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One Sentence Summary: Signatures of in vitro potency and drug interaction measurements

predict combination therapy outcomes in mouse models of tuberculosis.
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Abstract: A lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis.
Variation in Mycobacterium tuberculosis drug response 1is created by the differing
microenvironments in lesions, which generate different bacterial drug susceptibilities. To better
realize the potential of combination therapy to shorten treatment duration, multidrug therapy
design should deliberately explore the vast combination space. We face a significant scaling
challenge in making systematic drug combination measurements because it is not practical to use
animal models for comprehensive drug combination studies, nor are there well-validated high-
throughput in vitro models that predict animal outcomes. We hypothesized that we could both
prioritize combination therapies and quantify the predictive power of various in vitro models for
drug development using a dataset of drug combination dose responses measured in multiple in
vitro models. We systematically measured M. tuberculosis response to all 2- and 3-drug
combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments.
Applying machine learning to this comprehensive dataset, we developed classifiers predictive of
multidrug treatment outcome in a mouse model of disease relapse. We trained classifiers on
multiple mouse models and identified ensembles of in vifro models that best describe in vivo
treatment outcomes. Furthermore, we found that combination synergies are less important for
predicting outcome than metrics of potency. Here, we map a path forward to rationally prioritize
combinations for animal and clinical studies using systematic drug combination measurements
with validated in vitro models. Our pipeline is generalizable to other difficult-to-treat diseases

requiring combination therapies.

[Main Text: ]
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Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), remains a major
global health issue. In 2019, an estimated ten million people fell ill with TB, and about 1.4 million
people died (7). Development of shorter treatment regimens is a key part of the third pillar of the
WHO End TB Strategy (2). Multidrug treatment regimens were developed to treat active TB
infections by shortening treatment duration, reducing disease relapse, and decreasing antibiotic
resistance development (3). The standard TB treatment is six to nine months of multidrug treatment
with an estimated 85% cure rate (/, 4, 5). The first two months of treatment (intensive, bactericidal
phase) consist of four drugs (isoniazid, rifampicin, pyrazinamide, and ethambutol) that reduce
sputum Mtb levels but are less effective against non-replicative bacilli (3, 4, 6). The following four
to seven months of treatment (continuation phase) consist of two drugs (isoniazid and rifampicin)
aimed at reducing disease relapse by treating persisting bacteria that survived the intensive phase
(3, 4, 6). New regimens that can more efficiently treat Mtb are needed to shorten the intensive
phase of treatment and reduce or eliminate the bacteria that persist and require continuation phase

treatment (4).

Due, in large part, to the heterogeneity of TB lesions and treatment response among the Mtb
population, combination therapy is required to treat active TB. Therapies should therefore be
designed as combinations of antibiotics rather than single antibiotics alone. There are many drug
options for new treatment regimens using existing drugs and drugs in development (7), which
creates an enormous number of possible drug combinations (5). Preliminary results from a Phase
3 clinical trial (“Study 31”) demonstrated that treatment could be shortened using a novel
combination of existing TB antibiotics (8, 9). Relatively new drugs that can target non-replicative
bacteria (bedaquiline, pretomanid, delamanid, SQ109) (/0-12) in combination with established

drugs are in new, treatment-shorting regimens for multidrug resistant TB (MDR-TB) (5, 13, 14).
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Treatment shortening potential in Phase 2b trials (75, /6)) led to the Phase 3 STAND clinical trial
testing the use of pretomanid with pyrazinamide and moxifloxacin, PaMZ (Table 1) (/7). Adding
bedaquiline to PaMZ (BPaMZ, Table 1) in a Phase 2b trial (/8) shortened culture conversion time
of MDR-TB so dramatically that the STAND trial was put on permanent hold to start the Phase 3
SimpliciTB trial to evaluate BPaMZ for treating both drug-sensitive TB and MDR-TB (9, 19).
Together, these studies and the history of TB drug regimen design has demonstrated that there is
treatment-shortening potential in the drug combination space. A critical step for developing new
treatment regimens is prioritizing the thousands of drug combinations before clinical testing.
However, it is not practical to evaluate thousands of combinations using the current preclinical
regimen design pipeline, which combines in vitro and small animal studies. An efficient
methodology is needed to systematically assess drug combinations and prioritize the thousands of

multidrug combinations for their treatment-shorting potential.

Animal models are critical to regimen development, and mouse models are a primary tool in
multidrug therapy design (20-24). Mouse strains where Mtb is primarily intracellular (e.g.,
BALB/c and C57BL/6) are the most widely used (24). Mouse strains that form mixed lesion types
(e.g., C3HeB/Fel) are used to study drug response because the disease pathology is more human-
like, include granulomas with caseous necrotic cores (21, 25, 26). Mtb drug response differs
between these two types of mouse models, and both are important preclinical tools because the
model-specific drug response is thought to result from the different lesion microenvironments
present in each animal model (24, 27-29). Despite their utility for regimen development,
comprehensive drug measurements in mice are not feasible. It is only practical to perform
systematic drug combination studies in vitro, but in vitro studies do not clearly map to in vivo

outcomes (24, 30). Many in vitro models mimic aspects of the host microenvironment encountered
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in the different TB lesion types. Many of these in vitro models are well suited for systematic drug
combination studies, but none have been validated to prioritize drug combinations against

preclinical animal models.

We propose to realize the potential of drug combinations to improve treatment by developing a
pipeline to map in vitro measurement of drug response to outcomes in mouse models. Here, we
utilized the efficiency of an experimental design and analysis method called DiaMOND (diagonal
measurement of n-way drug interactions) (3/) to create a compendium of drug combination
responses in Mtb using multiple in vitro models that were designed to reproduce aspects of the
environments encountered in different lesion types. Applying machine learning to this
comprehensive in vitro dataset, we identified signatures of drug potency and interaction that could
predict whether combinations would outperform the standard of care. Classifiers based on these
signatures also enabled us to establish a mapping between in vitro models and the different mouse
models, which differ in lesion type (microenvironment) and outcome. Overall, our study
establishes a logistical path to optimize combination therapies for TB using systematic

measurement in validated in vitro growth models and computational modeling.

Results
Drug combination compendium construction

We developed a pipeline to efficiently prioritize drug combinations early in regimen development
based on drug combination measurements from in vitro models. Using the DiaMOND
methodology (37), we designed a compendium of drug combination measurements to survey

informative drug-dose combinations (DiaMOND compendium). To compare in vitro data to
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treatment responses in animal models, our DiaMOND compendium focused on (A) first- and
second-line agents, for which there are abundant animal data and (B) measurements in in vitro

growth conditions that model environments encountered during infection.

Mtb encounters a diversity of environmental niches during infection that influence response to
drug treatment. We aimed to model drug response by aggregating measurements from a suite of
in vitro models. We focused on modeling factors previously shown to influence Mtb growth and/or
drug response, such as different carbon sources and abundance, low pH, low oxygen tension, and
the intracellular environment (217, 30, 32-40). We developed or adapted eight in vitro models that
were reproducible and scalable for systematic, high-throughput drug combination studies for this
study. We varied carbon sources, with an emphasis on cholesterol and fatty acids, to model the
lipid-rich environment in TB granulomas, using butyrate, valerate, cholesterol, and higher levels
of cholesterol (cholesterol-high) as sole carbon sources. We used 7H9-based medium to compare
against the most commonly utilized in vitro growth model with glycerol as a carbon source
(standard). We also included in vitro models that mimic important factors encountered during
infection: low pH (acidic), infection of J774 macrophages (intracellular), and developed a low-
oxygen multi-stress model that induces dormancy using butyrate as a carbon source, sodium nitrate
to respire (4/-43), and plate seals to limit oxygen (dormancy). The doubling times varied
considerably among the models, ranging from 16h to one week (Fig. 1A). We scaled the timing of
the experiments relative to the doubling time of each model so that drug response measurements

would not be biased by changes in growth rate (Table S1).

