample, CNAqc also validates a large
subclonal CNA on chromosome 11, assigned to a 2:1 subclone (21% of cells) and a 2:2
subclone (79% of cells). For this complex sample, most peaks are matched and found
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to be compatible with both linear and branching models of evolution (Figure 3d). Finally,
CNAqgc contains extra utilities to smooth copy number segments and detect patterns of
over-fragmentation from breakpoint frequencies, which help to determine events of
chromothripsis, kataegis or chromoplexy (Zack et al., 2013; Gerstung et al., 2020).
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Figure 2. a. CNAqc visualisation of PCAWG sample ca5ded1c-c622-11e3-bf01-24c6515278c0 (DCC project code
LIRI-JP, hepatocellular carcinoma). Genome-wide allele-specific consensus CNAs (ploidy 2, purity ~85%). The plot
shows major and minor allele counts in each segment. This sample harbours two driver SNVs hitting genes CTNNB1
and ALB, which are shown annotated in diploid heterozygous segments (1:1). b,c. Read count data for SNVs
visualised as Variant allele frequencies (VAFs) and depth of sequencing (DP). d. Cancer Cell Fractions (CCF)
obtained by CNAqgc show that the two CTNNB1 and ALB drivers are clonal. e. Peak detection QC for simple clonal
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CNAs and tumour purity. Multiple peaks are checked independently for every copy state with total copy number >2
(2:1 and 2:0); final QC depends on the number of mutations assignable to each peak, and whether the peak is
matched. The sample-level QC is a linear combination of results from each copy state. Here calls are assigned a
PASS status (green box surrounding plot). f,g. CCF estimation for mutations mapping to triploid 2:1 segments,
obtained using the entropy-based method as in panel (d), and the rough method. CCF values of clonal mutations
spread around 1 as expected. The panels show CCFs and VAFs, coloured by mutation multiplicity phased from VAFs.
The entropy profile is the dashed line, and the grey area delineates crossings of Binomial densities where CNAqc
detects multiplicities uncertainty; the entropy method detects uncertainty in the phasing of 20% of the SNVs. The
rough method in panel (g) assigns multiplicities regardless of uncertainty. In both cases the CCF estimates PASS
quality control.
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Figure 3. a. CNAqc visualisation of PCAWG sample 51893d3f-e7{3-43f9-9fd0-c0f25ae96804 (DCC project code
MELA-AU, skin melanoma), which presents high levels of aneuploidy (mean ploidy 3.69) and most genome covered
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by 2:1 segments. The sample has a very large mutational burden (~294,000 somatic mutations), and large subclonal
CNAs on chromosome 11. e. CNAqc validates the calls by peak detection; most of the signal is due to ~80,000
mutations mapping to 2:1 segments. c. CNAqc also validates 18 out of 20 expected peaks in more complex copy
number segments, which in this sample are 3:0, 3:1, 3:2, 3:3, 4:0 and 4:2. d. CNAqc also validates subclonal CNAs
on chromosome 11 obtained by Battenberg (Nik-Zainal et al., 2012), which calls two subclones with 2:1 genome
(21% of cells) and 2:2 genome (79% of cells). In all segments almost all peaks are matched, and the peaks are
compatible with both linear and branching models of evolution starting from an ancestral 2:1 state.

Model simulations, single-cell validation and parameters calibration

First, we tested CNAqc on ~20,000 synthetic VAF distributions obtained for different
values of coverage (30x, 60x, 90x, 120x) and purity (0.4, 0.6, 0.8, 0.95), using simple
CNAs (Online methods). For each dataset, we run CNAqc with the input purity
corrupted by a variable error factor € and scan multiple levels of tolerance e. We

observed that the proportion of rejected samples approaches 100% when the purity
error exceeds tolerance (em > €), suggesting that the model in CNAqc works as

expected, i.e., we detect errors as big as tolerance. From simulations, we could observe
how VAF quality impacts performance, with low coverage/ purity making peak detection
harder (Supplementary Figure S5). For the same batch of tumours we computed CCFs
to measure their uncertainty - i.e. the number of mutations that CNAqc cannot phase
from VAFs. Low coverage and low purity generate VAF peaks that overlap, where exact
multiplicity phasing becomes unachievable. The performance gradient highlights the
role of data resolution to assess reliable CCFs (Supplementary Figures S6).

