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Abstract

Visual processing is strongly influenced by the recent stimulus history — a phenomenon termed
adaptation. Prominent theories cast adaptation as a consequence of optimized encoding of visual
information, by exploiting the temporal statistics of the world. However, this would require the visual
system to track the history of individual briefly experienced events, within a stream of visual input, to
build up statistical representations over longer timescales. Here, using an openly available dataset
from the Allen Brain Observatory, we show that neurons in the early visual cortex of the mouse
indeed maintain long-term traces of individual past stimuli that persist despite the presentation of
several intervening stimuli, leading to long-term and stimulus-specific adaptation over dozens of
seconds. Long-term adaptation was selectively expressed in cortical, but not in thalamic neurons,
which only showed short-term adaptation. Early visual cortex thus maintains concurrent stimulus-
specific memory traces of past input, enabling the visual system to build up a statistical representation
of the world to optimize the encoding of new information in a changing environment.

Significance Statement

In the natural world, previous sensory input is predictive of current input over multi-second timescales.
The visual system could exploit these predictabilities by adapting current visual processing to the
long-term history of visual input. However, it is unclear whether the visual system can track the history
of individual briefly experienced images, within a stream of input, to build up statistical representations
over such long timescales. Here, we show that neurons in early visual cortex of the mouse brain
exhibit remarkably long-term adaptation to brief stimuli, persisting over dozens of seconds, and
despite the presentation of several intervening stimuli. The visual cortex thus maintains long-term
traces of individual briefly experienced past images, enabling the formation of statistical
representations over extended timescales.

Introduction

Sensory processing not only depends on the current sensory input, but is influenced by the recent
stimulus history. For instance, neurons in visual cortex change their responsivity and stimulus
preferences following the exposure to previous visual stimuli, commonly referred to as neural
adaptation (Muller et al., 1999; Dragoi et al., 2000, 2001; Kohn and Movshon, 2003, 2004). Prominent
theories of adaptation posit that changes in neural responsivity can be explained by optimally efficient
encoding of visual information, given temporal regularities in the recent input (Barlow, 1961; Barlow
and Foldiadk, 1989; Weber et al., 2019). Indeed, the visual world exhibits strong temporal regularities
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(Dong and Atick, 1995; Simoncelli and Olshausen, 2001; Schwartz et al., 2007); for example, in
natural viewing behavior, orientation information tends to be preserved across successive time points
and thus stable over extended timescales (Felsen et al., 2005; van Bergen and Jehee, 2019). These
temporal correlations in natural visual input can therefore be exploited by the visual system by
adapting the encoding of new sensory information to the history of recent visual input. Crucially
however, it is unclear over which timescales the visual system can track the history of previous input
to exploit natural temporal correlations during sensory encoding.

In the natural world, previous sensory input is predictive of current input over extended timescales of
multiple seconds (van Bergen and Jehee, 2019) and the visual system could exploit these
predictabilities by adapting current visual processing to the long-term history of visual input. While
several previous studies have indeed found evidence for long-term adaptation in early sensory
cortical areas, lasting up to minutes, these studies measured neural adaptation following long
stimulus presentations of dozens of seconds (Dragoi et al., 2000; Patterson et al., 2013), or in
response to many brief presentations of the same stimulus (Ulanovsky, 2004; Kuravi and Vogels,
2017; Peter et al., 2020) — both reflecting very untypical sensory input under natural conditions. In
contrast, neural adaptation in response to individual briefly presented stimuli has been found to be
short-lived, rarely observable beyond time lags of a few hundred milliseconds in primary visual cortex
of macaque monkeys and mice (Patterson et al., 2013; Jin et al., 2019; Kim et al., 2019; Jin and
Glickfeld, 2020). This begs the question of whether the visual system can track the history of briefly
experienced images over extended timescales, to exploit the temporal correlations present in natural
input. Furthermore, it is unclear whether the visual system can maintain memory traces of the long-
term history of previously experienced stimuli in the face of intervening input, or whether traces of
temporally remote stimuli are eradicated by new visual inputs. Persistent memory traces, surviving the
encoding of intervening visual input, would be crucial to build up robust statistical representations of
the world over longer timescales.

In order to test whether neurons in early visual areas maintain long-term traces of briefly presented
past stimuli, which are robust intervening visual input, we leveraged a large and unique dataset of
electrophysiological recordings in the mouse visual system (Allen Brain Observatory — Neuropixels
Visual Coding; Siegle et al., 2021). We characterized the recovery time course of neural adaptation in
response to brief drifting and static grating stimuli across the visual system of awake mice. Neurons in
the mouse primary visual cortex exhibit selectivity for orientation (Niell and Stryker, 2008; Liu et al.,
2011; Tan et al., 2011), and undergo orientation-specific adaptation, tuned to the orientation
difference between previous and current stimulus (Jin et al., 2019). This makes the mouse visual
system suitable for probing the timescales of orientation-specific adaptation. The use of high density
extracellular electrophysiology probes (Jun et al., 2017) further enabled us to study the temporal
dynamics of adaptation across multiple brain areas across the visual hierarchy, in the thalamus,
primary and extrastriate visual cortex. It has been previously proposed that temporal integration
timescales increase along the cortical hierarchy (Hasson et al., 2008; Lerner et al., 2011; Honey et al.,
2012; Murray et al., 2014). Beyond testing whether neurons in early visual areas exhibit long-term
adaptation, we therefore further investigated whether a similar hierarchy of temporal dynamics may
exist for stimulus-specific adaptation in the mouse visual system. Importantly, while long-term
adaptation, also in the face of intervening input, has been observed in higher-order visual areas in
infero-temporal cortex (McMahon and Olson, 2007), this form of adaptation appears to be task-
dependent (Henson et al., 2002; Henson, 2016) and related to memory recall (Meyer and Rust,
2018). Here, we focus on the early and automatic sensory encoding of the environment, taking place
in both primary and higher-order visual areas while mice viewed the stimuli passively, without an
explicit task.

To preview, we found remarkably long timescales of stimulus-specific adaptation in response to brief
visual stimuli in cortical visual areas, persisting over dozens of seconds, despite the presentation of


https://doi.org/10.1101/2021.02.10.430579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.10.430579; this version posted December 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

several intervening stimuli. While decay of adaptation was long-lived across primary and extrastriate
visual cortex, neurons in the thalamus only showed short-lived adaptation to drifting gratings, limited
to the processing of temporally adjacent stimuli. Long-term adaptation in visual cortex is thus not
inherited from the thalamus, and likely relies on cortical plasticity. This long-term adaptation was also
evident after the exposure to more rapidly presented brief static gratings, albeit with a less clear
difference in temporal decay between cortex and thalamus. This replication of long-term adaptation to
briefer, more rapidly presented stimuli underlines the robustness and ecological validity of the long-
term temporal dependencies. Our results indicate that early visual cortex maintains concurrent
stimulus-specific memory traces of past briefly experienced input that are robust to intervening visual
input. This dependence on the broader temporal context may enable the visual system to efficiently
represent information in a slowly changing environment (Schwartz et al., 2007; Weber et al., 2019).