Drug combination dose response measurements

For the DiaMOND compendium, we selected ten antibiotics in first- and second-line TB treatment

regimens and for which there are abundant in vivo (mouse) data (Table 1, Table S2). These drugs
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include cell wall synthesis inhibitors (ethambutol, isoniazid, and pretomanid), rifamycin
transcriptional inhibitors (rifampicin and rifapentine), protein synthesis inhibitor (linezolid),
inhibitors of energy metabolism (bedaquiline and clofazimine), DNA replication inhibitor
(moxifloxacin), and the antimycobacterial agent pyrazinamide (Fig. 1A, Table S2). We treated the
Mtb Erdman strain carrying an autoluminescent reporter and measured both optical density
(ODe¢0o) and luminescence at multiple time points after drug treatment. We observed a strong
dependency in drug potency on in vitro model (Fig. 1A, inhibitory concentration to achieve 90%
inhibition, 1Cqo. Table S3), consistent with the idea that drug efficacy is influenced by bacterial
stress (44). We did not observe remarkable correlations in potency profiles by in vitro model.
However, hierarchical clustering of drug potencies showed some groupings of drugs consistent
with their target cell process (e.g., rifamycin transcriptional inhibitors group together, isoniazid
and pretomanid - inhibitors of cell wall synthesis - group together). We also observed clustering
of similar in vitro models. For example, potency profiles from growth media with short-chain fatty

acids butyrate and valerate as the carbon source group together (Fig. 1A).

We observed condition-specific drug potencies consistent with previous reports, suggesting that
the models we adapted for high-throughput drug response measurements may be predictive of
outcomes in animals. For example, the activity of pyrazinamide in acidic and intracellular models
and inactivity in the standard model (Table S2) was consistent with in vitro (45, 46) and animal
studies (47-49). We also observed pyrazinamide activity with lipid carbon sources, which has not
been previously reported. As previously described, the rifamycins shared similar potency profiles
with higher potency of rifapentine (Table S3) (50). Bedaquiline was more potent in medium with
lipids as the carbon source compared to standard medium with sugars as previously described (57).

Isoniazid potency was lower in the dormancy model, consistent with its inactivity towards non-
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replicating bacilli (52-54) and previous studies showing decreased efficacy in the presence of
nitrite (4/). The wide range of single-drug responses and consistency with prior studies suggest
that the in vitro models in this study produce non-redundant drug response data and form a

validated set of conditions to model the lesion-specific variation in drug response.

Using these eight in vitro models, we constructed a compendium of systematic drug combination
measurements by utilizing the DiaMOND method's efficiency (Box). DiaMOND is a geometric
optimization of the traditional checkerboard assay of drug-dose combinations. DiaMOND
estimates the effect of combining drugs using a fraction of possible drug-dose combinations and
focuses on the single drug and equipotent drug combination dose responses (37). We measured all
1-, 2-, and 3-drug combination dose responses (totaling 175 combinations) in at least biological
duplicate (Fig. 1B), resulting in a compendium of over 51,000 individual dose response curves.
We focused our analysis on up to two timepoints per in vitro model to navigate this complex
dataset. We chose the last time point (terminal, T) that is relative to the doubling rate (4 to 5
doublings for most models) and at a consistent treatment timepoint (constant, C) across in vitro
models, ~7 days post treatment; Fig. 1A, Table S1. We also selected the measurement type that
best benchmarks against colony forming units (ODgoo for all models except intracellular and
dormancy models, for which we used luminescence, Fig. S1). This selected dataset represents

approximately one-quarter of the total number of compendium dose responses.

We analyzed the single- and combination-drug treatments to derive potency and drug interaction
information (see Box). With DiaMOND, we can quantify the degree and directionality of
interactions at different growth inhibition levels using common null models (e.g., Loewe additivity
and Bliss independence). Drug combinations that are more or less effective than expected based

on single-drug behaviors are considered synergistic and antagonistic, respectively. Drug
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interactions are quantified with fractional inhibitory concentrations (FICs) at different growth
inhibition levels (e.g., FICso and FICoo are measured at the ICso and 1Coqo, respectively). FIC
measurements were log-transformed to represent synergistic and antagonistic combinations with
negative and positive log>(FIC) values, respectively. Drug interaction metrics based on Loewe
additivity and Bliss independence were correlated (FICso and FICo for the constant and terminal
time points, r=0.81, p < 2.2x1073%, Pearson’s correlation, Fig. S2); we, therefore, selected Loewe
additivity as the null model for systematic analysis in the compendium (FICso and FICoo). Dose
response curves provide treatment potency metrics at a low dose (AUCs; a normalized area under
the curve to 1Cas, see Box) or high dose (Einf; the maximum achievable effect). To compare potency
across models where Mtb have different growth properties, we calculated the maximum achievable
inhibition of normalized growth rate (GRinf; see Box), which allows direct comparison of treatment
effects on cells with very different growth rates (55). Though many other drug response metrics
may be calculated from DiaMOND data, our analysis focused on these five metrics -- FICso, FICoo,
AUC;s, Einr, GRinr -- because they represent well-characterized and biologically interpretable

aspects of drug interactions and potencies across low- and high-dose ranges.
Drug synergy is uncommon and does not distinguish effective combinations

To identify patterns in drug interactions, we clustered the compendium drug interactions at the
terminal time point in all eight growth environments, using 90% growth inhibition (log2(FICoo),
Fig. 2A) and 50% growth inhibition (log2(FICso), Fig. S3). Clustering did not reveal obvious
model-wide synergy for any combination. Instead, we observed that most drug interactions were
antagonistic (70% of FIC9p>0), consistent with a general trend towards antagonism in drug
interactions observed in other organisms (37, 56-60) and cancer (6/). The tendency towards

antagonism depended on the growth model, with some conditions showing a balance between
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synergy and antagonism (intracellular and acidic), and others almost entirely antagonistic
(cholesterol). Together these data suggest that synergy is a property of both drug and growth

environment rather than an intrinsic property of the drug.

To understand whether combinations that tend toward in vitro synergy are more effective in vivo,
we compared selected combinations with differences in disease relapse from the most commonly
used mouse strains (e.g., BALB/c, C56BL/6, Swiss). The relapsing mouse models (RMM)
evaluate drug efficacy months after cessation of drug treatment, somewhat analogous to the
clinical measurement of relapse (62, 63). We did not observe combination rank-ordering by
synergy in any growth condition that matched efficacy in the RMM; e.g., BPaL>MRZ>HRZ>RZ
(Fig. 2B) (22, 64-71). Instead, we observed the 3-drug standard of care (HRZ) was the most
synergistic drug combination, and BPalL was the most antagonistic among this subset (Fig. 2B).
These examples suggest that drug interaction scores alone in the measured in vitro models were

poor indicators of in vivo combination efficacy.

Synergistic drug combinations are not necessarily more effective than antagonistic combinations
as the maximum effect of a combination can change independently of the drug interaction (72)
(see Box). A tradeoff between synergy and efficacy appears to be important to consider when
selecting effective drug combinations for treating other diseases (e.g., hepatitis C, HIV, and
cancer), with maximum effect often being more important than synergy (73, 74). To determine if
the maximum effect could be used to prioritize combinations from the DiaMOND compendium,
we clustered the Einr (a measure of maximum dose response effect, see Box) for all compendium
drug combinations in all eight in vitro models at the terminal time point (Fig. 2C). We observed a
high maximum effect (Ein£>0.9, Fig. 2C) in most combinations, consistent with the drugs' known

anti-Mtb effects. Dormancy and cholesterol-high models exhibited little variation in Einf,

10
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suggesting that neither condition had the dynamic range of maximum effect needed to discriminate
among combinations or that all drug combinations are effective in these growth conditions for
extended drug exposures. We compared Eiqr profiles for the selected combinations we examined
before, and we found that BPaLL was more potent than HRZ or MRZ (Fig. 2D), consistent with
animal outcomes of these regimens (22, 64-71). These examples suggest that maximum achievable
effect in vitro may be a stronger predictor of outcomes in mouse models than synergy. As with
Einr, we observed correct rank ordering in some in vitro models by other potency metrics (AUCzs
and GRinr) (Fig. S4), though we identified no drug combinations in the DiaMOND compendium
that were maximally potent across all eight models (Fig. S5). The correct ordering of selected drug
combinations by mouse outcome suggests that the DiaMOND compendium contains useful

information for identifying efficacious drug combinations.

