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SUMMARY 25 

Transmission of SARS-CoV-2 from humans to farmed mink was observed in Europe and 26 

the US. In the infected animals viral variants arose that harbored mutations in the spike (S) 27 

protein, the target of neutralizing antibodies, and these variants were transmitted back to 28 

humans. This raised concerns that mink might become a constant source of human 29 

infection with SARS-CoV-2 variants associated with an increased threat to human health 30 

and resulted in mass culling of mink. Here, we report that mutations frequently found in 31 

the S proteins of SARS-CoV-2 from mink were mostly compatible with efficient entry into 32 

human cells and its inhibition by soluble ACE2. In contrast, mutation Y453F reduced 33 

neutralization by an antibody with emergency use authorization for COVID-19 therapy 34 

and by sera/plasma from COVID-19 patients. These results suggest that antibody responses 35 

induced upon infection or certain antibodies used for treatment might offer insufficient 36 

protection against SARS-CoV-2 variants from mink. 37 
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INTRODUCTION 49 

The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and 50 

the associated disease coronavirus disease 2019 (COVID-19) resulted in 105 million diagnosed 51 

infections and 2.3 million deaths ((WHO), 2021). The virus has been introduced into the human 52 

population in China in the winter season of 2019, and first cases were detected in the city of 53 

Wuhan, Hubei province (Zhou et al., 2020). Bats and pangolins harbor viruses closely related to 54 

SARS-CoV-2 and are discussed as sources for SARS-CoV-2 (Lam et al., 2020; Xiao et al., 2020; 55 

Zhou et al., 2020). However, it is conceivable that other animals contributed to the spillover of 56 

the virus from animals to humans, considering that SARS-CoV was transmitted from bats to 57 

humans via civet cats and raccoon dogs (Guan et al., 2003; Lau et al., 2005; Li et al., 2005). 58 

 The American mink (Neovison vison) is farmed in Denmark, the Netherlands and many 59 

other countries for its fur. In April 2020, mink in individual farms in the Netherlands developed a 60 

respiratory disease and SARS-CoV-2 was detected in the afflicted animals (Molenaar et al., 2020; 61 

Oreshkova et al., 2020). Whole-genome sequencing provided evidence that SARS-CoV-2 was 62 

initially introduced into mink from humans and that farm workers subsequently acquired the 63 

virus from infected animals (Oude Munnink et al., 2020). Further, the data suggested that viruses 64 

acquired from infected mink were capable of human-to-human transmission ((Oude Munnink et 65 

al., 2020), comments: (Koopmans, 2020; Leste-Lasserre, 2020)). SARS-CoV-2 infection of 66 

farmed mink and transmission of the virus from infected animals to humans was subsequently 67 

also detected in Denmark and led to the culling of 17 million animals. Finally, apart from the 68 

Netherlands and Denmark, also other countries reported SARS-CoV-2 infections of farmed and 69 

free-ranging mink, including several European countries (ProMed-mail, 2020a, b, d, e, f) (Fig. 70 

1A), Canada (ProMed-mail, 2020g) and the USA (ProMed-mail, 2020c, h). 71 
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  The SARS-CoV-2 spike (S) protein is incorporated into the viral envelope and facilitates 72 

viral entry into host cells. For this, the S protein binds to the cellular receptor angiotensin-73 

converting enzyme 2 (ACE2) via its receptor-binding domain (RBD) and employs the cellular 74 

serine protease TMPRSS2 for S protein priming (Hoffmann et al., 2020; Zhou et al., 2020). The S 75 

protein of SARS-CoV-2 from farmed mink in Denmark and the Netherlands harbors different 76 

combinations of mutations relative to SARS-CoV-2 circulating in humans (Oude Munnink et al., 77 

2020) (Fig. 1B and C): A deletion of H69 (H69Δ) and V70 (V70Δ) in the S protein N-terminus 78 

and amino acid exchanges Y453F in the RBD, I692V located downstream of the furin motif, 79 

S1147L in the S2 subunit and M1229I in the transmembrane domain (Fig. 1B and C). Moreover, 80 

SARS-CoV-2 containing a combination of five mutations (H69Δ/V70Δ/Y453F/I692V/M1229I) 81 

in their S protein have been observed, which gave rise to the designation cluster 5 variant. Here, 82 

we investigated whether S proteins harboring Y453F either alone or in conjunction with other 83 

mutations showed altered expression, host cell interactions and susceptibility to antibody-84 

mediated neutralization. 85 

 86 

 87 

 88 

 89 

 90 

 91 

 92 

 93 

 94 

 95 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

RESULTS 96 

 We employed previously described vesicular stomatitis virus-based reporter particles 97 

bearing the SARS-CoV-2 S protein to study whether mutations observed in infected mink 98 

modulate cell entry and its inhibition (Hoffmann et al., 2020). The S protein from SARS-CoV-2 99 

isolate hCoV-19/Wuhan/Hu-1/2019, which harbors an aspartic acid at amino acid position 614 100 