Materials & Methods

Dataset

All analyses were conducted on the openly available Neuropixels Visual Coding dataset of the Allen
Brain Observatory (Siegle et al., 2021). This dataset surveys spiking activity from a large number of
neurons across a wide variety of regions in the mouse brain, using high-density extracellular
electrophysiology probes (Neuropixels silicon probes; Jun et al., 2017). Experiments were designed to
study the activity of the visual cortex and thalamus in the context of passive visual stimulation. Here,
we focused on a subset of experiments, termed the Brain Observatory 1.1 dataset. The Brain
Observatory 1.1 dataset comprises recordings in 32 mice (16 C57BL/6J wild type mice and three
transgenic lines: 6 Sst-IRES-Cre x Ai32, 5 Pvalb-IRES-Cre x Ai32 and 5 Vip-IRES-Cre x Ai32; of
either sex). The three transgenic lines were included to facilitate the identification of inhibitory inter-
neuron sub-classes using opto-tagging. For the purpose of the current research question, we
analyzed the data of all 32 mice, irrespective of transgenic lines. Mice were maintained in the Allen
Institute for Brain Science animal facility and used in accordance with protocols approved by the Allen
Institute’s Institutional Animal Care and Use Committee. For a detailed description of the entire
Neuropixels Visual Coding protocol see Siegle et al. (2021). All data are openly available through the
AllenSDK (https://allensdk.readthedocs.io/en/latest/visual _coding_neuropixels.html).

Stimuli

During Brain Observatory 1.1 experiments, mice passively viewed a variety of different stimulus types.
Here, we focused on a subset of stimuli: full-field drifting and static grating stimuli (Figures 1B and
6A). Visual stimuli were generated using custom scripts based on PsychoPy (Peirce, 2007) and were
displayed using an ASUS PA248Q LCD monitor, with 1920 x 1200 pixels (21.93 in wide, 60 Hz
refresh rate). Stimuli were presented monocularly, and the monitor was positioned 15 cm from the
mouse’s right eye and spanned 120° x 95° of visual space prior to stimulus warping. Each monitor
was gamma corrected and had a mean luminance of 50 cd/m2. To account for the close viewing
angle of the mouse, a spherical warping was applied to all stimuli to ensure that the apparent size,
speed, and spatial frequency were constant across the monitor as seen from the mouse’s
perspective. For more details see Siegle et al. (2021).

Full-field drifting gratings were shown with a spatial frequency of 0.04 cycles/deg, 80% contrast, 8
directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, clockwise from 0° = right-to-left) and 5 temporal
frequencies (1, 2, 4, 8, and 15 Hz), with 15 repeats per condition, resulting in a total number of 600
drifting grating presentations, divided across three blocks. Drifting gratings were presented for 2
seconds, followed by a 1 second inter-stimulus interval (grey screen). Gratings of different directions
and temporal frequencies were presented in random order and were interleaved by the presentation
of 30 blank trials, in which only a grey screen was shown.
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Static gratings were shown at 6 different orientations (0°, 30°, 60°, 90°, 120°, 150°, clockwise from 0°
= vertical), 5 spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree), and 4 phases (0, 0.25,
0.5, 0.75). They were presented for 0.25 seconds, with no intervening grey period. Gratings with each
combination of orientation, spatial frequency, and phase were presented ~50 times in a random order,
resulting in a total of 6000 grating presentations, divided across three blocks. There were blank
sweeps (i.e. mean luminance grey instead of grating) presented roughly once every 25 gratings.

Data analyses

All data analyses were performed using custom code written in Python, Matlab and R. All code will be
made openly available on the Donders Institute for Brain, Cognition and Behavior repository at
https://data.donders.ru.nl.

Unit exclusion

To filter out units (i.e. putative neurons) that were likely to be highly contaminated or missing lots of
spikes, we applied the default quality metrics of the AllenSDK. This entailed excluding units with ISI
violations larger than 0.5 (Hill et al., 2011), an amplitude cutoff larger than 0.1 and a presence ratio
smaller than 0.9 (for more details see https://allensdk.readthedocs.io/en/latest/ _static/examples/nb/
ecephys_quality _metrics.html). For the analysis of drifting gratings, we defined visually responsive
units as those units whose average firing rate during the first 200 ms of stimulus presentation of the
unit's preferred orientation (eliciting the highest firing rate) was larger than 5 Hz and larger than 1 SD
of the firing rate during the first 100 ms of grey screen presentations. For the analyses of static
gratings, we applied the same inclusion criteria, but computed firing rates over the whole stimulus
duration (i.e. 250 ms). We chose to use a longer time window for analyzing static grating adaptation,
since due to the back-to-back presentation of the static gratings, visual responses to the previous
stimulus overlapped with the initial time window of the current stimulus, thereby increasing response
variability in this early time window. However, largely similar results were obtained when performing
the analyses on the same time window used in the drifting grating experiment (0 to 100 ms). In order
to assess whether the choice of the minimum firing rate threshold of 5 Hz had a substantial impact on
our results, we repeated the analyses with a more conservative (10 Hz) and less conservative (2.5
Hz) threshold, but obtained qualitatively similar results. In our further investigation of sensory
adaptation, we focused on those regions that contained a minimum of 50 visually responsive units (for
an overview of included regions and unit counts per region see Figures 1D and 6C). All subsequent
analyses were performed on visually responsive units only.

Orientation-specific adaptation to drifting gratings

To investigate orientation-specific adaptation, for each unit we compared firing rates in response to a
current grating when this grating was preceded by a grating with the same orientation (repeat) or by
its orthogonal orientation (orthogonal), irrespective of the temporal frequencies of current and
previous gratings. Note that repeat trial pairs could consist of gratings with opposite drifting directions,
but with the same orientation. Investigating orientation- rather than direction-specific adaptation had
the advantage of maximizing the number of repeat and orthogonal trial pairs occurring across the
random trialsequence. Adaptation was quantified in the form of an adaptation ratio:

. . frre eat
adaptation ratio = ——o
f 7”orthogonal

where friepear @aNd fronnogonai, are the firing rates in response to a repeated and orthogonal stimulus,
respectively. The adaptation ratio expresses the response magnitude to a repeated stimulus
orientation relative to that elicited by the same stimulus orientation, but preceded by a grating with the
orthogonal orientation. Adaptation ratios smaller than 1 indicate a relative response reduction for
orientation repetitions. Importantly, this analysis quantifies orientation-specific adaptation, as the
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stimulus features between repeat and orthogonal condition are the same (on average), with the only
difference being the relative orientation of the adaptor stimulus. An initial exploratory analysis in one
mouse suggested strongest adaptation effects for the early transient response (0-100 ms from
stimulus onset). Therefore, we limited our analysis to this time window. This analysis choice was
made while blind to adaptation effects beyond the 1-back grating, which were of main interest to the
current study. Adaptation induced by n-back gratings was quantified in a similar manner as described
above, by conditioning the data on the orientation difference (repeat or orthogonal) between the
current and n-back gratings. For each region, we statistically compared log-transformed adaptation
ratios of 1- to 10-back gratings to zero (indicating no adaptation) using two-tailed t-tests, while
controlling the false discovery rate at an alpha-level of 0.05 using the Benjamini-Hochberg procedure.