DiaMOND metric signatures are predictive of treatment outcomes in the relapsing mouse model

We hypothesized that combinations of in vitro measurements could be compiled to model the in
vivo microenvironments experienced by Mtb during drug treatment. We asked whether signatures
of DiaMOND compendium measurements could distinguish drug combinations that were better
than the standard of care in animal studies, HRZE or HRZ (Table 1). We classified 27 drug
combinations that we measured in the compendium based on whether the treatment outcome in
published RMM studies was better than the standard of care (C1) or not (CO) (Table S4). Principal
component analysis (PCA) demonstrated that linear combinations of in vitro features could
separate CO and C1 drug combinations (Fig. 3A, Wilcoxon rank-sum, p<0.005, Table S5).
Inspection of feature contributions to the principal component (PC) that best separates CO and C1
drug combinations revealed many features related to cholesterol, standard, and valerate growth

models (Fig. 3B). We also observed that potency metrics (AUCzs, Einr, GRinr) are almost

11
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exclusively represented in the top 20 contributing features (Fig. 3B). Together these results suggest
that effective separation of Cl1 and CO drug combinations requires measurement of drug

combination potency in multiple growth environments.

To develop signatures of DiaMOND metrics that characterize CO from C1 combinations, we
trained binary classifiers with eight different machine learning (ML) methods to distinguish CO
and C1 drug combinations and compared their performance in 5-fold cross-validation (Table S6).
We observed that nonlinear ensemble methods (Bayesian additive regression trees, random forest
(RF), and gradient boosted trees) outperformed other ML algorithms, as measured by the area
under the receiver operator characteristic (ROC) curve (AUC) and the F1 statistic, which is the
harmonic mean of precision and recall (Table S6). We performed additional validation of the RF
model by applying it to higher-order (4- and 5-way) drug combinations commonly used in
preclinical and clinical tests that were not considered during model training (Table S7). The RF
model accurately predicted outcomes (Fig. 3C, AUC=1, F1=0.86) and exhibited performance
similar to what was estimated in cross-validation. Overall, the performance of ML models
demonstrates that there is a strong signal in the DiaMOND compendium that is predictive of RMM

drug combination efficacy.

We observed that some of the in vitro models in the DiaMOND compendium are well-represented
among the top-ranked features in the classifying PCs (Fig. 3B). In contrast, other in vitro models
are not present, suggesting that a subset of in vitro models may be sufficient to predict treatment
outcome in the RMM. We asked whether classifiers using the DiaMOND compendium data from
one in vitro model at a time were predictive of RMM outcome class. We observed that the data
signal separating CO and C1 drug combinations appeared in at least one PC for all eight in vitro

models (Fig. 4A, Wilcoxon rank-sum test, p<0.05, Fig. S6). Furthermore, the five technically
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simpler models to work with exhibited clear CO and C1 separation (Fig. 4A, in vitro models

cholesterol, butyrate, standard, valerate, Fig. S6 in vitro model acidic).

Though the single in vitro model classifiers were moderately predictive, they did not perform as
well as the classifier trained using data from all eight in vitro models (Table S8). We asked whether
another high-performing classifier could be derived using a subset of in vifro models. We
systematically trained RF classifiers by considering all possible model combinations and observed
that among the 255 possible combinations of in vitro models, 67 (26.3%) performed better than
the classifier trained on all eight models. Furthermore, predictors including only the simpler in
vitro models performed as well or better than those including the “complex™ (intracellular,
dormancy, cholesterol high) models (Fig. 4B, student’s t-test, p>0.05). We further validated the
highest performing classifiers trained on the simple in vitro models by applying them to the higher-
order (4- and 5-way) drug combinations as well as drug combinations involving antibiotics
(delamanid, sutezolid, and SQ109, Table S1) that were not included in the compendium’s 10-drug
set (Table S7). The high performance of classifiers on this validation set suggests that
computationally combining simple in vitro models can produce classifiers that inform possible
RMM outcomes (Fig. 4C). Additionally, the large number of classifiers that exhibit high accuracy
and the shared DiaMOND compendium metrics among several in vitro models suggests that there

may be multiple combinations of in vitro models that are predictive of outcomes in the RMM.

With many high performing RMM classifiers trained using subsets of the five simple in vitro
models (Fig. 4C), we assessed whether the predicted RMM outcome for specific drug
combinations would be consistent between these classifiers. The classifiers produce a probability
that a drug combination belongs to each class (e.g., drug combination X belongs to C1 with 60%

probability and CO with 40% probability). The threshold probability is usually at 50% to assign
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the classification, but the probability can also rank combination classification likelihood. We
tabulated the predicted probabilities of outcome for all combinations in the compendium, as well
as the higher-order and new drug combination validation set, using the top-performing simple in
vitro model classifiers shown in Fig. 4C. As we had previously observed, rank-ordering the percent
probabilities within each classifier shows high predictive performance when evaluating the
validation set. Among all predictions made for the compendium and validation combinations, we
noted that 36% of drug combinations had discordant predictions among the three classifiers. We
did not observe a consistent pattern in which a classifier was discordant. We next tested whether a
consensus prediction could be generated by simply averaging the probabilities of the top three
classifiers. We observed that the discordant combinations were clustered in the second quartile
(probability of C1 around 25-50%), suggesting that classifiers are most prone to error for
combinations that are CO. This may be due to the mild class imbalance in the training set (11 CO
and 16 C1 combinations). The consensus prediction was highly accurate (84% of validation set
and 93% overall). Incorrect consensus predictions were at the border between CO and C1 at 42-
47% C1, indicating that the misclassification was due to ambiguity near the 50% decision
boundary instead of strong classifier discordance. We conclude that a simple averaging of the
probabilities generated by top classifiers is a practical means to construct an accurate consensus

rank ordering for predicting drug combination response outcomes.

DiaMOND metrics describe the efficacy of drug combination treatments in the C3HeB/FeJ mouse

model

Given the success of ML classifiers to predict RMM outcomes, we next asked whether the
DiaMOND compendium can be used to predict outcomes in other mouse models. Bactericidal

activity in the most commonly used mouse strains (e.g., BALB/c, C56BL/6, Swiss) has been used
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extensively to evaluate drug combination effectiveness. Bactericidal activity in these models
(bactericidal mouse model, BMM, Table 1) measures the reduction in bacterial burden by drug
treatment immediately following drug treatment and can be assessed more quickly than relapse.
Using the same analysis pipeline, we trained ML classifiers to recognize CO or C1 drug
combinations for the BMM outcome (Table S9) but observed that the classifier performance was
only mildly predictive (AUC = 0.67, F1 = 0.40) (Fig. S7). Additional analysis of in vitro model
subsets identified many predictors with improved performance, but this improvement did not
generalize to test data. Moderate model training performance and poor generalizability to new data
suggest that the drug combination information needed for BMM outcome predictions may be

difficult to capture with the in vitro models developed and used in this study.

The C3HeB/FeJ (HeB) mouse strain has become important for TB regimen development because
the disease pathology is more similar to humans than other mouse strains (26, 27, 75). This
includes the formation of caseous, necrotic granulomas that are characterized by low oxygen
content (hypoxia) (27, 75, 76) and differential drug penetrance (77, 78). These lesions also contain
large numbers of extracellular, non-replicating bacteria (24, 76). Like other mouse studies, those
with HeB mice use bactericidal (BHeB) and relapse outcomes to determine drug effectiveness.
Fewer drug combinations have been tested and published using HeB mice than other mouse strains.
The DiaMOND compendium contained too few measured combinations to train ML classifiers.
When we integrated the compendium combinations with higher-order drug combinations, we
obtained a total of 16 combinations (Table S10) for the BHeB outcome, which was sufficient to
train ML classifiers. However, we were not able to do the same for the relapse outcome, where we

had four total combinations, even after augmenting with higher-order information.