Second, we validated CNAqc with low-pass single-cell copy number data from ovarian
cancer cell lines generated using the Direct Library Preparation (DLP+) protocol (Laks
et al., 2019), an amplification-free whole-genome sequencing method suitable for calling
single-cell CNAs and somatic mutations (Figure 4a) (Williams et al., 2021). First we
focused on 3 tumour subclones which represented 100%-pure monoclonal tumour
populations with different CNAs (Supplementary Figure S7). From read count pile-ups
we generated mutation data, and gathered CNAs from consensus clone-level copy
number calls (Online Methods). The CNAqc algorithms passed the true 100% purity
(Figure 4b) using both simple and more complex clonal CNAs (Figure 4c,
Supplementary Figure S8). We then pooled clonal segments across the subclones to
create a larger clonal population, and tested the quality of purity-adjustments proposed
by CNAgc. The test showed that, if we input a purity value of the form 1 — e with e > 0,

the adjustment proposed by CNAgc follows e linearly (0.88 < R* <o 99; p < 10_16)
(Figure 4d, Supplementary Figure S9). Finally, we assessed subclonal CNA QC upon
introduction of subclonal population mixtures with both triploid (2:1) and tetraploid
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genome-doubled (2:2) subclones; CNAqc could match VAF peaks from subclonal CNAs
(Supplementary Figure S10). Moreover, using analogous 10x data from (Zaccaria and
Raphael, 2021) and a similar procedure, we could create a mixture of 2 subclones with
subclonal trisomy (2:1) characterised by mirrored allelic imbalance (i.e., the joint
presence of AAB and ABB genotypes, Supplementary Figure S11). Notably, CNAqc
could validate these subclonal CNAs and was also able to identify, from the
pseudo-bulk, the correct AB — AAB | ABB evolutionary model that generated this
mixture (Figure 4e, Supplementary Figure S12). This shows that, besides performing
QC, CNAqc can give insights into the underlying evolutionary process that generates
CNA-associated tumour sub-populations.

Third, we performed further tests (Online Methods) to support users in choosing the
best value for the parameter which modulates QC (e), as a function of data coverage
and input purity. To do this, we generated >350,000 synthetic tumours spanning
plausible coverage and purity ranges, and then performed a test to measure the False
Positive Rate (FPR) of the tool — i.e. the probability of passing a sample that should be
failed, for a certain value of e. Then, for every coverage and purity configuration we
regressed the FPR against €, so that the tool can suggest, for a desired upper bound on
FPR, the best value of e for based on coverage and purity of the input dataset
(Supplementary Figure S13).
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Figure 4. a. Pseudobulk CNA segments from single-cell low-pass DLP+ data of an ovarian cell line (Laks et al., 2019)
used to validate CNAqc. This copy number profile is obtained from pooling simple CNAs across several diploid
tumour subclones (Supplementary Figure S7). b. Quality control of LOH and diploid heterozygous segments from
panel (a) with CNAqc, using true tumour purity (100%, monoclonal tumour). ¢. Quality control of more complex 3:0
segments identified in cluster | from Supplementary Figure S7. d. Correlation between purity-adjustments suggested
by CNAgc and input errors imputed to data from panel (a). By construction the desired correction needs to sit on the

plot diagonal; the tool achieves R =o0. 88, p-value p < 107°° e. Quality control of subclonal CNAs from admixing of
tumour subclones with mirrored allelic imbalance. Here, using data from (Zaccaria and Raphael, 2021) we created
two subclones with 2:1 genotypes and mirrored alleles (AAB versus ABB). CNAqc can validate these calls via
subclonal peak detection, and identify the true branching patterns of evolution from the input data (AB — AAB | ABB),
which is characterised by a peak of shared mutations at around 50% VAF.

