

1 **A refinement to gene editing in Atlantic salmon using asymmetrical oligonucleotide**
2 **donors**

3 **Authors:** Anne Hege Straume¹, Erik Kjærner-Semb¹, Kai Ove Skaftnesmo¹, Hilal Güralp¹,
4 Simon Lillico², Anna Wargelius¹, Rolf Brudvik Edvardsen^{1*}

5 **Affiliations:**

6 ¹Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway

7 ²The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus,
8 Midlothian, EH25 9RG, UK

9 *Correspondence: rolfbe@hi.no

10 Keywords: CRISPR/Cas9, HDR, ODN, knock-in, aquaculture, New Breeding Technologies

11

12 **Abstract**

13 Selective breeding programs in aquaculture are limited by the heritability of the trait and long
14 generation time in most fish species. New breeding technology (NBT) using CRISPR/Cas9-
15 induced homology directed repair (HDR) have the potential to expedite genetic improvement
16 in aquaculture, but the method requires optimization. Here we show that asymmetrical
17 oligonucleotide (ODN) donors induce highly efficient and precise edits in individual Atlantic
18 salmon founder animals. We performed single nucleotide replacement (SNR) in *dnd* with up
19 to 59.2% efficiency, and inserted FLAG elements into *slc45a2* and *dnd*, with up to 36.7 % and
20 32.7% efficiency, respectively. We found HDR efficiency to be dependent on template
21 concentration, but a trade-off with respect to toxicity was observed. Using this NBT in salmon
22 we demonstrate that precise modification of the genome can be achieved in a single generation,
23 allowing efficient introgression of favorable alleles and bypassing challenges associated with
24 traditional selective breeding.

25 **Introduction**

26 There is an increasing demand for sustainable animal husbandry, and the fast-growing fish
27 aquaculture industry is a food production sector with great potential to improve global food
28 security. Fish aquaculture is also considered to be efficient in terms of feed conversion and
29 protein retention compared to most terrestrial livestock^{1,2}. Atlantic salmon (*Salmo salar* L.) is
30 farmed in the sea at a large scale, but further growth is currently hindered by a range of issues
31 including genetic introgression of escapees into wild populations and the spread of disease^{3,4}.
32 New breeding technology (NBT) using gene editing offer an exciting opportunity to increase
33 the sustainability of open sea-cage salmon farming by allowing us to induce both sterility and
34 disease resistance^{2,5-7}. An important issue when it comes to gene editing in salmon, is to reduce
35 mosaicism in the founder fish. The long generation time (3-4 years) makes breeding an
36 unattractive option to obtain homozygous mutants, and most functional studies must be
37 performed in F0. However, to produce homozygous F1 fish by intercrossing, it will also be
38 desirable to obtain a high percentage of perfect editing in individual F0 fish. Thus, improving
39 the efficiency of precise editing in founder individuals is more important than obtaining a high
40 number of mosaic F0 fish. A CRISPR/Cas9 induced double-stranded DNA break (DSB) in the
41 coding sequence of a gene, followed by activation of the endogenous non-homologous end
42 joining (NHEJ) pathway, results in an array of unpredictable insertions or deletions that may
43 result in frameshift and gene knock-out (KO). This is a useful approach to study KO
44 phenotypes, and has been applied successfully in salmon^{5,7,8} and several other farmed fish
45 species⁹⁻²⁴. To make precise genome alterations it is a necessity to induce homology directed
46 repair (HDR) by supplying a repair template with homology to the CRISPR target site, thereby
47 allowing to change SNPs, insert affinity tags for protein detection and modify regulatory
48 elements to alter expression of target genes. A single nucleotide replacement (SNR) can be
49 used to introduce favorable naturally alleles and could be a promising and time saving solution

50 compared to traditional breeding with backcrossing and selection. The genetic progress in
51 selective breeding programs is also limited by the heritability of the target traits, and the
52 standing genetic variation in the broodstock. NBT using CRISPR/Cas9-induced HDR can offer
53 new solutions and opportunities in these areas^{2,25}.

54 We have previously demonstrated highly efficient HDR in salmon using symmetrical
55 oligonucleotides (ODNs) with short (24/48/84 bp) homology arms to knock-in (KI) a FLAG
56 element in the pigmentation gene *solute carrier family 45 member 2 (slc45a2)*. Using high-
57 throughput sequencing (HTS), we showed *in vivo* ODN-mediated KI in almost all the gene
58 edited animals and demonstrated perfect HDR integration rates of up to 27 % in individual F0
59 embryos²⁶. Short homology arms have also been shown to induce efficient HDR in
60 zebrafish^{27,28}.