(D614) (Korber et al., 2020), was used as control and is subsequently referred to as wildtype 101 

(WT). Further, an S protein of identical amino acid sequence but harboring a glycine at position 102 

614 (D614G), was used as a reference for S protein variants containing the dominant D614G 103 

mutation (Fig. 1D). Finally, S proteins with mutations found in SARS-CoV-2 from mink were 104 

analyzed as shown in figure 1D. 105 

 Immunoblot analysis of S protein-bearing particles revealed that all mutations were 106 

compatible with robust particle incorporation of the S protein and cleavage at the furin motif 107 

located at the S1/S2 cleavage site (Fig. 1E). Similarly, all S proteins efficiently utilized human 108 

ACE2 upon directed expression in otherwise non-susceptible BHK-21 cells (Fig. 2A). Further, all 109 

tested S proteins mediated entry into cell lines commonly used for SARS-CoV-2 research (Fig. 110 

2B), which were also readily transduced by control particles bearing VSV-G (SI Fig. S1). 111 

Substitution D614G, which is dominant in SARS-CoV-2 from humans (Korber et al., 2020) and 112 

was also found in viruses from mink, increased the efficiency of S protein-driven entry, as 113 

expected (Korber et al., 2020; Plante et al., 2020). Combination of D614G with the mink-specific 114 

mutation Y453F (mutant D614G+Y453F) or Y453F in conjunction with H69Δ, H70Δ (mutant 115 

D614G+H69Δ/H70Δ/Y453F) did not modulate entry efficiency when compared to D614G alone 116 

(Fig. 2B). Finally, mutation D614G+cluster 5 reduced entry into several cell lines but was 117 

compatible with robust entry into the human intestinal cell line Caco-2 and the lung cell line 118 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

Calu-3 (Fig. 2B). Thus, mutations detected in the S proteins of SARS-CoV-2 from mink were 119 

compatible with robust viral entry into human intestinal and lung cells. 120 

 We next investigated whether mutations observed in SARS-CoV-2 infected mink altered 121 

susceptibility of viral entry to inhibition by soluble ACE2 (Monteil et al., 2020) and Camostat, a 122 

protease inhibitor active against TMPRSS2 (Hoffmann et al., 2020). Preincubation of particles 123 

bearing S protein with soluble ACE2 and preincubation of Calu-3 lung cells with Camostat 124 

efficiently blocked entry driven by all S proteins analyzed (Fig 2C and D), with mutant D614G + 125 

cluster 5 being particularly sensitive to inhibition by soluble ACE2 (Fig. 2C). In contrast, entry 126 

driven by VSV-G was not affected (Fig 2D-E). Thus, mutations acquired in mink may not 127 

compromise SARS-CoV-2 inhibition by Camostat and soluble ACE2. 128 

 A high fraction of convalescent COVID-19 patients exhibits a neutralizing antibody 129 

response directed against the S protein that may render most of these patients at least temporarily 130 

immune to symptomatic reinfection (Rodda et al., 2020; Wajnberg et al., 2020). Similarly, 131 

mRNA-based vaccines induce neutralizing antibodies that play an important role in protection 132 

from COVID-19 (Polack et al., 2020; Sahin et al., 2020). Finally, neutralizing monoclonal 133 

antibodies are currently being developed for COVID-19 therapy and two have received an 134 

emergency use authorization (EUA) for COVID-19 therapy (Baum et al., 2020a; Baum et al., 135 

2020b; Hansen et al., 2020). Therefore, we asked whether S protein mutations found in mink 136 

compromise SARS-CoV-2 inhibition by serum or plasma from convalescent COVID-19 patients 137 

and neutralizing monoclonal antibodies.  138 

 We focused our analysis on mutation Y453F, since this mutation is located in the RBD, 139 

which constitutes the primary target for neutralizing antibodies. Serum from a control patient 140 

failed to inhibit VSV-G or S protein-driven entry (Neg serum #1), as expected. In contrast, 13 out 141 

of 14 serum or plasma samples from COVID-19 patients (Pos samples #1-3 and #5-14) potently 142 
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inhibited S protein but not VSV-G-driven entry while the remaining serum (Pos serum #4) only 143 

showed moderate neutralization of S protein-driven entry (Fig. 3A). Importantly, mutation 144 

Y453F reduced inhibition by most serum/plasma samples tested, albeit with variable efficiency 145 

(median increase of serum/plasma tier required for 50% neutralization [NT50] = 1.62x, range = 146 

1.02x to 3.43x), indicating that this RBD mutation may compromise SARS-CoV-2 control by 147 

pre-existing neutralizing antibody responses (Fig. 3A and SI Fig. S2). Similarly, the mutation 148 