Large-scale pan cancer PCAWG calls

We have run CNAgc on consensus calls (single nucleotide variants, allele-specific
CNAs and purity) from the PCAWG cohort (n = 2778 samples, 40 tumour types).
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Excluding samples with unsuitable data, we ran 2589 samples on a 36-core machine in
<1 hour. Median depth of sequencing and purity of PCAWG are 45x and ~65%
(Caravagna et al., 2020), a resolution comparable to our simulations (Supplementary
Figure S1). PCAWG consensus calls are obtained from several callers and selected
with a multi-tier classification system; simple CNAs were passed by CNAqc in 2339 out
of 2589 samples (~90%) with 3% error purity tolerance (e = 0.03), confirming the
quality of the calls (Figure 5a). As with simulations, the QC pass rate was determined by
tumour purity and coverage (Figure 5b). Manual inspections of some samples
presented interesting cases. For instance, tumours with low burden but high quality calls
still yielded a useful report (Supplementary Figure S14). Other cases instead with 100%
consensus PCAWG purity were at odds with VAF peaks and, upon re-analysis, were
found to be compatible with low purity solutions (Supplementary Figure S15). Other
cases did possess genuinely very high purity (>95%, Supplementary Figure S16),
instead.

CNAgc performed QC of 610 PCAWG samples carrying complex CNAs in segments
harbouring >150 mutations (Figure 5c). The most prevalent segments were 3:1, 3:2 and
3:0 (15%, 13% and 10%), for which we matched >60% of peaks on average (Online
Methods). Tumour types with higher prevalence of complex CNAs were esophageal,
liver, melanoma, ovarian, pancreatic and breast cancers, each with >100 patients
carried complex CNAs. Finally, we applied CNAgc to subclonal CNAs called by
Battenberg (Figure 5d). Overall, the tumour types carrying most subclonal CNAs were
esophageal, liver, melanoma, pancreatic and gastric cancers. Interestingly, some of
these tumour types also carried complex CNAs, suggesting the existence of some
biological mechanism driving instability in these tumours. The most frequent
combinations of CNAs analysed were those that could develop through deletion or
amplification of a single allele — 1:0-1:1 (~33%) and 1:1-2:1 (~31%), followed by 2:1-2:2
(~19%), 2:0-2:1 (~9%) and 1:0-2:0 (~7%). For each segment, we determined the best
fitting model by assessing the percentage of matched peaks; we did not assign any
model if less than 50% of the expected peaks were matched and, overall, we assigned
a model to ~87% of the subclonal segments (Supplementary Figure S18 and S19).
Interestingly, subclones 1:0-2:0, 1:1-2:1 and 2:1-2:2 were generally better explained by
linear evolution implying a temporal ordering among the subclones. This was the best
model in 39%, 48% and 52% of cases, including for subclones 2:1-2:2 in triploid 2:1
(30%) or tetraploid 2:2 (33%) tumours. Conversely, subclones 2:0-2:1 were better
explained by branching models (38%), implying the independent formation from a
common ancestor. In subclones 1:0-1:1, instead, while we validated >50% peaks in
>73% samples, the linear and branching models were found indistinguishable (by
construction). Finally, at the level of tumour types, 2:0-2:1 subclones in esophageal
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adenocarcinomas were well explained by both models, while 2:1-2:2 subclones were
better explained by linear models, as in the case of liver and pancreatic cancers, and
melanoma.

We also tested CCF computations on the whole PCAWG. Consistent with simulated
data, the percentage of mutations for which CCF cannot be computed negatively
correlated with sample purity (Figure 5e). We found the CCFs produced by CNAqc
(Supplementary Figure S20) comparable to those computed by Ccube (Yuan et al.,
2018) across the whole cohort, but also found cases where, upon CNAqc analysis, we
could detect spurious subclonal clusters explained by miscalled mutation multiplicities
(Supplementary Figure S21). This further showed the practical utility of CNAqc, which
flags mutations whose CCF values are uncertain and this can be used, post-hoc, to
check the plausibility of subclonal deconvolution results. Summarising, from this
analyses we could determine that, while peaks could be detected for almost all PCAWG
samples, mutation multiplicity phasing would have required higher coverage and purity
to reduce uncertainty.
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Figure 5. a. Peak detection quality control for n = 2723 WGS samples available in PCAWG. The plot shows the
percentage of cases with PASS status, split by copy state, multiplicity and tumour type. The dots annotated report the
number of cases, the barplot the tumour types sorted by percentage of sample-level FAIL cases and the coloured