61 In this work we aimed to further improve the HDR precision and efficiency in salmon, with
62 the goal to reduce mosaicism in individual F0 animals. Asymmetrical ODNs in combination
63 with CRISPR/Cas9 have previously been demonstrated to improve HDR rates in cell cultures²⁹
64 and induced pluripotent stem cells³⁰. Based on these promising results, we have explored the
65 use of asymmetrical ODNs. We have successfully performed a SNR in the primordial germ
66 cell survival factor gene *dead end (dnd)*, and inserted FLAG elements into both *slc45a2* and
67 *dnd*. SNR was more efficient than FLAG KI, suggesting that HDR efficiency may be inversely
68 proportional with insert size. As previously²⁶, we found HDR efficiency to be dependent on
69 template concentration, but suggest using the lowest possible concentration to avoid toxicity
70 and enable targeting multiple genes at the same time. Our results show that CRISPR/Cas9 in
71 combination with asymmetrical ODNs enables rapid and precise changes to the genome in
72 individual F0 animals and present a promising tool for fish breeders in the future.

73

74

75 **Results and Discussion**

76 **FLAG KI targeting *slc45a2* and *dnd***

77 Targeting *slc45a2*⁵ and *dnd*⁷, we have here performed KI of a FLAG element in F0 salmon
78 using CRISPR/Cas9 and asymmetrical ODNs (Fig. 1a and Supplementary Fig. 1). Analyzing
79 the percentage of perfect HDR in individual animals by HTS of amplicons, we detected an
80 average of 13.6 % (std 10.9 %) for *slc45a2* and 7.6 % (std 10.1 %) for *dnd* (Fig. 1b).
81 Interestingly, we observed some individuals with a very high efficiency in both groups with up
82 to 36.7 % perfect HDR in *slc45a2*, and 32.7 % in *dnd* (Supplementary Table 1). This is higher
83 than our previously reported results showing an average of up to 6.7 % perfect FLAG KI in
84 *slc45a2*, and a maximum of up to 26 % perfect HDR in individual animals, using symmetrical
85 ODNs at 1.5 μ M²⁶. Comparing the efficiency of FLAG KI (targeting *slc45a2*) using
86 asymmetrical ODNs described herein, to symmetrical ODNs described before²⁶, a significant
87 difference was detected for average perfect HDR between symmetrical (5.1 %) and
88 asymmetrical ODNs (13.6 %). No significant difference was detected when comparing the
89 average rates of erroneous HDR between symmetrical (3.1 %) and asymmetrical ODNs (2.0
90 %). (Supplementary Fig. 2).