Y453F reduced inhibition by one (Casirivimab/ REGN10933) out of a cocktail of two antibodies 149 

with EUA for COVID-19 therapy (REGN-COV2), while an unrelated, non-neutralizing antibody 150 

was inactive (IgG1) (Fig. 3B and SI Fig. S3). Finally, the interference of Y453F with entry 151 

inhibition by Casirivimab/REGN10933 was in keeping with position 453 being located at the 152 

interface of the S protein and the antibody (SI Fig. S4) and with results reported by a previous 153 

study (Baum et al., 2020b). Thus, mutation Y453F that arose in infected mink can compromise 154 

viral inhibition by human antibodies induced upon SARS-CoV-2 infection or under development 155 

for COVID-19 treatment. 156 
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DISCUSSION 167 

 It is believed that SARS-CoV-2 has been introduced into the human population from an 168 

animal reservoir, potentially bats or pangolins (Lam et al., 2020; Xiao et al., 2020; Zhou et al., 169 

2020). Furthermore, the virus can replicate in diverse animal species, including cats, tigers, and 170 

minks, for which human-to-animal transmission has been reported (Halfmann et al., 2020; 171 

McAloose et al., 2020; Molenaar et al., 2020; Oreshkova et al., 2020; Oude Munnink et al., 2020; 172 

Segales et al., 2020; Shi et al., 2020). The virus is likely to acquire adaptive mutations that ensure 173 

efficient viral spread in these species, for instance by optimizing interactions with critical host 174 

cell factors like the entry receptor ACE2. Indeed, mutation Y453F observed in mink may be an 175 

adaptation to efficient use of mink ACE2 for entry, since amino acid 453 is known to make direct 176 

contact with human ACE2 (Lan et al., 2020; Wang et al., 2020) and mutation Y453F increases 177 

human ACE2 binding (Starr et al., 2020). Moreover, viruses bearing Y453F emerged during 178 

experimental infection of ferrets and it has been speculated that Y453F might reflect adaptation 179 

of the S protein to ferret ACE2 (Everett et al., 2021). Alternatively, Y453F might be the result of 180 

viral evasion of the antibody response and a recent report on emergence of Y453F is a patient 181 

with long term COVID-19 supports this possibility (Bazykin, 2021). 182 

The presence of mutation Y453F alone or in combination with H69Δ and V70Δ did not 183 

compromise S protein-mediated entry into human cells and its inhibition by soluble ACE2. 184 

However, entry into certain cell lines was reduced when Y453F was combined with H69Δ, 185 

V70Δ, I692V and M1229I, as found in the S protein of the SARS-CoV-2 cluster 5 variant. This 186 

could explain why the cluster 5 variant did not efficiently spread among humans and vanished 187 

shortly after its introduction in the human population. The cluster 5 variant S protein was also 188 

more sensitive to inhibition by soluble ACE2, hinting towards changes in ACE2 binding affinity 189 

when all five signature mutations are present.  190 
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Y453F markedly reduced the neutralizing potential of an antibody with an emergency use 191 

authorization (Casirivimab/REGN10933). Casirivimab/REGN10933 is one out of two antibodies 192 

present in the REGN-COV2 antibody cocktail. The other antibody, Imdevimab/REGN10987, 193 

targets a different region in the S protein and inhibited S protein-driven entry with high efficiency 194 

regardless of the presence of Y453F. In keeping with this finding, a combination of 195 

Casirivimab/REGN10933 and Imdevimab/REGN10987 efficiently blocked SARS-CoV-2 with 196 

Y453F in cell culture (Baum et al., 2020b). Maybe more concerning is that Y453F diminished 197 

entry inhibition by human sera/plasma from convalescent COVID-19 patients. This finding 198 

suggests that at least in a fraction of patients antibody responses induced upon infection and 199 

potentially also vaccination might provide only incomplete protection against infection with 200 

SARS-CoV-2 amplified in mink. In this context it needs to be stated that most serum/plasma 201 

samples analyzed completely inhibited entry at the lowest dilution tested, suggesting that 202 

individuals that have high antibody titers (induced upon infection or vaccination) might be 203 

protected from infection with mink-derived SARS-CoV-2. The transmission of SARS-CoV-2 to 204 

wild minks is another alarming observation (ProMed-mail, 2020h), as such transmission events 205 

might generate a permanent natural reservoir for such viruses and new emerging variants that 206 

could represent a future threat to wildlife and human health.  207 

 The following limitations of our study need to be considered. We employed pseudotyped 208 

particles instead of authentic SARS-CoV-2 and we did not determine whether Y453F affects viral 209 

inhibition by T cell responses raised against SARS-CoV-2. Further, we did not investigate whether 210 

presence of Y453F in the SARS-CoV-2 S protein increases binding to mink ACE2. Nevertheless, 211 

our results suggest that the introduction of SARS-CoV-2 into mink allows the virus to acquire 212 

mutations that compromise viral control by the humoral immune response in humans. As a 213 

consequence, infection of mink and other animal species should be prevented and it should be 214 
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continuously monitored whether SARS-CoV-2 amplification in other wild or domestic animals 215 

occurs and changes critical biological properties of the virus. 216 

 217 
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MATERIALS AND METHODS 239 