https://doi.org/10.1101/2021.02.13.429885
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.13.429885; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

heatmap the sample classification (primary, metastatic etc.). b. Proportion of PASS cases split by purity (low, < 40%,
high, > 70%, and mid-level) and median depth of sequencing (DP), after removing two samples with DP > 150. c.
Histogram of peak distances (expected versus observed) for clonal CNA segments in the 4 tumour subtypes with
most samples. The reported values are split by CNAgc PASS or FAIL status. c. Complex CNAs in PCAWG for
segments with >150 somatic mutations (n = 570 samples), the figure shows the top ten tumour types ranked based
on the number of samples with complex calls (>9) e. Subclonal CNAs in PCAWG for segments with >150 somatic
mutations (n = 538 samples), the figure shows the top six tumour types ranked by the number of samples with
subclonal CNAs. e. Regression of tumour sample purity against the proportion of CCF values that cannot be
confidently assessed by CNAqc, split by copy state.

Multi-region colorectal cancer data

We have run CNAqc on previously published WGS multi-region data (Cross et al., 2018;
Caravagna et al., 2020), which was collected from multiple regions of primary colorectal
adenocarcinomas (10 samples from 2 patients; median coverage ~80x, purity ~80%,
Figure 6). We combined somatic mutations called by Platypus (Cross et al., 2018) with
allele-specific CNAs and purity from Sequenza (Favero et al., 2015), and used CNAqc
to select the best tumour segmentation among multiple ones. With this test, we wanted
to observe if CNAqc could be used to choose among alternative copy number profiles
generated by a copy number caller. As baseline, we compared the Sequenza solutions
to published CloneHD (Fischer et al., 2014) calls for this sample.

Sequenza was first run with the default range proposals for purity and ploidy, returning a
solution close to the CloneHD one. For every sample, we collected the proposed
alternative solution (tetraploid 2:2 with halved purity) and used its parameters to
compute a new Sequenza fit with ploidy ranging 3.8-4.2. Finally, we generated a
Seqgeunza run constrained with low purity; in total we had 3 runs to compare. Runs for
sample Set7 57 from patient Set7 (Figure 6a) highlighted that both Sequenza and
CNAqgc are strongly confident about the correct solution (diploid with 80% purity). Peak
detection scores invariably fail both the tetraploid and low purity solution. The default
solution was re-fit following small purity adjustments suggested by CNAqc (Figure 6b)
and the final Set7_57 segments showed mild aneuploidy (Figure 6c).

Given that copy number calling is an optimization problem with multiple solutions that
often have comparable rank (i.e. they are indeed alternative), this case has shown how
CNAqgc scores can be used to assess miscalled segments ahead of VAFs (Figure 6d,e).
With CNAqc we could rank mutations, CNAs and purity for all samples in patient Set_7
(Figure 6f and Supplementary Figure S22), profiling a tumour consistent with a
microsatellite stable colorectal cancer (Cross et al., 2018). An equivalent result was also
obtained for 6 WGS samples of patient Set_6 (Supplementary Figure S23).
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Figure 6. a. Circos plot for four possible whole-genome CNA segmentations determined by Sequenza with WGS
data (~80x median coverage, purity 87%). The input sample is Set7_57, one of four multi-region biopsies for
colorectal cancer patient Set7. The first run is with default Sequenza parameters. With CNAqc, we slightly adjust
purity estimation and obtain a final run of the tool. Following Sequenza alternative solutions, we also fit a tetraploidy
solution to data, and one with maximum tumour purity 60%. b. Purity and ploidy estimation for the four Sequenza
runs. Arrows show the adjustment proposed by CNAqc, the default and final runs are the only ones to pass quality
control. ¢. Final run with Set7_57: allele-specific copy number segments and depth of coverage per mutation. d,e.
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Miscalled tetraploid and triploid segments in the tetraploid and low purity Sequenza solutions, identified by CNAgc. e.
CNA calling with CNAgc and Sequenza for 4 WGS biopsies of the primary colorectal cancer Set7.