91

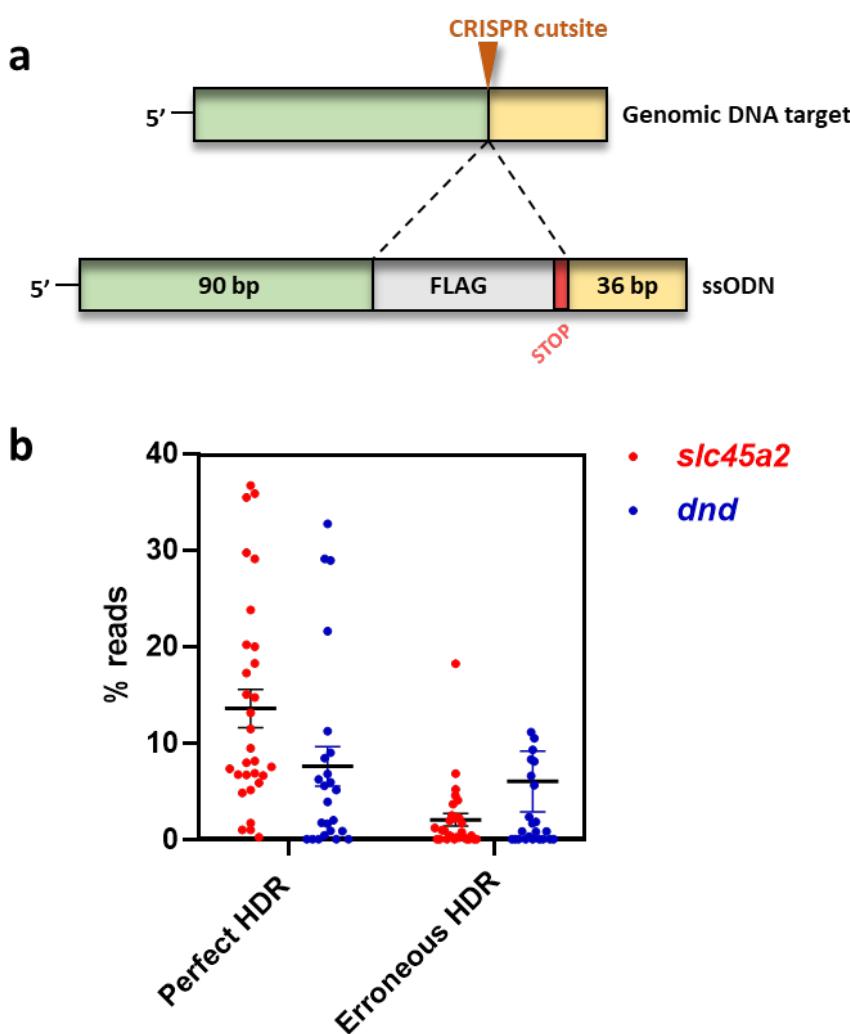
92

93

94

95

96


97

98

99

100 **Fig. 1: *slc45a2* and *dnd* FLAG knock-in (1.5 μ M ODN).**

101

102

103 **a** Asymmetrical ODNs were designed by copying 90 + 36 nucleotides on each side of the CRISPR cut
104 site flanking the insert (indicated with a dotted line) containing the FLAG element followed by a STOP
105 codon (TAA). **b** Relative read counts per individual for *slc45a2* (red dots, n=30) and *dnd* (blue dots,
106 n=24). Reads with a perfect match to the entire target sequence are referred to as perfect HDR. Reads
107 with a correct insert flanked by mismatches/indels on the 5' and/or 3'-side are referred to as erroneous
108 HDR. Error bars indicate SEM/group.

109

110 **Oligonucleotide concentration**

111 We and others^{26,31} have shown that increasing the concentration of the DNA donor improves
112 HDR efficiency. However, DNA can be toxic to cells and we wanted to elucidate if there is a
113 trade-off between high integration efficiency and toxicity by testing the *slc45a2* FLAG KI

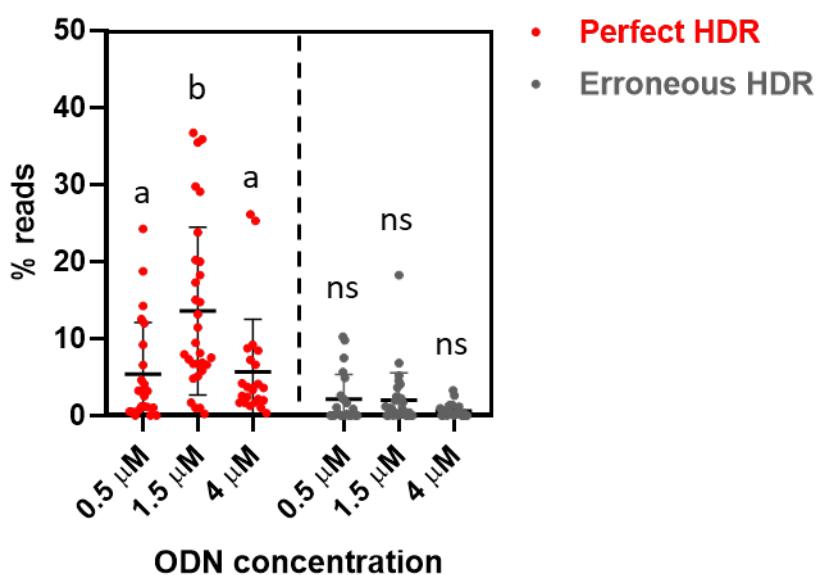
114 ODN at three different concentrations: 0.5, 1.5 and 4.0 μ M (Fig. 2). In accordance with our
115 previous results, a template concentration of 1.5 μ M resulted in the most efficient KI. We
116 detected the approximately same average efficiency when using 0.5 and 4 μ M. However, the
117 highest concentration resulted in fewer pure albinos and a higher degree of mosaicism
118 compared to individuals injected with lower concentrations of template (Supplementary Fig.
119 3). As expected, the HTS results from the animals who had received the highest dose revealed
120 a much higher percentage of wild type reads (Supplementary Table 1). During the
121 microinjection procedure there will be inevitable variation in the volume injected into each
122 fertilized egg. Performing precise microinjections by hand can be challenging due to the
123 opaque salmon eggs, and personal skills will influence the outcome. Technical aspects will also
124 matter, such as variation in the diameter of the needle opening and the egg quality. It is
125 therefore conceivable that the mosaicism observed for the high dose group (4 μ M ODN) is due
126 to toxicity of the injection mix when the injected volume is high. We hypothesize that the
127 surviving eggs received a lower volume of the injection mix, but as they also received a lower
128 dose of the *cas9*- and guide RNA they became more mosaic. Taking this into account, it could
129 be an advantage to use the lowest possible ODN concentration to avoid unnecessary DNA
130 induced toxicity, which would allow editing multiple genes at the same time.

131

132

133

134


135

136

137

138

139 **Fig. 2: *slc45a2* FLAG knock-in.**

140

141 The asymmetrical ODN targeting *slc45a2* was tested using three different concentrations: 0.5 (n=23),
142 1.5 (n=30) and 4.0 (n=23) μ M. Sequence reads with a perfect match to the entire target sequence are
143 referred to as perfect HDR and reads with a correct insert but mismatches/indels in the homology arms
144 are referred to as erroneous HDR. Read counts for each sample are given in % of the total number of
145 reads. The error bars indicate SEM/group. Different lowercase letters indicate significant differences
146 ($P < 0.05$), ns = non-significant.