In order to quantify the recovery time course of adaptation, we fitted exponential decay models to the
1- to 50-back adaptation ratios of each region. The recovery of adaptation in cortical areas was
significantly better fit by a double exponential, compared to a single-exponential decay model, with a
fast and slow decay component, of the form:

r(n) =1- Qfast * e_(n_l)/‘[fast + agow * e_(n_l)/fslow

where r(n) denotes the adaptation ratio conditioned on the n-back stimulus orientation, asas, Trast> Aslow
and t,, determine the magnitude and recovery time of the fast and slow adaptation component,
respectively. Adaptation in thalamic regions was more parsimoniously explained by a single-
exponential decay model of the form:

rn) = 1—axe (=D

For each region, we statistically compared single- and double exponential decay models with an F-
test. We used an F-test as the two decay models are nested — the single-exponential decay model is
a restricted version of the double-exponential decay model. Since adaptation ratios were not normally
distributed, all models were fit to log-transformed adaptation ratios by analogously log-transforming
model predictions. We obtained the 95% confidence intervals of the parameter estimates with a
bootstrapping procedure. In particular, for each region we resampled units with replacement and
refitted the exponential decay model. We repeated this procedure 1,000 times and recorded the
resulting parameter estimates of the bootstrapped sample. The 95% confidence interval was taken as
the 2.5 and 97.5 percentile of the bootstrapped parameter distribution. We restricted parameter
values to a wide range of plausible values (asst= asiow = [-INf, 0.5], Tf45t = To10w= [-50, 50]), and
discarded bootstrapped estimates which lay on the boundary of the parameter range, indicating
implausible fits (0.3% of bootstrapped fits).

Additionally, we investigated to which degree 1-back adaptation was dependent on the relationship
between a unit's orientation preference and the adaptor/test orientation. For instance, one may expect
strongest adaptation when the repeated stimuli match the unit’s preferred orientation, due to the
strong response during the adaptation period. To shed light on this question, we first binned units into
three equally sized subgroups per region, based on their orientation selectivity. Orientation selectivity
was quantified as

f rpre erred — f rnon—pre erred
0SIl =

frpreferred + frnon—prefer‘red

where frpeferres aNd froon-preferred refer to the unit’s firing rates to its preferred orientation (eliciting the
highest average firing rate) and the orthogonal orientation, respectively. The OSI ranges from 0 to 1,
where 0 indicates no selectivity (identical firing rates to preferred and non-preferred orientations) and
1 indicates maximal selectivity (zero firing rate to non-preferred orientation). Subsequently, for each
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subgroup of units we computed adaptation ratios as a function of the previous (adaptor) and current
(test) stimulus orientation relative to the unit’s preferred orientation (see Figure 2). To statistically test
the influence of the relative adaptor/test stimulus orientation on adaptation ratios, and to test whether
this influence depended on the degree of orientation selectivity of the units, we conducted a 3 x 3
mixed ANOVA, with repeated measures factor “relative adaptor/test orientation” (0, 45 and 90°) and
between-unit factor “orientation selectivity” (low, medium and high OSI).

Since we found that adaptation was indeed strongest when the repeated orientations matched the
unit's preferred orientation, we repeated our analysis of the recovery time course of adaptation for
these trial types. That is, we computed adaptation ratios on a subset of trials, for which the current
orientation matched the unit's preferred orientation and the previous orientation either matched
(repeat) or was orthogonal (orthogonal) to the preferred orientation. While this approach had the
advantage of quantifying adaptation to the most effective adaptor stimulus, it had the disadvantage of
limiting the analysis to a much smaller set of trials compared to computing adaptation for all
orientations. We did not observe qualitative differences between the two analysis approaches.

Dissociating adaptation to repeated and orthogonal drifting gratings

Thus far, we have quantified adaptation as the ratio between responses to repeated and orthogonal
stimulus orientations. This analysis does not reveal whether adaptation effects are due to suppression
of response when the current orientation matches that of past orientations, facilitation of response
when the current orientation is orthogonal to past orientations, or a mixture of the two. The stimulus
set included randomly interspersed trials during which no stimulus was presented, so we repeated the
analysis described above, but quantified adaptation by comparing responses when a stimulus
preceded the current trial, with responses when no stimulus was presented in the preceding trial. We
computed two sets of adaptation ratios: (1) the ratio between visual responses when the n-back
stimulus had the same orientation as the current stimulus (n-back repeat) and trials in which no
stimulus was presented at the same n-back position (n-back blank trial). (2) the ratio between visual
responses when the n-back stimulus was orthogonal to the current stimulus (n-back orthogonal) and
n-back blank trials. Since blank trials were much less frequent than repeat and orthogonal trials (30
blank trials vs ~150 repeat/orthogonal trials), for these analyses we randomly subsampled repeat and
orthogonal trials to match them to the lower number of blank trials.

Orientation-specific adaptation to static gratings

Analyses of adaptation to static gratings were similar to the analysis of the drifting grating data, with
two exceptions. First, we quantified adaptation based on neural responses during the entire stimulus
presentation period (0-250 ms). As discussed above, we chose to use a longer time window for
analyzing static grating adaptation, since due to the back-to-back presentation of the static gratings,
visual responses to the previous stimulus overlapped with the initial time window of the current
stimulus, thereby increasing response variability in this early time window. However, largely similar
results were obtained when performing the analyses on the same time window used in the drifting
grating experiment (0 to 100 ms). Second, we only analyzed adaptation to all orientations, regardless
of the units’ orientation preferences. This analysis was similar to the main analysis of drifting grating
adaptation described above. Due to the rapid presentation of the static gratings, without intervening
grey periods, responses persisted into the presentation period of the next grating. Since sub-selecting
data according the units’ preferred orientation led to response differences in the adaptation period (i.e.
larger response to preferred than orthogonal adaptor), the bleeding of the previous response into the
current stimulus time window strongly biased the response to the current grating, thereby confounding
genuine adaptation-induced changes in the response to the current grating. Conversely, when
analyzing adaptation for all orientations, regardless of the units’ orientation tuning, the relationship
between the adaptor orientations and the units’ preferred orientations were balanced across repeat
and orthogonal trials, and therefore did not bias the analysis of the current response.
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Results