Whole exome data

CNAqc is conceptualised to exploit properties of the VAF distribution that are available
in high-resolution whole genomes. Lower-resolution whole-exome sequencing (WES)
assays produce reduced mutational burden and can be analysed only if VAF quality
does not compromise peak detection or multiplicity estimation.

We tested CNAqc with somatic data from WES of n = 48 TCGA (Cancer Genome Atlas
Research Network, 2014) lung adenocarcinomas samples available in the LUAD cohort
(Online Methods), selecting the lowest-purity and highest-purity cases to capture
different levels of data quality; in this test we used data from multiple copy number
callers. CNAgc could successfully analyse most of these samples (Supplementary
Figure S24); as with the multi-region colorectal cohort (Figure 6), CNAgc could rank
calls generated by multiple callers even with WES data. For instance, for sample
TCGA-53-7624-01A (Supplementary Figure S25), the TCGA consensus measurement
of purity estimations (CPE) obtained by running ESTIMATE (Yoshihara et al., 2013),
IHC, LUMP (Aran, Sirota and Butte, 2016) and ABSOLUTE (Carter et al., 2012) is
~80%. CNAqc showed that the CPE consensus is likely wrong, and that only
ABSOLUTE estimated the correct purity (69%). This shows an interesting scenario of a
consensus approach that gets confused by a repeated error across its input callers; in
this case our QC tool helps in rescuing the correct solution, despite this being identified
by a small subset of the consensus methods.

Discussion

WGS is the most powerful approach to detect mutations that drive human cancers.
Many large-scale initiatives such as PCAWG (ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium, 2020), the Hartwig Medical Foundation (Priestley et al.,
2019) and Genomics England (Turnbull et al., 2018) have already generated WGS data
for thousands of cancer patients, and many other institutes are converging towards
these efforts. Calling mutations from WGS requires complex bioinformatics pipelines
(Barnell et al., 2019; Cmero et al., 2020; Li et al., 2020); generating these data is the
prelude to any downstream analysis, putting the quality of the calls under the spotlight
at a time in which quality control procedures for somatic data are missing.
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CNAgc leverages on statistical properties of VAF distributions to offer the first principled
framework to QC somatic mutations, allele-specific CNAs and tumour purity. The tool
can analyse nucleotide substitutions for which VAFs can be computed; single-nucleotide
variants are more reliable mutation types since they depend less on alignment quality,
and should be checked first. CNAqc uses peak detection to validate copy number
segments and purity, exploiting a combinatorial model for somatic alleles applied to both
clonal and subclonal CNAs. The model distinguishes various types of segments based
on clonality (clonal versus subclonal) and complexity (simple versus complex),
implementing QC procedures with different features according to the type of segment.
All the procedures for QC computation and automatic metric adjustment in CNAqc have
been validated using low-pass single-cell copy number data, which we could use to
create admixtures of tumour populations with controlled complexity. Moreover, the
model has been extensively tested and calibrated with synthetic simulations, and offers
the possibility to auto-tune parameters based on coverage and purity of the input
sample, and desired performance (from synthetic simulations). Within the same
framework, CNAqc also computes CCF values, highlighting mutations whose multiplicity
cannot be phased and are therefore uncertain. This can easily be used to create
multi-tier CCF calls (certain versus uncertain) for downstream analysis, helping to
interpret subclonal clusters found by deconvolution tools.