147

148 Single Nucleotide Replacement

149 Targeting *dnd*, we performed a SNR using an asymmetrical ODN while at the same time
150 continuing to refine the ODN concentration. Using 0.15, 1.5 and 4 μ M ODN concentrations,
151 we obtained an average perfect HDR of 7.4 % (std 14.8), 12.5 % (std 14.3) and 7.4 % (std 9.4),
152 respectively (Fig. 3). However, when analyzing individual fish, the most striking result was
153 obtained using 1.5 μ M where we detected perfect repair efficiency up to 59.2 %. To our
154 knowledge, this level of perfect HDR in F0 has not been reported in any other fish. Even at the
155 lowest concentration (0.15 μ M), two individuals displayed 49.1 and 47.4 % perfect HDR. We
156 speculate that the high efficiency for SNR is due to the lack of insert, as editing efficiency has
157 been shown to be sensitive to insert size³². When CRISPR/Cas9 is used to make a traditional

158 KO through NHEJ, one of the challenges is that the mutation can be in-frame and therefore
159 potentially silent. SNR could solve this by insertion of novel stop codons and as such increase
160 the levels of functional KO mutations. Moreover, for some genes and applications, it may not
161 be relevant to perform KI but to make smaller edits such as a changing one or a few SNPs. One
162 such example is the *vgl3* locus containing two missense SNPs strongly linked to age at
163 maturity in salmon³. Developing precise gene editing technology to make such small edits may
164 therefore be useful to enable NBT introgression of natural beneficial variants into aquaculture
165 strains.

166

167

168

169

170

171

172

173

174

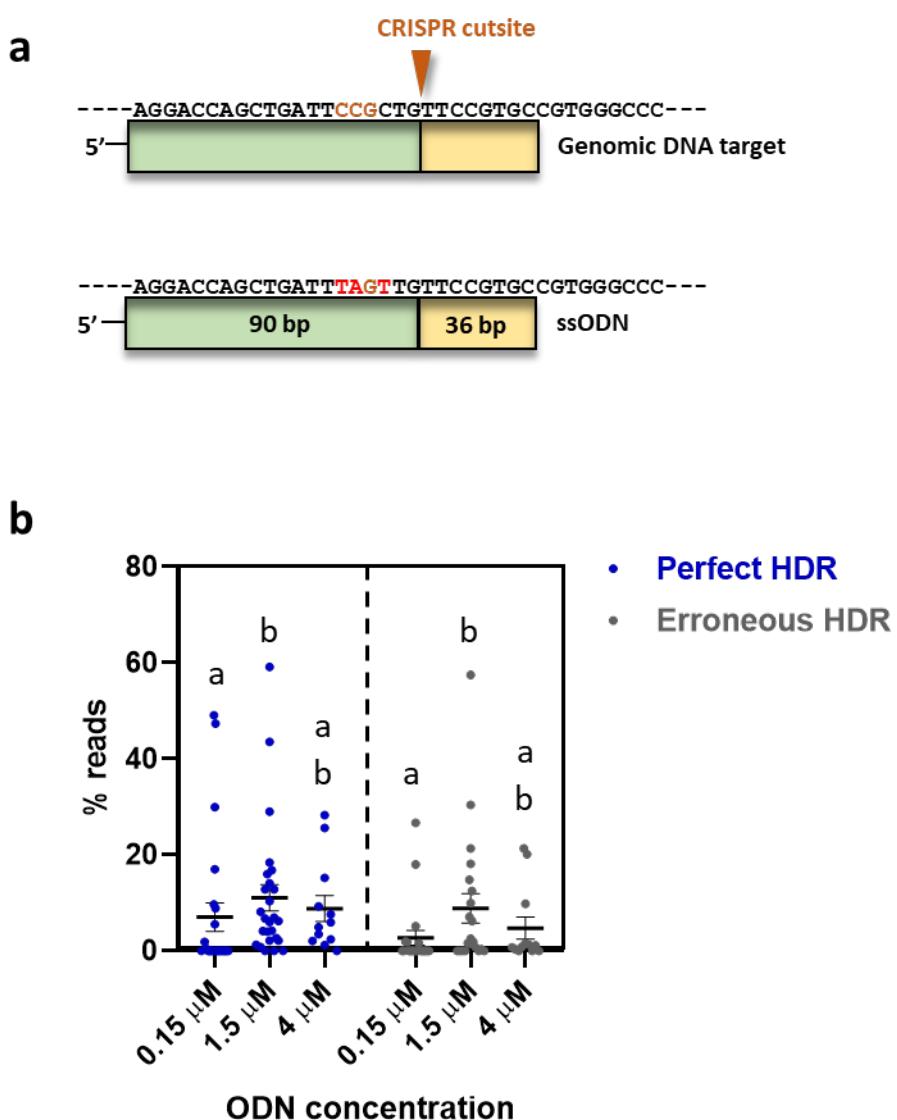
175

176

177

178

179


180

181

182

183 **Fig. 3: Single nucleotide replacement in *dnd***

184

185

186 **a** An asymmetrical ODN targeting *dnd* was designed with 90 + 36 nucleotides on each side of the
187 CRISPR cut site and three nucleotides were changed. PAM site is shown with brown letters, and novel
188 nucleotides with red letters. **b** HDR rates for three different ODN concentrations; 0.15 (n=24), 1.5
189 (n=26) and 4.0 μ M (n=12). Sequence reads with a perfect match to the entire target sequence are
190 referred to as perfect HDR (blue) and reads with a correct SNR but mismatches/indels in the homology
191 arms are referred to as erroneous HDR (gray). Read counts for each sample are given in % of the total
192 number of reads. Error bars indicate SEM/group. Different lowercase letters indicate significant
193 differences ($P < 0.05$).