15


https://doi.org/10.1101/2021.02.03.429579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429579; this version posted February 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

To understand if DiaMOND metrics distinguish CO and C1 BHeB combinations using this
expanded training dataset, we evaluated class separation with PCA. We observed significant
separation of BHeB outcome classes along the third PC (PC3) (Fig. SA, p<0.005, Table S11). We
then examined the top 10 features in PC3 by contribution (Fig. 5B) and found that the in vitro
models and metrics were distinct from those we observed in the RMM analysis (Fig. 3B). Notably,
the metrics for the BHeB were entirely drug interactions (Fig. 5B), and the presence of the
dormancy model in the top ten features was of particular interest because we expected hypoxia-
induced dormancy to be a microenvironment specific to the C3HeB/FeJ mice (27, 75, 76). Using
the same approach described for RMM, we developed accurate RF models to classify BHeB Cl1
and C0O combinations (Fig 5C, all in vitro models, AUC=0.9, F1=0.80). Systematic evaluation of
RF classifiers using all possible combinations of in vitro model subsets revealed that complex
models did not improve performance (Fig. S8). Specifically, we found that models without
dormancy perform as well as those with it (Fig. S9). As with the RMM classifiers, we identified
in vitro model subsets that performed better than all models together trained for the BHeB outcome
(37 (12.9%)). Lipid and acidic in vitro models featured prominently among the most accurate
classifiers. Together, these analyses demonstrate that the DiaMOND compendium data predicts
outcomes in two pathologically distinct mouse models, suggesting that enough key information
can be captured by simple in vitro models to prioritize combination therapies for animal model

tests.

Potency and antagonism are correlated with improved outcomes in mouse models

The signatures of DiaMOND data describing outcomes in RMM and BHeB highlighted that
potency metrics were key predictors for RMM, while drug interactions were key for BHeB

outcome classification. To understand whether CO and C1 drug combinations showed significant
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differences in these metrics, we examined the top five features from the most discriminatory PCs
for both mouse models. Univariate analysis revealed significant differences between three of the
top five features for the RMM outcome (Fig. 6A. Wilcoxon rank-sum, p<0.05). In each of these
five features, potency was higher in C1 combinations than CO combinations, which is consistent
with expectations of increased potency for the most effective drug combinations. The top features
describing BHeB outcomes are drug interactions (Fig. 6B), and three of the top five exhibited
significant differences between CO and C1 combinations (Wilcoxon rank-sum, p<0.05). For all
five drug interaction features, C1 was the more antagonistic class. That antagonistic drug
combinations may be more favorable is consistent with the results of our comparison of BPaL to
the standard of care (HRZ, Fig. 2B). We found that different metric types (potency or interactions)
may provide information that maps to different outcome types (bactericidal or relapse) in animal
studies. Furthermore, our analysis suggests that high potency and antagonism in in vitro assays

may be characteristics of favorable drug combinations.

Discussion

Our goal in this study was to develop a pipeline to efficiently prioritize drug combinations
early in the TB regimen design process. Most in vitro drug efficacy studies utilize single growth
conditions, which have not been clearly mapped to in vivo outcomes (24, 30). Furthermore,
conflicting results from multiple in vitro models have not been readily resolvable. We
hypothesized that treatment efficacy in vivo could be modeled as a “sum-of-parts” of the complex
microenvironment. Therefore, we generated a dataset that profiles drug combination effects
against Mtb in eight different in vitro growth environments. With this comprehensive drug

combination data compendium, we identified signatures of potencies and drug interactions in
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specific in vitro models that distinguish whether drug combinations are better than the standard of
care in two important preclinical mouse models. We found that ML classifiers were accurate
predictors of mouse disease relapse using data from only a few simple in vitro models. These
classifiers were validated with higher-order (4- and 5-drugs) combinations and had predictive
power for combinations with drugs not included in the model training. Together, our study
establishes a practical approach to prioritize combination therapies using economical, scalable,

and expandable in vitro measurements.

Synergy is often assumed to be a property of optimized combination therapies because synergistic
drugs are more effective together than expected based on single-drug efficacies alone. Our
mapping of the DiaMOND compendium onto outcomes in two different mouse models challenges
this notion. In the relapsing mouse model, drug interactions were not key features for
classification; instead, the potency measures from the drug dose response curves were the most
important predictors of outcome (Fig. 3B). Our findings are consistent with reports of treatment in
hepatitis C, cancer, and HIV (73, 74, 79) that show a tradeoff between maximizing synergy and
potency of a drug combination. Maximizing potency was often more important than synergy in
treating these diseases with multidrug therapies (73, 74, 79). Antagonism was prevalent in our
compendium (Fig. 2A), and we found that antagonism was characteristic of more efficacious drug
combinations for the C3HeB/Fel bactericidal model (Fig. 6B, C1 more antagonistic than CO0).
Partnering the most potent drugs together during regimen design may be generating highly potent
combinations but biasing these combinations towards antagonistic drug interactions. Bedaquiline,
pretomanid, and linezolid were recently found to be more potent in treating mice infected with the
Mtb HN878 strain than the H37Rv strain (80). When combined, the drugs antagonized each other

for treating Mtb strain HN878-infected mice. Despite this antagonism, the BPaLL combination was
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highly effective at curing mice infected with either Mtb strain. These in vivo results are consistent
with our findings that BPaL is a highly potent but antagonistic drug combination for in vitro
treatment of Mtb Erdman. One view of how drugs in combination exert their effect on cell
populations is that each drug targets a different subpopulation rather than multiple drugs targeting
the same cells (73, 79). Drug interactions would then explain how well a drug acts on the cellular
population that was not susceptible to the other drugs in the multidrug treatment. This leads to the
hypothesis that very potent drugs that alone can kill most of the cells in a population would achieve
high maximum effect when combined but may tend toward antagonism rather than synergy. Study
of the multidrug anticancer therapy R-CHOP (Table 1) supports this hypothesis (73), and an
expanded study using more antibiotics could be used to test this hypothesis in tuberculosis. Our
study suggests that for TB, potent drug combinations should be prioritized for further study and

should not necessarily be deprioritized if they are antagonistic in in vitro assays.

Our approach enabled us to determine the relative importance of specific in vitro models to predict
outcomes in mice, thereby serving to validate which growth conditions map to in vivo responses.
We note that signatures including several in vitro models perform better than signatures using data
from only one in vitro model, perhaps because the lesion microenvironment is complex and
constitutes multiple stressors that affect Mtb drug response. It may also indicate that none of the
physiological states imposed by the in vitro models we used in this study was so dominant that it
drives Mtb in vivo drug treatment response. We chose several lipids to serve as carbon sources in
our in vitro models because of the important role of lipids and cholesterol specifically for Mtb
growth, survival, and infectivity (8/-90). The cholesterol in vitro model was the top-performing
single in vitro model classifier for the RMM outcome and performed almost as well as the classifier

with all in vitro models. This is consistent with the importance of cholesterol metabolism for Mtb
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survival and infectivity (24, 85-87). We also observed that other lipid-rich environments (modeled
by using short-chain fatty acids butyrate or valerate as carbon sources) induced distinct drug
response patterns and that the best classifiers for both RMM and BHeB outcomes utilized metrics
from multiple lipid-rich growth conditions. These findings suggest that measuring drug
combination responses with a suite of simple growth environments may be sufficient to model the

complex lipid environment encountered in TB lesions.

Mtb in the RMM mouse strains are thought to be primarily intracellular (24), and intracellular Mtb
are exposed to the acidification of the phagolysosome (36, 37). Therefore, we expected the acidic
growth environment to be a driver in classifiers for the RMM. We found that measurements from
the acidic growth environment alone were not strongly predictive of outcomes in the RMM but
that these metrics were prominent in the best mixed-condition classifiers. Furthermore, other single
growth environment models perform better than the acidic model (Table S6). These results indicate
that response to acidic stress is important for Mtb intracellular survival to drug treatment in the
RMM, but adaptation to other environmental factors (such as lipid carbon sources) are important
drivers of treatment response. We also observed that the acidic model was prominent among the
best classifiers for the bactericidal outcome in the C3HeB/FeJ mouse strain (BHeB outcome). The
C3HeB/Fel mice are noted for the formation of the caseous necrotic granulomas (type II lesions,
(76)) that have been shown to have a neutral pH (pH>7) (9/) and with primarily extracellular Mtb
(76). However, these animals have abundant intracellular bacteria in other lesion types and within
macrophages that acidify the intracellular Mtb compartments (77), which may explain why acidic

growth environments are important predictors of drug response in this mouse model.