Orientation-specific adaptation in visual cortex and thalamus

To investigate orientation-specific adaptation in the mouse visual system, we analyzed responses
from a total of 2,365 visually responsive neurons in the visual cortex and thalamus of 32 mice (Figure
1A), while they were presented with sequences of drifting gratings (Figure 1B). We separately
analyzed visual responses to gratings that were preceded by a grating of the same orientation
(repeat) or orthogonal orientation (orthogonal). We found that the immediate repetition of stimulus
orientation led to a marked, orientation-specific reduction in spiking activity in primary visual cortex
(V1), predominantly during the early visual response (0 — 100 ms from stimulus onset, n = 562;
Figure 1C, green shaded area). We quantified this orientation-specific adaptation of the transient
visual response by calculating the response to a repeated orientation, relative to that following the
orthogonal orientation (1-back adaptation ratio, see Materials & Methods). Adaptation reduced the
response by 17% in V1 (1-back adaptation ratio: 0.83, p = 4e-57, 95% CI [0.81, 0.84]), and had
similar impact in higher-level extrastriate visual areas (Figure 1D; 1-back adaptation ratios between
0.80 and 0.88, all p < 2e-21, two-sided t-tests, corrected for multiple comparisons). We also found
orientation-specific adaptation in the dorsolateral geniculate nucleus of the thalamus (LGN, n = 140;
1-back adaptation ratio: 0.93, p = 8e-7, 95% CI [0.91, 0.96]), and the lateral posterior nucleus of the
thalamus (LP, n = 90; 1-back adaptation ratio: 0.83, p = 3e-10, 95% CI [0.79, 0.88]). Of note, in this
analysis, we focus on stimulus-specific adaptation, sensitive to the orientation difference between
previous and current stimulus (repeat versus orthogonal). This analysis is not sensitive to additional
untuned adaptation effects, which occur in response to previous stimuli of any orientation and thus do
not track the history of previous orientations (see Figure 5 for a complementary analysis quantifying
adaptation to repeat and orthogonal stimuli, separately, versus adaptation in response to a blank grey
screen). This may explain why the current response reductions are slightly smaller than previous
reports of adaptation that comprise both orientation-specific and unspecific adaptation (Patterson et
al., 2013; Jin et al., 2019; Jin and Glickfeld, 2020). The orientation-specific response reductions for
immediate stimulus repetition were highly consistent across mice (Figure 1E). While 1-back
adaptation was generally strongest when neurons were tested with their preferred orientation,
neurons also showed robust orientation selective adaptation when probed at non-preferred
orientations (Figure 2). In our subsequent analyses of long-term adaptation, we therefore averaged
adaptation across all stimulus orientations, regardless of the neurons’ orientation preference, but
qualitatively similar results were obtained when only considering trials in which stimuli matched a
neurons’ preferred orientation. Overall, these findings indicate robust orientation-specific adaptation of
neurons in visual cortex and thalamus to gratings presented in the immediate past.
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Figure 1. Visual cortex and thalamus exhibit orientation-specific adaptation to the immediately
preceding (1-back) grating. (A) Schematic of Neuropixels probe insertion trajectories through visual
cortical and thalamic areas (adapted from Siegle et al. (2021). (B) Presentation sequence of drifting
grating stimuli. Mice were shown drifting gratings with a duration of 2 seconds, separated by a 1-
second grey screen. Gratings were drifting in one of 8 different directions (0°, 45°, 90°, 135°, 180°,
225°, 270°, 315°) and were presented in random order. For the analysis of orientation-specific
adaptation, we contrasted activity to gratings preceded by gratings of the same orientation (repeat,
blue) with that elicited by gratings preceded by a grating of the orthogonal orientation (orthogonal,
red). (C) Population peristimulus time histograms of neurons in V1 for repeat and orthogonal
conditions. The transient response is reduced when the same orientation is successively repeated,
indicating orientation-specific adaptation. Subsequent analyses focused on this transient response (0
— 100 ms, green shaded area). Vertical dashed lines denote stimulus onset and offset, respectively.
Binwidth = 25 ms. Error bars show SEMs. (D) 1-back adaptation ratios of transient responses across
visual areas. Adaptation ratios were computed by dividing each neuron'’s firing rate for repeat by that
for orthogonal stimulus presentations and therefore express the response magnitude to a repeated
stimulus orientation relative to that elicited by the same stimulus orientation, but preceded by a grating
with the orthogonal orientation. Adaptation ratios smaller than 1 indicate adaptation. All visual areas
show significant 1-back adaptation. Error bars denote bootstrapped 95% confidence intervals. White
numbers indicate the number of neurons in each area. (E) The average firing rate to a stimulus
preceded by a stimulus with the same orientation (x-axis) is consistently smaller than the firing rate to
a stimulus preceded by a stimulus with the orthogonal orientation (y-axis) across mice (grey dots
denote different mice; size scaled by the number of neurons of each mouse) in both thalamus (left)
and cortex (right), as indicated by datapoints positioned above the diagonal. (F) Histograms of single-
neuron adaptation ratios (log-transformed) in thalamus (left) and cortex (right). Negative x-values
indicate adaptation and the red dashed line marks zero adaptation (i.e., equal firing rates for repeat
and orthogonal conditions). The triangle shape indicates the mean adaptation across the population
of neurons with p-value indicating the significance of the population mean. List of acronyms: Dorso-
lateral geniculate nucleus of the thalamus (LGN), latero-posterior nucleus of the thalamus (LP),
primary visual cortex (V1), antero-lateral area (AL), antero-medial area (AM), latero-medial area (LM),
postero-medial area (PM), rostro-lateral area (RL).
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Figure 2. Adaptation depends on orientation tuning and adaptor/test orientation. (A, B, C)
Orientation tuning curves in V1 for units of low (A), medium (B) or high (C) orientation selectivity
(tertile split, see Materials & Methods), following adaptation to different 1-back grating orientations
(colored arrows). Stimulus and adaptor orientations are expressed relative to each neuron’s preferred
orientation. Tuning curves show local response reductions to the adapted orientation. (D, E, F)
Adaptation ratios as a function of the adaptor and test orientation relative to the neuron’s preferred
orientation. For instance, the adaptation ratio for a relative stimulus orientation of 0° compares the
visual response to a test grating with the neuron’s preferred orientation, when it is preceded by an
adaptor grating with the same (preferred) orientation, versus when it is preceded by the orthogonal
(non-preferred) adaptor orientation (see illustration in panel A). In V1 (panels D, E and F, leftmost
columns), adaptation was strongest when adaptor and test stimuli corresponded to the preferred
orientation of the neuron, and decreased when adapting and testing with less preferred orientations
(significant main effect of relative orientation, p = 4e-11). This relationship was particularly strong in
neurons exhibiting high orientation selectivity (significant interaction between relative adaptor/test
orientation and orientation selectivity, p = 0.005; for definition of orientation selectivity see Materials
& Methods). Nevertheless, there was clear adaptation for all adaptor orientations as indicated by 1-
back adaptation ratios consistently smaller than 1 (all p < 0.004, corrected for multiple comparisons),
except for non-preferred (90°) adaptor and test stimuli of highly selective units (panel F, leftmost
column, 90°, p = 0.88). This overall pattern of adaptation effects was qualitatively similar across
cortical visual areas (panels D, E and F, columns 2 to 5). In thalamic areas (panels D, E and F, two
rightmost columns), there was no evidence for a dependence of adaptation on orientation preference
(no significant main effects of relative adaptor/test orientation: LGN, p = 0.28; LP, p=0.91; no
significant interactions between relative adaptor/test orientation and orientation selectivity: LGN, p =
0.24; LP, p = 0.92), likely due to the overall lower degree of orientation selectivity of thalamic neurons.
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Long-term adaptation in visual cortex but not in thalamus

In order to investigate the timescale over which adaptation influences subsequent visual processing,
we computed adaptation ratios based on the orientation difference (i.e., repeat versus orthogonal)
between the current grating, and gratings at different n-back timepoints. Surprisingly, we found that
neurons in V1 exhibited significant adaptation effects to stimuli seen up to 8 presentations (or 22
seconds) in the past, despite the presentation of multiple intervening stimuli (Figure 3A). It is worth
noting that although individual past stimuli had subtle effects on the current response, cumulative
adaptation to the remote stimulus history outweighed the immediate adaptation effect (17% response
reduction to 1-back stimulus vs. 19% cumulative response reduction to 2- to 8-back stimuli; Figure 4).
In natural temporally correlated environments, long-term adaptation may thus have even greater
weight than immediate adaptation effects. Therefore, the joint long-term stimulus history exerts a
considerable influence on current sensory processing.