194

195

196 **Erroneous repair and Indel locations**

197 In addition to reads displaying perfect HDR, we detected reads displaying erroneous repair,
198 meaning reads with a correct FLAG-insert/SNR but also indels on the 5'- and/or 3'-side of the
199 insert/SNR (Figs. 1b, 2 and 3b).

200 In our previous work using symmetrical ODNs, we revealed a strong correlation between ODN
201 polarity and the location of these indels on either the 5'- or 3'-side of the inserted sequence²⁶.

202 According to this, most of the indels will end up on the 5'-side of the insert, when using a repair
203 template with sense orientation relative to the target strand (reverse complementary to the
204 gRNA) (Supplementary Fig. 1a and b). In the current study the orientation of the asymmetrical
205 ODNs were sense relative to the target strand, and we observed that most of the indels were
206 indeed located on the 5'-side of the insert (fewer reads with perfect 5'-reads than 3'-reads).

207 Although this finding supports our previous results, we only detected a significant difference
208 for *dnd* KI and SNR in the present study (Fig. 4).

209

210

211

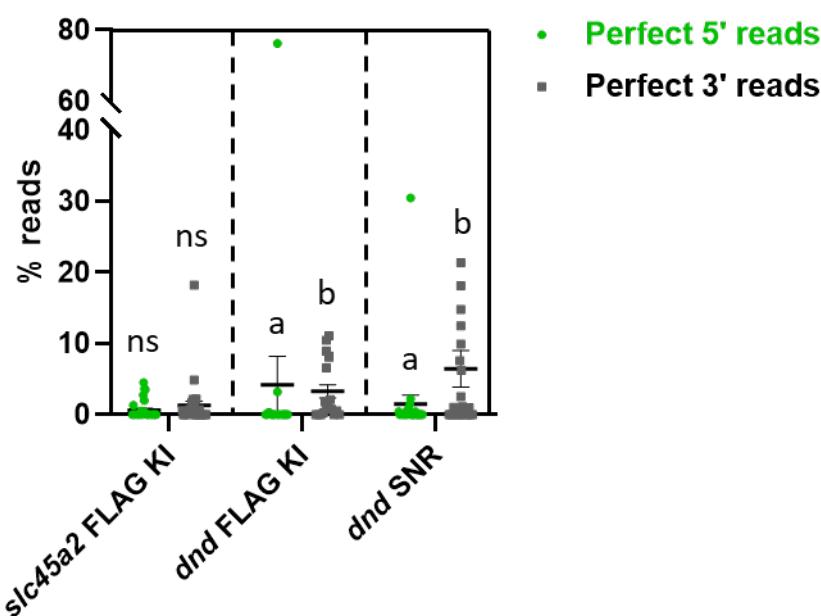
212

213

214

215

216


217

218

219

220

221 **Fig. 4: Variation in indel locations.**

222

223 Here, we distinguished between reads with a perfect match to the 5'- or 3'-side of the FLAG insert/SNR.
224 The asymmetrical ODNs were compared at 1.5 μ M. Green dots represent perfect 5' reads and squares
225 represent perfect 3' reads. Read counts for each sample are given in % of the total number of reads.
226 Error bars indicate SEM/group. The groups *slc45a2* FLAG KI (n = 30), *dnd* FLAG KI (n = 19) and *dnd*
227 SNR (n = 24) were analyzed separately. Different lowercase letters indicate significant differences
228 ($P < 0.05$).

229

230

231 We have here demonstrated that asymmetrical ODNs induce efficient and precise HDR in
232 salmon, both for KI- and SNR. Moreover, asymmetrical ODNs appear to be more efficient than
233 symmetrical ones, as compared to our previous results²⁶ (Supplementary Fig. 2). Comparing
234 the outcome of SNR and KI in *dnd* in we found SNR to be the most efficient approach,
235 suggesting that HDR efficiency is inversely proportional with insert size. Although we found
236 HDR efficiency to be dependent on template concentration, it might be beneficial to use the
237 lowest possible template concentration to avoid toxicity and enable editing multiple genes at
238 the same time. We show that it is possible to use CRISPR/Cas9-induced HDR in NBT to obtain
239 desirable traits. SNR is a promising tool to insert favorable alleles in farmed salmon and,

240 considering the long generation time, more convenient than crossing in traits through
241 conventional breeding. Moreover, this could also be an advantage for aquaculture species in
242 general (e.g trout, sea bass, tilapia). This technology offers an exciting opportunity to insert
243 traits of interest into the recently demonstrated fertile but genetically sterile salmon²⁵. This fish
244 will produce sterile offspring and may therefore represent the future salmon aquaculture by
245 combining sterility and other favorable traits induced by HDR, such as disease resistance.