The microenvironments in TB granulomas are complex, yet we were able to combine measurement

in a “sum-of-parts” approach from relatively simple growth environments to model treatment
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outcomes (Fig. 4B, Figure S8). These results indicate that there is predictive drug combination
response information obtained from simple in vitro models that only needs to be combined
correctly to predict drug treatment outcomes in mice. The practical implication is that researchers
can choose a subset of the most amenable in vitro models for performing drug combination
experiments and still retain predictive capacity. We successfully model RMM and BHeB outcomes
using this compendium but not the BMM outcome, suggesting that there may be other important
factors or emergent properties of complex environments encountered during infection that were
not included in our measurement set. These factors may include other carbon sources, nutrient
availability, iron limitation, oxygen tension, human serum, or other entry mechanisms into
dormancy (e.g., via different lipids or other combinations of stressors) (9/-93). Macrophage
activation status has also been linked to Mtb drug susceptibility (94), and therefore models of
cytokine-induced activation of macrophages may be more relevant to specific in vivo outcomes.
Future studies measuring drug combination response in other and more complex in vitro models
may permit accurate modeling of the BMM outcome and improve the accuracy of predictions of

outcomes in RMM, BHeB.

We anticipate that our in vitro-to-in vivo pipeline for drug combination predictions may be applied
to study treatment outcomes in other animals and clinical studies. Predictions using our RMM
classifiers suggest the potential for using DiaMOND data to model responses in the clinic. The
moxifloxacin containing regimens, HRZM and MRZE, were expected to shorten treatment time
in humans by two months based on preclinical mouse studies but did not show non-inferiority to
HRZE in the ReMOX clinical trial (95). A meta-analysis of mouse relapse outcome studies after
the trial completion revealed that the treatment shortening of these combinations was expected to

be smaller than initially thought and that perhaps could explain the ReMOX trial results (62). A
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recent PET/CT study in humans of 14-day treatment regimens also found MRZE and HRZE to be
comparable in the reduction of lesion volume (96). The consensus RMM classifier predictions
from our study predicted that the MRZE and HRZM combinations were not likely to show
treatment improvement (47% and 53% chance of being C1, respectively), consistent with the
ReMOX trial outcome, PET/CT study, and mouse meta-analysis. Based on our prediction
probabilities, MRZE and HRZM would not have been prioritized for further study compared to
other combinations, like BPaMZ (83% chance of being C1), that are being evaluated in ongoing
clinical trials (97). Another example of the potential utility of the DiaMOND compendium for
clinical predictions comes from the “Study 31” clinical trial. The preliminary results from “Study
317 show treatment shortening of the continuation phase using PHZM compared with the standard
treatment of HRZE (intensive) followed by HR (continuation) (9). A third treatment arm (PHZE)
did not show improvement compared with the standard treatment. Similar to our ReMOX
predictions, our consensus prediction indicated PHZE to have a low probability for treatment
improvement over standard of care (42% chance of being C1) despite the mouse outcome
indicating C1 classification. The ReMOX and “Study 31~ examples suggest that the DiaMOND
compendium contains information that is relevant to understanding clinical outcomes while
contradictory to the mouse outcomes. Together these results indicate that the DiaMOND

compendium could be used in future modeling and clinical outcomes predictions (98, 99).

Several changes to the experimental design may improve this pipeline. The importance of potency
metrics in signatures of combination efficacy is perhaps surprising given that we design
combination dose responses to have equipotent combinations of each drug. There is growing
evidence that there is differential drug penetration into the lesions where Mtb is found (78), which

would lead to non-equipotent levels of drug reaching Mtb cells. Utilizing pharmacokinetic data to
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design drug combinations may increase this approach's utility and power and lead to a more
predictive DiaMOND compendium dataset. The current standard of care and other new regimens
(e.g., “Study 31” and SimpliciTB) involve intensive and continuation phases of treatment.
Including sequential treatments in an experimental approach could help understand how prior
treatment sensitizes the bacterial population to future treatment regimens. One reason to use
combination therapy for TB is to slow the acquisition of drug resistance. A systematic study of the
drug combination space in different growth environments can also be used to investigate the
evolution of drug resistance. For example, antagonistic drug interactions have been shown to
suppress the evolution of drug resistance (56, 73, 100, 101), and the evolution of drug resistance
can be tied to the growth rate and duration of drug exposure (56, 80, 102, 103). Finally, the depth
of the DiaMOND compendium may be well-complemented with transcriptomic data of drug

response to prioritize drug combinations based on predicted mechanisms of drug interaction (/04).

TB is not the only disease that benefits from combination therapy. We expect that our pipeline
may be adapted and applied to optimize multidrug regimens for other diseases, including cancers,
HIV/AIDs, and multi-drug resistant bacterial pathogens. Beyond our use of the TB DiaMOND
compendium to describe combination efficacies in mouse models, we anticipate that this dataset

may be used for other systematic studies of drug combination response.

Materials and Methods

Strains and media

M. tuberculosis Erdman strain was transformed with pMV306hsp+LuxG13 to generate an

autoluminescent strain that was used for all experiments in this study (Addgene plasmid # 26161;
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http://n2t.net/addgene:26161; RRID:Addgene 26161) (105), see Supplemental Materials). We
used the mouse cell line, J774 as a model of intracellular residency because J774 cells have been
used as a macrophage-like cell line to study early infection processes and Mtb drug response to

complex host-like intracellular environment (48, 106).

Standard 7H9 Middlebrook medium supplemented with 0.2% glycerol, 10% OADC (0.5g/L oleic
acid, 50g/L albumin, 20g/L dextrose and 0.04g/L catalase) and 0.05% Tween-80 with 25 pg/mL
kanamycin was used for Mtb strain maintenance. Growth and culturing were performed at 37°C
with aeration unless noted. All in vitro model media were buffered with 100 mM 3-(N-
morpholino)propanesulfonic acid (MOPS, pH 7), unless noted, and filter-sterilized prior to use.
The acidic model was based on the standard 7H9 Middlebrook media above and buffered with 100
mM 2-(N-morpholino)ethanesulfonic acid (MES) to pH 5.7. For acclimation to lipid carbon
sources, a base medium consisting of 7H9 powder (4.7g/L), fatty acid-free BSA (0.5g/L), NaCl
(100mM) and tyloxapol (0.05%) with 25 pg/mL kanamycin was used and the lipids sodium
butyrate (5mM, final concentration), valeric acid (0.1% final concentration) or cholesterol
(0.05mM or 0.2mM final concentration) were added to the base medium. For the cholesterol
media, a cholesterol stock solution (100mM) was first prepared by dissolving cholesterol in a 1:1
(v/v) mixture of ethanol and tyloxapol and heated to 80°C for 30 minutes and added to pre-warmed
(37°C) base medium (32). The dormancy media was based on the butyrate media with the addition
of sodium nitrate (SmM) as a terminal electron acceptor (38, 41-43). J774 cells were cultured as
previously described (/06). Briefly, J774 cells were cultured in high glucose DMEM
supplemented with 2mM L-glutamine, 1mM sodium pyruvate, and 10% heat-inactivated fetal
bovine serum (FBS) at 37°C in 5% CO2. Media was changed every one-three days and cells

passaged at ~80% confluence. Standard 7H10 Middlebrook agar plates supplemented with 0.5%
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glycerol, 10% OADC, 0.05% Tween-80 and 25 pg/mL kanamycin were used for enumerating

colonies.

Mtb in vitro model acclimation

Mtb were inoculated into standard 7H9 Middlebrook medium, grown to mid-log phase (optical
density, ODeoo ~0.5-0.7) and were subcultured for less than two weeks prior to acclimation to assay
medium. For acclimation to standard and acidic media, Mtb cells were diluted into assay media at
a starting density of ODgoo = 0.05, acclimated for 3-5 doubling times or until they reached mid-log
phase (ODegoo ~0.5-0.7), diluted to ODsoo = 0.05 and grown back to mid-log phase before use in

DiaMOND assays.