In contrast to adaptation in cortex, adaptation in the thalamus appeared to be limited to the 1-back
(LGN) or 2-back trial (LP; Figure 3B). Indeed, adaptation to temporally remote stimuli was
significantly stronger in V1 compared to LGN (2-, 4- and 9-back stimulus, two-sided Welch's unequal
variances t-test, all p = 0.02) and LP (3-back stimulus, p = 0.001, corrected for multiple comparisons),
even after accounting for differences in the initial strength of adaptation between thalamus and V1
(i.e. normalizing to the 1-back adaptation ratio). The temporal decay of adaptation in higher-level
extrastriate areas was similar to the decay in V1 (Figure 3B) and long-term adaptation in cortical
areas was very consistent across mice (Figure 3C, right).
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Figure 3. Visual cortex, but not thalamus, exhibits long-term adaptation. (A) Adaptation ratios of
neurons in V1 as a function of the n-back trial. Strongest adaptation occurred in response to the 1-
back stimulus, but stimuli encountered up to 8 presentations in the past (seen 22 seconds ago) still
exerted significant adaptation effect on the current visual response, despite the presentation of
intervening stimuli (red bars, p < 0.05, corrected for multiple comparisons). The decay of adaptation
over n-back trials was well captured by a double-exponential decay model with a fast- and slow-
decaying adaptation component (black dashed line; asst = 13.99%, Trast = 0.85 trials, agow = 3.45%,
Tsow = 6.82 trials). Error bars denote bootstrapped 95% confidence intervals. (B) Adaptation ratio as
function of n-back trial for different visual areas (color-coded). While adaptation decays similarly and
slowly across cortical visual areas (square symbols), and is generally significant for up to 6-8 trials
back (symbols with black border, p < 0.05, corrected for multiple comparisons per area), it decays
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more rapidly in thalamic areas LGN and LP (circle symbols). Black and lilac-green lines illustrate the
best fitting exponential decay models for cortex and thalamus. Error bars denote standard errors of
the mean. (C) Average firing rates per mouse when the 4- to 8-back orientation was repeated (x-axis)
or orthogonal (y-axis) relative to the current orientation. Mice exhibit consistent long-term adaptation
in cortex (right) but not in thalamus (left). (D) Histograms of single-neuron adaptation ratios (log-
transformed) in thalamus (left) and cortex (right).

A V1 (0 - 100 ms) B V1 (0-100 ms)

¥ p<005

Adaptation ratio

inferred
08 ll M observed
n-back tri.al 142 243 344 445 546 6+7 748
n-back trials
Figure 4. Cumulative adaptation effects in V1. Random sequences of grating orientations, as the
ones used in the current experiment, prevent any systematic accumulation of adaptation across
multiple stimulus presentations. While this allows us to study the influence of individual n-back stimuli
on the current visual response, it underestimates the influence of long-term adaptation in natural
environments, in which orientations tend to remain stable over prolonged time periods (van Bergen &
Jehee, 2019), therefore leading to an accumulation of adaptation. Panel (A) serves to illustrate that
the adaptation effects of 2- to 8-back stimuli (red bars), albeit small when taken individually, together
may lead to a considerable reduction of the current response (19% reduction; red-striped bar) that
even outweighs the adaptation effect of the 1-back stimulus (17% reduction; light red bar).
Importantly, the cumulative influence of repeating 2- to 8-back grating orientations could not be
estimated empirically in the current dataset, since such streaks of orientation repetitions are
exceedingly rare for random sequences (probability of ~0.006%). Here, we inferred the cumulative
response reduction by assuming that the adaptation effects of previous stimuli accumulate
approximately linearly. The inferred cumulative adaptation ratio was then calculated as ar,_g =
18-, ar,, where ar.._g is the cumulative adaptation ratio of 2- to 8-back stimuli, and ar,, denotes the
empirically estimated adaptation ratio of an individual n-back stimulus. (B) To evaluate whether the
assumption of a linear accumulation of adaptation approximately holds, we compared the empirically
observed adaptation effect when two previous adjacent stimuli had the same orientation as the
current stimulus (dark grey bars; ~6.25% of all trials), to the cumulative adaptation effect inferred from
individual n-back adaptation estimates (light grey bars). The empirically observed adaptation effect of
two successive stimuli roughly matched the predicted adaptation effect, suggesting that adaptation
accumulates approximately linearly in the current setting. All error bars denote 95% Cls.

We further characterized the timescale of recovery from adaptation in visual cortex and thalamus by
fitting exponential decay models to the n-back adaptation ratios in the respective areas. Recovery in
cortical visual areas was better explained by double-exponential decay models, with a fast and a
slow-decaying adaptation component, compared to a single-exponential decay (F-tests, all p < 0.006,
except VISrl: p = 0.072). Recovery from adaptation was slowest in V1 with an exponential time
constant T4, Of 6.82 trials (bootstrapped 95% CI [3.39, 13.50]; Figure 3A, black dashed line), but
was relatively similar for extrastriate areas (Tspw ranging from 3.12 to 5.52 trials, all 95% ClI intervals
overlapping, see Table 1 for all parameter estimates). In contrast, the recovery of adaptation in the
thalamus was most parsimoniously captured by a single-exponential decay model (F-tests, p = 1 for
both LGN and LP), and the time constants of the single-exponential decays were very short (LGN: Tiast
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= 0.02 trials, 95% CI [0.004, 0.63]; LP: T = 0.71 trials, 95% CI [0.03, 0.93]). Together, these results
indicate that adaptation in response to relatively brief 2-second stimuli decays surprisingly slowly in
cortical visual areas, over the course of dozens of seconds, and survives the presentation of multiple
intervening stimuli. Conversely, while adapting to the immediate stimulus history, neurons in the
thalamus exhibit a fast recovery from adaptation, in line with a shorter temporal integration timescale
for low- compared to high-level visual areas.

ROI QAfast Trast Aslow Tslow

V1 13.99 [10.73, 16.14] 0.85[0.59, 1.13] 3.45[1.71, 6.64] 6.82 [3.39, 13.50]
AL 10.19 [8.14, 12.71] 0.01 [1e-3, 0.47] 6.84 [4.90, 8.54] 4.08 [3.10, 5.94]
AM 9.96 [6.88, 14.30] 0.39 [5e-3, 0.87] 8.03 [3.83, 11.04] 3.39 [2.37, 6.50]
LM 13.35[10.37, 16.07] 0.46 [0.02, 0.72] 3.71[1.89, 5.84] 5.52[3.42, 10.60]
PM 13.20 [10.43, 16.32] 0.02 [2e-3, 0.45] 6.50 [3.91, 9.26] 4.43 [2.75, 9.28]
RL 458 [1.97, 12.00] 0.26 [5e-3, 1.83] 7.400.7,9.82] 3.12[2.19, 34.41]
LGN 6.51 [4.04, 8.85] 0.02 [4e-3, 0.63] - -

LP 16.76 [12.68, 21.02] 0.71[0.03, 0.93] - -

Table 1. Best fitting parameters of exponential decay models fitted to adaptation ratios
(drifting gratings). Amplitude parameters a are expressed in %-response reduction of repeat with
respect to orthogonal trials. Exponential time constants T are expressed in units of trials. The decay of
adaptation in thalamic areas LGN and LP was significantly better fit by single-exponential decay
models. Therefore, no parameters for the second exponential component are provided for these
areas. Values in parentheses indicate bootstrapped 95% confidence intervals.