246

247 **Methods**

248

249 **Ethics statement**

250 This experiment was approved by the Norwegian Animal Research Authority (NARA, permit
251 number 14865) and the use of these experimental animals was in accordance with the
252 Norwegian Animal Welfare Act.

253

254 **Preparation of Cas9 RNA, gRNAs and ODNs**

255 The CRISPR target sequences for *slc45a2* and *dnd1* are described in Edvardsen et al.⁵, and
256 Wargelius et al.⁷, respectively. Preparation of gRNAs and *cas9* mRNA was performed as
257 previously described^{5,26}. The RNeasy MiniKit spin column (Qiagen) was used to purify the
258 gRNA. The ODNs were ordered from Integrated DNA Technologies (Leuven,
259 Belgium). The ODN design is based on Richardson et al.²⁹.

260

261 **Microinjection**

262 Salmon eggs and sperm were delivered by Mowi (Hauglandshella, Askøy, Norway).
263 Fertilization and microinjections were carried out as described previously⁵ using 50 ng/μl
264 gRNA and 150 ng/μl *cas9* mRNA in nuclease free water and a FemtoJet®4i (Eppendorf)

265 microinjector. The ODNs were added to the injection mix with a final concentration of 0.15,
266 0.5, 1.5 or 4 μ M.

267

268 **Analysis of mutants**

269 As described previously²⁶ *slc45a2* mutants were selected based on visual inspection of newly
270 hatched larvae. When editing *dnd*, we also added the *slc45a2* gRNA to the injection mix to
271 obtain a visual phenotype, and thus make it easier to select the mutants. DNA was extracted
272 from caudal fins using DNeasy Blood & Tissue kit (Qiagen). DNA extracted from the fin has
273 previously been shown to be broadly representative for the whole fish^{5,25}. A fragment covering
274 the entire CRISPR target sites for *slc45a2* and *dnd1* was amplified with a two-step fusion PCR
275 (as described in Gagnon et.al 2014) to prepare for Illumina MiSeq. The following primers (gene
276 specific sequence indicated in capital letters) were used in the first PCR-step for *slc45a2*:
277 5'-tcttccctacacgacgcttccgatctCAGATGTCCAGAGGCTGCTGCT and
278 5'-tggagttcagacgtgtgctttccgatctTGCCACAGCCTCAGAATGTACA. The following primers
279 (gene specific sequence indicated in capital letters) were used in the first PCR-step for *dnd*:
280 5'-tcttccctacacgacgcttccgatctGGGGAAAGGCTAGGGAGAGA and
281 5'-tggagttcagacgtgtgctttccgatct CGGTTCTGTCCGCTGAAGTT.

282

283 **Analysis of MiSeq data**

284 Read counts were reported for variants containing the inserted or edited sequence, separating
285 those with a perfect match to the entire target sequence (referred to as perfect HDR), and those
286 with a correct insert sequence/SE, but mismatches in the rest of the target sequence (referred
287 to as erroneous HDR). In addition, read counts were reported for wild type sequences.
288 The settings applied for filtering, trimming and variant calling of the MiSeq reads are illustrated
289 in Supplementary Fig. 4, and described below:

290 Fastq files were filtered and trimmed with the following specifications; primer sequences were
291 used to demultiplex reads from different amplicons on the same sequencing run, minimum read
292 length was set to 100 bp, and forward and reverse reads were assembled to correct sequencing
293 errors (minimum overlap between forward and reverse reads was set to 150 bp for *slc45a2* and
294 200 bp for *dnd*, and allowing maximum 20% mismatches between forward and reverse reads
295 in the overlap region). Assembled reads were combined with forward reads that did not pass
296 the assembly thresholds. Variants were then called using positions 20-200 for *slc45a2* and
297 positions 60-230 for *dnd*. All bases with base quality < 20 were converted to N's, and maximum
298 5 N's were allowed per read. Identical reads were then grouped (referred to as variants), and
299 variants that only differed by up to 5 N's were grouped if none of the variants differed by any
300 nucleotides. For each group, the variant with the least N's was chosen as representative. We
301 only retained variants supported by a minimum of 100 reads and variants were grouped if they
302 differed by up to 5 N's if none of the variants differed by any nucleotides.

303

304 **Statistical analyses**

305 D'Agostino Person normality test (column statistics) were used to assess normal distribution
306 of the data. None of the groups displayed normal distribution, and we carried on with non-
307 parametric analyses. When analyzing more than two groups, non-parametric statistical analyses
308 were performed using a Kruskall-Wallis test, followed by Dunn's multiple comparison test.
309 When analyzing two groups, a Mann-Whitney rank test, or a Wilcoxon paired test was
310 performed. The tests were carried out using GraphPad Prism 8.0.1.

311

312

313

314 References

315 1 Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Feed conversion efficiency in
316 aquaculture: do we measure it correctly? (vol 13, 024017, 2018). *Environ Res Lett* **13**,
317 doi:ARTN 07950210.1088/1748-9326/aad007 (2018).