Similar to standard, and acidic conditions, Mtb were acclimated to butyrate, and valerate media
and acclimated cells were frozen for use in assays. Frozen acclimated Mtb in butyrate and valerate
media were inoculated into assay media, grown to mid-log phase (ODgoo ~0.5-0.7), diluted into
fresh lipid media at a starting concentration of ODgoo = 0.05 and grown back to mid-log phase
(ODeg0o ~0.5-0.7) and used for DiaMOND assays. The dormancy model used Mtb acclimated to
butyrate medium grown to mid-log phase (ODsoo ~0.5-0.7) and then diluted to a starting ODsoo
0.05 in dormancy media. For the dormancy model (d), cells were incubated at 37°C without
aeration for 28 days, which reduced autoluminescence close to media-only background levels,

which we interpret as being dormant with very low metabolic activity.

Mtb growth on cholesterol media slowed without the exchange of fresh medium. Cholesterol and
cholesterol-high acclimation were similar to standard and acidic conditions with fresh media
exchanges every seven days to ensure continued growth. Mtb acclimated between 14 and 28 days
were used for assays. Mtb growth rate on cholesterol-high was faster (four day doubling time) than

cholesterol (seven day doubling time).
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For the intracellular model, J774 cells were plated at 375,000 cells/mL in 384-well plates and
cultured overnight, expecting ~one doubling prior to infection. Mtb grown to mid-log phase in
standard media was syringe-passed 8 times with a 25-gauge needle to reach a single-cell
suspension, and J774s were infected with Mtb at MOI 2 for 24 hours followed by drug treatment

for 5 days.

Drugs, dose responses, and dispensing

The drugs used in this study are listed in Table 1. All drugs were reconstituted and diluted in
DMSO except for PZA for the intracellular model; to avoid exceeding the DMSO limit (0.5%) in
the intracellular condition, PZA was diluted in 1x phosphate-buffered saline with 0.01% Triton-
X. Drugs were dispensed with an HP D300e digital dispenser, and locations were randomized to
reduce plate effects. For each in vitro model, the concentration to achieve 90% inhibition (ICoo)
was determined. ICop were used to design combination dose responses with equipotent mixtures

of drugs (37). A ten-dose resolution with 1.5- or 2-fold dose spacing was used for all experiments.

Treatment and DiaMOND assays

Mtb were acclimated to in vitro model media prior to drug treatment as described above. For acidic,
butyrate, cholesterol, cholesterol-high, standard, and valerate models: 50uL of acclimated Mtb at
the indicated density was added to each well in 384-well plates containing freshly dispensed drugs
and incubated at 37°C in humidified bags to prevent evaporation. Edge wells contained media but
were not used for assays. For the dormancy model: Mtb were acclimated as described above, gently
resuspended, and 20uL of dormant Mtb culture was transferred to each well on the assay plates.
Plates were sealed with PCR seals to reduce oxygen exposure during drug treatment and incubated
for seven days. We measured regrowth after drug treatment as a readout of drug effect during

dormancy. Therefore, after drug treatment, plate seals were removed, 80uL of standard media was
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added to each well, and plates were incubated at 37°C in humidified bags to prevent evaporation.
For the intracellular model: drugs were printed into media-only plates and transferred onto infected
J774 cells 24 hours after Mtb infection. To accommodate quality control assessment, we included
multiple untreated and positive drug treatment controls in each plate as well as uninfected J774

cells for the intracellular model. (See Supplementary Materials).

Plate measurements

Luminescence and ODsoo measurements were made at 3-5 time points per sample on a Synergy
Neo2 Hybrid Multi-Mode Reader. Time points were based on the approximate doubling time of
each model. To simplify the analysis, we generally compare time points at either a relatively
similar time point (constant) or time ~4-5x doubling times after drug exposure (terminal time
point). Constant and terminal time points correspond to the same set of measurements for the
standard and intracellular in vitro models (constant/terminal, CT). For the dormancy model, plate
readings were made during recovery in standard media, and time points were selected based on
doubling time in standard media. For the dormancy and intracellular models, ODgoo measurements
could not reflect Mtb biomass alone, so only luminescence measurements are used.
Autoluminescence has been demonstrated as a proxy for Mtb cell growth (/05) and viability in
response to drug treatment (/07, 108). To benchmark changes in luminescence to changes in
growth in our conditions, we performed a series of drug treatment experiments in the dormancy
and intracellular models (see Supplementary Materials and Fig. S1). Briefly, cells were treated as
described above, followed by plating treated cells on 7H10 plates to enumerate colony forming
units (CFU). Portions of the luminescence dose response curve that correlated with CFU changes
were considered indicative of growth inhibition, and metrics derived from these portions of the

curve were used for analysis.
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Data processing and metric calculation

Data processing and dose response metric calculation were performed using custom MATLAB
scripts. In brief, raw data were background-subtracted using the median of media-only wells and
normalized to the mean of untreated wells within each plate. For the intracellular model, uninfected
macrophages provided the background (rather than media only) for subtraction from raw data, and
subsequently, data was normalized to (infected) untreated within each plate. A 3-parameter Hill
function was fit to each dose response (single drug or combination). Inhibitory concentrations
(ICs) were calculated based on the Hill curve parameters. The area under the curve at 25%
inhibition (AUC;s) was calculated using the integral of the fit curves from 0 to the 25% inhibitory
concentration (ICys) and normalized to the ICs, allowing comparisons between drug
combinations. Drug interaction scores were quantified by the fractional inhibitory concentration
(FIC) using Loewe additivity and Bliss independence (See Box). FICs calculated by Loewe
additivity and Bliss independence were well correlated, and neither model was observed to suffer
from significant bias relative to the order of the drug combination (/09) (Supplementary Material);
therefore, we proceeded to analyze drug interactions based on Loewe additivity. The growth rate
inhibition (GR) metrics were calculated as previously described (55). See Supplementary

Materials for details on data processing and analysis.

Data quality

Experiments were performed in a minimum of biological triplicate. Comparisons of data between
plates and between experimental days required data quality control assessment. Each dose
response was assigned a quality score that takes into account the overall quality of the data from a
plate, the quality of fit of the Hill function, the single drug dose responsiveness from an

experiment, and in the case of drug combinations, the equipotency in the drug combination dose
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responses (Supplementary Materials). In brief, plate data quality was assessed with a Z’-score
using multiple untreated (negative) and complete inhibition treatment (positive) wells in each
plate. The fitting of the Hill function was assessed by the coefficient of determination (R?) of the
fit as well as the closeness of the Einr for each fit to the maximum observed effect for each dose
response curve. Drug combination equipotency was assessed by comparing the proportional
combinations normalized to their respective MICs and the idealized combination of drugs if they
were perfectly equipotent. Dose responses with poor quality scores were excluded from further

analysis.
Computational Analyses

Biological replicate dose response and drug interaction data passing quality control were averaged.
Means of replicate data were used for all downstream analyses unless noted. Hierarchical
clustering was performed using cosine distance, and heatmaps with complete linkage dendrograms
were generated using MATLAB. Other data preparation and visualizations were performed in R
studio (version 3.5.3) using the tidyverse environment packages and ggplot2 and ggpubr packages
for visualization. Data table import and export were performed in R using the openxl and readxls

packages

PCA was performed in R using the prcomp function from the stats package with each feature
scaled to have unit variance before PCA. Some features were missing data; e.g., FICoo metrics
were missing because single drugs did not achieve 1Coo. Features with more than 35% missing data
points were excluded from PCA. The remaining missing values were imputed using the mean of

the corresponding input features (mean imputation) (/70).

Machine learning
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The machine learning in R (mlr v2.17.0) package was used for all machine learning tasks involving
projections of the original features onto the principal component (PC) space as the input features

and classified drug combination outcome (CO or C1) as labels.