 240 

Cell culture 241 

All cell lines were incubated at 37 °C in a humidified atmosphere containing 5% CO2. 293T 242 

(human, kidney; ACC-635, DSMZ), Huh-7 (human, liver; JCRB0403, JCRB; kindly provided by 243 

Thomas Pietschmann, TWINCORE, Centre for Experimental and Clinical Infection Research, 244 

Hannover, Germany) and Vero76 cells (African green monkey, kidney; CRL-1586, ATCC; 245 

kindly provided by Andrea Maisner, Institute of Virology, Philipps University Marburg, 246 

Marburg, Germany) were cultivated in Dulbecco’s modified Eagle medium (DMEM) containing 247 

10% fetal bovine serum (FCS, Biochrom), 100 U/ml of penicillin and 0.1 mg/ml of streptomycin 248 

(PAN-Biotech). Caco-2 (human, intestine; HTB-37, ATCC) and Calu-3 cells (human, lung; 249 

HTB-55, ATCC; kindly provided by Stephan Ludwig, Institute of Virology, University of 250 

Münster, Germany) were cultivated in minimum essential medium supplemented with 10% FCS, 251 

100 U/ml of penicillin and 0.1 mg/ml of streptomycin (PAN-Biotech), 1x non-essential amino 252 

acid solution (from 100x stock, PAA) and 1 mM sodium pyruvate (Thermo Fisher Scientific). 253 

A549 cells (human, lung; CRM-CCL-185, ATCC) were cultivated in DMEM/F-12 medium with 254 

Nutrient Mix (Thermo Fisher Scientific) supplemented with 10% FCS, 100 U/ml of penicillin 255 

and 0.1 mg/ml of streptomycin (PAN-Biotech). In order to obtain 293T, A549 and Calu-3 cells 256 

stably expressing human ACE2, cells were transduced with murine leukemia virus-based 257 

transduction vectors and subsequently transduced cells were selected with puromycin 258 

(Invivogen). Authentication of cell lines was performed by STR-typing, amplification and 259 

sequencing of a fragment of the cytochrome c oxidase gene, microscopic examination and/or 260 

according to their growth characteristics. Further, cell lines were routinely tested for 261 

contamination by mycoplasma. 262 
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 263 

Plasmids 264 

Expression plasmids for vesicular stomatitis virus glycoprotein (VSV-G) (Brinkmann et al., 265 

2017), severe acute respiratory syndrome coronavirus 2 spike glycoprotein (SARS-2-S) 266 

containing either a C-terminal HA-epitope tag (SARS-2-S-HA, used for detection in 267 

immunoblot) or a truncated cytoplasmic domain (deletion of last 18 amino acid residues at the C-268 

terminus, SARS-2-SΔ18, used for transduction experiments) (Hoffmann et al., 2020) have been 269 

described before. Mink-specific mutations were introduced into the expression plasmids for 270 

wildtype SARS-2-SΔ18 and SARS-2-S-HA by overlap-extension polymerase chain reaction 271 

(PCR) and the resulting PCR products were inserted into the pCG1 expression plasmid (kindly 272 

provided by Roberto Cattaneo, Mayo Clinic College of Medicine, Rochester, MN, USA) making 273 

use of BamHI and XbaI restriction sites.  274 

In order to obtain the expression plasmid for delivering ACE2 into cell lines via retroviral 275 

transduction, the coding sequence for human ACE2 (NM_001371415.1) was inserted into the 276 

pQCXIP plasmid (Brass et al., 2009) making use of NotI and PacI restriction sites. Further, we 277 

generated an expression plasmid for soluble ACE2 fused to the Fc-portion of human 278 

immunoglobulin G (sol-hACE2-Fc). For this, the sequence coding for the ACE2 ectodomain 279 

(amino acid residues 1-733) was PCR-amplified and inserted into the pCG1-Fc plasmid (Sauer et 280 

al., 2014) (kindly provided by Georg Herrler, University of Veterinary Medicine, Hannover, 281 

Germany) making use of PacI and SalI restriction sites. Sequence integrity was verified by 282 

sequencing using a commercial sequencing service (Microsynth Seqlab). 293T cells were 283 

transfected by calcium-phosphate precipitation, whereas for transfection of BHK-21 cells 284 

Lipofectamine LTX with Plus reagent (Thermo Fisher Scientific) was used.  285 

 286 
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Sequence analysis and protein models 287 