Cortical long-term adaptation is due to suppression following stimulus repetitions

Thus far we have quantified adaptation as the ratio of neural responses following repeated versus
orthogonal stimuli. While this quantification revealed orientation-specific long-term traces of past
stimuli in visual cortex, they do not reveal the relative contribution of response suppression (when a
past orientation is repeated), and response enhancement (when the current and past orientations are
orthogonal). To assess this, we leveraged the presentation of randomly interspersed blank trials
during which no stimulus was presented. In particular, we used trials for which the past n-back
stimulus was a blank trial to establish a baseline adaptation effect against which to compare trials for
which the n-back stimulus was repeated or orthogonal. We found that 1-back repeated and
orthogonal stimulus presentations both suppressed neural response (Fig. 5). Importantly, the
suppressive effect of orthogonal orientations decayed quickly, and was limited to the 1-back trial,
whereas the suppressive effect of repeated stimuli decayed more slowly, and remained significant for
up to 8 trials back (Fig. 5). This suggests that long-term adaptation effects are mainly driven by
response suppression to repeated stimulus orientations.
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Figure 5. Cortical long-term adaptation is driven by repeated stimulus orientations. We
expressed the response modulation of neurons across all cortical areas by n-back repeated and
orthogonal trials relative to a neutral baseline, in which no stimulus was presented on the n-back trial.
To this end, we computed adaptation ratios by dividing each neuron’s firing rate for repeat stimulus
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presentations by that of blank stimulus presentations (blue data points), or orthogonal divided by
blank stimulus presentations (red data points). While the suppressive effects of orthogonal stimuli
decays quickly, repeated stimuli exert long-term suppression for up to 8 trials. Error bars denote
bootstrapped 95% confidence intervals.

Long-term adaptation following exposure to brief static gratings

So far, we have shown that neurons in mouse visual cortex exhibit long-lived adaptation to 2-second
presentations of drifting gratings, influencing subsequent visual processing over the time course of
dozens of seconds and multiple intervening stimuli. However, it is unclear to which degree the
existence of such long-term adaptation effects depends on the particular stimulus type (drifting
gratings) and duration (2 seconds). We therefore tested whether similar long-lived adaptation effects
can be elicited by the presentation of brief, static gratings. Mice were presented with a rapid stream of
static gratings, presented back-to-back for 250 milliseconds each (Figure 6A). Similar to our previous
analyses, we probed orientation-specific adaptation by contrasting visual responses to gratings that
were preceded by a grating of the same or orthogonal orientation. In V1, the repetition of stimulus
orientation led to a clear reduction of the visual response to the current grating (Figure 6B, green
shaded area; n = 530; adaptation ratio: 0.90, p = 2e-81, 95% CI [0.89, 0.91]). Very similar adaptation
effects were found for extrastriate areas (Figure 6C, 1-back adaptation ratios between 0.89 and 0.93,
all p < 8e-9, two-sided t-tests, corrected for multiple comparisons) and adaptation was consistent
across mice (Figure 6D). Although there were only relatively few responsive neurons in the thalamus
(LGN: n=60; LP: n = 16), both LGN and LP exhibited significant adaptation effects (LGN - adaptation
ratio: 0.93, p = 0.004, 95% ClI [0.93, 0.98]; LP — adaptation ratio: 0.85, p = 0.01, 95% ClI [0.85, 0.96]).
Overall, these findings of orientation-specific adaptation, exerted by the immediately preceding static
grating stimulus, parallel those found for adaptation to drifting gratings.
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Figure 6. Visual cortex exhibits adaptation in response to immediately preceding briefly
presented static gratings. (A) Presentation sequence of static grating stimuli. Mice were shown
static gratings with a duration of 250 ms with no intervening grey period. Gratings had one of six
orientations (0°, 30°, 60°, 90°, 120°, 150°), five spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32
cycles/?), and four phases (0, 0.25, 0.5, 0.75). The order of grating presentations was randomized.
Similar to the analysis of drifting gratings, we contrasted activity to gratings preceded by gratings of
the same orientation (repeat, blue) with that elicited by gratings preceded by a grating of the
orthogonal orientation (orthogonal, red). (B) Population peristimulus time histograms of neurons in V1
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for repeat and orthogonal conditions. The visual response to the current stimulus (green shaded area)
was reduced when the previous stimulus had the same orientation as the current stimulus (repeat),
indicating orientation-specific adaptation. Vertical dashed lines denote onset and offset of the current
stimulus, respectively. Binwidth = 25 ms. Error bars show SEMs. (C) 1-back adaptation ratios across
visual areas. All areas show significant 1-back adaptation. Error bars denote bootstrapped 95%
confidence intervals. White numbers indicate the number of neurons in each area. (D) Mice show
consistently reduced firing rates after a repeated versus orthogonal orientation, as indicated by
datapoints falling above the diagonal. Same conventions as in Fig. 1E. (E) Histograms of single-
neuron adaptation ratios (log-transformed) in thalamus (left) and cortex (right).