Feature selection, feature number optimization, and model validation

The Kruskal-Wallis test was used to rank order the PC input features for ML based on the ability
to discriminate outcome classes CO and C1. As there were a limited number of drug combinations,
we aimed to reduce the number of features used in the model. A Monte-Carlo resampling strategy
was used to split the training data into 70/30% training/test partitions, to which we applied grid
search to find the number of features that produced the largest test AUC. This feature number
optimization was repeated five times for each training set, and the smallest feature set from the
five iterations was chosen as the final training feature set. Models were trained on the full set of
training data, and performance on new data was estimated using standard 5-fold cross validation.
Validation was performed by projecting new data onto the PC space used for the model training

and testing model classification performance.

Machine learner packages

Upon feature selection, machine learning algorithms were compared using standard 5-fold cross
validation. The performance was evaluated using the AUC and the F-score (F1). The mlr package
made possible on-demand loading of learners from other R packages, including Bayesian additive
regression tree (bartMachine, v1.2.5.1), random forest (randomForestSRC, v2.9.3), extreme
gradient boosting (xgboost, v1.1.1.1), logistic regression (stats), naive bayes (e1071, v1.7-3),

support vector machine (e1071, v1.7-3), and weighted k-nearest neighbors (kknn, v1.3.1).

Statistical Analysis
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Differences between outcome class groups for DiaMOND features or PCs were assessed by means
(ICoo averages), medians (class comparisons), and standard deviation of drug combinations from
each outcome group in each in vitro model. Because data normality could not easily be assessed
with small numbers of drug combinations in each group, the Wilcoxon rank-sum test was used to
compare outcome group means for statistical significance. Student’s t-tests were used for testing
hypotheses of differences between model performance distributions. The hypothesis that Loewe
and Bliss interaction (FIC) scores were correlated was tested using Pearson correlations. Statistical

analyses were performed using the stats, ggpubr, or the rstatrix packages in R version 3.5.3.

Supplementary Materials

Materials and Methods

Fig. S1. Benchmarking cell viability with luminescence measurements.

Fig. S2. Comparing null reference models for drug interaction scoring.

Fig. S3. Intermediate potency drug interaction profiles.

Fig. S4. Alternative potency metric profiles for selected drug combinations.

Fig. S5. Alternative potency metric profiles for DiaMOND compendium.

Fig. S6. Outcome class separation in single in vitro model principal component analyses (PCAs).

Fig. S7. BMM classifier performance on training and test data.

Fig. S8. BHeB in vitro model subset model performance distributions.

Fig. S9. BHeB in vitro model with and without dormancy model performance distributions.

Table S1. Experiment time points and estimated growth amounts for in vitro models.
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Table S2. Drug information table.

Table S3. Drug ICoo for in vitro models.

Table S4. Drug combinations with RMM outcomes for 2- and 3-way drug combinations.
Table S5. RMM PC class separation.

Table S6. Machine learning algorithm benchmarking performance metrics.

Table S7. RMM model validation set.

Table S8. RMM single in vitro model classifier performance.

Table S9. Drug combinations with BMM outcomes for 1-, 2- and 3-way drug combinations.
Table S10. Drug combinations with BHeB outcomes for 1-, 2- and 3-way drug combinations.

Table S11. BHeB PC class separation.
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Fig. 1. 10-drug DiaMOND compendium of Mtb response to drug combination treatment. (A)
Relative potencies of the ten compendium drugs in eight in vitro conditions (ICoo,
terminal time point; left) with doubling times for each condition in untreated Mtb (right).
Hierarchical clustering of potencies as calculated with cosine distances and average
linkage. ICo is color scaled (log10 transformation) within each drug (Table S3). ND =
Not determined. NA = not applicable. (B) Metrics from DiaMOND dose response curves.
ICso and ICo are used to calculate drug interactions at the 50% and 90% levels of growth
inhibition (FICso and FICoo, respectively). Three potency metrics are derived: AUCys =
normalized area under the curve until 25% inhibition, Eiyr = theoretical maximum
inhibition, and GRiyr = theoretical maximum normalized growth rate inhibition (Box and
Materials and Methods). (C) Schematic data cube of the DiaMOND compendium. Mtb

were treated with all 1-, 2-, and 3-way drug combinations (175 combinations) among 10-
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drugs in dose responses measured in 10-dose resolution in at least biological duplicate.
Dose response measurements were made in eight in vitro models and at 3-4 time points,
but we focus on 1-2 time points for analysis; therefore, this data cube represents ~25% of

the total measurements made.
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Fig. 2. Drug interaction and potency patterns in the DiaMOND compendium. (A) Drug
interaction profiles of all 2- and 3-drug combinations among the ten compendium drugs
across the in vitro models (log2(FICoo) at the terminal time point, clustered based on
cosine distance). (B) Drug interaction profiles of selected drug combinations ordered by
mouse relapse outcome efficacy (22, 64-71). See Table 1 for drug combination
abbreviations. (C) Drug combination potency profiles of all 2- and 3-drug combinations
among the ten compendium drugs across the in vitro models (Einr at the terminal time

point, clustered based on cosine distance). (D) Drug interaction profiles of selected drug
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combinations ordered by mouse relapse outcome efficacy (22, 64-71). See Table 1 for

drug combination abbreviations. gray = ND.
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Fig. 3. Prediction of combination treatment outcomes in the RMM with DiaMOND data. (A)

PCA of DiaMOND data labeled by outcome in the RMM (C1 is better than the standard
of care, blue; CO0 is standard of care or worse, red) with the most discriminating two PCs
shown. Outside the scatter plot are box and whisker plots of the distributions of C1 and
CO0 combinations along PC1 and PC27 (Wilcoxon rank-sum test: *** p<(.005. **
p<0.01). (B) Highest weighted features in PC1 with in vitro model (abbreviations in Fig.
1A) and metric type indicated. Metrics are classified and shaded according to whether
they are related to drug combination potency (purple: AUC»s, Einf, and GRinf) or drug
interaction (orange: FICso and FICop). (C) ROC curves (top panel, Table 1) and PR
curves (bottom panel, Table 1) of a random forest-based classifier trained on all eight
conditions in the DiaMOND compendium. The model is tested with high-order
combinations (4- and 5-drug combinations) that were excluded from training. Training

(gray lines each show one of five cross validations; lines are slightly offset to aid
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visualization) and test (black) performances are shown with lines. Test combinations are
colored by outcome class as in (A). Performance metrics are shown on plots for test data
(Area Under the ROC curve (AUC) and F1, harmonic mean of precision and recall, Table

1). Dashed lines indicate theoretical “no-skill” model performance.
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Fig. 4. Prediction of combination therapy outcomes in the RMM using fewer in vitro models. (A)
PCA plot of DiaMOND data labeled by outcome in the RMM (plots are labeled as in Fig.
3A). Each subplot is DiaMOND data from one in vitro condition plotted in the PC space
with the most discriminating two PCs shown for each model. Outside the scatter plot are
box and whisker plots of the distributions of C1 and CO combinations along PC1 and PC2
(Wilcoxon rank test: *** p<0.005. ** p<0.01. * p<0.05. ns p>0.05). (B) Density
distribution plots of estimated classifier performances from systematic survey of all
possible in vitro model subsets. Distributions of ROC AUC (top) and F1 (bottom) are
separated based on whether technically complex models (intracellular, cholesterol-high,
dormancy) are included (yellow) or whether only simple conditions (acidic, butyrate,
cholesterol, standard, valerate) are considered. Colored dashed lines indicate mean value
for distribution. The estimated performances when using all in vitro models (as in Fig. 3)
is shown with black dashed lines. Distributions are compared with a Wilcoxon rank sum
test (ns = not significant). (C) Comparison of classification performances of three high-

performance random forest classifiers using subsets of simple in vitro models. Training
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(gray lines each show one of five cross validations; lines are slightly offset when they are
on top of each other) and test (black) performance is demonstrated with ROC (top) and
PR (bottom) curves. Test combinations are colored by outcome class as in panel (A). Plot
shapes indicate whether a test combination contained higher-order 4- and 5- drug
combinations (triangle) or a combination containing a new drug (diamond-shape) not
included in the compendium described in Fig. 1. Dashed lines indicate theoretical “no-

skill” model performance.
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Fig. 5. Signatures of DiaMOND data to describe outcome in the C3HeB/FeJ (BHeB) mouse
model. (A) PCA plot of DiaMOND data labeled by outcome in the BHeB (plot labels are
as in Fig. 3A). (B) Highest weighted features in PC3 with in vitro model and metric type
indicated (features are as described in Fig. 3B). (C) Machine learning performance plots
for training with 5-fold cross validation (each in a gray line) with ROC (top) and PR
(bottom) curves for models trained using all eight conditions (left) and three high-
performing subsets of conditions (right: acidic + butyrate + valerate, cholesterol +
valerate, and standard + valerate). Subsets had perfect training performance (AUC = 1.0,