Spike protein sequences from a total of 742 SARS-CoV-2 isolates were retrieved from the 288 

GISAID (global initiative on sharing all influenza data) database (https://www.gisaid.org/) and 289 

analyzed regarding the presence of mink-specific mutations. A summary of the selected S protein 290 

sequences, including their GISAID accession numbers, is given in SI-Table. Sequence 291 

alignments were performed using the Clustal Omega online tool 292 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). Protein models were designed using the YASARA 293 

(http://www.yasara.org/index.html) and UCSF Chimera (version 1.14, developed by the Resource 294 

for Biocomputing, Visualization, and Informatics at the University of California, San Francisco) 295 

software packages, and are either based on PDB: 6XDG (Hansen et al., 2020) or on a template 296 

generated by modelling the SARS-2-S sequence on a published crystal structure (PDB: 6XR8, 297 

(Cai et al., 2020)) with the help of the SWISS-MODEL online tool 298 

(https://swissmodel.expasy.org/). 299 

 300 

Patient serum and plasma samples 301 

Serum samples were obtained by the Department of Transfusion Medicine of the University 302 

Medical Center Göttingen, Göttingen, Germany. Written consent was obtained from all 303 

individuals and the study was approved by the local ethics committee (14/8/20). Collection of 304 

plasma samples from COVID-19 patients treated at the intensive care unit was approved by the 305 

Ethic committee of the University Medicine Göttingen (SeptImmun Study 25/4/19 Ü). Serum and 306 

plasma samples were pre-screened for neutralizing activity using SARS-2-S WT pseudotypes, as 307 

described below. 308 

 309 

Production of recombinant human monoclonal antibodies against SARS-CoV-2 spike 310 
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VH and VL sequences of Regeneron antibodies Casirivimab/REGN10933, 311 

Imdevimab/REGN10987 and REGN10989 (Hansen et al., 2020) were cloned in pCMC3-312 

untagged-NCV (SINO Biologics, Cat: CV011) and produced in 293T cells by SINO Biological 313 

(Beijing, China). The human IgG1 isotype control antibodies IgG1/» and IgG1/¼ were produced 314 

by transfecting FreeStyle 293-F or 293T cells (Fisher Scientific, Schwerte, Germany, Cat. no. 315 

R790-07) with the respective plasmids using the protocol provided with the FreeStyle 293 316 

Expression System (Thermo Fisher Scientific, Cat. no. K9000-01). The isotypes contain human 317 

V regions from hybridomas that were established from a human HHKKLL Trianni mouse (Patent 318 

US 2013/0219535 A1). Antibodies were affinity-purified from filtered cultured supernatant on a 319 

High-Trap protein G column (GE Healthcare, Chicago, USA, Cat.Nr 17-0404-01). 320 

The binding of recombinant antibodies to SARS-2-S was determined by flow cytometry with 321 

293T cells stably transfected with plasmid pWHE469-SARS-CoV2 containing the ORF of the 322 

spike protein of SARS-CoV-2 isolate Wuhan-Hu-1 (position 21580 – 25400 from GenBank 323 

NC_045512) and a GFP reporter plasmid under the control of a doxycycline-inducible promotor 324 

(Krueger et al., 2006). Briefly, 293T cells were stained with the recombinant human IgG1 325 

antibodies in FACS buffer (PBS with 0.5% bovine serum albumin and 1 nmol sodium azide) for 326 

20 minutes in ice, washed, incubated with an Alexa Fluor 647-labeled mouse monoclonal 327 

antibody against the human IgG1-Fc (Biolegend, San Diego, USA, cat #409320) and analyzed in 328 

a Gallios flow cytometer (Beckman Coulter, Brea, California, USA respectively). 329 

 330 

Production of rhabdoviral pseudotype particles and transduction of target cells 331 

Rhabdoviral pseudotype particles bearing WT or mutant SARS-2-S, VSV-G or no viral protein 332 

(negative control) were prepared according to a published protocol (Kleine-Weber et al., 2019) 333 

and involved a replication-deficient VSV vector that lacks the genetic information for VSV-G 334 
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and instead codes for two reporter proteins, enhanced green fluorescent protein and firefly 335 

luciferase (FLuc), VSV∗ΔG-FLuc (kindly provided by Gert Zimmer, Institute of Virology and 336 

Immunology, Mittelhäusern, Switzerland) (Berger Rentsch and Zimmer, 2011). In brief, 293T 337 

cells expressing the desired viral glycoprotein following transfection were inoculated with 338 

VSV∗ΔG-FLuc and incubated for 1 h at 37 °C before the inoculum was removed and cells were 339 

washed. Finally, culture medium was added that was supplemented with anti-VSV-G antibody 340 