318 2 Gratacap, R. L., Wargelius, A., Edvardsen, R. B. & Houston, R. D. Potential of Genome Editing
319 to Improve Aquaculture Breeding and Production. *Trends Genet* **35**, 672-684,
320 doi:10.1016/j.tig.2019.06.006 (2019).

321 3 Ayllon, F. *et al.* The vgl3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic
322 Salmon (*Salmo salar* L.) Males. *PLoS Genet* **11**, e1005628, doi:10.1371/journal.pgen.1005628
323 (2015).

324 4 Taranger, G. L. *et al.* Risk assessment of the environmental impact of Norwegian Atlantic
325 salmon farming. *Ices J Mar Sci* **72**, 997-1021, doi:10.1093/icesjms/fsu132 (2015).

326 5 Edvardsen, R. B., Leininger, S., Kleppe, L., Skaftnesmo, K. O. & Wargelius, A. Targeted
327 mutagenesis in Atlantic salmon (*Salmo salar* L.) using the CRISPR/Cas9 system induces
328 complete knockout individuals in the F0 generation. *PLoS One* **9**, e108622,
329 doi:10.1371/journal.pone.0108622 (2014).

330 6 Wargelius, A. Application of genome editing in aquatic farm animals: Atlantic salmon.
331 *Transgenic Res* **28**, 101-105, doi:10.1007/s11248-019-00163-0 (2019).

332 7 Wargelius, A. *et al.* Dnd knockout ablates germ cells and demonstrates germ cell
333 independent sex differentiation in Atlantic salmon. *Sci Rep* **6**, 21284, doi:10.1038/srep21284
334 (2016).

335 8 Alex K. Datsomor, N. Z., Keshuai Li1, Rolf E. Olsen, Yang Jin, Jon O. Vik, Rolf B. Evardsen,
336 Fabian Grammes, AnnaWargelius & Per Winge. CRISPR/Cas9-mediated ablation of elovl2 in
337 Atlantic salmon (*Salmo salar* L.) inhibits elongation of polyunsaturated fatty acids and
338 induces Srebp-1 and target genes. *Sci Rep-Uk* (2019 (in press)).

339 9 Baloch, A. R. *et al.* Dnd1 Knockout in Sturgeons By CRISPR/Cas9 Generates Germ Cell Free
340 Host for Surrogate Production. *Animals (Basel)* **9**, doi:10.3390/ani9040174 (2019).

341 10 Chen, J. *et al.* Heterozygous mutation of eEF1A1b resulted in spermatogenesis arrest and
342 infertility in male tilapia, *Oreochromis niloticus*. *Sci Rep* **7**, 43733, doi:10.1038/srep43733
343 (2017).

344 11 Chen, J. *et al.* Efficient Gene Transfer and Gene Editing in Sterlet (*Acipenser ruthenus*). *Front
345 Genet* **9**, 117, doi:10.3389/fgene.2018.00117 (2018).

346 12 Cleveland, B. M., Yamaguchi, G., Radler, L. M. & Shimizu, M. Editing the duplicated insulin-
347 like growth factor binding protein-2b gene in rainbow trout (*Oncorhynchus mykiss*). *Sci Rep*
348 **8**, 16054, doi:10.1038/s41598-018-34326-6 (2018).

349 13 Elaswad, A. *et al.* Effects of CRISPR/Cas9 dosage on TICAM1 and RBL gene mutation rate,
350 embryonic development, hatchability and fry survival in channel catfish. *Sci Rep-Uk* **8**,
351 doi:ARTN 1649910.1038/s41598-018-34738-4 (2018).

352 14 Feng, R. J. *et al.* Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic
353 entry in Nile tilapia (*Oreochromis niloticus*). *Sci Rep-Uk* **5**, doi:ARTN
354 1013110.1038/srep10131 (2015).

355 15 Jiang, D. N. *et al.* CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different
356 roles in kidney and gonad development in Nile tilapia. *Dev Biol* **428**, 63-73,
357 doi:10.1016/j.ydbio.2017.05.017 (2017).

358 16 Khalil, K. *et al.* Generation of Myostatin Gene-Edited Channel Catfish (*Ictalurus punctatus*)
359 via Zygote Injection of CRISPR/Cas9 System. *Sci Rep-Uk* **7**, doi:ARTN 730110.1038/s41598-
360 017-07223-7 (2017).

361 17 Kishimoto, K. *et al.* Production of a breed of red sea bream *Pagrus major* with an increase of
362 skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9.
363 *Aquaculture* **495**, 415-427, doi:10.1016/j.aquaculture.2018.05.055 (2018).

364 18 Li, M. *et al.* A Tandem Duplicate of Anti-Mullerian Hormone with a Missense SNP on the Y
365 Chromosome Is Essential for Male Sex Determination in Nile Tilapia, *Oreochromis niloticus*.
366 *PLoS Genet* **11**, e1005678, doi:10.1371/journal.pgen.1005678 (2015).