Table S7). Dashed lines indicate theoretical “no-skill” model performance.
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Fig. 6. Properties of signature potency and drug interaction characteristics that describe RMM
and BHeB combination treatment outcomes. Values of the five highest weighted features
in the most discriminatory PC are compared for C1 and CO combinations in the RMM
(A) and BHeB models (B) using dot and box plots. The top features in RMM are potency
metrics whereas the top features are drug interaction metrics in BHeB. High vs. low
potency (pot) and synergy (syn) vs. antagonism (ant) is indicated with arrows on each

subplot. (Wilcoxon rank test: *** p<0.005. ** p<0.01. * p<0.05. ns p>0.05).
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Box

DiaMOND (Diagonal measurement of n-way drug interactions ) is a
quantitative framework to efficiently measure drug interactions. The
method is based on geometric sampling of traditional combination
checkerboards and can be applied to any number of drugs in combina-
tion. Optical density (OD,,,) or luminescence measures are normalized
to untreated controls and subtracted from 1 to obtain fractional growth
inhibition. The concentrations to achieve a particular effect (e.g., concen-
tration to achieve 90% growth inhibition, IC,, depicted in blue and
orange circles) are experimentally determined for all single drugs so that
dosing in subsequent measurement of drug combinations is equipotent V/
(e.g., the IC,, should be dose #~7 for all drugs). Doses may be spaced 2 4 6 8 10
linearly or logarithmically, but the spacing must be consistent between drug A (dose unit)
drugs. The single-drug dose responses (blue and orange boxes) and the
equipotent drug combination dose response (black box) are highlighted. Drug interactions can be estimated using
only the measurements from these boxes rather than the entire checkerboard by approximating the shape of
isoboles (contours of equal effect). In the diagram, the isobole
M—_ for IC,, is traced by the circles. If drug A and B are additive, the
Bl — — — isobole would be a straight diagonal, and we calculate the
expected IC,.on the combination dose response (orange
square) where the dotted line intersects with the diagonal
(combination) dose response curve. In this illustration, the
combination reaches an IC,; at higher dose levels (orange
circle) than the expected IC,, indicating an antagonistic interac-
tion. The ratio of observed and expected doses (observed/ex-
pected) is the fractional inhibitory concentration (FIC):

observed combination dose
expected combination dose

—_

fractional growth inhibition

/V

drug B (dose unit)
o N b~ O o O

o

o
o)

o
~

FIC =

== jsoniazid
== moxifloxacin
== jsoniazid . .
AUC + moxifloxacin The DiaMOND methodology was used to obtain dose response
% data for every drug and drug combination measured over

0 0.5 1 15 2 multiple time points. A Hill function was fit to these data and
dose units xICy, several potency and drug interactions metrics were derived

from these dose response curves.

fractional growth inhibition

o
N

(=}

DiaMOND dose response metrics:

E,; (the maximum achievable effect): derived from the fitted Hill function (lower pane, dashed lines, colored by
single drug or drug combination), E, . describes the maximal achievable effect (upper asymptote, dashed lines) of
a given drug or drug combination at a particular time point, where the maximum possible effect is 1.

AUC,: the area under the curve (AUC) simultaneously captures variation in potency and effect of a drug or drug
combination, i.e., sensitivity to drug. AUC,.captures sensitivity to drug at concentrations with low growth inhibition.
To compare low does potency to other drugs or drug combinations with different concentration ranges, we normal-
ize the area by dividing by the IC,. The resulting AUC . values range from 0 (no effect) and 1 (potent).

FIC: drug interactions measure the effect of combining drugs on drug potency, i.e., the dose required to achieve a
specific effect. The fractional inhibitory concentration (FIC) is the ratio of the observed combination dose (black
circle) to achieve X effect over the expected combination dose (grey square), where FIC < 1 indicates synergy, FIC
> 1 indicates antagonism, and FIC = 1 indicates additivity. In this example, the FIC, is approximately additive
whereas the FIC, is antagonistic, which is indicated by the relative position of the combination dose response
(black) near (IC, ) and to the right (IC,) of the single dose response curves. We log transformation FICs to balance
such that log,FIC < 0 is synergistic and log,FIC > 0 is antagonistic.

GR, ;: Derived from the growth rate curve (not shown here, see (55) for details), GRinf describes the maximal
achievable effect of a drug or drug combination on the normalized growth rate, ranging between 1 and -1, where
GR(c) is between 0 and 1 in the case of partial growth inhibition, GR(c) = 0 in the case of complete cytostasis, and
GR < 0 indicates cell death. This unitless metric describes the effect of a drug on cells independent of doubling

time, enabling comparison of drug effect on cells in different growth conditions.
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Table 1.
drug and drug combinations:

B bedaquiline

C clofazimine

E ethambutol

H isoniazid

L linezolid

M moxifloxacin

Pa pretomanid

Z pyrazinamide

R rifampicin

P rifapentine

D delamanid

Su sutezolid

Sq SQ109
PaMZ bedaquiline + pretomanid + moxifloxacin

BPaMZ bedaquiline + pretomanid + moxifloxacin + pyrazinamide
isoniazid + rifampicin + pyrazinamide + ethambutol - four drug standard of
HRZE care
HRZ 1soniazid + rifampicin + pyrazinamide - three drug standard of care

BPal bedaquiline + pretomanid + linezolid
MRZ moxifloxacin + rifampicin + pyrazinamide

RZ rifampicin + pyrazinamide

isoniazid + rifampicin + pyrazinamide + moxifloxacin — ReMOX trial
HRZM combination
moxifloxacin + rifampicin + pyrazinamide + ethambutol — ReMOX trial
MRZE combination
rifapentine + isoniazid + pyrazinamide + moxifloxacin — Study 31 trial
PHZM combination
rifapentine + isoniazid + pyrazinamide + ethambutol — Study 31 trial
PHZE combination
rituximab + cyclophosphamide + doxorubicin hydrochloride + vincristine
R-CHOP sulfate + prednisone — anti-cancer drug combination
treatment outcome classification:
CO0 as good or worse than standard of care (HRZE or HRZ)
Cl better than standard of care
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mouse models:
RMM relapsing mouse model!
BMM bactericidal mouse model®
BHeB bactericidal outcome in C3HeB/Fel] mouse strain’
in vitro models:
a acidic
b butyrate
Cc cholesterol (0.05mM)
d dormancy
h cholesterol-high (0.2mM)
1 intracellular
standard
v valerate
data and model metrics:
C constant time point
T terminal time point
CT constant and terminal time point are the same
1C, inhibitory concentration at n % growth inhibition
FIC, fractional inhibitory concentration at n % growth inhibition
AUC»s normalized area under the curve to the 25% inhibition point
Einf effect at infinite drug concentration (maximum achievable effect)
normalized growth inhibition effect at infinite drug concentration (maximum
GRint achievable effect)
ROC receiver operator characteristic
AUC area under the ROC curve
PR precision-recall
F1 harmonic mean of the precision and recall

Table 1: Abbreviations used in this study. Abbreviations along with brief descriptions are listed.
'The RMM outcome assesses lasting cure months after cessation of drug treatment in the most
commonly used mouse strains (e.g., BALB/c, C56BL/6, Swiss). ’The BMM outcome assesses

reduction of bacterial burden immediately following drug treatment in the most commonly used
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mouse strains. *The BHeB assesses reduction of bacterial burden immediately following drug

treatment but in the pathologically distinct C3HeB/FeJ mouse strain.
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