(culture supernatant from I1-hybridoma cells; ATCC no. CRL-2700; not added to cells 341 

expressing VSV-G). Following an incubation period of 16-18 h, pseudotype particles were 342 

harvested by collecting the culture supernatant, pelleting cellular debris through centrifugation 343 

(2,000 x g, 10 min, room temperature) and transferring aliquots of the clarified supernatant into 344 

fresh reaction tubes. Aliquoted pseudotypes were stored at -80 °C until further use. 345 

For transduction experiments, target cells were seeded into 96-well plates. The following 346 

experimental set-ups were used: (i) In case of experiments comparing the efficiency cell entry by 347 

WT and mutant SARS-2-S, target cells were inoculated with 100 µl/well of the respective 348 

pseudotype particles; (ii) For investigation of inhibition of SARS-2-S-driven cell entry by the 349 

serine protease inhibitor Camostat mesylate, Calu-3 cells were preincubated for 1 h with medium 350 

(50 µl/well) containing either increasing concentrations of Camostat (0.5, 5 or 50 µM; Tocris) or 351 

dimethyl sulfoxide (solvent control) before the respective pseudotype particles were added on 352 

top; in order to assess the ability of sol-hACE2-Fc, patient sera and monoclonal antibodies to 353 

block SARS-2-S-driven cell entry, pseudotype particles were preincubated for 30 min with 354 

medium containing different dilutions of either sol-hACE2-Fc (1:20, 1:200, 1:2,000) or patient 355 

serum/plasma (serum: 1:50, 1:100, 1:200, 1:400, 1:800; plasma: 1:25, 1:100, 1:400, 1:1600, 356 

1:6400), or with different concentrations of monoclonal antibody (5, 0.5, 0.05, 0.005, 0.0005 357 

µg/ml), before being inoculated onto Vero76 cells. Pseudotype particles incubated with medium 358 
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alone served as controls. In all cases, transduction efficiency was analyzed at 16-18 h 359 

postinoculation. For this, the culture supernatant was removed and cells were lysed by incubation 360 

for 30 min at room temperature with Cell Culture Lysis Reagent (Promega). Next, lysates were 361 

transferred into white 96-well plates and FLuc activity was measured using a commercial 362 

substrate (Beetle-Juice, PJK) and a Hidex Sense plate luminometer (Hidex). 363 

 364 

Production of sol-hACE2-Fc 365 

293T cells were grown in a T-75 flask and transfected with 20 µg of sol-hACE2-Fc expression 366 

plasmid. At 10 h posttransfection, the medium was replaced and cells were further incubated for 367 

38 h before the culture supernatant was collected and centrifuged (2,000 x g, 10 min, 4 °C). Next, 368 

the clarified supernatant was loaded onto Vivaspin protein concentrator columns with a 369 

molecular weight cut-off of 30 kDa (Sartorius) and centrifuged at 4,000 x g, 4 °C until the sample 370 

was concentrated by a factor of 20. The concentrated sol-hACE2-Fc was aliquoted and stored at -371 

80 ° until further use. 372 

 373 

Analysis of S protein expression, processing and particle incorporation by immunoblot 374 

A total volume of 1 ml of culture medium containing rhabdoviral pseudotypes bearing WT or 375 

mutant SARS-2-S-HA were loaded onto a 20% (w/v) sucrose cushion (50 ½l) and subjected to 376 

high-speed centrifugation (25.000 x g,120 min, 4°C). As controls, particles bearing no S protein 377 

or culture medium alone were used. Following centrifugation, 1 ml of supernatant was removed 378 

and the residual volume was mixed with 50 ½l of 2x SDS-sample buffer (0.03 M Tris-HCl, 10% 379 

glycerol, 2% SDS, 0.2% bromophenol blue, 1 mM EDTA) and incubated at 96 °C for 15 min. 380 

Next, samples were subjected to SDS-polyacrylamide gel electrophoresis and proteins were 381 

blotted onto nitrocellulose membranes using the Mini Trans-Blot Cell system (Bio-Rad). 382 
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Following blocking of the membranes by incubation in 5% skim milk solution (skim milk 383 

powder dissolved in PBS containing 0.05% Tween-20, PBS-T) for 1 h at room temperature, the 384 

membranes were cut in around the 55 kDa marker band of the protein marker (PageRuler 385 

Prestained Protein Ladder, Thermo Fisher Scientific). The upper portion of the membrane was 386 

probed with anti-HA tag antibody (mouse, Sigma-Aldrich, H3663) diluted 1:1,000 in 5% skim 387 

milk solution, while the lower portion of the membrane was probed with anti-VSV matrix protein 388 

antibody (Kerafast, EB0011; loading control) diluted 1:2,500 in 5% skim milk solution. 389 

Following incubation over night at 4 °C, membranes were washed three times with PBS-T, 390 

before being probed with peroxidase-conjugated anti-mouse antibody (Dianova, 115-035-003, 391 