367 19 Li, M. *et al.* Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. *Genetics* **197**,
368 591-599, doi:10.1534/genetics.114.163667 (2014).

369 20 Li, M. H. *et al.* Retinoic acid triggers meiosis initiation via stra8-dependent pathway in
370 Southern catfish, *Silurus meridionalis*. *Gen Comp Endocr* **232**, 191-198,
371 doi:10.1016/j.ygcen.2016.01.003 (2016).

372 21 Li, M. H., Liu, X. Y., Dai, S. F., Xiao, H. S. & Wang, D. S. High Efficiency Targeting of Non-coding
373 Sequences Using CRISPR/Cas9 System in Tilapia. *G3-Genes Genom Genet* **9**, 287-295,
374 doi:10.1534/g3.118.200883 (2019).

375 22 Xie, Q. P. *et al.* Haploinsufficiency of SF-1 Causes Female to Male Sex Reversal in Nile Tilapia,
376 *Oreochromis niloticus*. *Endocrinology* **157**, 2500-2514, doi:10.1210/en.2015-2049 (2016).

377 23 Zhang, X. B. *et al.* Isolation of Doublesex- and Mab-3-Related Transcription Factor 6 and Its
378 Involvement in Spermatogenesis in Tilapia. *Biol Reprod* **91**, doi:ARTN
379 13610.1095/biolreprod.114.121418 (2014).

380 24 Zhong, Z. M. *et al.* Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in
381 severe bone defects and more muscular cells in common carp. *Sci Rep-Uk* **6**, doi:ARTN
382 2295310.1038/srep22953 (2016).

383 25 Guralp, H. *et al.* Rescue of germ cells in dnd crispant embryos opens the possibility to
384 produce inherited sterility in Atlantic salmon. *Sci Rep* **10**, 18042, doi:10.1038/s41598-020-
385 74876-2 (2020).

386 26 Straume, A. H. *et al.* Indel locations are determined by template polarity in highly efficient in
387 vivo CRISPR/Cas9-mediated HDR in Atlantic salmon. *Sci Rep* **10**, 409, doi:10.1038/s41598-
388 019-57295-w (2020).

389 27 Boel, A. *et al.* CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish
390 induces complex mutational patterns resulting from genomic integration of repair-template
391 fragments. *Dis Model Mech* **11**, doi:10.1242/dmm.035352 (2018).

392 28 Wierson, W. A. *et al.* Efficient targeted integration directed by short homology in zebrafish
393 and mammalian cells. *eLife* **9**, doi:10.7554/eLife.53968 (2020).

394 29 Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-
395 directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric
396 donor DNA. *Nat Biotechnol* **34**, 339+, doi:10.1038/nbt.3481 (2016).

397 30 Sanjurjo-Soriano, C. *et al.* Genome Editing in Patient iPSCs Corrects the Most Prevalent
398 USH2A Mutations and Reveals Intriguing Mutant mRNA Expression Profiles. *Mol Ther*
399 *Methods Clin Dev* **17**, 156-173, doi:10.1016/j.omtm.2019.11.016 (2020).

400 31 Paix, A., Schmidt, H. & Seydoux, G. Cas9-assisted recombineering in *C. elegans*: genome
401 editing using in vivo assembly of linear DNAs. *Nucleic Acids Res* **44**, e128,
402 doi:10.1093/nar/gkw502 (2016).

403 32 Paix, A. *et al.* Precision genome editing using synthesis-dependent repair of Cas9-induced
404 DNA breaks. *Proc Natl Acad Sci U S A* **114**, E10745-E10754, doi:10.1073/pnas.1711979114
405 (2017).

406

407

408

409

410 **Acknowledgement**

411 Our study was funded by the EU-COFASP project: “AQUACRISPR: Optimization of the
412 CRISPR/Cas9 knock-in technology and application in salmon and trout”. We would like to
413 thank Lise Dyrhovden and Ivar Helge Matre for their assistance in rearing. We are also grateful
414 for the assistance of Hanne Sannæs and Ida Kristin Mellerud for running the MiSeq, Aquagen
415 (Trondheim, Norway) and Mowi (Hauglandshella, Askøy, Norway) for providing eggs and
416 sperm.

417 **Author contributions**

418 R.B.E., A.H.S. and A.W. designed the project. A.H.S., E.K.S., H.G. and R.B.E. performed the
419 microinjections. A.H.S. and R.B.E. designed the ODN templates and collected the tissue
420 samples. A.H.S. made the gRNA and Cas9 RNA, purified the DNA and ran the PCR screening.
421 K.O.S. prepared the Illumina sequencing libraries. E.K.S. performed the bioinformatic analysis
422 of the NGS. A.H.S., A.W. and R.B.E. analyzed the results and wrote the paper. All authors
423 read and approved the final manuscript.

424 **Additional Information**

425 **Competing interests**

426 The authors declare that they have no competing interests

427 **Data Availability**

428 Data generated or analyzed during this study are included in this article (and its
429 Supplementary Information).

430