CNAgc can process both whole-genome and whole-exome data across different callers,
and we have identified some example TCGA and PCAWG cases where, with the help of
QC metrics, the CNAqgc-based analysis improves over consensus-based approaches.
While this was based on a few examples, the possibility that QC-based methods could
substitute complex consensus approaches would be clearly appealing to make somatic
calling pipelines faster and simpler to organise or maintain. CNAqc features can be
used to clean up data, automatise parameter choice for any caller, prioritise good calls
and select what information should be forwarded for downstream analysis; in this
respect, we release with this paper the first automatic copy number calling pipeline that
joins Sequenza (Favero et al., 2015) with CNAqc (Supplementary Figure S26). In an
effort to integrate QC and copy number calling, this pipeline is designed to iterate calling
until a “good” (QC pass) fit is determined, for up to a custom number of attempts
(Software Availability). In the future, CNAqc could be extended to other types of CNAs
such as extrachromosomal DNA (Verhaak, Bafna and Mischel, 2019; Zeng, Wan and
Wu, 2020), whose role in amplifying oncogenes and driving tumour evolution and drug
resistance is becoming increasingly important. (Turner et al., 2017; Wu et al., 2019; Kim
et al., 2020)
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The CNAqc framework leverages the relationship between tumour VAF and ploidy. The
quality of the control process itself depends on the ability to process the VAF spectrum
and detect peaks. Therefore, if the VAF quality is low because, for example, the sample
has low purity or coverage, the overall quality of the check decreases, making it more
difficult to completely automate quality checking. Similarly, procedures that work at the
level of single-segments such as subclonal QC will always depend on the number of
mutations mapping on the segment Therefore, for short segments with few mutations, if
VAF peaks will be hard to detect, then the QC procedures based on VAF peaks might
not be applicable. However, despite obvious data-related limitations, for the large
majority of samples CNAqc provides a very effective and efficient way to integrate
quality metrics in standard pipelines. Some of the peak-based analysis of CNAqc might
be achievable by modifying downstream tools for tumour deconvolution; from our
observation however CNAqc is much faster and dedicated to QC, suggesting potentially
broader applicability (Supplementary Figure S27).

Generating high quality calls is a forerunner to more complex analyses that interpret
cancer genotypes and their history, with and without therapy (Ding et al., 2012; Landau
et al., 2013; Strino et al., 2013; Miller et al., 2014; Roth et al., 2014; Deshwar et al.,
2015; Caravagna et al., 2016, 2018; Jamal-Hanjani et al., 2017; Cross et al., 2018;
Turajlic et al., 2018; Gerstung et al., 2020). CNAqc can pass a sample at an early stage,
leaving the possibility of assessing, at a later stage, whether the quality of the data is
high enough to approach specific research questions. With the ongoing implementation
of large-scale WGS sequencing efforts, and the great amount of WES data already
available, CNAqc provides a good solution for modular pipelines that self-tune
parameters based on quality scores. To our knowledge, this is the first stand-alone tool
which leverages the power of combining the most common types of cancer mutations to
automatically control the quality of cancer sequencing assays.

Data Availability

Multiregion colorectal cancer data is deposited in EGA under accession number
EGAS00001003066.

PCAWG calls are publicly available at (https://dcc.icgc.org/), the ICGC Data Portal; we
used the following files:

e Somatic consensus SNVs and indels
o https://dcc.icgc.org/releases/current/Summary#:~:text=simple somatic m

utation.aggregated.vcf.
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e Somatic allele-specific CNAs
o https://dcc.icgc.org/api/vi1/download?fn=/PCAWG/consensus cnv/consen
sus.20170119.somatic.cna.annotated.tar.qz

e Purity and ploidy cohort table
o https://dcc.icgc.org/api/vi1/download?fn=/PCAWG/consensus cnv/consen
sus.20170217.purity.ploidy.txt.qz

Results from our analysis of PCAWG will be made available at Zenodo before the paper
is published.

TCGA calls are publicly available at the GDC Data Portal (https://portal.gdc.cancer.gov),
Software Availability

CNAqc is implemented as an open source R package is hosted at

https://caravagnalab.github.io/CNAQgc/.

The tool webpage contains RMarkdown vignettes to run analyses, visualisation inputs
and outputs, and parametrise the tool. All analyses presented in this paper can be
replicated following those vignettes; multiregion colorectal cancer data to replicate our
analysis is hosted in the GitHub repository.

https://github.com/caravagnalab/CNAqc_datasets.

Single-cell data and code are also released alongside the tool at the main webpage.
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