1:5,000) for 1 h at room temperature. Thereafter, the membranes were washed again three times 392 

with PBS-T, incubated with an in house-prepared developing solution (1 ml of solution A: 0.1 M 393 

Tris-HCl [pH 8.6], 250 µg/ml luminol sodium salt; 100 µl of solution B: 1 mg/ml para-394 

hydroxycoumaric acid dissolved in dimethyl sulfoxide [DMSO]; 1.5 µl of 0.3 % H2O2 solution) 395 

and imaged using the ChemoCam imager along with the ChemoStar Imager Software version 396 

v.0.3.23 (Intas Science Imaging Instruments GmbH). 397 

 398 

Data normalization and statistical analysis 399 

Data analysis was performed using Microsoft Excel as part of the Microsoft Office software 400 

package (version 2019, Microsoft Corporation) and GraphPad Prism 8 version 8.4.3 (GraphPad 401 

Software). Data normalization was done as follows: (i) In order to assess enhancement of S 402 

protein-driven pseudotype entry in BHK-21 cells following directed overexpression of hACE2, 403 

transduction was normalized against the assay background (which was determined by using 404 

rhabdoviral pseudotypes bearing no viral glycoprotein, set as 1); (ii) To compare efficiency of 405 

cell entry driven by the different S protein variants under study, transduction was normalized 406 
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against SARS-2-S WT (set as 100%); (iii) For experiments investigating inhibitory effects 407 

exerted by sol-hACE2-Fc or Camostat Mesylate, patient serum/plasma samples or monoclonal 408 

antibodies, transduction was normalized against a reference sample (control-treated cells or 409 

pseudotypes, set as 100%). Statistical significance was tested by one- or two-way analysis of 410 

variance (ANOVA) with Dunnett’s or Sidak’s post-hoc test or by paired student’s t-test. Only P 411 

values of 0.05 or lower were considered statistically significant (P > 0.05, not significant [ns]; P 412 

≤ 0.05, *; P ≤ 0.01, **; P ≤ 0.001, ***). Specific details on the statistical test and the error bars 413 

are indicated in the figure legends. NT50 (neutralizing titer 50) values, which indicate the 414 

serum/plasma titers that lead to a 50% reduction in transduction efficiency, were calculated using 415 

a non-linear regression model. 416 

 417 

SUPPLEMENTAL INFORMATION 418 

 419 

SI Table. Summary of S protein sequences used for analysis and their respective sequence 420 

information (related to Figure 1C). 421 

  422 

Figure S1. Transduction of target cells (related to Figure 2B). 423 

Data presented in Figure 2B were normalized against the assay background (set as 1). Further, 424 

transduction efficiency by pseudotype particles bearing VSV-G is shown. 425 

 426 

Figure S2. Presence of Y453T reduces antibody-mediated neutralization (related to Figure 427 

3A). 428 
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The relative difference in NT50 values between SARS-2-S harboring D614G alone or in 429 

conjunction with Y453F was calculated (indicated as Fold difference with SARS-2-S D614G set 430 

as 1). The median is indicated by a black line. 431 

  432 

Figure S3. Flow cytometric detection of antibody-binding to cell-expressed SARS-2-S 433 

(related to Figure 3B). 434 

293T cells stably transfected with a doxycycline-inducible SARS-2-S (hCoV-19/Wuhan/Hu-435 

1/2019 hCoV-19/Wuhan/Hu-1/2019 isolate) were stained with the indicated Regeneron (REGN) 436 

antibodies and an Alexa Fluor 643-conjugated anti-human IgG antibody. A recombinant human 437 

IgG served as an isotype control. FI, fluorescence intensity. 438 

 439 

Figure S4. Y453F centers in the binding interface of antibody REGN10933 and the SARS-2-440 

S RBD (related to Figure 3B). 441 

The protein models of the SARS-2-S receptor-binding domain (RBD, blue) in complex with 442 

antibodies REGN10933 (purple) and REGN10987 (green) were constructed based on the 6XDG 443 

template (Hansen et al., 2020). Residues highlighted in red indicate amino acid position 453 in 444 

SARS-2-S RBD (either tyrosine [Y] or phenylalanine [F]). 445 

 446 
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FIGURE LEGENDS 621 

 622 

Figure 1. Mink-specific spike protein variants are robustly expressed, proteolytically 623 

processed and incorporated into viral particles.  624 

(A) European countries that have reported SARS-CoV-2 infection in mink. The mink-specific 625 

spike (S) protein mutations under study are highlighted.  626 

(B) Summary of mink-specific S protein mutations found in human and mink SARS-CoV-2 627 

isolates. Sequences were retrieved from the GISAID (global initiative on sharing all influenza 628 

data) database. Legend: a = reference sequences, b = 36/219 sequences carry additional L452M 629 

mutation; Abbreviations: H. sapiens = Homo sapiens (Human), N. vison = Neovison vison 630 