Next, we investigated the timescale over which adaptation to briefly presented static gratings affected
subsequent visual processing. Neurons in V1 showed significant adaptation effects to stimuli
presented as far as 20 presentations (5 seconds) in the past (Figure 7A and 7C showing consistent
adaptation across mice). Again, the decay of adaptation was well described by a double exponential
decay model with a long time constant 10, = 9.12 trials (95% CI [6.09, 14.82]; Figure 7A, black
dashed line). Higher-level extrastriate cortical areas showed similar decay dynamics (Figure 7B), with
decay time constants ranging from 6.54 (VISam) to 21.78 trials (VISpm; all 95% CI intervals
overlapping; see Table 2 for all parameter estimates). While all cortical areas were significantly better
fit by a double exponential decay model (F-tests, all p < 1e-5), neurons in LGN were more
parsimoniously described (p = 0.22) by a single exponential decay with a shorter time constant (Tast =
2.93 trials, 95% CI [1.36, 7.32]), replicating the experiment using drifting gratings. However, in this
experiment, the difference in long-term adaptation of cortex and thalamus was less pronounced than
in the experiment using drifting gratings. We did not include thalamic nucleus LP in this analysis due
to the low number of visually response neurons in this area (16 neurons across 32 mice). These
findings demonstrate that even briefly presented static grating stimuli, which are embedded in a rapid
stream of stimulus presentations, still elicit robust long-term cortical adaptation effects that persist
despite the encoding of many intervening stimuli.
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Figure 7. Visual cortex exhibits long-term adaptation following briefly presented gratings. (A)
Adaptation ratios of V1 as a function of the n-back trial. While adaptation was most strongly driven by
the previous stimulus (1-back), stimuli encountered up to 20 presentations in the past (5 seconds ago)
still exerted significant adaptation effects on the current visual response (red bars, p < 0.05, FDR-
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corrected). Similar to drifting grating adaptation, the decay of adaptation over n-back trials was well
captured by a double-exponential decay model with a fast- and slow-decaying adaptation component
(black dashed line; asast= 8.17%, Tiast = 0.54 trials, agow = 2.04%, Tgow = 9.12 trials). Error bars denote
bootstrapped 95% confidence intervals. (B) Adaptation ratios as function of n-back trial for different
visual areas (color-coded). In cortical areas (square symbols) there is significant adaptation to
stimulus orientations presented up to 20 trials back (symbols with black border, p < 0.05, FDR-
corrected per area), while in thalamic areas (circle symbols) long-term adaptation is less evident.
Error bars denote standard errors of the mean. Black and orange-green lines denote the best fitting
exponential decay models for cortex and thalamus, respectively. Adaptation was computed over the
whole stimulus interval (0 to 250 ms), since due to the back-to-back presentation of static gratings,
visual responses to the previous stimulus overlapped with the initial time window of the current
stimulus, thereby increasing response variability in this early time window. However, largely similar
results were obtained when performing the analyses on the same time window used in the drifting
grating experiment (0 to 100 ms), except for a less clear difference of the decay of adaptation
between cortex and thalamus. (C) Average firing rates per mouse when the 5- to 20-back orientation
was repeated (x-axis) or orthogonal (y-axis) relative to the current orientation, in the thalamus (left)
and cortex (right). (D) Histograms of single-neuron long-term (avg. 5- to 20-back) adaptation ratios
(log-transformed) in thalamus (left) and cortex (right).

ROI QAfast Trast Aslow Tslow

V1 8.17 [7.11, 9.23] 0.54 [0.37, 0.71] 2.04 [1.33, 2.91] 9.12 [6.09, 14.82]
AL 7.38[5.27, 8.64] 0.68 [0.02, 1.05] 1.49[0.77, 3.25] 14.79 [5.24, 39.75]
AM 6.24 [4.46, 8.05] 0.48 [8e-3, 0.96] 2.77 [1.13, 4.43] 6.54 [3.82, 19.11]
LM 7.93[6.14, 9.80] 0.40 [0.02, 0.61] 2.91[1.89, 4.00] 7.74 [5.42, 13.36]
PM 8.46 [6.74, 10.30] 0.64 [0.36, 0.87] 1.57 [1.10, 2.25] 21.78 [13.07, 37.00]
RL 5.39 [3.50, 7.56] 0.66 [0.02, 1.09] 1.39[0.87, 2.07] 19.58 [10.99, 37.51]
LGN 3.91[1.80, 6.59] 2.93 [1.36, 7.32] - -

Table 2. Best fitting parameters of exponential decay models fitted to adaptation ratios (static
gratings). Amplitude parameters a are expressed in %-response reduction of repeat with respect to
orthogonal trials. Exponential time constants T are expressed in units of trials (250 ms duration). The
decay of adaptation in LGN was significantly better fit by single-exponential decay model. Therefore,
no parameters for the second exponential component are provided for LGN. Values in parentheses
indicate bootstrapped 95% confidence intervals.

Short-term adaptation does not introduce spurious long-term adaptation effects

Our analysis approach of quantifying adaptation to the n-back stimulus by conditioning the current
visual response on the orientation difference between current and previous n-back stimulus
(repeat/orthogonal) relies on the assumption that the stimulus sequence is uncorrelated. If the
presentations stimulus orientations were correlated across trials, these correlations may introduce
spurious adaptation effects, potentially causing short-term adaptation to masquerade as long-term
adaptation (Maus et al., 2013). While the presentation order of stimuli of the current experiments was
randomized, making such spurious adaptation effects unlikely, we nevertheless assessed this
potential confound via the simulation of an artificial neuron that only exhibited short-term (1-back)
adaptation. We observed no spurious long-term adaptation effects for this artificial neuron when
presented with the drifting grating sequences (Figure 8A), nor when presented with the static grating
sequences (Figure 8B), markedly different from the long-term adaptation effects we observed in the
empirical data.
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Figure 8. Short-term (1-back) adaptation does not introduce spurious long-term adaptation
effects for the particular stimulus sequences used in the experiments. We simulated responses
of a artificial neuron to the particular stimulus sequences used in the drifting grating experiment
(panel A) and static grating experiment (panel B). The artificial neuron responded equally to all
stimulus orientations, but selectively reduced its responses to a successive repeated orientation to
mimic orientation-specific 1-back adaptation. We chose the strength of this 1-back adaptation effect to
match the empirically observed 1-back adaptation of V1. We subsequently analyzed the simulated
responses with the same procedure used for the empirical data. The analysis of the simulated
responses recovered the ground truth 1-back adaptation effect (black data points). There were no
spurious adaptation effects for stimuli further in the past, as indicated by the black data points being
centered on an adaptation ratio of 1, markedly different from the empirically observed long-term
adaptation effects (red data points - adaptation in V1). Black error bars denote 95% Cls of adaptation
across the simulations of the 32 stimulus sequences. Red error bars denote 95% Cls of empirical
adaptation across neurons in V1.

Discussion

We observed that neurons in mouse visual cortex exhibit remarkably long timescales of adaptation
effects after brief visual stimulation, influencing the processing of subsequent input over dozens of
seconds and outliving the presentation of several intervening stimuli. The long-term adaptation effect
was stimulus-specific - tuned to the orientation differences between past and current stimuli -
indicating that the visual cortex maintains a lasting memory trace of individual briefly experienced
stimuli. Although adaptation to individual past stimuli was subtle, the expected cumulative adaptation
effect of the long-term stimulus history outweighed short-term adaptation to the immediately
preceding stimulus. This suggests that long-term adaptation can have a profound influence on
sensory processing, especially when visual input is temporally correlated, as is the case for natural
environments (van Bergen and Jehee, 2019). While adaptation to drifting gratings decayed at a
similar rate in primary and extrastriate visual cortex, and was still observable for stimuli seen 8 trials
(or 22 seconds) in the past, adaptation in the thalamus decayed more quickly, limited to the 1- or 2-
back stimulus (experienced 1-4 seconds prior). This demonstrates that the long-term component of
adaptation observed in the visual cortex is not inherited from the thalamus, but is maintained in
cortical circuits. Finally, we replicated our findings of cortical long-term adaptation to drifting gratings
with a different stimulus set of rapidly presented static gratings, underlining the robustness and
ecological validity of the long-term temporal dependencies. However, in this experiment, the
difference in long-term adaptation of cortex and thalamus was less pronounced than in the
experiment using drifting gratings. The back-to-back presentation of static gratings may interfere with
our measurement of adaptation effects, because responses during stimulus presentation is likely to
include both responses to the onset of that stimulus, and responses to the offset of the previous
stimulus. Together, our findings show that visual cortex maintains concurrent stimulus-specific
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memory traces of briefly presented input, which allow the visual system to build up a statistical
representation of the world over longer timescales. We speculate that this may enable the visual
system to exploit temporal input regularities over extended timescales to efficiently encode new visual
stimuli under natural conditions (Barlow and Foldiak, 1989; Muller et al., 1999; Wainwright, 1999;
Clifford et al., 2000; for reviews see Schwartz et al., 2007; Weber et al., 2019).