(American Mink), M. lutreola = Mustela lutreola (European Mink).  631 

(C) Location of the mink-specific S protein mutations in the context of the 3-dimensional 632 

structure of the S protein.  633 

(D) Schematic illustration of the S protein variants under study and their transmission history. 634 

Abbreviations: RBD = receptor binding domain, S1/S2 = border between the S1 and S2 subunits, 635 

TD = transmembrane domain.  636 

(E) Rhabdoviral pseudotypes bearing the indicated S protein variants (equipped with a C-terminal 637 

HA-epitope tag) or no viral glycoprotein were subjected to SDS-PAGE under reducing 638 

conditions and immunoblot in order to investigate S protein processing and particle 639 

incorporation. Detection of vesicular stomatitis virus matrix protein (VSV-M) served as loading 640 

control. Black and grey circles indicate bands for unprocessed and processed (cleavage at S1/S2 641 

site) S proteins, respectively. Similar results were obtained in four separate experiments. 642 

 643 
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Figure 2. Spike protein variants found in mink enable robust entry into human cells and 644 

entry is blocked by soluble ACE2 and the protease inhibitor Camostat 645 

(A) Rhabdoviral pseudotypes bearing the indicated S protein variants, VSV-G or no viral 646 

glycoprotein were inoculated onto BHK-21 cells previously transfected with empty plasmid or 647 

human angiotensin-converting enzyme 2 (hACE2) expression vector.  648 

(B) Rhabdoviral pseudotypes bearing the indicated S protein variants, VSV-G (shown in SI 649 

Figure 1) or no viral glycoprotein were inoculated onto 293T, 293T (ACE2), Calu-3, Calu-3 650 

(ACE2), Caco-2, A549-ACE2, Huh-7 (all human) or Vero76 (non-human primate) cells.  651 

(C) Rhabdoviral pseudotypes bearing the indicated S protein variants or VSV-G were 652 

preincubated with different dilutions of a soluble hACE2 form fused to the Fc portion of human 653 

immunoglobulin G (sol-hACE2-Fc) and subsequently inoculated onto Vero76 cells.  654 

(D) Rhabdoviral pseudotypes bearing the indicated S protein variants or VSV-G were inoculated 655 

onto Calu-3 cells that were preincubated with different concentrations of Camostat. For all 656 

panels: Transduction efficiency was quantified at 16 h postinoculation by measuring the activity 657 

of virus-encoded luciferase in cell lysates. Presented are the normalized average (mean) data of 658 

three biological replicates, each performed with technical quadruplicates. Error bars indicate the 659 

standard error of the mean (SEM). Statistical significance was tested by one- (panels a and b) or 660 

two-way (panels c and d) ANOVA with Dunnett’s post-hoc test (P > 0.05, not significant [ns]; P 661 

≤ 0.05, *; P ≤ 0.01, **; P ≤ 0.001, ***). 662 

 663 

Figure 3. Y453F reduces neutralization by convalescent sera and monoclonal antibodies 664 

(A) Rhabdoviral pseudotypes bearing the indicated spike (S) protein variants or VSV-G were 665 

preincubated with different dilutions of serum (Pos Samples #1-6) or plasma (Pos samples #7-14) 666 

from convalescent COVID-19 patients (serum from a healthy individual served as control, Neg 667 
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Sample) before being inoculated onto Vero76 cells. Transduction efficiency was quantified at 16 668 

h postinoculation by measuring the activity of virus-encoded luciferase in cell lysates. The top 669 

left panel indicates the serum/plasma titers that lead to a 50% reduction in transduction efficiency 670 

(neutralizing titer 50, NT50), which was calculated by a non-linear regression model. Data points 671 

from identical serum/plasma samples are connected by lines (grey bars indicate the mean NT50 672 

values for all positive samples). Statistical significance of differences in NT50 values between 673 

SARS-2-S harboring D614G alone or in conjunction with Y453F was analyzed by paired 674 

student’s t-test (P = 0.0212). 675 

(B) The experiment outlined in panel A was repeated using serial dilutions of human monoclonal 676 

antibodies. For panels A and B: Presented are the normalized average (mean) data of a single 677 

experiment performed with technical quadruplicates. Results were confirmed in a separate 678 

experiment (due to limited sample material, only two technical replicates could be analyzed in the 679 

confirmatory experiment for the serum samples shown in panel A). Error bars indicate the 680 

standard deviation.  681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

  691 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

 692 

  693 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

 694 

  695 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

 696 

  697 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

 

 698 

  699 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

 700 

  701 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

 

 702 

  703 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

 704 

 705 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.12.430998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430998
http://creativecommons.org/licenses/by-nc-nd/4.0/