There is ample evidence that sensory cortex can exhibit long-term adaptation following long exposure
to a stimulus. For instance, long stimulus presentations lasting from dozens of seconds to several
minutes can alter visual responses of neurons in monkey and cat primary visual cortex over similarly
long timescales, persisting for several minutes (Dragoi et al., 2000; Patterson et al., 2013).
Furthermore, stimulus-specific adaptation effects can accumulate over many brief intermittent
presentations of the same stimulus (Kuravi and Vogels, 2017), and subsequently show a persistence
of several seconds (Ulanovsky, 2004; Peter et al., 2020). Crucially, in contrast to these previous
studies, here we tested the adaptation effects elicited by individual, briefly presented stimuli. In the
stimulus sequences of the current experiments, all stimulus orientations occurred equally often and in
random order, precluding systematic accumulation of adaptation to any particular orientation of higher
prevalence. Despite the absence of such accumulation effects, we find that the presentation of brief
individual stimuli alters subsequent visual processing over time spans of at least 22 seconds and
affects the processing of many subsequent stimuli. This demonstrates that long-term adaptation
effects are not contingent on long adaptor durations or many repeated presentations of the same
adaptor stimulus, but can occur in much more naturalistic settings that are also frequently employed
in experimental designs, i.e. in response to brief individual visual experiences.

The observation of long-term adaptation effects to brief stimuli is particularly surprising, as previous
studies investigating the recovery of adaptation following brief visual stimulation reported only very
fleeting adaptation effects. In V1 of anesthetized monkeys, adaptation to 4-seconds long drifting
gratings decayed with a half-life of ~1 second, in the absence of any intervening visual input
(Patterson et al., 2013). This half-life is much shorter than the ~14 seconds we observed in the
current study. We speculate that this difference could be, at least partly, related to the anesthetized
versus awake state of the animals in the respective experiments, and that long-term adaptation might
be facilitated by deeper, recurrent stimulus processing in awake animals. Nevertheless, recent studies
in awake mice point towards similar short-lived adaptation effects in V1. For instance, adaptation to
100 ms gratings has resulted in decay time constants of 0.5 to 1 second (Jin et al., 2019; Jin and
Glickfeld, 2020), and other studies have found no detectible effects of adaptation to 2-seconds drifting
gratings after a 6-seconds delay (King and Crowder, 2018), and no history dependencies beyond 1
second in response to 250 milliseconds orientation patterns (Kim et al., 2019). Notably, most of these
previous studies have investigated adaptation in the absence of any intervening visual input, making
the current observation of stimulus specific long-term adaptation despite intervening input even more
astounding. One major advantage of the current study is the large number of recorded neurons
(2,365), which vastly increased our power to reveal subtle but reliable long-term adaptation effects
that may have gone unnoticed in previous studies.

It should be noted that long-term adaptation, also in the face of intervening visual input, has been
observed in higher-order visual areas in infero-temporal cortex of primates and humans, when
observers performed a task on repeated stimuli (Henson et al., 2000, 2004; McMahon and Olson,
2007). Importantly, these long-term adaptation effects, also known as repetition suppression (Grill-
Spector et al., 2006; Barron et al., 2016), appear to be highly dependent on attention (Murray and
Woijciulik, 2004; Henson and Mouchlianitis, 2007; Larsson and Smith, 2012) and task (Henson et al.,
2002; Henson, 2016) and have been related to processes of memory recall (Meyer and Rust, 2018).
While phenomenologically similar to the current adaptation effects (reduction of neural activity), it is
likely that these task-dependent higher-level repetition suppression effects are distinct from the
automatic and early adaptation effects on sensory encoding measured in the current experiments,


https://doi.org/10.1101/2021.02.10.430579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.10.430579; this version posted December 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

which take place in both primary and higher-order visual areas in the absence of an explicit task. In
support of this view, previous studies measuring long-term repetition suppression effects in infero-
temporal cortex in the presence of a task did not observe concomitant long-term effects in early visual
cortex (Sayres and Grill-Spector, 2006; Weiner et al., 2010), suggesting that these high-level
repetition suppression effects are at least partially distinct from automatic and early adaptation effects
on sensory encoding. In contrast, here we show that even in the absence of an explicit task, the
earliest stages of cortical visual processing automatically adapt to the long-term history of individual
briefly presented stimuli.

It has been previously proposed that temporal integration timescales increase along the cortical
hierarchy (Hasson et al., 2008; Lerner et al., 2011; Honey et al., 2012; Murray et al., 2014). Here, we
show that the integration window of temporal context, in the form of adaptation, increases from the
thalamus to cortex, broadly in line with these proposals. However, we did not find different integration
times between lower-level primary and higher-level extrastriate visual cortex, congruent with a recent
study in humans (Fritsche et al., 2020a; but see Zhou et al., 2018). Since we measured adaptation in
the early feedforward response (0 to 100 milliseconds), it appears unlikely that long-term adaptation in
V1 was inherited from higher-level visual areas through feedback connections, but rather suggests
that long-term temporal context already influences the earliest stages of cortical processing. The
similar decay of adaptation across cortical areas could either be due to the comparatively flat
hierarchical structure of mouse visual cortex (for a review see Glickfeld and Olsen, 2017) or may
reflect an important difference between the temporal tuning of adaptation and previously reported
temporal integration timescales.

Importantly, while the current study focused on the early feedforward response (first 100 ms for
drifting gratings, 250 ms for static gratings), adaptation has been found to alter neural responses
beyond the early response epoch, further interacting with factors such as stimulus size and adaptation
duration (Patterson et al., 2013), pointing towards more complex inhibitory and excitatory population-
level coordination (Solomon and Kohn, 2014). In order to obtain a full understanding of the sources
and the long-term consequences of adaptation, future studies will therefore need to investigate further
properties of the long-term adaptation effects reported here, such as their dependence on stimulus
parameters and response epoch.

Recent psychophysical studies in humans have revealed long-lived repulsive perceptual biases
following briefly presented gratings, biasing subsequent orientation perception over dozens of
seconds (Chopin and Mamassian, 2012; Suarez-Pinilla et al., 2018; Gekas et al., 2019; Fritsche et al.,
2020Db). Our current findings of long-term orientation-specific adaptation in early visual cortex
suggests a potential neural mechanism underlying these perceptual biases. Interestingly, a recent
behavioral study in rats revealed similar long-term dependencies in a vibrissal vibration judgment task
(Hachen et al., 2020), suggesting potential parallels of long-term perceptual adaptation between
rodents and humans. An important future goal will be to quantitatively relate such behavioral
adaptation biases to the present long-term history dependencies at the neural level.

To conclude, our findings highlight the ubiquitous influence of the short- and long-term stimulus
history on current sensory processing in visual cortex. This dependence on the broader temporal
context may enable the visual system to efficiently represent information in a slowly changing
environment (Schwartz et al., 2007; Weber et al., 2019).
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